
Downward-directed transitive frames
with universal relations

Ilya Shapirovsky

abstract. In this paper we identify modal logics of some bimodal Kripke
frames corresponding to geometrical structures. Each of these frames is
a set of ‘geometrical’ objects with some natural accessibility relation plus
the universal relation. For these logics we present finite axiom systems and
prove completeness.

We also show that all these logics have the finite model property and are
PSPACE-complete. To prove this, we show that under certain restrictions,
adding the universal modality preserves ‘good’ properties of a monomodal
logic.
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1 Introduction

The subject of this paper is in the field of spatial and temporal modal logics.
We focus mainly on relativistic time, and also consider some interval and
regional structures.

Our basic temporal relations are causal (�) and chronological (≺) acces-
sibility. Modal axiomatizations of real space and its domains ordered by
� can be found in [3], [14]. Analogous results on ≺ were obtained in [12],
[10]. In [15] it was noted that relativistic logics can be interpreted in in-
terval or regional semantics. This approach was further developed in [13].
Thus at present we have quite a few monomodal logics axiomatizing rela-
tivistic spacetime, interval or regional structures; all these logics have the
finite model property (for short, FMP) and they are known to be PSPACE-
complete. But the expressive power of these systems is rather weak. On
the other hand, richer spatial structures may have undecidable or even non
recursively enumerable logics (cf. [6], [8], [13]). This brings up the following
standard question: how to improve the expressivity preserving the FMP
and complexity?

Consider the following property of relativistic time: any two points
are accessible from another point, in other words, any two points have
common past. This property (downward-directedness) holds in real space
Rn, but it may fail in its subsets, in particular, in the upper half-space
Rn−1 × {t | t > 0, t ∈ R}. However, the monomodal logic of the upper half-
space (ordered by ≺ or �) is equal to the logic of the whole space. Using the
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universal modality, we can express downward-directedness with the modal
formula A↓ = ∃p ∧ ∃q → ∃(3p ∧3q).

In this paper we axiomatize modal logics of some geometrical downward-
directed frames expanded with universal relations, and show that the FMP
and PSPACE-decidability are preserved.

The problem of enriching a modal language with the universal modality
was first systematically investigated in [5]. Given a normal monomodal logic
L, we consider the logic LU - the fusion of L and S5 plus the containment
axiom 3p→ ∃p. Among others, it was proved in [5] that LU inherits strong
Kripke completeness and compactness from L. However, some properties
of L can be lost: [17] gives an example of a monomodal logic L with the
FMP such that LU lacks the FMP; in [7], it was shown that there exists a
decidable monomodal logic L such that LU is undecidable.

Nevertheless, we prove that adding the universal modality together with
the axiom A↓ preserves properties of transitive logics such as Kripke-
completeness, the finite model property, decidability within a certain poly-
nomially closed complexity class.

2 Basic notions

In this paper we consider normal monomodal and bimodal propositional
logics.

Let FM(3) be the set of all formulas constructed using a countable set of
propositional variables PV = {p1, p2, . . . }, propositional constant ⊥ (false),
and connectives →, 3. To obtain FM(3, ∃), we enrich the language with
the unary modal operator ∃. We define 2, ∀, ¬, ∨, ∧, > in the usual
way, in particular, 2A := ¬3¬A, ∀A := ¬∃¬A. Also let 3

+A := 3A ∨ A,
2

+A := 2A ∧ A.
For a monomodal (bimodal) logic L and a formula A ∈ FM(3) (A ∈

FM(3, ∃)), L+A denotes the smallest monomodal (bimodal) logic contain-
ing L ∪ {A}. The notation L ` A means A ∈ L.
Sub(A) denotes the set of all subformulas of A; for � ∈ {3, ∃},

Sub�(A) := {�A | �A ∈ Sub(A)}.

A (Kripke) frame is a tuple (W,R1, . . . , Rn), where W 6= ∅, Ri ⊆W ×W .
In this paper we always assume that R1 is transitive. We consider only
monomodal or bimodal frames, i.e., n ≤ 2.

A (Kripke) model M over a frame F is a pair (F, θ), where θ : PV → 2W ,
2W denotes the power set of W . The truth of a formula in a model is defined
in the standard way. In particular, for a model M over a frame (W,R1, R2)
and a formula ∃A ∈ FM(3, ∃), we put for all x ∈ W

M, x � ∃A iff M, y � A for some y ∈ R2(x)

The notations x ∈ M, x ∈ F mean x ∈ W . The notation M � A means
that M, x � A for all x ∈ M. If for any model M over F we have M � A
then we say that A is valid in F, F � A in symbols. For a class F of frames,
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L(F) denotes the modal logic determined by F , i.e., the set of all formulas
that are valid in all frames from F . For a single frame F, L(F) abbreviates
L({F}).

For a logic L, if L(F) ⊇ L, then we say that F is an L-frame. A formula
A is satisfiable in a model M if for some x ∈ M we have M, x � A; A is
satisfiable at a point x in a frame F if M, x � A for some model M over
F. A is satisfiable in a frame F if A is satisfiable at some x ∈ F. For a
class F of frames, A is F-satisfiable if A is satisfiable in some F ∈ F . A is
L-satisfiable if A is satisfiable in some L-frame.

Consider a monomodal frame (W,R). For x ∈ W let R(x) := {y | xRy}.
IdW denotes the equality relation onW , and Rr denotes the reflexive closure
of R, i.e., Rr := R ∪ IdW .

Consider some first-order properties of a relation R:

seriality: ∀x∃y xRy;

Church–Rosser
property: ∀x∀y1∀y2∃z(xRy1 ∧ xRy2 → y1Rz ∧ y2Rz);

McKinsey property: ∀x∃y ∈ R(x) R(y) = {y};

irreflexive McKinsey
property: ∀x∃y ∈ Rr(x) R(y) = ∅;

2-density: ∀x∀y1∀y2∃z(xRy1 ∧ xRy2 → xRz ∧ zRy1 ∧ zRy2).

For a monomodal frame (W,R), we have the following correspondence
between modal axioms and first-order properties (recall that we consider
only transitive frames):

A4 := 33p→ 3p transitivity;
AT := p→ 3p reflexivity;
AD := 3> seriality;
A1 := 23p→ 32p McKinsey property;
A2 := 32p→ 23p Church – Rosser property.

Put A1− := 3
+
2⊥, Ad2 := 3p1 ∧3p2 → 3(3p1 ∧3p2).

The following proposition is straightforward:

PROPOSITION 1. For a frame F = (W,R),

• F � A1− iff F satisfies irreflexive McKinsey property;

• F � Ad2 iff F is 2-dense iff for any n ≥ 1, F satisfies

∀x∀y1 . . . ∀yn({y1, . . . , yn} ⊆ R(x)→ ∃z ∈ R(x) {y1, . . . , yn} ⊆ R(z)).

As usual, K denotes the smallest normal monomodal logic. Let

K4 := K +A4, S4 := K4 +AT,
Cr := K4 +Ad2 +AD, CrB := K4 +Ad2 +A1−.
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For a logic L let L.1 := L +A1, L.2 := L +A2.

Consider a monomodal frame F = (W,R). For V ⊆ W , let R|V :=
R ∩ (V × V ). For x ∈ F let F〈x〉 := (Rr(x), R|Rr(x)). If for some x ∈ F we
have F = F〈x〉, we say that F is rooted (or a cone), and x is a root of F. We
say that x ∈ F is minimal in F, if yRx implies xRy for any y ∈ F. Let Fu de-
note the frame with the additional universal relation: Fu := (W,R,W×W ).
For a model M = (F, θ) we put Mu := (Fu, θ). For a class F of monomodal
frames we put Fu := {Fu | F ∈ F}.

Consider frames F = (W,R1, . . . , Rn) and G = (V, S1, . . . , Sn). Recall
that a surjective map f : W → V is a p-morphism from F onto G (in
notation, f : F � G), if for any x ∈ W , 1 ≤ i ≤ n, we have f(Ri(x)) =
Si(f(x)). The notation F � G means that there exists a p-morphism from
F onto G. Recall that F � G implies L(F) ⊆ L(G). For monomodal frames
F and G the following two facts are trivial: if F and G are isomorphic
then Fu and Gu are isomorphic; if f : F � G then f : Fu � Gu, and so
L(Fu) ⊆ L(Gu).

The following syntactical introduction of the universal modality is due to
[5]. For a monomodal logic L, let LU denote the smallest normal bimodal
logic containing L and the formulas

A4∃ = ∃∃p→ ∃p, AT∃ = p→ ∃p, AB∃ = p→ ∀∃p;
A⊆ = 3p→ ∃p.

It follows that (W,R1, R2) is LU-frame iff F = (W,R1) is L-frame, R2 is an
equivalence relation on W , and R1 ⊆ R2.

3 Translation

Given a monomodal rooted frame F, it is possible to show that the satisfi-
ability in Fu can be reduced to the satisfiability in F. For this purpose we
use the following construction, proposed in [7].

Consider a formula A ∈ FM(3, ∃). In this section we assume
that PV (A) ⊆ {p1, . . . , pm}, Sub(A) = {A1, . . . , An}, and Sub∃(A) =
{∃Ai1 , . . . , ∃Ail}.

Fix some variables q1, . . . , ql 6∈ PV (A). For any B ∈ Sub(A) we define
the formula [B] as follows:

[p] := p, [⊥] := ⊥, [B1 → B2] := [B1]→ [B2], [3B] := 3[B], [∃Aij ] := qj .

LEMMA 2. [7] Given a formula A ∈ FM(3, ∃) and a model M =
((W,R), θ) such that:

(3.1) if Mu � ∃Aij then θ(qj) = W , otherwise θ(qj) = ∅.

Then for any y ∈W and any B ∈ Sub(A), we have

Mu, y � B ⇐⇒ M, y � [B]
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Proof. By induction on the length of the formula. We consider only the
case when B = ∃Aij : Mu, y � ∃Aij iff for some z ∈ W Mu, z � Aij iff
θ(qj) = W iff M, y � [∃Aij ] (recall that [∃Aij ] = qj). �

We put

A∃ :=

l∧

j=1

(
(∃[Aij ]→ ∀qj) ∧ (¬∃[Aij ]→ ∀¬qj)

)
∧ [A]

(as usual, we put
∧
i∈∅

Ci := >)

LEMMA 3. [7] A is satisfiable in Fu iff A∃ is satisfiable in Fu.

Proof. (⇒) For some M0 = (F, θ0), x ∈ W , we have Mu
0 , x � A. Since

qj 6∈ PV (A), 1 ≤ j ≤ l, there exists a model M = (F, θ) such that θ(pi) =
θ0(pi), 1 ≤ i ≤ m, and M satisfies (3.1). Then Mu, x � A, and by Lemma
2 Mu, x � A∃.
(⇐) For some M = (F, θ), x ∈ W , we have Mu, x � A∃. By induction on the
length of the formula one can see that for any y ∈ F and any B ∈ Sub(A),
we have: Mu, y � B iff M, y � [B]. Let us consider the case when B = ∃Aij :

Mu, y � ∃Aij iff for some z Mu, z � Aij iff for some z M, z � [Aij ] iff
Mu, y � ∃[Aij ] iff M, y � qj (note that Mu � ∀qj or Mu � ∀¬qj).

Since M, x � [A], we have Mu, x � A. �

Let us slightly modify the considered translation:

A3 :=

l∧

j=1

(
(3+[Aij ]→ 2

+qj) ∧ (¬3+[Aij ]→ 2
+¬qj)

)
∧3

+[A]

Note that A3 ∈ FM(3).
Consider a rooted frame F = F〈x〉. Then for any model M over F and

B ∈ FM(3) we have: Mu � ∃B iff M, x � 3
+B. Thus we obtain the

following reformulation of Lemma 3:

LEMMA 4. Let F be a cone, and let x be a root of F. Then for any A ∈
FM(3, ∃), A is satisfiable in Fu iff A3 is satisfiable at x in F.

4 Downward-directed frames

In this section we prove transfer theorems for logics of downward-directed
transitive frames.

A monomodal frame F = (W,R) is downward-directed iff F satisfies

∀x∀y∃z(zRx ∧ zRy).

(W,R) is weakly downward-directed iff (W,Rr) is downward-directed.
Consider the following axioms:

A⇓ := ∃p ∧ ∃q → ∃(3+p ∧3
+q)

A↓ := ∃p ∧ ∃q → ∃(3p ∧3q)
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Straightforward arguments show

PROPOSITION 5. For a frame F = (W,R),

• Fu � A⇓ iff F is weakly downward-directed;

• Fu � A↓ iff F is downward-directed.

Clearly, every rooted frame is weakly downward-directed, so F = F〈x〉
implies Fu � A⇓. Moreover, if x is reflexive then F is downward-directed
and F � A↓. On the other hand, let x be minimal in F. Then Fu � A⇓

implies F = F〈x〉; if Fu � A↓ then we also have that x is reflexive.
For a monomodal logic L, we put

LU↓ := LU +A↓, LU⇓ := LU +A⇓.

For a bimodal logic M, let FM = (WM, RM, UM) denote its canonical
frame, MM denote its canonical model (the notion of canonicity is defined
in the standard way, see e.g. [1]). Note that if M ⊇ KU then RM ⊆ UM

and UM is an equivalence relation on WM [5]. One can see that A↓, A⇓ are
Sahlqvist formulas, so A↓, A⇓ are canonical.

By induction on n it is not hard to check

PROPOSITION 6. For n ≥ 1,

• K4U⇓ ` ∃p1 ∧ . . . ∧ ∃pn → ∃(3+p1 ∧ . . . ∧3
+pn).

• K4U↓ ` ∃p1 ∧ . . . ∧ ∃pn → ∃(3p1 ∧ . . . ∧3pn).

The following lemma shows that the canonical frame for a logic M ⊇
K4U⇓ is a disjoint union of cones with universal relations:

LEMMA 7. Consider a logic M ⊇ K4U. Let W be an equivalence class
modulo UM, R := RM|W , F := (W,R). Then

• if M ` A⇓ then F has a root;

• if M ` A↓ then F has a reflexive root.

Proof. Let Ψ = {3B | B ∈ y for some y ∈ W}. If Ψ is M-consistent then
by the Lindenbaum lemma there exists x ∈WM such that x ⊇ Ψ. Then by
the construction, W = R(x).

If M ` A↓ then any finite subset of Ψ is M-consistent (see Proposition
6), so Ψ is M-consistent.

Suppose that M ` A⇓ and Ψ is M-inconsistent. Then Φ :=
{3B1, . . . ,3Bn} is M-inconsistent for some 3B1, . . . ,3Bn ∈ Ψ. By Propo-

sition 6, there exists x ∈ W such that x 3
∧

1≤i≤n

3
+Bi. Then for any

x′ ∈ W , x′Rx implies x′ ⊃ Φ. It follows that x is minimal in F. Since
F � A⇓, F = F〈x〉. �
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For a formula A, let A0 := ¬A, A1 := A.

THEOREM 8. Let F be a class of rooted frames closed under taking cones.
Then L(Fu) = L(F)U⇓.

Proof. Put L := L(F), M := LU⇓. Since Fu consists of rooted LU-frames,
we have L(Fu) ⊇M.

To prove the converse inclusion, consider an M-consistent formula A.
Then A ∈ y0 for some y0 ∈ WM. Let SubE(A) = {B1, . . . , Bl}. Put

B := A ∧
∧

1≤j≤l

B
vj

j , where v1, . . . , vl are defined as follows: if Bj ∈ y0 then

vj := 1, otherwise vj := 0. Thus B ∈ y0.
Note that for any M-consistent formula C, q 6∈ PV (C), v ∈ {0, 1}, we

have C∧∀qv is M-consistent. Indeed, suppose that C∧∀qv is M-inconsistent,
i.e., M ` ∀qv → ¬C. Replacing q with ⊥ or >, we obtain M ` ∀> → ¬C.
Trivially, M ` ∀>, so M ` ¬C: a contradiction.

Let q1, . . . , ql 6∈ PV (B). It follows that B∧
∧

1≤j≤l

∀q
vj

j is M-consistent, so

for some y ∈WM we have {B, ∀qv11 , . . . , ∀q
vl

l } ⊆ y.
Let W := UM(y), and let Mu = ((W,R,U), θ) be the restriction MM|W ,

i.e., R := RM|W, U := UM|W = W ×W , and for any p ∈ PV , θ(p) :=
{x ∈ W | p ∈ x}. As well as in MM, for any z ∈ W and any C ∈ FM(3, ∃)
we have: C ∈ x iff Mu, x � C.

Put F := (W,R). By Lemma 2, we have A∃ ∈ y. By Lemma 7, F = F〈x〉
for some x ∈W . Then A3 ∈ x, thus A3 is L-consistent.

Then A3 is satisfiable at some z ∈ G, G ∈ F , thus A3 is satisfiable at
the root of H = G〈z〉, and by Lemma 4, A is satisfiable in Hu. Since F
closed under taking cones, we have H ∈ F and so Hu ∈ Fu. Thus A is
Fu-satisfiable.

It follows that L(Fu) ⊆M. �

COROLLARY 9. For a monomodal transitive Kripke-complete logic L,

• LU⇓ is Kripke-complete;

• if L has the FMP, then LU⇓ has the FMP;

• for any A ∈ FM(3, ∃), A is LU⇓-satisfiable iff A3 is L-satisfiable;

• L and LU⇓ are polynomially equivalent.

Proof. Suppose L = L(G). Put F = {G〈x〉 | G ∈ G, x ∈ G}. Then
L = L(F). By Theorem 8, LU⇓ = L(Fu).

By Lemma 4, for any formula A ∈ FM(3, ∃) we have:

A is Fu-satisfiable iff A3 is F-satisfiable.

One can readily check that A3 can be computed in time polynomial in
the length of A, so LU⇓ is polynomially reduced to L. Trivially, for any
B ∈ FM(3) we have: B is L-satisfiable iff B is LU⇓-satisfiable, so L and
LU⇓ are polynomially equivalent. �



420 Ilya Shapirovsky

It is well-known that the logics S4, S4.2, S4.1 have the FMP and are
PSPACE-complete (see e.g. [2]). Clearly, if L ` AT then LU↓ = LU⇓.
Therefore we have

COROLLARY 10. The logics S4U↓, S4.2U↓, S4.1U↓ have the FMP and
are PSPACE-complete.

Thus adding the universal modality together with the axiom A⇓ pre-
serves Kripke completeness, the FMP, and the complexity of a transitive
monomodal logic L. However, the situation with the axiom A↓ is more
delicate: the following example shows that LU↓ may lack the FMP.

Consider the logic GL := K + 2(2p → p) → 2p. This logic is Kripke-
complete, transitive and has the FMP: GL is complete with respect to the
class of all finite strictly ordered trees (see e.g. [2]). The logic GLU↓ is
consistent and has frames, for instance L((N, >)

u
) ⊇ GLU↓. But it is not

hard to see that this logic has no finite frames. (To simplify this example
one can replace A↓ with the axiom ∃p→ ∃3p, expressing seriality of R−1.)

Nevertheless, under some additional assumptions, LU↓ inherits the above
mentioned properties of L.

For a monomodal frame F, let F̃ := C1 + F, where C1 is a reflexive
singleton, + denotes the ordinal sum of frames.

For a formula A ∈ FM(3, ∃), put

A3
refl := A3 ∧

∧

3B∈Sub(A3)

(B → 3B)

LEMMA 11. Suppose A3
refl is satisfiable at y in F, G := F̃〈y〉. Then A is

satisfiable in Gu.

Proof. For some model M = (F, η), we have M, y � A3
refl. Let y0 denote

the root of G. Put N := (G, θ), where θ−1(y0) := η−1(y), and θ−1(z) :=
η−1(z) for any z ∈ F〈y〉.

By induction on the length of the formula one can readily check that
N, y0 � A3. By Lemma 4, A is satisfiable in Gu. �

THEOREM 12. Let F be a class of frames such that:
any F ∈ F has a reflexive root;

F ∈ F , y ∈ F implies F̃〈y〉 ∈ F .
Then L(Fu) = L(F)U↓.

Proof. Put L := L(F), M := LU↓. Given an M-consistent formula A, we
have to show that A is Fu-satisfiable.

Similarly to the proof of Theorem 8, for some reflexive x ∈WM we have
A3 ∈ x. So A3

refl ∈ x, then A3
refl is L-consistent. Thus A3

refl is satisfiable

at some y ∈ F, F ∈ F . Let G := F̃〈y〉. By Lemma 11, A is satisfiable in Gu.
Since G ∈ F , A is Fu-satisfiable.

It follows that L(Fu) ⊆M. Clearly, L(Fu) ⊇M, thus L(Fu) = M. �
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COROLLARY 13. Let L be a monomodal transitive Kripke-complete logic
such that for any cone F, if L(F) ⊇ L then L(F̃) ⊇ L. Then

• LU↓ is Kripke-complete;

• if L has the FMP, then LU↓ has the FMP;

• for any A ∈ FM(3, ∃), A is LU↓-satisfiable iff A3
refl is L-satisfiable;

• L and LU↓ are polynomially equivalent.

Proof. Let G be the class of all (finite) L-frames, and let F be the class of
all (finite) cones from G with reflexive root. Then L ⊆ L(F).

Assume that A ∈ FM(3) is L-satisfiable. L = L(G) implies that A is

satisfiable at some z ∈ F, F ∈ G. Trivially, A is satisfiable in F̃〈z〉 ∈ F . Thus
L = L(F). Since F satisfies the conditions of Theorem 12, LU↓ = L(Fu).

By Lemmas 4, 11, for any formula A ∈ FM(3, ∃) we have:

A is Fu-satisfiable iff A3
refl is F-satisfiable.

To complete the proof, note that the length of A3
refl is polynomial in the

length of A. �

In [12], it was shown that the logics Cr, Cr.2 have the FMP. The method
proposed in [12] was used in [10] to prove the FMP of CrB. The com-
plexity of 2-dense logics was studied in [11], where PSPACE-completeness
of Cr, Cr.2 was proved. A slight modification of this proof yields the
PSPACE-completeness of CrB. By Proposition 1, if L ∈ {Cr,Cr.2,CrB}

and F is L-frame then F̃ is L-frame. Therefore we have

COROLLARY 14. The logics CrU↓, Cr.2U↓, CrBU↓ have the FMP and
are PSPACE-complete.

5 Intervals, regions, and Minkowski spacetime

In this section we quote some results on modal axiomatization of relativistic
spacetime and related interval and regional structures (for a detailed survey
of this topic, see [13]).

5.1 Causal and chronological modalities

Let us recall the definition of causal accessibility � and chronological ac-
cessibility ≺ in Minkowski spacetime. For (x1, . . . , xn), (y1, . . . , yn) ∈ Rn,
n ≥ 2, we put:

(x1, . . . , xn) � (y1, . . . , yn)⇔
n−1∑

i=1

(yi − xi)
2 ≤ (xn − yn)2 & xn ≤ yn,

(x1, . . . , xn) ≺ (y1, . . . , yn)⇔
n−1∑

i=1

(yi − xi)
2 < (xn − yn)2 & xn < yn.
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Figure 1.

For D ⊆ R2, R ∈ {≺,�} let (D,R) abbreviate (D,R|D). Put

Rn< := {(x1, . . . , xn) ∈ Rn | xn < 0}, Rn≤ := {(x1, . . . , xn) ∈ Rn | xn ≤ 0}.

The first results on modal axiomatization of relativistic relations are due
to Goldblatt [3] and Shehtman [14], where modal logics of real space and
its domains ordered by � were described. Analogous results on the relation
≺ were recently obtained in [12],[10].

THEOREM 15. Let n ≥ 2.
L(Rn,�) = S4.2, L(Rn<,�) = S4 [3]; L(Rn≤,�) = S4.1 [14];
L(Rn,≺) = Cr.2, L(Rn<,≺) = Cr [12]; L(Rn≤,≺) = CrB [10].

5.2 Intervals and regions

Consider the sets of strict and non-strict intervals I, I∗ on the real line and
the relations w, =:

I := {[a, b] | a, b ∈ R, a < b}, I∗ := {[a, b] | a, b ∈ R, a ≤ b};
[a1, b1] w [a2, b2] := a1 ≤ a2 and b2 ≤ b1,
[a1, b1] = [a2, b2] := a1 < a2 and b2 < b1.

In [15], it was noted that there exists a simple isomorphism between the
frames (I∗,w,=) and (R2

≤,�,≺), Fig 1.

PROPOSITION 16. [15]
(I,w,=) ∼= (R2

<,�,≺), (I∗,w,=) ∼= (R2
≤,�,≺).

Thus the following fact is an immediate consequence of Theorem 15:

COROLLARY 17.
L(I,w) = S4, L(I∗,w) = S4.1;
L(I,=) = Cr; L(I∗,=) = CrB.

We consider the following sets as regions:

• balls in Rn:

Bn := {B(X, r) | X ∈ Rn, r > 0}, B∗
n := {B(X, r) | X ∈ Rn, r ≥ 0},

where B(X, r) is the closed ball with center X of radius r;
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• bricks in Rn:

Rn := {
∏

1≤i≤n

[ai, bi] | [a1, b1], . . . , [an, bn] ∈ I},

R∗
n := {

∏
1≤i≤n

[ai, bi] | [a1, b1], . . . , [an, bn] ∈ I∗};

• CNn (respectively, CV n) is the set of all non-empty compact regular1

sets with connected (respectively, convex) interior in Rn. CN∗
n (re-

spectively, CV ∗
n) is obtained from CNn (respectively, CV n) by adding

all singletons.

For a set U ⊆ Rn, IU denotes its interior. Put

U c V := IU ⊇ V (U is a non-tangential proper part of V ).

Note that if W ∈ {B1, CN1, CV 1,R1}, then (I,w,=) = (W,⊇,c) and
(I∗,w,=) = (W ∗,⊇,c). Moreover, the following holds:

LEMMA 18. [13] For n ≥ 1, W ∈ {Bn, CNn, CV n,Rn},
(W,⊇,c) � (I,w,=), (W ∗,⊇,c) � (I∗,w,=).

THEOREM 19. [13] Let W ∈ {Bn, CNn, CV n,Rn}, n ≥ 1. Then
L(W,⊇) = S4, L(W ∗,⊇) = S4.1;
L(W,c) = Cr, L(W ∗,c) = CrB.

6 Main completeness results

Let X, Y ∈ Rn. One can see that there exists a point Z ∈ Rn
< such that

Z ≺ X, Z ≺ Y (and therefore Z � X, Z � Y ), and we have the following

LEMMA 20. Let F := (W,R), where R ∈ {�,≺}, W ∈ {Rn,Rn≤,R
n
<},

n ≥ 2. Then F is downward-directed, and thus L(Fu) ⊇ L(F)U↓

The following technical lemmas are needed for the sequel.

LEMMA 21. Consider a frame F = (W,R) and an infinite sequence of sets
W0 ⊆ W1 ⊆ . . . such that

⋃
i

Wi = W . Put Fi = (Wi, R|Wi) and suppose

that for all i ≥ 0, there exists a p-morphism pi : Fi+1 � Fi, pi|Wi = IdWi
.

Then F � F0.

Proof. Put fi := pi · . . . · p0. Then fi : Fi � F0, i ≥ 0. One can see that
f :=

⋃
i

fi is the required p-morphism. �

LEMMA 22. For R ∈ {�,≺} we have:
(R2

<, R) � ([−1, 1]× R<, R), (R2
≤, R) � ([−1, 1]× R≤, R).

Proof. For any c ∈ R, we define the maps rc, lc as follows. For x, t ∈ R, we
put

rc(x, t) :=

{
(2c− x, t) x ≤ c
(x, t) x > c

lc(x, t) :=

{
(x, t) x ≤ c
(2c− x, t) x > c

1Recall that regular closed sets are the closures of open sets
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Figure 2.

It is not difficult to check that

rc : ([c− d, c+ d]× R<, R) � ([c, c+ d]× R<, R),

lc : ([c− d, c+ d]× R<, R) � ([c− d, c]× R<, R),

for any c, d ∈ R, d ≥ 0 (see Fig 2,a).
Consider a sequence of segments [a0, b0], [a1, b1], . . . , where a0 := −1,

b0 := 1, an+1 := 3an − 2bn, bn+1 := 2bn − an. Using maps lan
, rbn

, we
obtain

([an+1, bn+1]× R<, R) � ([an, bn]× R<, R),

Fig 2,b. Clearly, an tends to −∞, bn tends to +∞,2 and therefore
R2
< =

⋃
i

([ai, bi]× R<). By Lemma 21, (R2
<, R)� ([a0, b0]× R<, R).

In complete analogy, (R2
≤, R) � ([−1, 1]× R≤, R). �

For a relation R ⊆W ×W , let R./ := W ×W − (R ∪ R−1 ∪ IdW ).

LEMMA 23. Consider a 2-dense frame F = (W,R), x ∈ W , and suppose
that the following holds:

∀y ∈ R./(x) ∃zy (R(zy) = R(x) ∩R(y)).

Then for any A ∈ FM(3, ∃) we have: if A3
refl is satisfiable at x in F then

A is satisfiable in Fu.

Proof. Suppose that for some N = (F〈x〉, η) we have N, x � A3
refl.

Let W1 := Rr(x), W2 := R−1(x)−W1, W3 := W − (W1 ∪W2)= R./(x).

2By direct calculation, an = 1−4n+1

3
, bn = 2·4n+1

3
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Figure 3.

For any y ∈ W we define y′ ∈ W1 as follows. If y ∈ W1, we put y′ := y;
if y ∈ W2, we put y′ := x. To define y′ when y ∈ W3, consider the set of
formulas

Ψy := {3B ∈ Sub(A3) | ∃u ∈ R(zy) N, u � B}.

Suppose Ψy = {3B1, . . . ,3Bl}. Then N, ui � Bi for some points
u1, . . . , ul ∈ R(zy). Since F is 2-dense, by Proposition 1 we have R(v) ⊇
{u1, . . . , ul} for some v ∈ R(zy). We put y′ := v.

Consider a model M = (F, θ) such that θ−1(y) = η−1(y′) for any y ∈ W .
We claim that for any C ∈ Sub(A3) and any y ∈W ,

(6.1) M, y � C ⇐⇒ N, y′ � C

The proof is by induction on the length of the formula. Consider the only
non-trivial case C = 3B, y 6∈ W1. Note that R(y′) ⊆ R(y), so N, y′ � 3B
implies M, y � 3B (by induction hypothesis). Conversely, assume that
M, y � 3B. Thus M, v � B for some v ∈ R(y), and by induction hypothesis
N, v′ � B. There may be two options:

• y ∈ W2. Then y′ = x. Since v′ ∈ Rr(x), we have N, x � 3
+B. Due

to the definition of A3
refl, N, x � B → 3B. Thus N, x � 3B.

• y ∈ W3. Then v ∈ W1 − {x} or v ∈ W3 (because yR./x). In the
former case v′ = v ∈ R(y) ∩ R(x), so v′ ∈ R(zy). If v ∈ W3 then
R(zv) ⊆ R(zy), and since v′ ∈ R(zv), v

′ ∈ R(zy). So, in either case,
we have v′ ∈ R(zy). Thus 3B ∈ Ψy. Therefore for some u ∈ R(y′)
we have N, u � B, so N, y′ � 3B.

Since N, x � A3, and due to (6.1), we obtain that A∃ is satisfiable in Mu.
By Lemma 3, A is satisfiable in Fu. �

Observe that for any X,Y ∈ R2, there exists a unique point ZXY such that
≺ (X)∩ ≺ (Y ) =≺ (ZXY ), Fig. 3.

Now we are ready to prove the following key

LEMMA 24. Let F := (W,R), where R ∈ {�,≺}, W ∈ {R2,R2
≤,R

2
<}.

Then L(Fu) = L(F)U↓, namely
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Figure 4.

L((R2,�)
u
) = S4.2U↓, L((R2

<,�)
u
) = S4U↓, L((R2

≤,�)
u
) = S4.1U↓;

L((R2,≺)
u
) = Cr.2U↓, L((R2

<,≺)
u
) = CrU↓, L((R2

<,≺)
u
) = CrBU↓.

Proof. First, consider the frames ordered by �.
Let F be a cone in (R2,�), and let G be a cone in (R2

<,�). Then
L(F) = S4.2, L(G) = S4 [3],[14]. Put

F := {F〈X〉 | X ∈ F}, G := {G〈X〉 | X ∈ G}.

By Theorem 8 we have: L(Fu) = L(F)U⇓, L(Gu) = L(G)U⇓. All frames
in F (in G) are isomorphic, thus all frames in Fu (in Gu) are isomorphic.
Thus

L(Fu) = L(Fu) = L(F)U⇓ = L(F)U⇓.

Similarly, L(Gu) = L(G)U⇓. Since F and G are reflexive, we obtain L(Fu) =
S4.2U↓, L(Gu) = S4U↓.

Let H be a cone in (R2
≤,�) whose root belongs to R2

<. By Theorem 8, we

obtain L({Hu,Cu1}) = L(H)U⇓, where C1 is a reflexive singleton. Trivially,
L(Hu) ⊆ L(Cu1 ), so L(Hu) = L(H)U⇓. Since L(H) = S4.1 [14], we get
L(Hu) = S4.1U↓.

Without loss of generality we may assume that the frames F, G, H have
the same root X = (0,−1). Let us define the map f as follows: for any
Y ∈ R2, put

f(Y ) :=





Y X � Y
X Y � X
ZXY otherwise

It is not difficult to see that f : (R2,�) � F (Fig. 4,a), so L((R2,�)
u
) ⊆

S4.2U↓. We also have f : ([−1, 1]×R<,�) � G, f : ([−1, 1]×R≤,�) � H

(Fig. 4,b), and by Lemma 22, (R2
<,�) � G and (R2

≤,�) � H. Thus

L((R2
<,�)

u
) ⊆ S4U↓, L((R2

≤,�)
u
) ⊆ S4.1U↓,

The converse inclusions hold by Lemma 20.
Now consider the frames ordered by ≺.
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Suppose that A ∈ FM(3, ∃) is Cr.2U↓-satisfiable. By Corollary 13, A3
refl

is Cr.2-satisfiable. Since Cr.2 = L(R2,≺), A3
refl is satisfiable in (R2,≺).

By Lemma 23, A is satisfiable in (R2,≺)
u
. Thus L((R2,≺)

u
) ⊆ Cr.2U↓,

and by Lemma 20, L((R2,≺)
u
) = Cr.2U↓.

Analogously, if A is CrU↓-satisfiable then A3
refl is satisfiable at some X

in (R2
<,≺), and without loss of generality we may assume that X = (0,−1).

By Lemmas 20, 22, 23, we obtain L((R2
<,≺)

u
) = CrU↓.

Finally, consider a CrBU↓-satisfiable formula A. Then A3
refl is satisfi-

able in (R2
≤,≺). It is easy to see that if A3

refl is satisfiable at some non-serial

point then A3
refl is satisfiable at some X ∈ R2

<. Similarly to the previous

cases, L((R2
≤,≺)

u
) = CrBU↓. �

For X = (x1, . . . , xn) ∈ Rn, n ≥ 2, put pn(X) := (x1, xn). Then
pn : (Rn,�) � (R2,�), pn : (Rn,≺) � (R2,≺), [3]. So by Lemmas
20, 24, we have the following

THEOREM 25. For n ≥ 2,
L((Rn,�)

u
) = S4.2U↓;

L((Rn,≺)
u
) = Cr.2U↓.

Lemma 24 together with Proposition 16 yields

PROPOSITION 26.
L((I,w)

u
) = S4U↓, L((I∗,w)

u
) = S4.1U↓;

L((I,=)
u
) = CrU↓, L((I∗,=)

u
) = CrBU↓.

Let W ∈ {Bn, CNn, CV n,Rn}, R ∈ {⊇,c}, n ≥ 1. It is easy to see
that F := (W,R) is downward-directed, so L(Fu) ⊇ L(F)U↓; by Lemma 18,
Proposition 26, and by Theorem 19, L(Fu) ⊆ L(F)U↓. Thus we obtain

THEOREM 27. Let W ∈ {Bn, CNn, CV n,Rn}, n ≥ 1. Then
L((W,⊇)

u
) = S4U↓, L((W ∗,⊇)

u
) = S4.1U↓;

L((W,c)
u
) = CrU↓, L((W ∗,c)

u
) = CrBU↓.
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