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ABSTRACT

The Skorokhod problem is a determined mathematical model used for the construction and analysis of constrained
processes, both determined and stochastic, such as queing networks, processor sharing in communication networks,
stochastic approximation schemes for problems with constraints, etc. The model we deal with consists of a convex
polyhedral set Z in a finite-dimensional space R™ and a family of “reflection vectors” d; associated with (n — 1)-
dimensional faces F; of Z. According to certain rules of reflection, an output z(t) C Z is generated for each
continuous input u(t), u(0) € Z. The corresponding input-output operator, if it exists, is called the Skorokhod map.
The properties of the Skorokhod problem such as existence and uniqueness of an output for any admissible input,
and different continuity properties of the associated Skorokhod map can be studied in terms of different types of
stability of finite families of special nxn-matrices, namely, the projection matrices onto the hyperplanes L; parallel
to faces F; along the vectors d;. We present both necessary and sufficient conditions of some of the above properties
and also establish new relations between such notions as absolute stability, BV-stability, Perron stability, etc., of
finite sets of projections and, more generally, of arbitrary nxn-matrices.

INTRODUCTION convex cone spanned by the vectors d; corresponding
to “active” faces F; at x. An SP of this kind can be
Skorokhod problem written in the form {n;, d;,¢;},7=1,...,N.

Historically the term SP was introduced for the de-
scription of stochastic processes with boundary con-
ditions [1,4,25,28]. In recent years this model also
found applications in queing networks [14-17], proces-
sor sharing in communication networks [23], Leontief
models in mathematical economics [5, 11], transport
processes [7], stochastic approximation schemes for
problems with constraints [9,12].

The first problems one faces with a given SP is
whether it has solutions for any input of a given
class (existence property) and whether a solution
is unique (uniqueness property). If a given SP is
uniquely solvable then the input-output correspon-
dence T' : u(-) — z(-) is defined; it is called the Sko-
rokhod map. When I' is regular enough (Lipschitz

The Skorokhod problem (SP) is a mathematical model
which is often used for the construction and anal-
ysis of constrained processes, both determined and
stochastic. A given set Z C R™ is the domain or the
characteristic set of the SP. A set-valued vector-field
D(z) C R” called the reflection map is defined on the
boundary 8Z. The vectors of D(z) are generaliza-
tions of inward normals to Z. Usually, sets D(z) are
closed convex cones. A process is studied on a time
interval [0, T], where T is either finite or 400. For
a given input u : [0,7] — R™, u(0) € Z, an output
z(t), z(0) = u(0), is sought according to the following
reflection conditions: If z(t) € int(Z;, the derivative
z(t) of the output coincides with u(t); otherwise

b (1) = w(t gontinupusz for instance) the stgdy of many problems
2(t) =4(t) +p, in applications is greatly simplified.
where p is some compensation vector belonging to The first case of an SP has been studied by A.V.
D(z(t)). This informal definition works only for in- Skorokhod [25]. He considered the simplest one-
puts smooth enough. Often, however, SP’s are sup- d}mensu?nal model in order to construct stochastic
posed to handle broader classes of inputs such as con- _dlfferentlal equations on Ry = {z € R: z > 0}. This
tinuous ones, which necessitates more sofisticated def- 1s one of rare cases when the operator I' can be found
initions. Here we give two alternative definitions of explicitely:
an SP and compare their properties.
In this talk we will mainly study polyhedral SP’s: . B .
the set Z is a polyhedral set in R" represented as z(t) = u(t) 0A nggu(s) :
Z={zeR":(nj,z) >ci,i=1,...,N}, Here a A b is the smaller of a and b.

An interesting particular case of SP arises in so
called fluid apploximations of network traffic. It is
a polyhedral one, its domain is the positive orthant
R%. This problem has been studied by Harrison and

*This work is supported in part by Russian Foundation for Reiman [15] and proved to have a Lipschitz continu-
Basic Research Grant 97-01-00692. ous Skorokhod map under mild assumptions.

and D(z) = {ad; : @ > 0} in the relative interior of
the i-th (n — 1)-dimensional face F; of Z. At faces
of lower dimension, the set D(z) is defined as the
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Later a problem on the positive orthant R} with
constant reflection vectors on each one of its (n — 1)-
dimensional faces was addresed in context of so called
dynamic complementarity problem [6,19,20,22]. In
case when the solutions to an SP are understood
as pairs (u(-),z(-)) with the compensation y(t) =
z(t) — u(t) of bounded variation, the problem of
uniqueness has been completely reduced to that of
the absence of non-trivial solutions of bounded varia-
tion of a certain differential inclusion [22], and then,
to that of absolute stability of a system of projections
plus some non-singularity conditions on the system of
reflection vectors [19,20].

Continuity properties of the Skorokhod map I' for
polyhedral SP’s have been addressed in [10,18,27]. In
particular, Dupuis and Ishii derived sufficient condi-
tions for Lipschitz continuity of T'. Earlier results for
the case of normal reflection have been obtained by
Vladimirov and Kleptsyn [27], see also [21].

Still, in many cases there is no complete charac-
terization of polyhedral SP’s with important proper-
ties. Though these cases are “marginal” (they con-
stitute a residual set in the parametric space of poly-
hedral SP’ s) they might be very important because
the SP’s arising in applications often have additional
symmetries, etc., which makes them not generic. This
consideration justiﬁes the attempts to derive as com-
plete algebraic and geometric conditions of regularity
of SP’s as possible.

The aim of this talk is to derive both necessary
and sufficient conditions of regularity of SP’s in terms
of stability-like properties of finite families of special
matrices associated with polyhedral sets Z, namely,
the projection matrices onto the hyperplanes parallel
to the (n — 1)-dimensional faces F; of Z along the
corresponding reflection vectors d;. In parallel, we
will state and prove results concerning finite systems
of general nxn-matrices, see [3,8].

1. SKOROKHOD PROBLEM AND
SKOROKHOD MAP

We will agree that any formal definition of an SP has
to determine an input-output operator ' : u(-) — z(-)
possessing the following four characteristic proper-
ties:

e Causality. This is a standard requirement to
non-anticipating operators meaning that the be-
havior of the output z(t) after a moment ¢; de-
pends only on the state z(¢;) and the correspond-
ing “tail” of the input u(t), t > ¢;.

¢ Rate independence. This property means so-
lutions (u(-),z(-)) of any SP are invariant to
monotone changes of time 7(¢) such that both
a(r) = u(t(r)) and Z(r) = z(t()) are continu-
ous functions again. This property is sometimes
referred to as the characteristic property of hys-
terests [21,26] which can justify treating SP’s as
particular cases of hysteresis nonlinearities.

e Laziness. The trajectory of the output follows
that of the input as long as the output can stay
within Z. Formally, if u(t) € int(Z) for all
t € [0,T] then z(¢) = u(t) is the only solution of
the SP on [0, 7]. The “lazy” part of the model is
the compensation y(t) = z(¢) — u(t) which does
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not change without need, see also analogous con-
structions in viability theory [2] and mathemat-
ical hysteresis [21,26].

¢ Reflection. The following complementarity
condition has to hold whenever the output z(t)
is at the boundary of Z: the infinitesimal in-
crement of the compensation y(t) = x(t) — u(¢)
should belong to the cone D(z(t)). This con-
dition can be understood in different ways, see
the alternative definitions of an SP below. More
generally, this condition can be interpreted as
existence of a mechanism ensuring that the pro-
cess stays within the characteristic set. This
mechanism need not be realized as a compen-
sation vector from the reflection set; for exam-
ple, one can also consider different kinds of limit
procedures such as penalty functions, discrete it-
erations with projections onto 7, lexicographic
schemes of compensation, etc.

Additionally, some kind of continuity of the Sko-
rokhod map is often useful in applications. We will
use two formal definitions complying with the four
principles above; our main goal will be to find “com-
putable” conditions of regularity of the corresponding
Skorokhod maps.

Definition 1 The Skorokhod map T' : u(-) — (")
associated with an SP is defined on a class of contin-
uous inputs u(t), u(0) € Z, its output z(t) coincides
with u(t) as long as u(t) remains within Z, in the gen-
eral case 1t satisfies the integral reflection conditions,
see, for example, [13]:

u(t) + y(t) = (), t € [0, 7],
Nyl(T) < oo,
O = gy I

y(t) = fio,97(s)dlyl(s), where y(s) € D(x(s))
for almost all s € [0,1] with respect to d]y|.
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Here by |y|(t) we denote the full variation of y(-)
on [0,1].

It is often required that the class of feasible com-
pensations was not restricted to functions of bounded
variation; this situation is typical, for instance, if the
characteristic set Z has empty interior. The following
definition does not require boundedness of variation
of the compensation y(t) and is the least restrictive
definition of a solution to an SP.

Definition 2 Suppose u(t), 0 <t < T, is a contin-
uous input to the SP and u(O) € Z. The solution
of SP is a pair of continuous functions z(t), y(t) =
z(t) —u(t), 0 <t < T, such that £(0) = u(0) and, for
any, 0 <t/ <t"<T, the following inclusion holds

y(t") - y(t') € co{D(a (D) : L € [7,77).

The above means that the total compensation y(t")—
y(t') on an arbitrary segment [t',¢"] belongs to the
closed convex hull of the union of reflection cones
D(z(1), t € [t',2"].

Definition 3 We say that an SP {Z, D(-)} is closed
if the map D(z) is upper semicontinuous on R™ (that
is its graph is closed in R”xR™) and its values D(x)
are convex closed cones for all £ € 7.




Theorem 4 Suppose the pair (u(t), z(t)) is a solu-
tion of a closed SP according to Definition 2 and the
difference y(t) = z(t) — u(t) is a function of bounded
variation. Then it is also a solution according to Def-
wnition 1.

Any polyhedral SP is, obviously, closed. Moreover,
if the interior of Z is not empty and the cones D(x)
do not contain whole lines, that is are pointed, the
total variation of any compensation y(t) is necessarily
bounded on a finite time interval. Thus, for the above
class of polyhedral SP’s (we will call them pointed
SP’s) the two definitions of solutions are equivalent.

2. ASSOCIATED PROJECTION SYSTEMS

For the analysis of different kinds of regularity of
polyhedral SP’s such as existence, uniqueness or Lip-
schitz continuous dependence of the output on the
input, we will need several additional notions.

Definition 5 For a pair {p,d}, p,d € R, ||p|| = 1,
(d,p) > 0, the linear operator

is called a projection onto the plane L = {z : (p,z) =
0} along the direction d.

Definition 6 For any z € Z, the finite set of projec-
tions

P(z) = {Pp, 4 1t € I(2)},

where I(z) = {i : (n;, z) = c;}, is called an associated
projection system for the SP {n;, d;, ¢;} at the point
T.

In particular, the set P(z) is empty whenever z €
int(Z). Clearly, there exists only a finite number of
APS’s for a given polyhedral SP, namely, one for each
face of Z of any dimension. The union P of all possible
APS’s will be called the mazimal APS of the SP.

Together with the projection systems we shall also
consider finite systems of general n x n-matrices A =

{A1,..., Am}.

Definition 7 Let N be a segment of integers. A se-
quence {zx}, k € N is called a path of the system A
if, for any k € N, k+ 1 € N, there exists an A € A
such that zx41 = Azg.

For projection systems we shall also consider con-
tinuous paths. Let us denote by V(z) the following
finite set of vectors: d; € V(z) iff (n;,d;) > 0 and
—d; € V(d)) iff (n,-,d,) <0.

Definition 8 A continuous function u(t) : [0,7] —
R” is called a continuous path of the system P if, for
any t1,1s, 0 < t; <ty < T, the difference u(t2)— (tl)
belongs to the set D(u(-), t1, t2) which is the minimal
closed convex cone containing all the sets V(u(t)),
te [tl,tg]
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3. STABLE SYSTEMS OF MATRICES

Here we introduce important notions of stability type
for finite collections of nx n-matrices.

Definition 9 A family A = {A;,..., Ak} is called
absolutely stable or just stable if there exists M > 0
such that

lAi, . Ai [ < M

forallm >0and 1 <4 <k, j=1,...,m. Here

||-]| is a matrix norm in R" %™ (they are all equivalent
to each other). In this case we will also say that the
difference equation

Tmi1 = Ai, Tm (1)
is absolutely stable in the class of matrices
A = {Al,AQ, .o .,Ak}.

The set of absolutely stable systems of nxn-matrices
will be denoted AS.

Theorem 10 A finite system of matrices is not ab-
solutely stable iff it has an unbounded path.

PrROOF. One half of the assertion i1s obvious. Let
now A be an unstable system of matrices. Let us
define a function

F(z) = sup  ||lzml]|-

{z,21, ., 2m}

Here the supremum is taken over all the finite tra-
jectories {z,z1,...,2m} of the system A that start
at . The functlon F 1s convex and it is defined on
a linear subspace L € R™. Being a convex function,
it is bounded on the intersection of L with any com-
pact set. Let us choose an arbitrary point z & L and
demonstrate the existence of a finite path of the sys-
tem that starts at z and terminates within y ¢ L,
llyll > 2||z]|- Indeed, otherwise all the trajectories
from z would enter the subspace L without leaving
the ball {z : ||2|| < 2||z|| + 2sup; |[A|||||}. However,
the function F' is equibounded on the intersection of
L with this ball which means that the variations of
all the paths from z are uniformly bounded.
Iterating this construction we will get the required
trajectory. |

Definition 11 The system A is called asymptotically
absolutely stable (AAS) if, for any sequence of indices
{im}, any solution z,, of the corresponding equation
(1) vanishes as m — oo. The set of all AAS systems
will be denoted AAS.

System of projections are never asymptotically ab-
solutely stable, this is why we introduce the following;:

Definition 12 A system A will be called -
asymptotically stable (RS) if, for any regular sequence
of indices {im,}, any solution z,, of the associated
equation (1) vanishes as m — co. The set of all RS-
systems will be denoted RS.

Let us introduce some additional properties of fam-
ilies of matrices.



Definition 13 A system A will be called vari-
ationally stable or BV-stable if all its left-finite
paths {zo,z1, ...} have bounded variation, that is

i=01,... |Zi+1 — zi| < co. The set of all variationally

stable systems will be denoted BV'.

Definition 14 A sequence {zg,z1,...} is called an
g-path of the system A if there exists a sequence of
vectors h; € R? i =0,1,..., such that ||h]| < ¢ for
any ¢ and

:C,‘.i.l:hi-}-Aj'(a?,'—h,‘), 1=0,1,...

Definition 15 A system A is Perron stable if all its
1-paths starting at the origin are bounded. The set
of all Perron stable systems will be denoted PS.

The class AAS belongs to all other four classes,
the class AS contains all other four classes. The class
AAS is open with respect to the finite-dimensional
topology on the set of its parameters. The closures
of all the five classes are the same and coincide with
the set of systems with spectral radius less or equal
to one.

Now, let us study the relations between the classes
BV, PS, and RS. The complements to these classe
will be denoted BV, PS, and RS correspondingly.

Theorem 16 Any one of eight different combina-
tions of these three classes is non-empty, moreover,
there exist systems within each one of these combina-
tions that are absolutely continuous but not asymp-
totically absolutely continuous.

PROOF. Let us construct eight examples. In all these
examples n = 2 and the matrices of the system A are
oblique projection matrices. Any projection matrix
can be completely defined by two vectors: a normal
vector p to the hyperplane of projection and a vector
d of the direction of projection. For instance, the
projection ((0,1),(0,1)) is the orthogonal projection
onto the z-axis.

1) A system in (BV, PS, RS) consists of the two
projections ((1,0),(1,0)) and ((0,1),(0,1)), that is
orthogonal projections onto coordinate axes.

2) A system in (BV, PS, RS) consists of one pro-
jection (anyone).

3) A system in (BV, PS, RS) consists of the
three projections ((1,0),(1,0)), ((0,1),(0,1)) and
((0,1),(1,1)), that is, it can be constructed as System
1) plus an oblique projection onto the z-axis.

4) A system in (BV, PS, RS) consists of the last
two projections of the previous system.

5) A system in (BV, PS, RS) consists of the
three projections ((1,0),(1,0)), ((1,1),(0,1)), and
((—1,1),(0,1)) . -

6) A system in (BV, PS, RS) consists of the last
two projections of the previous system.

7) A system in (BV, PS, RS) consists of the
three projections of System 5 plus the projection
((0,1),(x,1).

8) A system in (BV, PS, RS) consists of the two
projections ((0,1),(1,1)) and ((1,0), (-1, 1)). O

We will show that the class BV coincides with the
class of so called LCP-systems (see [3,8]). An LCP-
system is a set of matrices A such that any sequence
{M1, Ms, ...} of matrices My = AgAg—1... A1, Ai €
S, i = 1,2,...,k, has a limit. For absolutely sta-
ble systems this means that any path of the system
converges (not necessarily to the origin).
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Theorem 17 The system A = {A1,..., Ak} pos-
sesses the BV-property iff it is an LCP-system.

4. UNIQUE SOLVABILITY AND
CONTINUITY OF THE SKOROKHOD
MAP

Let us note that the question of unique solvability of
a polyhedral SP is local, that is we can assume that Z
is a cone, namely, all the possible tangent cones of the
original polyhedral set has to qualify. If Z is a convex
polyhedral cone, the APS at its vertex includes any
other one of its APS’s.

If we accept Definition 2 of solution to an SP, the
following assertion holds.

Theorem 18 If, for any © € Z, the associated sys-
tem P(z) has no nontrivial continuous path u(t),
0 < t < T starting at the origin then, for any con-
tinuous u(t), u(0) € Z, there s at most one solution
(z(t), y(t)) of the SP corresponding to the input u(t).

ProoF. This follows from the obvious assertion that
the difference y(t) = y2(t)—y1 (¢) is a continuous path
of the system P(y(-),t1,%2). O

Note that, in case of a conical Z, it is sufficient to
consider only the APS at its vertex. Note also that,
if we accept Definition 1 of solution to a Skorokhod
problem, the sufficient condition of uniqueness will be
changed to that of absence of a nontrivial continuous
BV-trajectory from the origin. It is clear that BV-
stability of the APS is sufficient for this.

Thus we have established sufficient conditions of
the unique solvability of a polyhedral SP in terms
of absence of special continuous trajectories from the
origin. It is not, however, clear how to check these
conditions. Further we will reduce some of these to
more tangible conditions in terms of stability proper-
ties of APS’s. We will need additional notions:

Definition 19 The joint spectral radius of a system
A is defined as

A(A) = limsup pi (A, || - 1) M/*,
k—o00

where || - || is a matrix norm and
pe (A1) = sup{[|Ai; .- Aii || - Ai; € AL

The value of j(A) does not depend on the choice of
the norm ||-]|. The notion of joint spectral radius have
been introduced in [24]. It has been shown lately ( [3])
that for any finite system of matrices A the following

is true:
A(A) = B(A),

where p(A) is the generalized spectral radius of the
system A:

7(A) = limsupp,, (A4)"/™, (2)

m—o0

where
Pm(A) =sup{p(Ai, ... Ai,) : A;; € A}

Theorem 20 A system A has a left-infinite trajec-
tory from the origin iff its spectral radius is bigger
than one.



Let us say that a projection system satisfies the
transversality conditions if, for any one its subsystems
B, the fixed subspace L(B) is transversal to the sub-
space spanning the vectors d; for all matrices A; € B.

Theorem 21 If the transversality conditions hold
for all APS’s of a given polyhedral SP, any contin-
uous trajectory can be approrimated by discrete ones
with any accuracy.

It follows from Theorem 21 that a stable transver-
sal system of projections has no nontrivial continu-
ous trajectories from the origin. Indeed, one has only
to recall that the stability implies the existence of a
norm that does not increase along discrete trajecto-
ries of the system. Theorem 21 implies than that it
does not increase along continuous trajectories either.

Theorem 22 If a solution of a Skorokhod problem 1is
unique then it depends continuously on the input with
respect to the uniform metric.

We do not mention existence questions here; note
only that in many cases algebraic conditions of exis-
tence in terms of the matrix A = {a;;} = {(ni,d;)}
are known to hold [22].

6. LIPSCHITZ CONTINUITY

It has been shown in [10] that the Skorokhod map T
is Lipschitz continuous if there exists a special norm
in R™. Its unit ball B has to satisfy the following
conditions: If v(z) denotes the set of inward normals
to B at z € OB, then there exists § > 0 such that for
i=1,...,N,

{ f(ze,gfké }i@,di):o

for all v € v(z).

These conditions are equivalent to the Perron sta-
bility of the union of all APS’s of the SP. This prop-
erty holds, for instance, in the normal case. In [27],
an upper bound for the corresponding Lipschitz con-
stant has been found, see also [21].

Theorem 23 A Skorokhod map is Lipschitz continu-
ous whenever its mazimal APS is Perron stable. The
reverse statement holds if the Skorokhod problem is
pointed.

The sufficiency follows from [10]. The necessity can
be proved as follows. Suppose the associated projec-
tion system is not Perron stable. Taking any finite
1-trajectory of the projection system with the norm
C of its endpoint as a basis, we can construct two
piecewise linear inputs u;(t) and us(t) and two cor-
responding outputs z;(t), z2(t) such that

lz1(t) = z2(t)]] > Cllua(t) = u2()I-

7. DUALITY

It is well known that a system {A;} is absolutely
stable iff the dual system {A’} is absolutely stable.
The same is true for AAS-systems and RS-systems.
The following theorem shows that the notions of BV-
stability and Perron stability are dual to each other.

Theorem 24 The BV-property of the system A* is
equivalent to the PS-property of the system A and
vice-versa.

PrOOF. Let us consider a finite 1-trajectory
{zo,21,...,2p41} and write the following relations:
Zmt1 = Vm + Am(Tm —Um), [lom]| <1, m=10,...,n.

Here, for simplicity, we denote by A; maitrices of the
family A. After transformations, we get

Tm+l = Um +C,77r:(vm—1 _vm)“f'C:nn_l(Um_z—’Um_l)-F

o+ Cl(zo —ve), m=0,...,n, (3)

where C7* = ApnAp—1...A;. Let us rewrite (3) in
the form

Tmp1 = [ = C)om + (CF — C_ Nvm_1 + ...
+(C{n - C(')”)vo +C’6"w0

By assumption, norms of different points @41
have to be uniformly bounded for a fixed z, and
any choice of matrices A; from A. This is equiv-
alent to the following. First, the semigroup L(A)
is bounded, and second, all the sums of the form
ICm — C_ill + ... + ICT — CF?|| also have to be
unifromly bounded. The latter implies that the to-
tal variation of any right-infinite matrix product is
unifromly bounded as well. This is, in its turn, equiv-
alent to the unifrom boundedness of variations of left-
infinite products of conjugated matrices. Finally, the
latter property is equivalent to the BV-property of
the system A*. O

8. EXAMPLE: PROCESSOR SHARING
POLICY

The following is an example from [23]. Consider a
processor with capacity ¢ providing services to n cus-
tomers. A processor sharing policy can be identified
with a probability vector p = (p1, p2, ..., pn). The in-
puts are buffered if immediate processing is not pos-
sible. When a positive number of buffers are empty
the processing capacity is distributed among remain-
ing buffers in proportion with p.

Suppose the inputs 6;(f) are non-decreasing ab-
solutely continuous functions. Define ¢ by ¥(¢) =
0(t) — cp and ¥(0) = 6(0) € R%. The vector function
¥(t) is the input to the polyhedral SP whith Z = R7?,
di = (ei — p)/(1 — p;), where ¢; is the i-th unit coor-
dinate vector.

It is demonstrated in [23] that the above SP is well
defined and its Skorokhod map is Lipschitz continu-
ous. On this basis, a series of results concerning large
deviations is proved.
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