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Algorithmi information theory and martingalesLaurent Bienvenu, Alexander ShenJune 25, 20091 IntrodutionWhat is probability? What is (or should be) the subjet of probability theory? How thismathematial theory is (or should be) applied to the �real world�?These questions were debated for enturies, and these disussions go far beyond thesope of our paper. However, there is a lear dividing line between two kinds of di�erentapproahes; some of them attempt to de�ne mathematially the notion of an �individualrandom objet� while the others move this notion ompletely to the grey zone between�pure� probability theory (understood as a part of mathematis) and its pratial appli-ations.In pratie, almost all mathematiians (and most non-mathematiians), looking atthe winning numbers of a lottery for the last year and suddenly notiing that they areall even, will onlude that something wrong happens. The same feeling would ariseif (as in the �Rosenkrantz and Guildenstern are dead�, the play by Tom Stoppard) thelong sequene of heads appears while tossing a (presumably fair) oin. However, lassialprobability theory assigns to this sequene (say, 100 heads) the same probability 2−100 asto any other sequene and does not try to explain why this sequene looks �non-random�and raises the suspiion.This paradox (sequenes with various regularities or symmetries in them appear lessrandom to us, even when eah of them is just as probable as any other outome), oupiedprobabilists already in the nineteenth entury, inluding Laplae.11�C'est ii le lieu de d�e�nir le mot extraordinaire. Nous rangeons, par la pens�ee, tous les �ev�enementspossibles en diverses lasses, et nous regardons omme extraordinaires eux des lasses qui en ompren-ement un tr�es petit nombre. Ainsi, a jou de roix ou pile, l'arriv�ee de roix ent fois de suite nousparait extraordinaire, pare ques le nombre presque in�ni des ombinaisons quit peuvent arriver en entoups, �etant partag�e en s�eries r�eguli�eres ou dans lesqulles nous voyone r�egner un ordre faile �a saisir, eten s�eries irr�eguli�eres, elles-i sont inomparablement plus nombreuses. La sortie d'une boule blanhed'une urne qui, sur un million de boules, n'en ontient qu'une seule de ette ouleur, les autres �etantnoires, nous parait enore extraordinaire, pare que nous ne formons que deux lasses d'�ev�enement or-dinaire, relatives aux deux ouleurs. Mais la sortir du n◦ 475813, par exemple, d'une urne qui renfermeun million de num�eros nous semble un �ev�enement ordinaire, pare que, omparant individuallement lesnum�eros les uns aux autres, sans les partager en lasses, nous n'avons auune raisone de roire que l'und'eux sortira plut�ot que les autres.� (�Essai philosophique sur les Probabilit�es� [20℄, VI Prinipe). PeterG�as, who used this passage as an opening quote for his Dissertation [12℄, omments: �Laplae makestwo informal suggestions (withouth stritly distinguishing them). First, he onsiders various lasses ofevents, and views as extraordinary the small ones. (To make this preise, one would need to restritattention to �simple� lasses.) Seond, he makes the assertion (without proof or even exat statement)1
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However, the attempts to de�ne mathematial notions that somehow apture theintuition of an individual random objet (in some idealized way) are not that old. Rihardvon Mises suggestion (at the beginning of XXth entury) was to base probability theoryon the notion of the so-alled �Kollektiv� (an individual random sequene). These ideaswere developed, ritially analyzed and made rigorous in 1930s by Wald, Ville and Churh(the latter gave a �rst preise de�nition of a �random sequene�).In 1960s and 1970s these notions were related to the notion of omplexity (amount ofinformation, de�ned in algorithmi terms), and now di�erent de�nitions of randomnessare well studied in the framework of reursion theory and algorithmi information theory.In this paper we try to desribe the main stages of this development and its mainahievements from the mathematial viewpoint fousing on the role played by martin-gales.This paper is based on published soures, disussion at the Dagstuhl meeting (Semi-nar 06051, 29 January � 3 February 2006; C. Calude, C.P. Shnorr, P. Vitanyi gave talksthat were reorded and made available at http://www.hutter1.net/dagstuhl by Mar-us Hutter) and ontributions of Leonid Bassalygo, Cristian Calude, Peter G�as, LeonidLevin, Vladimir A. Uspensky, Vladimir Vovk, Vladimir Vyugin and others. It was initi-ated by Glenn Shafer whose historial omments about Kolmogorov and Ville beame astarting point. (Of ourse, the people mentioned are not responsible in any way for theauthors' �aws.)2 ColletivesThe �rst well known attempt to de�ne mathematially the notion of an individual randomobjet was done by Rihard von Mises in his 1919 paper [37℄. Then he elaborated hisideas in the book published in 1928 [38℄. He also made some larifying omments is hisaddress delivered on September 11, 1940 at the meeting of the Institute of MathematialStatistis in Hanover, N.H. (USA) and published in 1941 [39, 40℄.Mises explains that probability theory studies a speial lass of natural phenomena,like tossing a oin, rolling a die, or other repetitive experiments. Geometry tries to ap-ture and axiomatize the real-world notion of spae; in a similar way probability theoryaptures and axiomatizes the properties of random phenomena, alled �olletives� (Ger-man: Kollektiv) in Mises' paper. Informally speaking, olletives are (aording to Mises)plausible sequenes of outomes we an get by performing in�nitely many independenttrials of some experiment. He formulated two axioms for the notion of olletives. Forsimpliity, we state them for a olletive with two values, e.g., the sequene of heads andtails obtained by oin tossing (where the oin is potentially unbalaned, i.e., the outome�tails� may appear more (or less) often than �heads�):I. There exists a limit frequeny: if sN is the number of heads among the �rst N ointosses, the ratio sN/N onverges to some real p as N → ∞.II. This limit frequeny is stable: if we selet a subsequene aording to some �sele-tion rule�, then the resulting subsequene (if in�nite) has the same limit frequeny.that all outomes of a given length having some regularity in them, grouped together, would still forma small lass. (To make this preise, regularity must be de�ned appropriately.)� [14℄2



Axiom I is quite natural: if we want to explain informally what probability is, wesay something like �repeat the experiment many times until the frequeny of some event(say, head on a oin) beomes almost stable; this stable value is alled a probability ofthe event�.What is the seond axiom needed for? Remember that olletives should representplausible sequenes of outomes of independent trials. Suppose somebody tells you that�ipping a oin produed the sequene
0101010101010101010101010101 . . .where 0 (heads) and 1 (tails) alternate. Would you believe this? Probably not. Globally,the limit frequeny of 0 and 1 in this sequene exists and is equal to 1/2. But thissequene does not look plausible as a sequene of outomes, as it presents some highlysuspiious regularity. This is where axiom II omes into plae: if one selets from thissequene the bits in even positions, one gets a new sequene
1111111111111111111111111111 . . .in whih the frequeny of ones is di�erent (1 instead of 1/2).Probability theory, aording to Mises, needs to de�ne its subjet, and this subjet isthe properties of olletives and operations that transform olletives into other olle-tives. Mises uses the following example: take a olletive (a sequene of zeros of ones)and ut it into 3-bit groups. Then replae eah group by an individual bit aordingto the majority rule. Probability theory has to �nd the limit frequeny of the resultingsequene if the limit frequeny of the original one is known.In his early papers Mises explained in quite informal way whih seletion rules areallowed: the seletion rule should deide whether a term is seleted or not, using onlythe values of the preeding terms but not the value of the term in question. For example,seletion rule may selet terms whose numbers are prime, or terms that immediatelyfollow heads in the sequene, but not the terms that are heads themselves.The existene of olletives, aording to von Mises, is an observation on�rmed byour experiene, e.g., by thousands of people who invented di�erent systems to beat theasino but all failed in the long run (priniple of �ausgeshlossenen Spielsystem�, as Misessaid).3 Clari�ations. Wald's theoremOf ourse, Mises' approah was quite vulnerable from the mathematial viewpoint. Whatis a seletion rule? Do olletives exist at all?Answering these objetions, Mises adopted a more formal de�nition of a seletion rulesuggested by A. Wald (see, e.g., [61℄ and [39℄). Assume for simpliity that a sequene isformed by zeros and ones. The seletion rule is a total funtion s : {0, 1}∗ → {0, 1}. Here

{0, 1}∗ is a set of all �nite binary strings. Applying seletion rule s to an in�nite binarysequene ω1ω2 . . . means that we selet all terms ωi suh that s(ω1ω2 . . . ωi−1) = 1; theseleted terms are listed in the same order as in the initial sequene.The ondition II for a seletion rule s says that for a olletive the seleted subsequeneeither should be �nite or should have the same limit frequeny as the entire sequene.3



Therefore we get a formal de�nition of a olletive as soon we �x some lass of seletionrules. The evident problem here is that if we onsider all seletion rules of the desribedtype, olletives (non-trivial ones, with limit frequeny not equal to 0 or 1) do not exist.Indeed. for every set S of natural numbers there exists a seletion rule that selets theterms ωi for i ∈ S (the funtion s depends only on the length of its argument). Usingfor a given sequene ω1ω2 . . . the set S of all i suh that ωi = 0 (or ωi = 1), we get aontradition.Wald [61℄2 provided a kind of solution for this problem. He proved that for anyountable family of seletion rules and for any p ∈ (0, 1) there is a ontinuum of sequenesthat satisfy the axioms I (with limit frequeny p) and II for this lass of seletion rules.Today this statement looks almost trivial: indeed, if a given seletion rule s is ap-plied to a Bp-randomly hosen sequene, where Bp is Bernoulli distribution with parame-ter p, the seleted subsequene has the same distribution Bp, so the Strong Law of LargeNumbers guarantees that the set of sequenes that do not satisfy II for a given s has
Bp-measure zero; the ountable union of null sets is a null set and its omplement hasontinuum ardinality.However, Wald wanted to give a onstrutive proof of this result; Theorem V ([61℄,p. 49) says that if a �konstruktiv de�niertes abz�ahlebare System von Auswahlvorshriften�is given, �so kann man Kollektiv 〈. . .〉 konstruktiv de�nieren� (if a ountable system ofseletion rules is de�ned onstrutively, there exists a onstrutively de�ned olletive).Note that there is no formal de�nition of �onstrutive� objets in Wald's paper; hejust provides a onstrution of a olletive that refers to seletion rules (uses them as anorale, in modern terminology). The olletive sequene is onstruted indutively. Letus explain the idea of the onstrution in a simple ase when only �nitely many seletionrules s1, . . . , sn are onsidered and sequene of zeros and ones has limit frequeny 1/2.At the ith step of the onstrution we should deide whether ωi is 0 or 1. At that timewe already know whih of the rules s1, . . . , sn would inlude ωi in the seleted subsequene.In other terms, we know a Boolean vetor of length n. The entire sequene (that we haveto onstrut) would be therefore split into 2n subsequenes that orrespond to 2n values ofthis Boolean vetor. Now the main idea: eah of these 2n sequenes should be 0101010 . . .(zeros and ones alternate starting with zero). This determines the sequene ω uniquely.Sine ω is a mixture of 2n sequenes that have limit frequeny 1/2, the entire sequene
ω has the same limit frequeny.And if we apply seletion rule si to ω, we get a mixture of 2n−1 of these subsequenes(orresponding to 2n−1 Boolean vetors where si is playing). Eah sequene has limitfrequeny 1/2, and their mixture has therefore the same limit frequeny.In fat the onstrution for ountably many seletion rules is quite similar: we justhave to add new rules one by one when the sequene is so long that the boundary e�etsannot destroy the limit frequeny.In fat Wald proves more: he onsiders not only the two-element set {0, 1}, but any�nite set (Theorem I, p. 45). Then he onsiders the ase of in�nite set M (TheoremII�IV, pp. 45�47; we do not go into details here, but to get a reasonable de�nition of aolletive for in�nite M one should either onsider ountable M or a restrited lass ofevents). Theorems V�VI (p. 49) observe that the resulting olletives are �onstrutive�.2A short note without proofs was published earlier [60℄.4



Based on Wald's results, Mises [39℄ onludes that the notion of olletive an bestudied without ontratitions: we an onsider all the seletion rules we want to useand their ombinations; though we do not know them in advane, one may reasonablyassume that they form a �nite or ountable set and therefore olletives (with respet tothis set) do exist.Wald's results show, in a sense, that the requirements I and II are not too strong.But other objetions to the notion of olletive, raised by Ville in his book [59℄, say thatthese requirements are too weak: not only olletives exist, but one an onstrut someolletive in the sense of Mises' de�nition that does not look random.4 Ville's objetions. MartingalesLet us explain Ville's objetions. The requirement II an be reformulated in terms ofgames as follows. (For simpliity we onsider the ase when limit frequeny is 1/2.) Aplayer omes into a asino where a oin is tossed in�nitely many times, and an (foreah tossing) deide to make a bet or to skip it depending on the results of a previoustossings (aording to the seletion rule she has in mind). Her initial redit is $0, and sheis allowed to inur arbitrarily large debts. All bets are for the same amount of money,say $1, whih the player loses or doubles, depending on whether her guess was orret ornot. Let cN be the player's apital after N games. The player wins (after in�nitely manygames) if she makes in�nitely many bets and the ratio cN/N does not onverge to zero.(This game deviates from the original idea of a seletion rule: instead of just hoosingof a subsequene we are allowed also to reverse some of the terms hosen. However,this gives an equivalent de�nition sine we may onsider separately the �positively� and�negatively� hosen terms; if both subsequenes have limit frequenies 1/2, the ratio cN/Ndoes onverge to 0. Note also that this de�nition assumes that the oin is fair.)We have reformulated Mises' de�nition in terms of a game, but this game looks ratherunnatural. Yes, for a �really random oin� we would expet that cN/N onverges to 0 (atleast after we learned the strong law of large numbers). But is it the only thing we wouldexpet? Imagine, for example, that cN is always positive and goes slowly but steadilyto in�nity, so cN/N → 0 but cN → +∞. This would mean that the player manages tomake arbitrarily large amounts of money without inurring debts. In that ase, wouldwe agree with the assumption that she is playing with a fair oin?Ville suggested a di�erent kind of gambling games, whih are muh more natural. Inhis games we ome to the asino with some �xed amount of money (say, $1) and anuse it (in whole or in part) for betting, but annot go negative. In other terms, if wehave s before the next game, we an bet any amount s′ ≤ s on zero or one. If our guessis inorret, the money is lost, and our apital beomes s − s′, otherwise the money isdoubled, and our apital is then s + s′.Mathematially suh a strategy is represented by a funtion m whose arguments are�nite binary strings and values are non-negative reals. The value m(ω1 . . . ωn) is ourapital after we have played n times getting outomes ω1, . . . , ωn; the value m(Λ) (where
Λ denotes the string of length zero) is the initial apital, whih we assume to be positive.

5



The rules of the game ditate that
m(x) =

m(x0) + m(x1)

2
(∗)Here x is some binary string (representing some moment in the game), x0 and x1 areobtained by adding 0 or 1 to x and orrespond to two possible outomes in the nextround. The requirement says that m(x) is the average between two possibilities, i.e., ourpossible gain and loss are balaned. Ville used the name martingale for funtions thathave property (∗). (One may also allow the martingales to have negative values, but weuse only non-negative martingales in the sequel.)A martingale m (i.e., the player that uses orresponding strategy) wins against asequene ω1ω2 . . . if the values m(ω1ω2 . . . ωn) are unbounded. Now we an swith fromMises' seletion rules to martingales and say that a sequene ω = ω1ω2 . . . is a olletive(in a new sense) if all martingales from some (ountable) family do not win against ω.To support this hange in the lass of games, Ville notes that:

• Martingales provide a generalization of Mises' games (with limit frequeny 1/2): forany seletion rule one an onstrut a martingale that wins against every sequenethat does not satisfy axiom II when this seletion rule is applied.
• The notion of martingale mathes well the notion of a null set (set of measure 0)used in lassial probability theory: for every martingale m, the set of all sequenesagainst whih m wins is a null set (has measure 0) aording to the uniform Bernoullidistribution.
• The reverse statement is also true: for every null subset X ⊂ {0, 1}∞ there exists amartingale m that wins against every element of X. (Together with the strong lawof large number this implies the �rst statement in the list).(The proofs are quite natural: �rst we prove the �nite versions of these results sayingthat (1) the probability to transform initial apital 1 into some C during N games doesnot exeed 1/C; (2) for every N and for every set of N -bit sequenes that ontains ε-fration of all sequenes of length N , there is a martingale that wins 1/ε on every sequenefrom this set.)Martingales have some other nie properties. One may ask why our winning onditionsays that martingale is unbounded: isn't it more natural to require that its values tendto +∞ (a strong winning ondition)? The answer is that it does not matter muh, as thefollowing simple observation shows: for every martingalem there exist another martingale

m′ that strongly wins against a sequene ω ifm wins against ω. (The martingalem′ shouldsave part of the apital when the apital reahes some bound and use only the remainingpart for playing, waiting until it has enough to save again, et.)Another nie property is the possibility of ombining martingales: if mi are arbitrarymartingales, the weighted sum ∑

i αimi (where αi are some positive reals with sum 1) is amartingale that wins against a sequene ω if and only if at least one of mi wins against ω.(Reall that we onsider only non-negative martingales.)6



5 Ville's exampleThe arguments above may onvine you that martingales have more nie properties thanjust seletion rules.3 But is this di�erene essential? If we swith from seletion rules tomartingales, do we get stronger requirements for random sequenes (olletives)? Villeshowed that it is indeed the ase, proving the following result.For any ountable family S of seletion rules there exists a sequene ω thatsatis�es requirement II (with limit 1/2) when rules from S are used but everypre�x of ω has at least as many zeros as ones ([59℄, p. 63, Remarque).(In fat, Ville proved more; Theorem 4, p. 55, provides also some bounds for the speedof onvergeny.)This proof raises a historial question. In fat, Ville's argument is very lose toWald's argument used in [61℄: the sequene is splitted into subsequenes and indutiveonstrution is performed; Wald does not disuss the one-sided onvergene expliitly, butit is obtained in a straightforward way as a byprodut of Wald's ontrution. Indeed,let us say that a sequene is �biased� if every pre�x has at least as many zeros as ones(frequeny of ones does not exeed 1/2). If we merge biased sequenes, the result is alsoa biased sequene; note also that the sequene 01010101 . . . is biased.However, Ville does not mention this similarity (though Wald's paper is mentionedmany times in Ville's book and the existene result is quoted with referene to Wald).It is espeially strange sine the explanations given in Wald's paper are quite lear �probably more lear than Ville's argument, whih is written in a rather tehnial way.May be this heavy tehnial style of Ville's paper was the reason why other authorsprefer to give their own reonstrution of the proof instead of following the details ofVille's paper (see, e.g., [28℄ and referenes within).6 More about Ville's exampleEstablishing the di�erene between seletion-based and martingale-based de�nitions ofrandomess, Ville also showed that there is a martingale that wins against every �biased�sequene (a sequene whose pre�xes have more zeros than ones). This is a onsequene ofthe law of iterated logarithm; it implies that the set of all biased sequenes has measurezero, so we an use the results mentioned in Setion 4. However, let us provide a simplediret onstrution of suh a martingale just for illustration.Let ω be a binary sequene; let dn be the di�erene between the numbers of zeros andones in n-bit pre�x of ω. We assume that the di�erene dn is always non-negative. Thelimit d = lim inf dn is then also non-negative; it an be �nite or +∞.It is easy to onstrut a martingale that wins against any biased sequene with
d = +∞. Imagine that you ome into a asino knowing in advane that (1) the number3In fat, at Ville's time these arguments did not sound very onvining even to some experts: W. Fellerwrote in his Zentralblatt review of one of the �rst Ville's papers: �Aus uner�ndlihen Gr�unden willnun Verf. den Auswahlbegri� so ab�andern (�martingale� statts Auswahl) daß jede Nullmenge als Aus-namemenge bei passendem S autreten kann�, both reproduing the main argument of Ville (the possibilityto exlude any null set) and �nding it unonvining (�uner�ndlihen Gr�unden�), see [49℄.7



of ones never exeeds the number of zeros and (2) the di�erene between them tends toin�nity. How an you beome in�nitely rih? Just bet a �xed amount (not exeedingthe initial apital) at every step. The ondition (1) guarantees that you will never gonegative and always have enough money to bet; the ondition (2) guarantees that yourapital tends to in�nity.Now assume that the asino sequene is biased and d is �nite. How an you win then?In this ase the di�erene goes below d only �nitely many times, and starting from sometime T it is at least d being equal to d in�nitely many times. A onlusion: if you see(after the initial period of length T ) that the di�erene is d, you know that the nextoin tossing provides a head, so you bet on it with no risk. This allows you to beomein�nitely rih if you know d and T in advane.So we have one martingale m that wins against any biased sequene with d = +∞ anda ountable family md,T of martingales who win against sequenes with given d and T . Aswe have noted, this ountable family of martingales an be ombined into one martingale.There is a large variety of possible interpretation of Ville's example. One an treatthis example as a failure of Mises' approah: it shows that requirements I and II thatguarantee frequeny stability (and therefore establish the very notion of probability) arenot strong enough to provide a satisfatory de�nition of a random sequene (olletive): amartingale annot win against a �real oin� but still an win against a olletive formallyde�ned in terms of seletion rules.One may say also that axioms I and II do not pretend to apture all properties of�really random� sequene but only some of them needed to de�ne the notion of probability,and therefore the Mises' notion of olletive an be onsidered as an upper bound for thelass of �really random� sequenes.Finally, one an say also that replaing seletion rules by a stronger martingale re-quirement, we harmonize the idea of a random sequene with the measure-theoreti un-derstanding of laws of probability theory, therefore giving new life to Mises' approahand getting a better notion of randomness.It would be interesting to reonstrut the real attitude of Mises, Ville, Frehet andothers; however, this again goes far beyond the sope of the artile. Let us note nev-ertheless that the only plae where Ville is mentioned in [41℄ has nothing to do withmartingales (it is a paper on game theory). Things beome even more ompliated whenwe try to interpret Mises' remark in [37℄ when he says: �Solange man etwa nur die Zahlen
1�10000 betrahtet, bietet die Anordnung der Zi�ern an der 5. Stelle [in the table of log-arithms℄ tats�ahlih das ungef�ahre Bild eines empirishes Kollektivs und man kann auhdie S�atze der Wahrsheinlihkeitsrehnung n�aherungsweise darauf anwenden.� This quoteshows that for him (at least at that moment) the behavior of the 5th deimal digit in thetable of logarithms of integers 1�10000 looks like �empirial olletive� and this sequenesatis�es the laws of probability theory to a ertain extent (while for bigger numbers theregularities show up). Note that logarithms are omputable, so there exists a omputableseletion rule that selets only zeros from this sequene. One may speulate that Miseshad in mind some notion of �pseudorandom� sequene that satis�es the axiom II onlyfor simple enough seletion rules, but this remark remains isolated in his paper and it ishard to say what he really meant. 8



7 Churh de�nition of randomnessApproximately at the same time, in 1930s, a theory of omputable funtions was devel-oped by Kleene, Churh, Turing and others. It provided a very natural lass of seletionrules: omputable rules, where the funtion s : {0, 1}∗ → {0, 1} is a total omputablefuntion. This lass ontains almost all rules we an think of; it also has nie losureproperties needed to prove theorem about olletives. For example, it is losed underomposition, and this an be used to prove that a sequene obtained from a olletive bya seletion rule is again a olletive.This step (ombining reursion theory with Mises' approah) was done in 1940 byChurh [10℄: he alled a sequene random if it has limiting frequeny and, moreover, anyomputable seletion rule produes either �nite sequene or a sequene with the samelimit frequeny.In fat, Churh ould do the same with Ville's de�nition and de�ne random sequenesusing omputable martingales. But probably he did not realize the importane of mar-tingales.More details about the evolution of the randomness notion from Mises to Churh anbe found in a historial survey of Martin-L�of [33℄.8 An intermissionIn the 1940s and 1950s the notion of an individual random sequene did not attratmuh attention. At that time the measure-theoreti approah to probability theory be-ame gradually more and more popular (and, in partiular, the notion of martingale wasembedded into the framework of measure theory).Another important hange during these 20 years was the development of the theoryof omputation. In 1930s theory of omputation appeared as a kind of exoti thingdeveloped by logiians that is using strange tools like reursive funtions (with quiteunnatural de�nition), λ-alulus (even more peuliar de�nition) or �tional devies alled�Turing mahines�. But after twenty years the notion of a omputer program beamequite familiar; many mathematiians played with omputers (i.e., programmed them �omputer games for dummies were almost unknown at that time) as a part of their jobor just for fun.This prepared a next step in the development of randomness notion when the on-netions with the omplexity (inompressibility) was understood.9 Complexity and randomness in 1960sReall the question we started with: why does the long sequene of zeros (heads) looksuspiious while the other sequene of the same length (having the same probability 2−naording to the lassial theory) looks OK? What is the di�erene between these twosequenes?Now, when the notion of omputer program beame familiar, the di�erene betweenthem is evident: the �rst sequene (zeros) an be generated by a short program while theother one (non-suspiious) annot. 9



So there is no surprise that the ideas of omplexity of a �nite objet (de�ned as thelength of a shortest program that generates this objet) were developed independently indi�erent plaes and by di�erent people. This kind of omplexity is often alled desriptionomplexity, as opposed to omputation omplexity, sine we ignore the time needed togenerate an objet and look only at the length of the generating program.There were other (not related to randomness) reasons to onsider desription omplex-ity. One of these reasons was the quantitative analysis of undeidability. �Undeidablealgorithmi problems were disovered in many �elds, inluding algorithms theory, math-ematial logi, algebra, analysis, topology and mathematial linguistis. Their essentialproperty is their generality: we look for an algorithm that an be applied to every objetfrom some in�nite lass and always gives a orret answer. This general formulationmakes the question not very pratial. A pratial requirement is that algorithm worksfor every objet from some �nite, though probably very large, lass. On the other hand,the algorithm itself should be pratial. 〈. . .〉 Algorithm is some instrution, and it isnatural to require that this instrution is not too long, sine we need to invent this al-gorithm. . . So an algorithmi problem ould be unsolvable in some pratial sense evenif we restrit inputs to some �nite set� (A.A. Markov [30℄, p. 161; this paper providesproofs for the results announed in [29℄)Note also that the idea of measuring the omplexity of a message as the length of itsshortest �enoding� was quite familiar due to Shannon information theory (though theenodings onsidered there are very restrited).Earlier (in [53, 54℄; these papers are based on tehnial reports that go bak to 1960and 1962) R. Solomono� onsidered similar notions in the ontext of indutive inferene(somebody gives us a long sequene; we want to know what is the reasonable way topredit the next term of this sequene knowing the preeding terms).G. Chaitin [9℄ tells that entering a Bronx High Shool of Siene (in 1962) he wrotean essay where the idea of randomness as an absene of short desription was mentioned;later, in 1965, after his �rst year in City College, he wrote a paper that was submittedto the Journal of the ACM and �nally published in two parts [5, 6℄. In [5℄ he de�nes aomplexity measure of a binary string in terms of the size of a Turing mahine; in [6℄ theomplexity is de�ned in more general terms (in the same way as in Kolmogorov paper [17℄,see below).4L.A. Levin [25, 26℄ tells that being a student of a high shool for gifted hildren inKiev (USSR, now Ukraine) in 1963/4, he was thinking about the length of the shortestarithmeti prediate that is provable for a single value of its parameter but did notknow how make this de�nition invariant (how to make the omplexity independent of thespei� formalization of arithmetis). Next year (1964/1965) he moved to Mosow wherea speial boarding shool for gifted hildren was founded by A. Kolmogorov, and toldabout this idea to A. Sossinsky who was at that time a teaher in this shool. Sossinskyasked Kolmogorov and Kolmogorov replied that in one of his forthoming papers thisquestion was answered.54The most famous disovery of Chaitin is probably the proof of G�odel inompleteness theorem basedon the Berry paradox [7℄; we don't disuss it here.5Here is the Russian quotation from [26℄: �Òåìà, êîòîðîé Àíäðåé Íèêîëàåâè÷ òîãäà óâëåêàëñÿ �îáùèå ïîíÿòèÿ ñëîæíîñòè, ñëó÷àéíîñòè, èí�îðìàöèè � âîëíîâàëà ìåíÿ ÷ðåçâû÷àéíî. Êàê ìíîãèåìîëîäûå ëþäè, ÿ èñêàë ñàìûõ �óíäàìåíòàëüíûõ êîíöåïöèé. Íî òàêèå �ïåðâè÷íûå� òåîðèè, êàê10



This was the paper [17℄ that soon beame the main referene for the de�nition of om-plexity; now the omplexity de�ned as the length of the shortest program is often alled�Kolmogorov omplexity�. The paper was alled �Three approahes to the quantitativede�nition of information�, and one of the approahes (the algorithmi one) de�ned theomplexity of a binary string as the length of the shortest program produing it, assum-ing the programming language is optimal, and proves the existene of suh an optimallanguage (for the tehnial details see the paper or any of the tutorials on Kolmogorovomplexity, e.g., [51℄).This Kolmogorov paper had several historial reasons to beome most popular (amongmany expositions of the same ideas, inluding the above mentioned). It was the �rstpubliation where the rigorous de�nition of omplexity was given and universality theoremwas proved. (This was done also in the seond part of Chaitin's artile submitted inNovember 1965, after Kolmogorov's publiation, and published only in 1969. Solomono�'spapers did not ontain an expliit de�nition of omplexity.)Seond, Kolmogorov was famous as one of the greatest mathematiians of his time,and therefore his papers attrated a lot of attention. And being one of the foundersof probability theory, he has a lear vision of the role that omplexity an play in thefoundations of probability theory (in the de�nition of individual random objet and ininformation theory). So his paper was onise and well written.6 Therefore it is nowonder that among many people who ame to very lose ideas, Kolmogorov got the mostëîãèêà èëè òåîðèÿ àëãîðèòìîâ, ñìóùàëè ìåíÿ ñâîåé �êà÷åñòâåííîé� ïðèðîäîé � òàì íå÷åãî áûëî�ïîñ÷èòàòü�. Íà ñàìîì äåëå, ÿ åù¼ â Êèåâå ïûòàëñÿ äàòü îïðåäåëåíèå ñëîæíîñòè (ÿ íàçûâàë å¼�íååñòåñòâåííîñòü�), íî íå ìîã äîêàçàòü å¼ èíâàðèàíòíîñòè. Â Ìîñêâå ÿ ðàññêàçàë î ñâîèõ íåóäà÷àõÑîñèíñêîìó, îí ñïðîñèë Êîëìîãîðîâà è ïðèí¼ñ ìíå ïîðàçèòåëüíûé îòâåò: Êîëìîãîðîâ êàê ðàçäîêàçàë òî, ÷òî ÿ íå ñìîã è óæå âîò-âîò âûéäåò åãî ïîäðîáíàÿ ñòàòüÿ! Òîãäà ÿ ðåøèë âî ÷òî áû òîíè ñòàëî ïîñòóïèòü â Ì�Ó è ñòàòü ó÷åíèêîì Àíäðåÿ Íèêîëàåâè÷à.�6Chaitin's papers start with a lot of tehnial details related to the ounting of Turing mahines states.Solomono�'s paper [53℄ ontains passages like �The author feels that Eq. (1) is likely to be orret oralmost orret, but that the methods of working the problems of Setions 4.1 to 4.3 are more likely tobe orret than Eq. (1). If Eq. (1) is found to be meaningless, inonsistent or somehow gives results thatare intuitively unreasonable, then Eq. (1) should be modi�ed in ways that do not destroy the validity ofthe methods used in Setions 4.1 to 4.3� � not very enouraging for the readers, to say the least. Levinremembers that when he was instruted by Kolmogorov to read and ite the work of Solomono�, he wasfrustrated by this kind of attitude and soon gave up.Setion 3.2.1 of [53℄ ontains the following sentene: �Although a proof [of some statement, related toa de�nition alled Eq. (1); this de�nition ontained an error, as Solomono� found later℄ is not available,an outline of the heuristi reasoning behind this statement will give lues as to the meanings of the termsused and the degree of validity to be expeted of the statement itself�. But later in the same paragrapha very lear proof of universality theorem is provided for the readers who are not onfused by previousremarks and are able to extrat its statement out of the proof. This paper also ontained a lot of otherideas that were developed muh later; e.g., in Setion 3.2 Solomono� gives a nie simple formula forpreditions in terms of the onditional a priori probability, using monotoni mahines muh before Levinand Shnorr. (In 1978 Solomono� formally proved that this formula works for all omputable probabilitydistributions, see [55℄.)In fat, Solomono�'s main interest was indutive inferene. He tried to formalize the �Oam's Razor�priniple in the following way: base your predition on the simplest �law� that �ts the data, say thesimplest program that ould generate it. This requires a de�nition of �simpleity�, and it was in thisontext that Solomono� de�ned omplexity in terms of desription length and proved its invariane. (Hisatual predition formula uses onditional a priori probability, based on all possible programs that �tthe data, with longer programs entering with smaller weights.)11



attention.7The introdution of the omplexity notion allowed to identify randomness (for �nitebit strings and fair oin) with inompressibility. One should have in mind, however, thatone annot hope to draw a sharp dividing line between random and non-random stringsof a given �nite length, and the omplexity funtion K(x) is de�ned up to a O(1) term,so, stritly speaking, only asymptoti statements are possible.7When Kolmogorov has ame to the de�nition of omplexity? In his 1963 paper [16℄ Kolmogorovmakes some remarks that partially explain how he ame to the omplexity notion: �I have alreadyexpressed the view 〈. . .〉 that the basis for the appliability of the results of the mathematial theoryof probability to real `random phenomena' must depend on some form of the frequeny onept ofprobability, the unavoidable nature of whih has been established by von Mises in a spirited manner.However, for a long time I had the following views:(1) The frequeny onept based on the notion of limiting frequeny as the number of trials inreasesto in�nity, does not ontribute anything to substantiate the appliability of the results of probabilitytheory to real pratial problems where we have always to deal with a �nite number of trials.(2) The frequeny onept applied to a large but �nite number of trials does not admit a rigorousformal exposition within the framework of pure mathematis.Aordingly I have sometimes put forward the frequeny onept whih involves the onsious use ofertain not rigorously formal ideas about `pratial reliability', `approximate stability of the frequenyin a long series of trials', without the preise de�nition of the series whih are `su�iently large'. . .I still maintain the �rst of the two theses mentioned above. As regards the seond, however, I haveome to realize that the onept of random distribution of a property in a large �nite population anhave a strit formal mathematial exposition. In fat, we an show that in su�iently large populationsthe distribution of the property may be suh that the frequeny of its ourrene will be almost thesame for all su�iently large sub-populations, when the law of hoosing these is su�iently simple. Suha oneption in its full development requires the introdution of a measure of the omplexity of thealgorithm. I propose to disuss this question in another artile. In the present artile, however, I shalluse the fat that there annot be a very large number of simple algorithms.� In this quote Kolmogorovsuggested a �nitary Mises-style approah that uses seletion rules of bounded omplexity, but does notexplain what omplexity is; also he does not speak here about de�nition of randomness in terms ofomplexity (diretly, without using seletion rules).Asked when Kolmogorov ame to his de�nition of omplexity, Martin-L�of writes [35℄: �Kolmogorovmust have arrived at his omplexity de�nition before autumn 1964, sine Lyonya Bassalygo [ËåîíèäÁàññàëûãî℄ told me about it then. [Bassalygo on�rms this; he remembers a walk during late autumnor early spring when Kolmogorov tried to explain him the omplexity de�nition that was quite di�ultto grasp at �rst.℄ On the other hand, it should be later than the randomness de�nition proposed in theSankhya paper [16℄ whih was reeived April 1963 by the journal. Those onsiderations pin down thetime of disovery to 1963�64, more exatly. (Kolmogorov never told me anything about the history ofhis disovery.)[On the other hand,℄ in his obituary note in the Journal of Applied Probability, Vol. 25, No. 1, pp. 445�450, Marh 1988, K.R. Parthasarathy writes:�Immediately after his arrival in Calutta, Andrei Nikolaevih lost no time in plunging into disussionswith the young students at the Institute about his reent researh work on tables of random numbers,and the measurement of randomness of a sequene of numbers using ideas borrowed from mathematiallogi. This piee of researh was arried out by him during his travel by ship from the USSR to India;the ship was atually proeeding on an oeanographi expedition.�This seems to �x the time of the disovery of the omplexity de�nition of randomness to 1962 [at leastin some preliminary form℄ and to loate it to the ship that brought him to India for the reeption of thedegree of Dotor Honoris Causa at the University of Calutta.�Kolmogorov gave several talks at the Mosow Mathematial Soiety but for most of them only the ti-tles are known, and we may only guess what was there: �åäóêöèÿ äàííûõ ñ ñîõðàíåíèåì èí�îðìàöèè(Data redution that onserves information, Marh 22, 1961), ×òî òàêîå �èí�îðìàöèÿ�? (What isinformation?, April 4, 1961), Î òàáëèöàõ ñëó÷àéíûõ ÷èñåë (On the tables of random numbers, Oto-ber 24, 1962, probably orresponding to Sankhya paper [16℄), Ìåðà ñëîæíîñòè êîíå÷íûõ äâîè÷íûõ12



10 Martin-L�of de�nition of randomnessTo obtain suh a sharp borderline one needs to onsider in�nite sequenes. A naturalidea: to de�ne randomness of an in�nite sequene in terms of omplexity of its pre�xes.The �rst attempt was to say that a sequene ω1ω2 . . . is random if K(ω1 . . . ωn) is maximalup to a onstant, i.e.,
K(ω1 . . . ωn) = n + O(1).But Martin-L�of8 found that it is not possible (sequene with this property do not exist).ïîñëåäîâàòåëüíîñòåé (A omplexity measure for �nite binary strings, April 24, 1963), Âû÷èñëèìûå�óíêöèè è îñíîâàíèÿ òåîðèè èí�îðìàöèè è òåîðèè âåðîÿòíîñòåé (Computable funtions andthe foundations of information theory and probability theory, November 19, 1963), Àñèìïòîòèêàñëîæíîñòè êîíå÷íûõ îòðåçêîâ áåñêîíå÷íîé ïîñëåäîâàòåëüíîñòè (Asymptoti behavior of the om-plexities of �nite pre�xes of an in�nite sequene, Deember 15, 1964; the title suggest that the last talkwas about Martin-L�of results, though Martin-L�of remembers disussing these results with Kolmogorovonly next spring, see below). Three later talks about algorithmi information theory (1968�1974) haveshort published abstrats (see Appendix A.)8Per Martin-L�of, a mathematiian from Sweden, studied Russian during his military servie and thendeided to make use of his knowledge by oming to Mosow and working with Kolmogorov.Martin-L�of tells in [35℄: . . . I had not worked on randomness before oming to Mosow in 1964�65.Kolmogorov �rst gave me a statistial problem in disriminant analysis, whih I solved, although I didnot �nd it hallenging enough. It was a problem that I might just as well have worked on at home inStokholm. But I got to know Leonid (Lyonya) Bassalygo [Ëåîíèä Áàññàëûãî℄, and he told me aboutKolmogorov's new ideas about omplexity and randomness, whih I found very exiting. This was in lateautumn 1964. So I started to learn the neessary reursive funtion theory from Uspenskij's book [57℄. . .It was only when I told Kolmogorov about my �rst results on omplexity osillations in in�nite binarysequenes in early 1965 that omplexity and randomness beame the subjet of our disussions. (So I didnot learn about Kolmogorov omplexity diretly from Kolmogorov but only indiretly from Bassalygo).[As to the motivation,℄ I studied the previous literature on random sequenes only after I had mademy own �rst ontributions. This resulted in the paper The Literature on von Mises' Kollektivs Revisitedpublished in the Swedish philosophial journal Theoria [33℄. [As to the predeessors,℄ I have been mostinterested in Borel, partiularly beause he was the most important of the early Frenh onstrutivists,whih Brouwer alled the pre-intuitionists. My a�etion for him may also have to do with the fat thatI inherited a opy of Borel's Leons sur la Th�eorie des Fontions, with its many interesting Notes at theend, when my grandfather died in 1958 and I was aged 16.When trying to require the omplexities of the �nite initial segments to be as big as possible, Idisovered the unavoidable omplexity osillations about whih I wrote my �rst paper on the subjet (inRussian and typed by Nataliya Dmitrievna Svetlova [Íàòàëüÿ Äìèòðèåâíà Ñâåòëîâà (Ñîëæåíèöûíà)℄,who beame Solzjenitsyn's wife in her seond marriage). This led me to try the new approah of suitablyinterpreting the de�nition of null set in the sense of reursion theory. I should add that my primaryreason for being interested in in�nite rather than �nite random sequenes was to get rid of the additiveonstants that ropped up everywhere, and whose arbitrariness I found annoying. [This paper,℄ the �rstone of my two Russian papers was never published, but a typed opy of it should still exist somewherein my unsorted arhive. However, the results ontained in it were subsequently published in English inmy paper [34℄.The paper [31℄ is the seond of the two papers that I have written in Russian. It summarizes a talkthat I apparently gave in Mosow on 2 June 1965 and shows very learly that I had not yet reahed thede�nition of my Information and Control paper [32℄ though I was on my way.Kolmogorov was immediately very interested in my two theorems on the unavoidable omplexityosillations in in�nite binary sequenes, whih I told him about in the train on our way to Cauasus,more preisely, Bakuriani [Armenia℄ in early Marh 1965. In fat, he was so positive that he asked me topresent my results as a sequel to a guest leture that he gave in Tbilisi on our way bak in late Marh.I do not think that he had thought himself about the problem of de�ning in�nite random sequenesby means of his omplexity measure before then. So I think it is orret to say. . . that he was more13



Taking this di�ulty into aount, Martin-L�of tried a di�erent approah and gave ade�nition of a random sequene based on e�etively null sets, making it more measure-theoreti. The idea of this approah an be explained as follows.Let us de�ne a random bit sequene (for simpliity we onsider only the ase of a fairoin) as a sequene that satis�es all probability laws. And probability law is a propertyof sequenes that is true for almost all sequenes, i.e., for all sequenes outside some nullset. Finally, a subset X of the Cantor spae {0, 1}∞ (of all in�nite binary sequenes) is anull set if its uniform measure is 0 (equivalent formulation: if for every ε > 0 there existsan in�nite sequene of intervals that overs X whose total measure is at most ε).The problem with this de�nition is that random bit sequenes de�ned in this waydo not exist at all. Indeed, for every sequene α the singleton {α} is a null set, so itsomplement {0, 1}∞ \ {α} an be onsidered as a probability law, and α does not satisfythis law.Martin-L�of pointed out that if we restrit ourselves to e�etively null sets, this planbeomes quite reasonable. A set X is an e�etively null set if there exists an algorithmthat (given positive rational ε) generates a sequene of intervals that over X and havetotal measure at most ε. (Replaing algorithms with arbitrary funtions, we get a lassialde�nition of null sets.) It is easy to see that the union of all e�etively null sets is a null set,sine there are only ountably many algorithms. Therefore random sequenes (de�nedas sequenes that do not belong to any e�etively null set) exist and the set of randomsequenes has measure 1.Moreover, Martin-L�of have proved that the union of all e�etively null sets is ane�etively null set (in other terms, there exists the largest e�etively null set). Thismaximal set onsists of all non-random sequenes. A set X is e�etively null if and onlyif X is a subset of this maximal e�etively null set, i.e., X does not ontain any randomsequene.We an formulate this in the following way. Let P be some property of binary se-quenes. Then the statements
P (α) is true for every random sequene αand the set of sequenes α that do not satisfy P is an e�etively null setare equivalent in the word �random� in understood in Martin-L�of sense. This is niebeause people often say, for example, that �for a random sequene α the limit frequenyinterested in �nite random sequenes. In a way, even if I have myself been interested in getting a goodde�nition of randomness for in�nite sequenes, it is more striking that one an give a sensible de�nition ofrandomness already for �nite sequenes. Conerning �nite random sequenes, my own only ontributionwas the observation that the random elements of a �nite population should be the ones whose onditionalomplexity given the population is maximal, that is, approximately equal to the logarithm to the base

2 of the number of elements of the population, whereas Kolmogorov' original suggestion was to use theunonditional omplexity. So, in the ase of a ompletely random sequene of length n, we should use
K(x1 . . . xn|n) rather than K(x1 . . . xn), and, in the ase of Bernoulli sequenes, K(x1 . . . xn|n, sn), where
sn = x1 + . . . + xn.I never had the opportunity of disussing my own de�nition of randomness for in�nite sequenes withKolmogorov, simply beause I did not �nd it until after I left Mosow in July 1965. It must have beensometimes during the aademi year 1965�66. (End of quote.)14



is equal to 1/2� (the strong law of large numbers) having in mind that the set of sequenesthat do not have this property is a null set. Now this sentene an be understood literally(if a null set is an e�etive null set, whih is true in most ases).Martin-L�of published this de�nition in 1966 in [32℄). His results were also overedby a detailed survey paper [62℄. written by two Kolmogorov's young olleagues, LeonidLevin and Alexander Zvonkin (by Kolmogorov's initiative; Kolmogorov arefully reviewedthis paper one it was �nished and suggested many orretions). This survey inludedMartin-L�of results as well as other results about omplexity and randomness obtained bythe Kolmogorov shool in Mosow. In partiular, a proof of the symmetry of information(an important result obtained independently by Levin and Kolmogorov) was inludedthere.9Martin-L�of de�nition of randomness at �rst seems to be purely measure-theoreti, ithas nothing to do with seletion rules, martingales, and omplexity. However, it turnedout to be losely related to these notions, and it was soon found by di�erent authors.11 Randomness and martingales: ShnorrDuring the next deade (1965�1975; reall that Kolmogorov published his de�nition ofomplexity in 1965 and Martin-L�of published his de�nition of randomness in 1966) a lotof work was done by di�erent authors who provided missing links between omplexity,randomness and games (martingales). One of these authors was C.P. Shnorr.As he tells [48℄, after �nishing his Ph.D. he was looking for new topis. Martin-L�ofgave a ourse in Erlangen, and the leture notes of this ourse were distributed. So this�eld beome known in Germany, Shnorr heard a talk about omplexity and randomnessand beame interested. He wrote several papers and then a book in Leture Notes inMathematis series [45℄ based on his 1970 letures (the book is in German; it ontainsreferenes to his other papers, inluding [44℄ where many of the results from the book arepresented in English). His habilitation was based on the results obtained in these papers.In this book for the �rst time the notion of martingale was used in onnetion with al-gorithmi randomness.10 Shnorr de�ned a lass of omputable (berehenbare) and lowersemiomputable (subberehenbare) martingales. A funtion f (arguments are strings,values are reals) is alled omputable if there is an algorithm that omputes the valuesof f with any given preision: given x and positive rational ε, the algorithm omputessome rational ε-approximation to f(x). A funtion is lower semiomputable if there is an9Levin realls that being an undergraduate student he wanted to onvine Kolmogorov to be hisadvisor and hoped that this result would impress Kolmogorov. But Kolmogorov was rather busy, andthe appointment was postponed several times from February to August 1967. Finally, when Levin alledhim again, Kolmogorov said something like: �O yes, ome to see me, I have very interesting results, theinformation is symmetri�. � �But, Andrei Nikolaevih, this is exatly what I wanted to tell you.� ��But do you know that the symmetry is only up to logarithmi terms?� � �Yes.� � �And you an givea spei� example?� � �Yes.� Then Levin ame to see Kolmogorov, they disussed these results (laterannouned in [18℄ without proof; the �rst proof appeared in [62℄). Levin indeed worked with Kolmogorovduring his undergraduate years and even earlier (the �rst Levin's result was obtained under Kolmogorov'ssupervision when Levin was in high shool and published later as [21℄) but V.A. Uspensky was o�iallylisted as his undergraduate advisor for some formal reasons (see below).10As Shnorr said in his talk [48℄, he had not read Ville's book, but learned the notion of martingaleindiretly through other soures. 15



algorithm that, given x, generates all rational numbers that are less than x. It is easy tosee that f is omputable if and only if both f and −f are lower semiomputable.Shnorr then proved that a sequene is Martin-L�of random if and only if no semiom-putable martingale wins against it, thus providing a riterion of Martin-L�of randomnessin terms of martingales. (A tehnial remark: note that the initial apital an be non-omputable in our setting.) Shnorr, however, was not satis�ed with this notion (lowersemiomputability). He found it rather ounter-intuitive: there is no evident reason whywe should generate approximations from below (but not above) to martingale values. Sohe thought that this lass of martingales is too broad and, therefore, the orrespondinglass of sequenes is too narrow. So he alled Martin-L�of random sequenes �hyper-zuf�allig� (�hyperrandom�; this name is not in use now). He proved that there exists asequene that wins against all omputable martingales but is not Martin-L�of random.Shnorr also de�ned the notion of lower semiomputable supermartingale. A funtion
m is a supermartingale if it satis�es the supermartingale inequality,

m(x) ≥
m(x0) + m(x1)

2
.In game terms this means that player is allowed to throw away her money during the game.Shnorr proved that lower semiomputable supermartingales an be used for Martin-L�ofrandomness riterion in plae of martingales.Trying to �nd a better de�nition of randomness, Shnorr onsidered a smaller lassof e�etively null sets (now alled sometimes �Shnorr null sets�). As we have said,for an e�etively null set X there exists an algorithm that given ε > 0 generates asequene of intervals that over X and have total measure at most ε. Shnorr introdueda stronger requirement: this total measure should be equal to ε. (This sounds a bitarti�ial; more natural equivalent de�nition asks for a omputably onverging series ofthe length of overing intervals.) The sequenes that are outside all Shnorr null sets arealled �zuf�allig� (now they are sometimes alled �Shnorr random� sequenes). Shnorrproved that this is indeed a broader lass of sequenes than �hyperzuf�allig� (Martin-L�ofrandom). He also proved a riterion in terms of omputable martingales: a sequene iszuf�allig if and only if no omputable martingale �omputably wins� on it (�omputablywins� means that there exists a non-dereasing unbounded omputable funtion h(n)suh that the player's apital after n steps is greater than h(n) for in�nitely many n).Shnorr's papers and book ontain a lot of other interesting things whih were devel-oped muh later. For example, he onsiders how fast player's apital inreases during thegame and proves that if a sequene does not satisfy the strong law of large numbers, thenthere exists a omputable martingale that wins exponentially fast against it (muh later,in 2000s, the growth of martingales was explored farther in onnetion to the notions ofe�etive dimension).As Shnorr explains, one of his goals was to approah the notion of �pseudorandom-ness�. Sometimes even a sequene generated by an algorithm looks similar to a randomone; suh sequenes may be used when the soure of physial randomness is unavailableand sometimes are alled �pseudorandom�, though this term may have di�erent moreor less preise meanings. One of the possible approahes to this phenomenon is that a�pseudorandom� objet may have a short desription, but the time needed for the de-16



ompressing algorithm to proess this desription is unreasonably large.11 So Shnorronsiders also omplexity with bounded resoures in his book.12 Supermartingales and semimeasuresShnorr's lower semiomputable supermartingales are losely related to other notionthat appeared in Zvonkin and Levin's 1970 paper [62℄, the notion of a semiomputablesemimeasure. It is easy to see that martingale (as de�ned above) is just a ratio of twomeasures on the Cantor spae: an arbitrary one and the uniform one. More formally,let Q be any measure on Cantor spae and let P be the uniform Bernoulli measure.Then the ratio Q(Ix)/P (Ix), where Ix is the interval rooted at binary string x (the set ofall extensions of x), is a martingale. Moreover, every martingale an be represented inthis way. The supermartingales orrespond in the same way to objets that Levin alled�semimeasures�.A semimeasure is a measure on the set Σ of all �nite and in�nite binary sequenes.Let Σx be the set of all extensions (�nite and in�nite) of a binary string x. Then Σx =
Σx0 ∪ Σx1 ∪ {x}. If Q is a measure on Σ, the inequality

Q(Σx) ≥ Q(Σx0) + Q(Σx1)holds; moreover, any non-negative real-valued funtion q on �nite strings that satis�esthe inequality q(x) ≥ q(x0) + q(x1), determines a measure on Σ. The di�erene betweenboth sides of this inequality is the probability of the �nite string x. A semimeasure islower semiomputable if the funtion x 7→ q(x) = Q(Σx) is lower semiomputable.Lower semiomputable semimeasures are onsidered in [62℄; Levin proved that theyan be equivalently de�ned as output distributions of probabilisti mahines that haveno input, use internal fair oin and generate their output sequentially (bit by bit). Levinproved also that there exists a maximal lower semiomputable semimeasure (universalsemimeasure, sometimes alled a priori probability on the binary tree). This notion anbe also onsidered as a formalization of Solomono�'s ideas.The onnetion between semimeasures and supermartingales: supermartingales anbe de�ned as frations where the numerator is a semimeasure and denominator is theuniform Bernoulli measure (similar to the desription of martingales as frations of twomeasures). Lower semiomputable semimeasures orrespond to lower semiomputablesupermartingales. This representation of (semi)martingales as ratios an be easily gener-alized to other probability distributions, e.g., to the ase of a non-symmetri oin. If Pis the distribution delared by the game organizers (now not neessarily uniform), thenin the �fair� game the player's apital is a P -martingale, i.e., the ratio Q/P where Q issome measure. (The notion of martingale with respet to a non-uniform measure wasalso onsidered by Shnorr in [45℄.)In a similar way P -supermartingales (that allow the player to disard some moneyat eah step) an be de�ned as ratios Q/P where Q is a semimeasure. This implies,11Later a more pratial theory of pseudorandom sequenes was developed by Yao, Blum, Miali andothers. Now it is a very important part of omputational ryptography, see, e.g., the textbook [15℄.Shnorr later also worked in the �eld of omputational ryptography.17



for example, that for any omputable measure P there exists a maximal lower semi-omputable P -supermartingale: it is the ratio A/P where A is the a priori probability(the largest lower semiomputable semimeasure). The last observation provides a on-netion between maximal P -supermartingales for di�erent P ; as Levin points in one ofthe letters to Kolmogorov (see the Appendix) the advantage of the a priori probabilitynotion is that the same notion an be ompared to di�erent measures. When swith-ing from (semi)measures to (super)martingales one objet (the a priori probability) istransformed into a family of seemingly di�erent objets (maximal lower semiomputablesupermartingales with respet to di�erent omputable measures).However, a natural goal: �to obtain a riterion of randomness (for in�nite sequenes)in terms of omplexity of their pre�xes� (the idea to relate omplexity and randomnesswas present already in the 1965 Kolmogorov publiation [17℄) was not ahieved either inZvonkin and Levin paper or in Shnorr's book. This was done few years later when newversions of omplexity (monotone and pre�x omplexities) appeared.13 Pre�x omplexityPre�x omplexity was introdued by Levin and Chaitin. Sine the introdution of pre�xomplexity sometimes beomes a soure of unneessary ontroversy, some historial lari-�ations would be useful here. To put the story short, the �rst publiations where (1) thepre�x omplexity was de�ned in terms of self-delimiting odes and as the logarithm of themaximal lower semiomputable onverging series, and (2) the laim that these de�nitionsoinide was made (without proofs), are [23, 11℄. These publiations appeared in 1974in Russian; English translations of these two papers were published in 1976 and 1975respetively (see [13℄); the logarithm of the maximal lower semiomputable onvergingseries (but not the self-delimiting desriptions) was onsidered also in unpublished thesisof Levin in 1971.12 In 1970 paper [62℄ an a priori probability (on a binary tree, as de�ned12Let us add some historial remarks about situation in the Mathematis Department of MosowState University and in Russia at that time. The typial trak of a future mathematiian at thattime was 5 years of undergraduate studies (âûñøåå îáðàçîâàíèå) plus 3 years of graduate shool(àñïèðàíòóðà). After the graduate shool student is assumed to defend a thesis and get a title �kandidat�ziko-matematiheskih nauk� (êàíäèäàò �èçèêî-ìàòåìàòè÷åñêèõ íàóê) whih is a rough equivalent ofPh.D. Unlike the US universities, the student of Mosow State University (and other Soviet universities)had to deide what is his major before entering the university: e.g., the mathematis and physis pro-grams are administered by di�erent departments, have no ommon ourses, di�erent entrane proedureset. After two years of undergraduate studies at mathematis department, a student had to hoose adivision (êà�åäðà) whih he wants to join for three remaining years, and a sienti� advisor in thehosen division. (It ould be, say, Algebra Division, or Geometry and Topology Division, et.) At theend of the 5th year student writes a thesis (äèïëîìíàÿ ðàáîòà). Sometimes this thesis is onsidered assomething lose to the Master thesis in the US.To enter the graduate shool after �nishing 5 years of undergraduate studies, one needed a goodaademi reord and (a very important ondition!) a reommendation from the loal ommunist partyand komsomol (êîìñîìîë) organization. Komsomol (an abbreviation for êîììóíèñòè÷åñêèé ñîþçìîëîä¼æè, ommunist union of the young people), like Hitlerjugend in Germany, was almost obligatory,and inluded people of age 14�28, so most university students were komsomol members (êîìñîìîëüöû),though there were some exeptions and this requirement was never formalized as a law.Levin was a student of a speial boarding shool founded by Kolmogorov (uno�ially alled Kol-mogorov's boarding shool, êîëìîãîðîâñêèé èíòåðíàò); during 1963/4 aademi year he was a student18



in this paper) of a sequene 0n1 is onsidered (last paragraph on p. 107) and some prop-erties of this quantity are proved, though no name is given for it; this quantity oinideswith a maximal lower semiomputable onverging series (up to O(1) fator, as usual).At the same time Chaitin independently ame to the same two de�nitions (self-delimited omplexity and logarithm of probability) in [8℄; this paper, submitted in 1974,ontained, among other results, the �rst published proof of their equivalene. (See moreof a similar shool in Kiev (now Ukraine) and then managed to move to Mosow for 1964/5 aademiyear. Then (in January 1966) he entered the Mosow university beoming a �rst-year undergraduate inthe middle of the aademi year (there was some exeptional proedure for the students of Kolmogorov'sshool in this year related to the hange in the eduation system in the USSR that moved from 11-yearsto 10-years eduation program).Being not only Jewish (already a handiap at that time) but also a kind of non-onformist, Levin as anundergraduate student reated a lot of troubles for loal university authorities. As a member of komsomol,he beame eleted loal komsomol leader but he de�ed the poliies established by the Communist Partysupervisors (and this was mentioned in his graduation letter of reommendation, a very importantdoument at the time). No wonder he was e�etively barred from applying to any graduate shoolwhen he �nished undergraduate studies at the Mathematial Logi Division (êà�åäðà ìàòåìàòè÷åñêîéëîãèêè) in 1970. (His o�ial undergraduate advisor was Vladimir A. Uspensky who was Kolmogorov'sstudent in 1950s. Kolmogorov o�ially did not belong to Mathematial Logi division and asked hisformer student Uspensky to replae him in this apaity.) However, Kolmogorov managed to seure aresearh sientist position for Levin (with the help of the University retor, a prominent mathematiianand a very deent person, I.G. Petrovsky) in the University statistial laboratory (Kolmogorov was ahead of this laboratory).Being there, in 1971 Levin wrote a �kandidat� thesis (that ontained mostly Levin's results inludedin [62℄, but also some others, inluding the probabilisti de�nition of pre�x omplexity) and tried to�nd a plae for its defense. (Aording to the rules, the thesis defene was not tehnially onneted toa graduate shool (if any) of defendant's a�liation, only a reommendation from the institution wheredissertation was prepared was required; in this ase the person was alled �ñîèñêàòåëü�. Though mostgraduate students in the USSR were defending their thesis in the same institution (sometimes a fewyears later after their studies in the graduate shool), the thesis defense was not a university a�air, butregulated by a speial government institution, alled �Âûñøàÿ Àòòåñòàöèîííàÿ Êîìèññèÿ�.)In Mosow it was learly impossible, and �nally the defense took plae in Novosibirsk (in Siberia).The thesis reeived strong approvals from o�ial reviewers (J. Barzdin, B. Trahtenbrot and his lab),the reviewing institutions (Leningrad Division of Steklov Mathematial Institute) and the advisor (Kol-mogorov and his lab). Nevertheless, the defene was unsuessful (quite untypial event). Aordingto Levin, the most ative negative role during the ounil meeting was played by Yu.L. Ershov (reur-sion theorist, now a member of the Russian Aademy of Sienes) but Levin believes that Ershov didnot have other hoie unless he was ready to get into areer troubles himself; however, Ershov did alsosomething �above and beyond the all of duty� (as Levin puts it) as a Soviet sienti� funtionaire � heinsisted that the �unlear politial position� of Levin should be mentioned in the ounil deision. Thise�etively prevented Levin's defense in any other plae in the Soviet Union (even with a new thesis) andtherefore barred a sienti� areer in Soviet Union for him. Fortunately, Levin got a permission to leaveSoviet Union and emigrated to US where he got many well known results in di�erent areas of theoretialomputer siene (about one-way funtions, holographi proofs et al.). As Levin realls, KGB made itknown that they think going away would be the best option for him; they even asked Kolmogorov todeliver this advie (whih Kolmogorov did, though he did not indiated whether he himself agrees. . . )Now we an make jokes about these events (Levin one noted that a posteriori Ershov's behaviour wasa favor for him: it was a motivation to leave Soviet Union) but at that time things were muh moredramati.But while being still in the USSR after this unsuessful defense, Levin followed an advie of somefriend, who told that Levin should publish his results while he is still allowed to publish papers in Sovietjournals (this was not a joke, the danger was quite real) and published a bunh of papers in 1973�1977.These papers were rather short and rypti, a lot of things was stated there without proofs, so manyideas from them were really understood only muh later.19



about the history of this paper below.)The pre�x omplexity, as we have said, an be de�ned in di�erent ways. The �rst ap-proah de�nes pre�x omplexity of x as the length of the shortest program that produes
x, but the programming language must satisfy an additional requirement. In Levin'spaper [23℄ this requirement is formulated as follows: if a bit string p onsidered as a pro-gram produes some output x, then its extensions either produe the same x or do notprodue anything. The 1974 paper refers for details to Gas' paper of the same year [11℄13and to other Levin's paper (then unpublished; it was published only in 1976 [24℄). InChaitin's paper mentioned above [8℄14 a slightly di�erent requirement is used: if a bitstring p onsidered as a program outputs x, then none of p's extension ould produe anyoutput. Both restritions re�et the intuitive idea of a self-delimiting program (that doesnot ontain an end-marker; the mahine should be able to �nd out when the programends) though in tehnially di�erent ways.Another way to de�ne pre�x omplexity uses probabilities; as we have mentioned,it appeared in Levin's thesis (1971) that remained unpublished. Consider the lowersemiomputable series of non-negative reals with sum at most 1 (∑ pn ≤ 1 where pn ≥ 0and the funtion n 7→ pn is lower semiomputable). These series orrespond to mahinesthat use internal fair oin to produe some integer (or, may be, do not produe anything)if we let pn be the probability of output n.We will trae only two main ontributions made in these papers: the pre�x omplexity, and therandomness riterion in terms of monotone omplexity.13Peter Gas ame to Mosow State University for 1972/3 aademi year from Hungary where hebeame interested in this topi after reading Kolmogorov paper [17℄, Martin-L�of leture notes fromErlangen and Zvonkin and Levin's paper [62℄ and started orrespondene with Levin by sending himsome paper about randomness haraterization in terms of omplexity. When Gas ame to Mosow in1972, Levin explained his riterion of randomness in terms of monotone omplexity whih looked muhbetter to Gas so his paper was never published. Then Levin explained the notion of pre�x omplexityto Gas and asked whether it is symmetri (with O(1) preision). The negative answer obtained by Gasbeame part of his paper [11℄ that inluded also some Levin's results, inluding the O(1)-formula for thepre�x omplexity of a pair (attributed to Levin). The pre�x omplexity is very brie�y introdued in thebeginning of this paper with the remark �onsidered in detail by Levin�.14This paper was written [9℄ in 1974 during the visit to the IBM Watson Lab in Yorktown Heightsfor a few months. Chaitin's work there has another important impliation: an unpublished manusriptby R. Solovay [56℄. In his talk [4℄ Cristian Calude tells the story: �When I started reading and tryingto understand the subjet to write my book �Information and Randomness� [3℄, I disussed this withGreg Chaitin and he told me: look, if you really want to write a good book, you have to read Solovay'smanusript. . . So I started asking around, and eventually wrote to Solovay: Greg Chaitin told me thatI should read your manusript; ould I have a opy? Solovay answered: I had one, but I don't have itany more. This was in 1991, I think. I tried again to get it and eventually I ontated Charles Bennett,and he had one opy; he was very kind to send me a opy of this opy. That is also an interesting storywhih Greg Chaitin told me about how this book [manusript℄ was written. Solovay was for one yearat IBM on a sabbatial leave and he was asked to write a report about Chaitin's work. Probably mostof us would write a report of two or three pages and forget forever about it. But Solovay took it veryseriously, so he rewrote many parts of the theory in his ompletely di�erent new style, and he solvedalso a substantial number of open problems at that stage. This was a kind of shok: look, this guy isso bright, he has nothing to do with this �eld, he omes, he reads this bunh of papers, he produesthis beautiful manusript solving so many problems and at the end of the day he does not want even topublish anything! Solovay never published this manusript. I sent Solovay a opy of his `lost' manusriptand he said: well, if you have a student or whoever would like to read and edit and publish the book,�ne with me, but I am not interested in working on it. It had to wait until Rod Downey and DenisHirshfeldt had the fore to get through and reuperate most of the results in this manusript.�20



Among those series there exists a maximal one (up to O(1) fator). It is alled a prioriprobability on integers (and is losely related to the a priori probability on bit stringsonsidered in Zvonkin�Levin paper [62℄: a priori probability of a bit string 0n1 oinideswith the a priori probability of integer n up to O(1) fator).A very important property of these notions: minus binary logarithm of an a prioriprobability equals pre�x omplexity (up to O(1) additive term). This property is men-tioned without proof both in [11℄ and [23℄; the proof was published for the �rst time in [8℄.This proof implies also that two version of pre�x-free requirements mentioned above leadto the same omplexity funtion (up to O(1) additive term).Another advantage of pre�x omplexity, also disovered independently by Levin (theproof, attributed to Levin, is published in [11℄) and Chaitin (the proof is published in [8℄)is a more preise (up to O(1)-term) formula for the omplexity of a pair in terms ofonditional omplexities. This formula is an improvement of the symmetry of informationtheorem that was earlier proved for plain omplexity with bigger (logarithmi) error termsby Kolmogorov and Levin.14 Randomness riterion: Shnorr and LevinIt was soon understood by Shnorr and Levin that the original goal of desribing ran-domness in terms of omplexity an be ahieved if one hanges a bit the de�nition ofomplexity making it monotoni in some sense.Shnorr suggested suh a modi�ation in his talk at 4th STOC in 1972 [46℄. The ideaof the modi�ation was to take into aount that pre�xes of a sequene are not separatebinary strings but pre�xes of one in�nite sequene. As Shnorr puts it ([46℄, pp. 168�169), �it has already been observed that there must be some di�erene in the oneptof regularity of �nite objets whih do not involve a diretion (for instane a naturalnumber) and the onept of regularity of in�nite sequenes (as well as �nite subsequenes[pre�xes℄ of an in�nite sequene) where a natural diretion is involved. For example,he who wants to understand a book will not read it bakwards, sine the omments orfats whih are given in his �rst part will help him to understand subsequent hapters(this means they help him to �nd regularities in the rest of the book). Hene anyonewho tries to detet regularities in a proess (for example an in�nite sequenes or anextremely long �nite sequene) proeeds in the diretion of the proess. Regularitiesthat have ever been found in an initial segment of the proess are regularities for ever.Our main argument is that the interpretation of a proess (for example to measure hisomplexity) is a proess itself that proeeds in the same diretion.�15 Then he gives aformal de�nition of monotone omplexity, alled �proess omplexity� in his paper, andnotes that �basi properties of proesses have been developed independently in [5℄ and[8℄� (i.e., [45℄ and [62℄ in our list; note that none of these two publiations inludes ade�nition of monotone/proess omplexity).15This argument sounds onvining; however, one may expet that randomness of a binary sequeneis invariant under omputable permutation of its terms while Shnorr's riterion of randomness in termsof monotone omplexity is not. Reently A. Rumyantsev pointed out the following simple invariantriterion: KP(A, ω(A)) ≥ |A| − O(1). Here KP stands for the pre�x omplexity of a pair; A is a �niteset of indies of size |A| and ω(A) is a restrition of ω onto A (a bit string of length |A|).21



Using his de�nition, Shnorr proves that a sequene in Martin-L�of random if and onlyif its n-bit pre�x has monotone omplexity n + O(1).Levin [22℄ proves essentially the same result using a slightly di�erent version of themonotone omplexity (used also in subsequent paper of Shnorr [47℄). Levin also notesthat the same proof works for the so-alled �a priori omplexity�, the minus logarithmof the a priori probability on the binary tree. This statement is equivalent to Shnorr'sharaterization of randomness in terms of semiomputable supermartingales (thoughLevin does not say anything about martingales).Chaitin in [8℄ suggested pre�x omplexity as a tool to de�ne randomness. He alls anin�nite sequene ω1ω2 . . . random if there exists c suh that
H(ω1 . . . ωn) ≥ n − cfor all n (he used letter H to denote pre�x omplexity; Levin used KP ; now the letter Kis most often used), and writes: �C.P. Shnorr (private ommuniation) has shown thatthis omplexity-based de�nition of a random in�nite string and P. Martin-L�of statistialde�nition of this onept are equivalent�. As Shnorr remembers in his talk [48℄, �I knewthe �rst paper of Chaitin that has been published one year later after the Kolmogorov's1965 paper but it was the next paper whih really made Chaitin also one of the basiinvestigators of omplexity. This was a paper on self-delimiting or pre�x-free desriptionsand this was published in 1975 in the Journal of the ACM. In fat I was a referee ofthis paper and I think Chaitin knew this beause I've sent my personal omments andsuggestions to him and he used them�.15 Lower semiomputable random realsOne more result about randomness in [8℄ is an example of a lower semiomputable randomreal number, now well known as �Chaitin's Ω number�. It is related to a philosophialquestion: an we speify somehow an individual random sequene? One would expetat �rst the negative answer: if a sequene has some desription that de�nes it uniquely,how an we treat it as random?This negative answer is supported by the (evident) result: a omputable sequene isnot Martin-L�of random (for the ase of a fair oin, i.e., the uniform Bernoulli distribution).However, if we do not insist that desription is an algorithm that omputes our sequeneand let it be less diret, the answer beomes positive. Indeed, in [62℄ the following resultattributed to Martin-L�of is stated (Theorem 4.5): there exists a Σ0

2-sequene that isMartin-L�of random. This means that there exist a deidable property R(n, p, q) of threenatural numbers suh that the sequene ω de�ned by equivalene
ωn = 1 ⇔ ∃p ∀q R(n, p, q)is Martin-L�of random. This provides an example of an individual expliitly desribed(though in a non-onstrutive way) random sequene.The example of a random Σ0

2-sequene appears also in Theorem 4.3 in Chaitin's1975 paper [8℄, but Chaitin went farther in this diretion. He notied that a Martin-L�ofrandom sequene an be a binary representation of a lower semiomputable real number.Speaking about random reals, we identify real numbers in the interval (0, 1) with their22



binary representations. (The ollisions like 0.0011111 . . . = 0.0100000 . . . do not mattersine this an happen only for non-random sequenes.) Reall that a real number x islower semiomputable if there is an algorithm that enumerates all rational numbers lessthan x. (Equivalent de�nition: if x is a limit of an inreasing omputable sequene ofrational numbers.) It is easy to see that all lower semiomputable reals x ∈ (0, 1) havebinary representations in Σ0
2 but the reverse statement is not true.This alone wouldn't make Chaitin's example of lower semiomputable random realso popular. In fat, Setion 4.4 of [62℄ (proof ot Theorem 4.5 mentioned above) alreadyonstruts a spei� example of a random real, i.e., the smallest real outside an e�etiveopen set of small measure that overs all non-random reals. Zvonkin and Levin used thelanguage of binary sequenes, not reals (whih makes the desription a bit more tedious)and did not mention expliitly the lower semiomputability (whih follows immediatelyfrom the onstrution). But the main reason why Chaitin's example beame so famousis in the form of the desription. Chaitin's lower semiomputable real Ω has simple andintuitive meaning: it is the probability that the universal mahine used in the de�nitionof pre�x omplexity terminates on a randomly hosen program. This ould reate animpression that we really have a random real �in our hands�: this is the probability ofthe event �the universal mahine terminates on random input�.1616 Subsequent ahievementsThe study of randomness as a mathematial objet had learly a philosophial motiva-tion related to the foundations of probability theory. However, the mathematial theoryhas its own logi of development: answering some philosophially motivated questions, itintrodues new notions and new questions related to these notions. So the mathematialtheory of randomness (and related algorithmi information theory) beame a rih math-ematial subjet. In the last deade it attrated a lot of attention from the reursiontheorists who used advaned tehniques developed in reursion theory to understand therandomness de�nitions better. For example, they looked at one of the �rst de�nitionsof randomness (from Kolmogorov's papers) and proved that it oinides with Martin-L�ofrandomness relativized to 0
′-orale [42, 36℄.The other thread that has some philosophial and historial interest is related to non-monotoni seletion rules and martingales. In Mises de�nition the terms of the sequeneare revealed in some �xed order (time order, if we look at asino's example). He neverexpliitly mentioned other possibilities (though he sometimes writes about data whoseordering is not lear, like statistial data about deaths used by an insurane ompany).When he was fored to provide a formal de�nition of a seletion rule, this monotoniityis expliitly present in the de�nition.However, one an onsider other examples that motivate non-monotoni seletion.Imagine that asino prepares random bits and write them on ards whih are then plaedon a table (so that bits are invisible). The player is then allowed to look at the ards in16A similar thing was done one to test early Unix utilities: they were fed with random bits and rashedquite often! In fat, standard programming languages and exeutable �le formats satisfy Chaitin'srequirements for universal mahine if we ignore that mahine word has �nite size, usually between 8and 64 bits. 23



any order and also make bets (before the ard is turned). Imagine that she manages towin systematially; does it implies that the sequene is not random?As D. Loveland [27℄ explains this: �Consider the following �pratial� situation. Amanufaturer produes very heaply and quikly some item whih has a large �utuationin life expetany from item to item, with the �utuation passing through a threshold ofaeptane. The produer would naturally wish to ull out the unaepted items but (itis presumed) annot test the item to be used for life expetany without destroying it.He must then look for �systemati �utuations� in the proess so that he an selet theitems to be used based on the knowledge of the proess inluding knowledge of testeditems then ineligible for use. If the proess were random in the aforementioned sense,then no system of testing previously manufatured items would indiate whether the nextitem manufatured should be hosen for use or whether one should hoose, rather, somefuture item after more testing. However, suppose the manufaturer numbers eah itemonseutively as it is produed and allows it to fall it into a bin from whih items aredrawn to be tested or seleted for use. Then he may test higher numbered items beforedigging down in the bin to selet a spei� item for use.�Earlier the same extension was suggested by Kolmogorov in a footnote in his pa-per [16℄. It led to many interesting questions. For example, how omplex should bepre�xes of a sequene that is random in the sense of Mises�Churh de�nition and in thisextended Mises�Kolmogorov�Loveland de�nition? Kolmogorov laimed [18℄ that in bothases omplexity ould be logarithmi, but later An. Muhnik has shown that it is notthe ase (see [58℄) for Mises�Kolmogorov�Loveland randomness (while for Mises�Churhrandomness Kolmogorov was right).Many other interesting results are obtained but their desription goes far beyond thesope of this paper.17 Conluding remarksRemember that Mises' initial reason to onsider olletives was the desire to explain whatprobability is and why and how the mathematial probability theory an be applied tothe real world. The question �why� is rather philosophial one, but one an try to answerto seond part, �how�, and desribe the urrent best pratie. Here is an attempt toprovide suh a desription taken from [58, 50℄.�The appliation of probability theory has two stages. At the �rst stage we try toestimate the onordane between some statistial hypothesis and experimental results.The rule �the atual ourrene of an event to whih a ertain statistial hypothesisattributes a small probability is an argument against this hypothesis� (Polya [43℄, Vol. II,Ch. XIV, part 7, p. 76), it seems, ould be made more orret if we are allowed to onsideronly �simply desribed� events. It is lear that the event �1000 tails appeared� an bedesribed more simply that the event �a sequene A appeared� where A is a �random�sequene of 1000 heads and tails (these two events have the same probability). Thisdi�erene may explain why our reations to these events (we have in mind the hypothesisof a fair oin) are so di�erent. To larify the notion of a �simply desribed event� thenotion of omplexity of the onstrutive objet (introdued by Kolmogorov) may beuseful. 24



Let us assume that we have already hosen a statistial hypothesis onordant (as wethink) with the result of observations. Then we ome to the seond stage and derive someonlusions from the hypothesis hosen. Here we have to admit that probability theorymakes no preditions but an only reommend something: if the probability (omputedon the basis of the statistial hypothesis) or an event A is greater than the probabilityof an event B, then the possibility of the event A must be taken into onsideration to agreater extent than the possibility of the event B.One an onlude that events with very small probabilities may be ignored. Borel [1℄writes �. . . Fewer than a million people live in Paris. Newspapers daily inform us aboutthe strange events or aidents that happen to some of them. Our life would be impossibleif we were afraid of all adventures we read about. So one an say that from a pratialviewpoint we an ignore events with probability less that one millionth. . . Often trying toavoid something bad we are onfronted with even worse. . . To avoid this we must knowwell the probabilities of di�erent events� (Russian ed., pp. 159�160).Sometimes the riterion for seletion of a statistial hypothesis and the rule for itsappliation are united in the statement �events with small probabilities do not happen�.For example, Borel writes �One must not be afraid to use the word �ertainty� to designatea probability that is su�iently lose to 1.� ([2℄, Russian ed., p. 7). But we prefer todistinguish between these two stages, beause at the �rst stage the existene of a simpledesription of an event with small probability is important, and at the seond stated itseems unimportant. (We an expet, however, that events interesting to us have simpledesriptions beause of their interest.)�This desription (whih, we believe, still desribes adequately the urrent best pratieof probability theory appliation) uses the notions of algorithmi information theory onlyone (when desribing when we rejet a statistial hypothesis), but this use seems to beimportant.Let us note also that this desription shows that quantum mehanis does not make areal di�erene ompared to probability theory and statistial mehanis: we just replae�small probability� by �small amplitude� in the sheme desribed. (However, to providea foundation for the measurement proedure, one should prove a quantum ounterpartfor the law of large numbers: the amplitude of the event �measured frequeny of someoutome diverges signi�antly from the square of the assumed amplitude of this outome�is small.)More detailed disussion an be found in [52℄.Appendix A: Abstrats of Kolmogorov's talksSome talks at the meetings of Mosow Mathematial Soiety have short abstrats pub-lished in the journal �Óñïåõè ìàòåìàòè÷åñêèõ íàóê� (Uspekhi matematihekikh nauk,partially translated as �Russian mathemathial surveys�; these abstrats were not trans-lated). Here we reprodue abstrats of three talks given by A.N. Kolmogorov devoted toalgorithmi information theory (translated by Leonid Levin).I. [vol. 23, no. 2, Marh-April 1968℄.1. A.N. Kolmogorov, �Several theorems about algorithmi entropy and algorithmiamount of information�. 25



Algorithmi approah to the foundations of information theory and probability theorywas not developed far in several years from its appearane sine some questions raised atthe very start remained unanswered. Now the situation has hanged somewhat. In parti-ular, it is asertained that the deomposition of entropy H(x, y) ∼ H(x)+H(y|x) and theformula J(x|y) ∼ J(y|x) hold in algorithmi onept only with auray O([log H(x, y)])(Levin, Kolmogorov).Stated earlier ardinal distintion of algorithmi de�nition of a Bernoulli sequene (asimplest olletive) from the de�nition of Mises-Churh is onretized in the form of atheorem: there exist Bernoulli (in the sense of Mises-Churh) sequenes x = (x1, x2, ...)with density of ones p = 1
2
, with initial segments of entropy (�omplexity�) H(xn) =

H(x1, x2, ..., xn) = O(log n) (Kolmogorov).For understanding of the talk an intuitive, not formal, familiarity with the onept ofa omputable funtion su�es.(Mosow Mathematial Soiety meeting, Otober 31, 1967)II. [vol. 27, no. 2, 1972℄1. A.N. Kolmogorov. �Complexity of speifying and omplexity of onstruting math-ematial objets�.1. Organizing mahine omputations requires dealing with evaluation of (a) omplexityof programs, (b) the size of memory used, () duration of omputation. The talkdesribes a group of works that onsider similar onepts in a more abstrat manner.2. It was notied in 1964-1965 that the minimal length K(x) of binary representationof a program speifying onstrution of an objet x an be de�ned invariantly upto an additive onstant (Solomono�, A.N. Kolmogorov). This permitted using theonept of de�nition omplexity K(x) of onstrutive mathematial objets as abase for a new approah to foundations of information theory (A.N. Kolmogorov,Levin) and probability theory (A.N. Kolmogorov, Martin-L�of, Shnorr, Levin).3. Suh harateristis as �required memory volume,� or �required duration of work�are harder to free of tehnial peuliarities of speial mahine types. But someresults may already be extrated from axiomati �mahine-independent� theory ofbroad lass of similar harateristis (Blum, 1967). Let Π(p) be a harateristi of�onstrution omplexity� of the objet x = A(p) by a program p, and Λ(p) denotesthe length of program p. The formula KnΠ(x) = inf(Λ(p) : x = A(p), Π(p) = n)de�nes �n-omplexity of de�nition� of objet x (for unsatis�able ondition the infis onsidered in�nite).4. Barzdin's Theorem on the omplexity K(Mα) of pre�xes Mα of an enumerable setof natural numbers (1968) and results of Barzdin, Kanovih, and Petri on orre-sponding omplexities KnΠ(Mα), are of general mathematial interest, as they shedsome new light on the role of extending previously used formalizations in the de-velopment of mathematis. The survey of the state of this irle of problems wasgiven in the form free from umbersome tehnial apparatus.(Mosow Mathematial Soiety meeting, November 23, 1971)26



III. [Vol. 29,. no. 4 (155), 1974℄1. A.N. Kolmogorov. �Complexity of algorithms and objetive de�nition of random-ness�.To eah onstrutive objet orresponds a funtion Φx(k) of a natural number k �the log of minimal ardinality of x-ontaining sets that allow de�nitions of omplexity atmost k. If the element x itself allows a simple de�nition, then the funtion Φ drops to 1even for small k. Laking suh a de�nition, the element is �random� in a negative sense.But it is positively �probabilistially random� only when funtion Φ, having taken thevalue Φ0 at a relatively small k = k0, then hanges approximately as Φ(k) = Φ0−(k−k0).(Mosow Mathematial Soiety meeting, April 16, 1974)Appendix B. Levin's letters to KolmogorovThese letters do not have dates but were written after submission of [62℄ in August 1970and before Kolmogorov went (in January 1971) to the oeanographi expedition (�DmitryMendeleev� ship). Copies provided by L. Levin (and translated by A. Shen).I.Dear Andrei Nikolaevih! Few days ago I've obtained a result that I like a lot. May beit ould be useful to you if you work on these topis while traveling on the ship.This result gives a formulation for the foundations of probability theory di�erentfrom Martin-L�of. I think it is loser to your initial idea about the relation betweenomplexity and randomness and is muh learer from the philosophial point of view (as,e.g., [Yu. T.℄ Medvedev says).Martin-L�of onsidered (for an arbitrary omputable measure P ) an algorithm thatstudies a given sequene and �nds more and more deviation from P -randomness hypoth-esis. Suh an algorithm should be P -onsistent, i.e., �nd deviations of size m only forsequenes in a set that has measure at most 2−m. It is evident that a number m pro-dued by suh an algorithm on input string x should be between 0 and − log2 P (x). Letus onsider the omplementary value (− log2 P (x)) − m and all it the �omplementarytest� (the onsisteny requirement an be easily reformulated for omplementary tests).Theorem. The logarithm of a priori probability [on the binary tree℄ − log2 R(x) isa P -onsistent omplementary test for every measure P and has the usual algorithmiproperties.Let me remind you that by a priori probability I mean the universal semiomputablemeasure introdued in our artile with Zvonkin. [See [62℄.℄ It is shown there that it [itsminus logarithm℄ is numerially lose to omplexity.Let us onsider a spei� omputable measure P . Compared to the universal Martin-L�of test f (spei� to a given measure P ) our test is not optimal up to an additiveonstant, but is asymptotially optimal. Namely, if the universal Martin-L�of test �nds adeviation m, our test �nds a deviation at least m − 2 log2 m − c. Therefore, the lass ofrandom in�nite banry sequenes remains the same.Now look how nie it �ts the philosophy. We say that a hypothesis �x appearedrandomly aording to measure P � an be rejeted with ertainty m if the measure P27



is muh less onsistent with the appearene of x than a priori probability (this meanssimply that P (x) < R(x)/2m. This gives a law of probability theory that is violatedwith probability at most 2−m. Its violation an be established e�etively sine R is[lower℄ semiomputable [=enumerable from below℄. But if this law holds, all other lawsof probability theory [i.e., all Martin-L�of tests℄ hold, too. The drawbak is that it gives abit smaller value of randomness de�ieny (only m− 2 log2 m− c instead of m), but thisis a prie for the universality (arbitrary probability distribution). The onnetion withomplexity is provided beause − log2 R(x) almost oinides with omplexity of x. Nowthis onnetion does not depend on measure.It is worth noting that the universal semiomputable measure has many interestingappliations besides the above mentioned. You know its appliation to the analysis ofrandomized algorithms. Also it is ofter useful in proofs (e.g., in the proof of J.T.Shwartz'hypothesis regarding the omplexity of almost all trajetories of dynami systems). OneI used this measure to onstrut a de�nition of intuitionisti validity. All this show thatit is a rather natural quantity.L.II.Dear Andrei Nikolaevih!I would like to show that plain omplexity does not work if we want to provide anexat de�nition of randomness, even for a �nite ase. For the uniform distribution onstrings of �xed length n the randomness de�ieny is de�ned as n minus omplexity. Fora non-uniform distribution length is replaed by minus the logarithm of probability.It turns out that even for a distribution on a �nite set the randomness de�ieny ouldbe high on a set of large measure.Example. Let
P (x) =

{

2−(l(x)+100), if l(x) ≤ 2100;

0, if l(x) > 2100.Then | log2 P (x)| − K(x) exeeds 100 for all strings x.A similar example an be onstruted for strings of some �xed length (by adding zeropre�xes). The violation ould be of logarithmi order.Let me show you how to sharpen the de�nition of omplexity to get an exat result(both for �nite and in�nite sequenes).De�nitions. Let A be a monotone algorithm, i.e., for every x and every y that is apre�x of x, if A(x) is de�ned, then A(y) is de�ned too and A(y) is a pre�x of A(x). Letus de�ne
KMA(x) =

{

min l(p) : x is a pre�x of A(p);

∞, if there is no suh pThe omplexity with respet to an optimal algorithm is denoted by KM(x).Let P (x) be a omputable distribution on the Cantor spae Ω, i.e., P (x) is the measureof the set Γx of all in�nite extensions of x. 28



Theorem 1.
KM(x) ≤ | log2 P (x)| + O(1);Theorem 2.

KM((ω)n) = | log2 P ((ω)n)| + O(1)for P -almost all ω; here (ω)n stands for n-bit pre�x of ω. Moreover, the probability thatthe randomness de�ieny exeeds m for some pre�x is bounded by 2−m.Theorem 3. The sequenes ω suh that
KM((ω)n) = | log2 P ((ω)n)| + O(1);satisfy all laws of probability theory (all Martin-L�of tests).Let me use this oasion to tell you the results from my talk in the laboratory [ofstatistial methods in Mosow State University℄: why one an omit non-omputable tests(i.e., tests not de�nable without a strong language).For this we need do improve the de�nition of omplexity one more. The plain om-plexity K(x) has the following property:Remark. Let Ai be an e�etively given sequene of algorithms suh that

KAi+1
(x) ≤ KAi(x)for all i and x. Then there exists an algorithm A0 suh that

KA0
(x) = 1 + min

i
KAi

(x).Unfortunately, it seems that KM(x) does not have this property. This an be or-reted easily. Let Ai be an e�etive sequene of monotone algorithms with �nite domain(provided as tables) suh that
KMAi+1

(x) ≤ KMAi(x)for all i and x. Let us de�ne then
KMAi

(x) = min
i

KMAi
(x).Among all sequenes Ai there exists an optimal one, and the ompexity with respet tothis optimal sequene is denoted by KM(x). This omplexity oinides with the logarithmof an universal semiomputable semimeasure [=a priori probability on the binary tree℄.Theorem 4. KM(x) is a minimal semiomputable [from above℄ funtion that makesTheorem 2 true.Therefore no further improvements of KM are possible.Now onsider the language [=set℄ of all funtions omputable with a �xed nonom-putable sequene [orale℄ α. Assume that α is ompliated enough, so this set ontainsthe harateristi funtion of a universal enumerable set [0′℄.We an de�ne then a relativized [�ÿçûêîâóþ� in the Russian original℄ omplexity

KMα(x) replaing algorithms by algorithms with orale α, i.e., funtions from this lan-guage. 29



De�nition. A sequene ω is alled normal if
KM((ω)n) = KMα((ω)n) + O(1).For a �nite sequene ωn we de�ne the �normality de�ieny� as

KM(ωn) − KMα(ωn).Theorem 5. A sequene obtained by an algorithm from a normal sequene is normalitself.Theorem 6. Let P be a probability distribution that is de�ned (in a natural enoding)by a normal sequene. Then P -almost every sequene is normal.This theorem exhibits a law of probability theory that says that a random proessannot produe a non-normal sequene unless the probability distribution itself is notnormal. This is a muh more general law than standard laws of probability theory sineit does not depend on the distribution. Moreover, Theorem 5 shows that this law is notrestrited to probability theory and an be onsidered as a univeral law of nature:Thesis. Every sequene that appears in reality (�nite or in�nite) has normalityde�ieny that does not exeed the omplexity of the desription (in a natural language)of how it is physially produed, or its loation et.It turns out that this normality law (that an be regarded as not on�ned in proba-bility theory) and the law orresponding to the universal omputable test together implyany law of probability theory (not neessary omputable) that an be desribed in thelanguage. Namely,the following result holds:Theorem 7. Let P be a omputable probability distribution. If a sequene ω is normaland passes the universal omputable P -test, then ω passes any test de�ned in our language(i.e., every test omputable with orale α).Note that for every set of measure 0 there exists a test (not neessary omputable) thatrejets all its elements.Let us give one more iunteresting result that shows that all normal sequenes havesimilar struture.Theorem 8. Every normal sequene an be obtained by an algorithm from a sequenethat is random with respet to the uniform distribution.III.(This letter has no salutation. Levin realls that he often gave notes like this to Kol-mogorov, who rarely had muh time to hear lengthy explanations and preferred somethingwritten in any ase.)We use a sequene α that provides a �dense� oding of a universal [reursively℄ enu-merable set. For example, let α be the binary representation of [here the text �the sumof the a priori probabilities of all natural numbers� is rossed out and replaed by thefollowing:℄ the real number
∑

p∈A

1

p · log2 pwhere A is the domain of the optimal algorithm.30



A binary string p is a �good� ode for x if the optimal algorithm onverts the pair
(p, K(x)) into a list of strings that ontains x and the logarithm of the ardinality of thislist does not exeed K(x) + 3 log K(x) − l(p). (The existene of suh a ode means that
x is �random� when n ≥ l(p).)We say that a binary string p is a anonial ode for x if every pre�x of p either is a�good� ode for x or is a pre�x of α, and l(p) = K(x) + 2 log K(x).Theorem 1. Every x (with �nitely many exeptions) has a anonial ode p, and pand x an be e�etively transformed into eah other if K(x) is given.Therefore, the �non-randomness� in x an appear only due to some very speial infor-mation (a pre�x of α) ontained in x. I annot imagine how suh an x an be observedin (extrated from) the real world sine α is not omputrable. And the task �to studythe pre�xes of a spei� sequene α� seems to be very speial.Referenes[1℄ Borel, �Emile, Le hazard, Alan, Paris, 1913. (Russian translation: Ñëó÷àé, �îñèçäàò,Ìîñêâà � Ïåòðîãðàä, 1923.)[2℄ Borel, �Emile, Probabilit�e et ertitude, Presses Univ. de Frane, Paris, 1950. (Russiantranslation: Âåðîÿòíîñòü è äîñòîâåðíîñòü, Ôèçìàòãèç, Ìîñêâà, 1961.)[3℄ Calude, Cristian S., Information and Randomness. An Algorithmi Perspetive.(Texts in Theoretial Computer Siene.) Springer-Verlag, 1994. Seond edition,2002.[4℄ Calude, Cristian S., A talk given at Dagstuhl seminar, 29 January � 3 February2006, downloaded from http://www.hutter1.net/dagstuhl/alude.mp3[5℄ Chaitin, Gregory J., On the length of programs for omputing �nite binary sequenes,Journal of the ACM, v. 13 (1966), pp. 547�569. Available also at Chaitin's homepage [9℄.[6℄ Chaitin Gregory J., On the length of programs for omputing �nite binary sequenes:statistial onsiderations, Journal of the ACM, v. 16 (1969), pp. 145�159. Availablealso at Chaitin's home page [9℄.[7℄ Chaitin, Gregory J., Computational omplexity and G�odel's inompleteness theorem,ACM SIGACT News, No. 9 (April 1971), pp. 11�12.[8℄ Chaitin, Gregory J., A theory of program size formally idential to informationtheory, Journal of the ACM, vol. 22 (1975), pp. 329�340. Reeived April 1974; revisedDeember 1974.[9℄ Chaitin, Gregory J., Algorithmi information theory. Some reolle-tions. 25 May 2007. Downloaded from the homepage of Gregory Chaitin,http://www.s.aukland.a.nz/ haitin/60.html[10℄ Churh, Alonzo, On the onept of a random sequene. Bull. Amer. Math. So, 1940,v. 46, no. 2, pp. 130�135. 31
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