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Abstract. A trajectory attractor A is constructed for the 2D Euler system containing an
additional dissipation term −ru, r > 0, with periodic boundary conditions. The corresponding
dissipative 2D Navier–Stokes system with the same term −ru and with viscosity ν > 0
also has a trajectory attractor, Aν . Such systems model large-scale geophysical processes
in atmosphere and ocean (see [1]). We prove that Aν → A as ν → 0+ in the corresponding
metric space. Moreover, we establish the existence of the minimal limit Amin of the trajectory
attractors Aν as ν → 0+. We prove that Amin is a connected invariant subset of A. The
connectedness problem for the trajectory attractor A by itself remains open.
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INTRODUCTION

In the present paper, we construct a trajectory attractor A for the 2D Euler system containing
an additional dissipative term −ru, r > 0, and equipped with periodic boundary conditions. Here
u = (u1(x, t), u2(x, t)) stands for the unknown periodic velocity vector field. Such systems come from
geophysical models describing large-scale processes in atmosphere and ocean. The term −ru pa-
rameterizes the main dissipation occurring in the planetary boundary layer (see, e.g., [1, Chap. 4]).

We also construct a trajectory attractor Aν for the 2D Navier–Stokes system with the same dissi-
pation term −ru and with viscosity coefficient ν. In the above geophysical models, the viscosity term
ν∆u is responsible for small-scale dissipation (note that 0 < ν ≪ r in physically relevant cases).

We prove that the Hausdorff deviation of the set Aν from the set A (in the corresponding metric
space with metric ρ(· , ·)) tends to zero as the viscosity ν vanishes,

distρ(Aν ,A) → 0 as ν → 0+.

We also study some important properties of the trajectory attractors A and Aν specified below.
Note that 2D Euler and Navier–Stokes systems with dissipation were considered in a number of

papers (see, e.g., [2–4] for the 2D Euler system and [5–7] for the 2D Navier–Stokes system).
The method of trajectory attractors for evolution partial differential equations was developed

in [8–11]. This approach is highly fruitful in the study of the long-time behavior of solutions to
evolution equations for which the uniqueness theorem related to the corresponding initial-value
problem is not proved yet (e.g., for the 3D Navier–Stokes system) or fails.

The paper is organized as follows. In Section 1, we study the dissipative 2D Euler system with
periodic boundary conditions. Using the Galerkin method, we prove that the initial-value problem
for this system has at least one weak distribution solution u(x, t) such that u(x, t) ∈ L∞(R+;H1)
and ∂tu(x, t) ∈ L∞(R+;H−1). Here H1 stands for the space of periodic solenoidal vector fields with
finite Sobolev H1-norm and the space H−1 = (H1)∗ for the dual to H1. Moreover, the solution
u(x, t) thus constructed satisfies the corresponding energy inequality (see the next paragraph),
which is of importance in our subsequent study. Note that the uniqueness theorem for weak solutions
to the 2D Euler system in the class L∞(R+;H1) is not proved.
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In Section 2, we construct a trajectory attractor for the 2D dissipative Euler system (note that
we failed to construct a trajectory attractor for the classical 2D Euler system without dissipation,
for r = 0). We define spaces F∞

+ and F loc
+ (F∞

+ ⊂ F loc
+ ), which contain the weak solutions u(x, t)

constructed in Section 2. We then introduce the space of trajectories (solutions) K+(N) ⊂ F∞
+

depending on N > 0. The set K+(N) consists of the weak solutions u(x, t) of the system that
satisfy the inequality

ess sup
{

‖u(·, t + s)‖2 | s > 0
}

6 Ne−rt + r−1‖g‖2 ∀t ∈ R+,

where ‖·‖ := ‖·‖H1 stands for the norm in H1 and g is the (known) external force for the dissi-

pative Euler system. The space F loc
+ is equipped with the weak topology Θloc

+ generated by the

weak convergence of sequences {vn(x, t)} ⊂ F loc
+ . We prove that the trajectory space K+(N) is

bounded in F∞
+ and closed in the topology Θloc

+ . This theorem is very important in the subsequent
investigations. Consider the translation semigroup {T (h), h > 0} acting on a solution u(x, t) by
the formula T (h)u(x, t) = u(x, h + t). It follows from the definition of the trajectory space that
K+(N) is invariant under {T (h)} : T (h)K+(N) ⊆ K+(N) for all h > 0. Using these facts and ap-
plying the theory of trajectory attractors, we prove that the translation semigroup {T (h)} acting
on K+(N) has a global attractor, A(N), which we call the trajectory attractor of the system. Recall
that T (h)A(N) = A(N) for any h > 0. We then prove that the set A(N) does not depend on N ,
A(N) = A(0) =: A, for any N > 0.

In Sections 3 and 4, we study the dissipative 2D Navier–Stokes system with periodic bound-
ary conditions which contains an additional term −ru, r > 0. The corresponding initial-value
problem is well-posed, and we construct a trajectory attractor Aν for this system. We prove that
distρ(Aν ,A) → 0 as ν → 0+.

In Section 5, we prove the existence of the minimal limit Amin of the trajectory attractors Aν

as ν → 0+, i.e., Amin ⊆ A,Amin is closed in Θloc
+ , distρ(Aν ,Amin) → 0 as ν → 0+, and Amin is the

minimal set satisfying these properties. We prove that the set Amin is connected in the topology
Θloc

+ and strictly invariant with respect to the translation semigroup. The question of whether or

not the trajectory attractor A by itself is a connected set in Θloc
+ remains an open problem.

1. 2D EULER EQUATIONS WITH DISSIPATION

We consider the 2D Euler system with dissipation represented in the solenoidal form,

∂tu + B(u, u) + ru = g(x), x = (x1, x2) ∈ T
2, (1.1)

(∇, u) := ∂x1
u1 + ∂x2

u2 = 0, u = (u1(x, t), u2(x, t)), t > 0,

where T
2 = (R mod 2π)

2
is the 2D torus and B(u, v) = P

(

u1∂x1
v + u2∂x2

v
)

is the standard bilin-

ear term. Here and below, P stands for the orthogonal Leray projection from the space L2(T
2)2 onto

H =
[{

v ∈ C∞(T2)2 | (∇, v) = 0
}]

L2(T2)2
([X]E stands for the closure of the set X in the topolog-

ical space E). We similarly introduce the space H1 =
[{

v ∈ C∞(T2)2 | (∇, v) = 0
}]

H1(T2)2
⋐ H

and the standard scale of spaces Hs, s ∈ R, where H0 = H and H−s = (Hs)∗ is the dual space
to Hs, s > 0. The norms in H and H1 are denoted by | · | and ‖ · ‖, respectively. Recall that,
for u satisfying (∇, u) = ∂x1

u1 + ∂x2
u2 = 0, we formally have1

B(u, v) = P
(

u1∂x1
v + u2∂x2

v
)

= P
(

∂x1

(

u1v
)

+ ∂x2

(

u2v
))

. (1.2)

In (1.1), r is a positive dissipation coefficient. The pressure p(x, t) was eliminated from the system
by applying the operator P to both sides of the equations. We assume that g(x) ∈ H1.

Note that the 2D Euler system with dissipation (1.1) was studied in a number of papers (see,
e.g., [2–4]). System (1.1) describes large-scale geophysical processes in atmosphere and ocean for
which the main dissipation occurs in the planetary boundary layer and is parameterized by the
term −ru (see, e.g., [1, Chap. 4]).

1Note that B(u, v) ∈ H for u, v ∈ H2 by the Gagliardo–Nirenberg inequality (see, e.g., [12]). Moreover, the trilinear

form (B(u, v), w) is continuous on H1 × H1 × H1, and therefore B(u, v) ∈ H−1 for u, v ∈ H1.
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The initial data are imposed at time t = 0,

u|t=0 = u0(x), u0(x) ∈ H1. (1.3)

The existence of a weak distribution solution {u(x, t), t ∈ R+} to problem (1.1) and (1.3) can be
proved, for example, by applying the Galerkin approximation method.

Consider the orthonormal basis (in H) {ej(x) =
(

e1
j (x), e2

j (x)
)

∈ H2, j = 1, 2, . . . } formed by
eigenfunctions of the Stokes operator,

−P∆ej(x) = λjej(x), (∇, ej) = 0, x ∈ T
2, j = 0, 1, 2, . . . (1.4)

We shall use the well known fact that the Stokes operator satisfies the relation −P∆ ≡ −∆ in the
spaces H2 with periodic boundary conditions (see, e.g., [13]). Recall that e0(x) ≡ e0 is a constant
vector and 0 = λ0 < λ1 < λ2 6 · · · 6 λj → +∞ as j → ∞.

The Galerkin approximations

um(x, t) =

m
∑

j=0

cjm(t)ej(x), m = 1, . . . ,

satisfy the system
∂tum + ΠmB(um, um) + rum = Πmg, (1.5)

which is equivalent to the corresponding system of ordinary differential equations for the unknown
real coefficients cjm(t), j = 0, 1, . . . ,m. In (1.5), Πm stands for the orthogonal projection in H onto
the finite-dimensional subspace [e0(x), . . . , em(x)]. At time t = 0, we consider the initial conditions

um|t=0 = um(0) = Πmu0, (1.6)

where u0 is the same as in (1.3).

Clearly, problem (1.5) and (1.6) has a unique solution um(x, t) ∈ C1([0, Tm];H2) for some
Tm > 0. Taking the scalar product (in H) of equation (1.5) and the function um(t) := um(·, t), we
obtain the following differential equation:

1

2

d

dt
|um(t)|

2
+ r |um(t)|

2
= (g, um(t)) ∀t ∈ [0, Tm]. (1.7)

We have used here the well-known identity

(B(u, u), u) = 0, u ∈ H1. (1.8)

Recall that | · | = ‖ · ‖L2(T2)2 .

The differential relation (1.7) implies the inequality

|um(t)|2 6 |um(0)|2 e−rt + r−1 |g|2 6 |u0|
2 e−rt + r−1 |g|2 ∀t ∈ [0, Tm]. (1.9)

Taking the inner product of equation (1.5) and −P∆um = −∆um in the space H and using the

standard identities −(um,∆um) = |∇um|
2

and −(g,∆um) = (∇g,∇um), we obtain

1

2

d

dt
|∇um(t)|

2
− (B(um, um),∆um) + r |∇um(t)|

2
= (∇g,∇um(t)) ∀t ∈ [0, Tm]. (1.10)

As is known, for periodic boundary conditions (x ∈ T
2), we have

(B(u, u),∆u) = 0 ∀u ∈ H2 (1.11)

(see [13, Chap. VI, Lemma 3.1] and [4]). This identity plays a crucial role in our subsequent
investigation.

It follows from (1.10) and (1.11) that

1

2

d

dt
|∇um(t)|2 + r |∇um(t)|2 = (∇g,∇um(t)) ∀t ∈ [0, Tm]. (1.12)

In turn, (1.12) yields

|∇um(t)|
2

6 |∇um(0)|
2
e−rt + r−1 |∇g|

2
∀t ∈ [0, Tm]. (1.13)
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Now, combining inequalities (1.9) and (1.13), we obtain the main estimate

‖um(t)‖2
6 ‖um(0)‖2 e−rt + r−1‖g‖2

6 ‖u0‖
2 e−rt + r−1‖g‖2 (1.14)

for all t ∈ [0, Tm], where ‖v‖
2

= ‖v‖
2
H1 = |v|

2
+ |∇v|

2
. It follows from (1.14) that a solution um(x, t)

to problem (1.5) and (1.6) can be extended to R+ (i.e., Tm = +∞), um(x, t) ∈ C1
b (R+;H1), and

‖um‖2
L∞(R+;H1) := ess sup

{

‖um(t)‖2 | t > 0
}

6 ‖u0‖
2 + r−1‖g‖2 ∀m ∈ N. (1.15)

Since u0 ∈ H1, the initial data for system (1.5) satisfy the relation

um(0) = Πmu0 → u0 (m → ∞) strongly in H1. (1.16)

Inequality (1.15) implies the existence of a subsequence {m′} ⊂ {m} such that

um′(·, t) ⇁ u(·, t) (m′ → ∞) ∗-weakly in Lloc
∞ (R+;H1) (1.17)

for some function u(x, t) ∈ L∞(R+;H1).

We claim that u(x, t) is a weak solution to problem (1.1), (1.3) in the sense of distributions
(for the space D′(R+;H−1)). Indeed, using the Galerkin system (1.5) and estimate (1.14), we can
see that

‖∂tum‖H−1 6 ‖B(um, um)‖H−1 + r ‖um‖H−1 + ‖g‖H−1 6 C
(

‖um‖2
L4(T2)2 + ‖um‖H1 + ‖g‖H1

)

6 C1

(

‖u0‖
2
H1 + ‖g‖2

H1 + 1
)

, t > 0. (1.18)

We have used here the inequality

‖B(um, um)‖H−1 6 ‖um‖2
L4(T2)2 , (1.19)

which follows from the representation (1.2) of the bilinear term B, and the inequality

‖u‖2
L4(T2)2 6 c‖u‖2 ∀u ∈ H1, (1.20)

which results from the embedding H1 ⊂ L4(T
2)2.

Relations (1.17) and (1.18) give

∂tum′(·, t) ⇁ ∂tu(·, t) (m′ → ∞) ∗-weakly in Lloc
∞ (R+;H−1). (1.21)

Using now (1.17), (1.21), and the Aubin compactness theorem (see [14, 15, 16]), we obtain

um′(·, t) ⇁ u(·, t) (m′ → ∞) strongly in Lloc
∞ (R+;H). (1.22)

It follows from (1.21) and (1.22) (by using the routine argument similar to [12, 16, 17]) that

B(um′ , um′) ⇁ B(u, u) (m′ → ∞) ∗-weakly in Lloc
∞ (R+;H−1). (1.23)

Now, with regard to relations (1.17), (1.21), and (1.23), we can pass to the limit as m′ → ∞ in
equation (1.5) in the space of distributions D′(R+;H−1) (see [16]), which shows that the function
u(x, t) is a weak distribution solution of equation (1.1) in the space D′(R+;H−1), and it follows
from (1.16) that u(x, t) satisfies the initial condition (1.3). Finally, we see from inequality (1.14)
that the limit function u(x, t) satisfies the estimate

ess sup
{

‖u(t + s)‖
2
| s > 0

}

6 ‖u(0)‖
2
e−rt + r−1‖g‖2 ∀t ∈ R+. (1.24)

Proposition 1.1. For every u0(x) ∈ H1, problem (1.1), (1.3) has a weak distribution solution

u(x, t) ∈ L∞(R+;H1) satisfying (1.24).

Remark 1.1. Any weak solution u(x, t) ∈ L∞(R+;H1) to problem (1.1), (1.3) satisfies the
energy identity

1

2

d

dt
|u(t)|

2
+ r |u(t)|

2
= (g, u(t)) ∀t > 0,

where the function |u(t)|
2

is absolutely continuous (cf. (1.7)). However, a similar identity (see (1.12))

for the enstrophy function |∇u(t)|
2
, t > 0 (or an inequality of the form (1.13) which follows from

this identity), fails since the weak distribution solution is insufficiently smooth.
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Remark 1.2. The uniqueness problem for a solution to (1.1),(1.3) in the weak class L∞(R+;H1)
remains open. We face here a similar situation for the classical conservative 2D Euler system (1.1)
with r = 0 for which existence and uniqueness theorems are proved in the class of functions u(x, t)
having the vortex ∇ × u := ∂x1

u2 − ∂x2
u1 ∈ L∞(R+;L∞(T2)) if ∇× u0 ∈ L∞(T2) (see [18, 19]).

These results can be extended to equations (1.1) with r > 0. However, in the next section, we show
that no uniqueness theorem is needed in the study of trajectory attractors for the 2D Euler system
with dissipation (1.1).

2. TRAJECTORY ATTRACTOR OF THE EULER EQUATIONS WITH DISSIPATION

Introduce the spaces F∞
+ and F loc

+ ,

F∞
+ =

{

v(x, t), x ∈ T
2, t ∈ R+ | v ∈ L∞(R+;H1), ∂tv ∈ L∞(R+;H−1)

}

, (2.1)

F loc
+ =

{

v(x, t), x ∈ T
2, t ∈ R+ | v ∈ Lloc

∞ (R+;H1), ∂tv ∈ Lloc
∞ (R+;H−1)

}

.

Recall that z(t) ∈ Lloc
∞ (R+;E) if and only if z(t) ∈ L∞(0,M ;E) for every M > 0. It is clear

that F∞
+ ⊂ F loc

+ . The space F loc
+ is equipped with the topology Θloc

+ generated by the following

weak convergence of sequences {vn(x, t)} ⊂ F loc
+ : by definition, vn(·) ⇁ v(·) (n → ∞) in the

topology Θloc
+ if, for every M > 0, we have vn(x, t) ⇁ v(x, t) (n → ∞) ∗-weakly in L∞(0,M ;H1)

and ∂tvn(x, t) ⇁ ∂tv(x, t) (n → ∞) ∗-weakly in L∞(0,M ;H−1).

Note that Θloc
+ ∩ F loc

+ is a Fréchet–Uryhson Hausdorff space with a countable base. Moreover,

every ball B(0, R) =
{

v ∈ F∞
+ | ‖v‖

F∞

+

6 R
}

in F∞
+ is a compact set in the weak topology Θloc

+ .

Therefore, the topology Θloc
+ is metrizable on any ball B(0, R) (see, e.g., [20, 11]). The corresponding

metric is denoted by ρ(· , ·). In fact, the metric ρ(· , ·) = ρR(· , ·) depends on R. However, for any
R1 > R, the metric ρR1

(· , ·), regarded as a metric on B(0, R) ⊂ B(0, R1), is equivalent to the
metric ρR(· , ·). Therefore, we can omit the index R in ρ. Note again that the topology Θloc

+ is not

metrizable on the whole space F loc
+ or F∞

+ .

Now let us define the trajectory space K+(N) for equation (1.1) in dependence on N > 0. By
definition, a function u(x, t) ∈ F∞

+ belongs to K+(N) if (i) it is a distribution solution to equation
(1.1) in the space D′(R+;H−1) and (ii) u(x, t) satisfies the inequality

ess sup
{

‖u(t + s)‖2 | s > 0
}

6 Ne−rt + r−1‖g‖2 ∀t ∈ R+. (2.2)

The space K+(N) is nonempty for any N > 0. Indeed, if u0 ∈ H1 and ‖u0‖
2

6 N, then a (possibly
nonunique) Galerkin weak solution u(x, t) to (1.1) and (1.3) with specified initial data u0 (see
Proposition 1.1) is a distribution solution to (1.1) in D′(R+;H−1) and satisfies inequality (2.2) (see

(1.24) and note that ‖u0‖
2

6 N). Therefore, u(x, t) belongs to K+(N).

Proposition 2.1. For any fixed N > 0, the space K+(N) is bounded in F∞
+ and closed in the

topology Θloc
+ .

Proof. The boundedness of K+(N) in F∞
+ follows from estimate (2.2) for t = 0 and for the

following inequality similar to (1.18):

‖∂tu‖L∞(R+;H−1) 6 ‖B(u, u)‖L∞(R+;H−1) + r ‖u‖L∞(R+;H−1) + ‖g‖H−1

6 C
(

‖u‖2
L∞(R+;L4(T2)2) + ‖u‖L∞(R+;H1) + ‖g‖

)

6 C1

(

‖u‖2
L∞(R+;H1) + ‖g‖2 + 1

)

(2.3)

6 C1

(

N + r−1‖g‖2 + ‖g‖2 + 1
)

= C1N + R1. (2.4)

Combining (2.4) and (2.2) for t = 0, we see that K+(N) is bounded in F∞
+ .
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We now claim that K+(N) is closed in Θloc
+ . Let {uk(x, t)} be a sequence in K+(N) and let

uk → w (k → ∞) in Θloc
+ for some w ∈ F∞

+ , i.e.,

uk(·, t) ⇁ w(·, t) (k → ∞) ∗-weakly in L∞(0,M ;H1), (2.5)

∂tuk(·, t) ⇁ ∂tw(·, t) (k → ∞) ∗-weakly in L∞(0,M ;H−1) ∀M > 0. (2.6)

In particular, {uk} is bounded in F∞
+ . We claim that w ∈ K+(N). The functions uk(x, t) satisfy

the equations
∂tuk + B(uk, uk) + ruk = g(x), (∇, uk) = 0. (2.7)

Let us show first that w is a weak distribution solution of system (1.1). Choose an arbitrary
M > 0. Using (2.5) and (2.6), applying the Aubin compactness theorem (see [14–16]), and passing
to a subsequence of {uk} (for which we preserve the notation {uk}), we may assume that

uk(t) → w(t) (k → ∞) strongly in L2(0,M ;H). (2.8)

Recall that L2(0,M ;H) ⊂ L2(T
2 × [0,M ])2, and therefore we may also assume that

uk(x, t) → w(x, t) (k → ∞) for a.e. (x, t) ∈ T
2 × [0,M ]. (2.9)

Let us now study the behavior of the term B(uk, uk) in (2.7). Identity (1.2) yields

B(uk, uk) = P
[

∂x1

(

u1
kuk

)

+ ∂x2

(

u2
kuk

)]

. (2.10)

It follows from (2.9) that, for j = 1, 2,

uj
k(x, t)uk(x, t) → wj(x, t)w(x, t) (k → ∞) for a.e. (x, t) ∈ T

2 × [0,M ]. (2.11)

Recall that {un} is bounded in L∞(0,M ;H1). Hence, by inequality (1.20),

{uj
kuk} is bounded in L∞(0,M ;H) (2.12)

and in L2(T
2 × [0,M ])2 as well. Applying the known lemma on the weak convergence (see [16]), we

conclude from (2.11) and (2.12) that

uj
k(t)uk(t) ⇁ wj(t)w(t) (k → ∞)

weakly in L2(T
2×[0,M ])2 and ∗-weakly in L∞(0,M ;H) since (2.12) holds. Therefore, due to (2.10),

B(uk(t), uk(t)) → B(w(t), w(t)) (k → ∞) ∗-weakly in L∞(0,M ;H−1). (2.13)

We now see that, by (2.5), (2.6), and (2.13), we can pass to the limit as k → ∞ in each term of
equation (2.7) in the distribution space D′(0,M ;H−1) and find that the function w(x, t) satisfies
the equation

∂tw + B(w,w) + rw = g(x), (∇, w) = 0.

Since the number M was arbitrary, the function w(x, t) is a weak distribution solution of (1.1) in
the space D′(R+;H−1).

Second, let us prove that w(x, t) satisfies inequality (2.2). Recall that any uk(x, t) belongs to
K+(N), and thus uk(x, t) satisfies the inequality

‖uk(t + ·)‖
2
L∞(R+;H1) = ess sup

{

‖uk(t + s)‖2 | s > 0
}

6 Ne−rt + r−1‖g‖2 ∀t ∈ R+. (2.14)

It follows from (2.5) that, for all t > 0,

‖w(t + ·)‖2
L∞(R+;H1) 6 lim inf

k→∞
‖uk(t + ·)‖2

L∞(R+;H1)

and hence (with regard to (2.14))

ess sup
{

‖w(t + s)‖2 | s > 0
}

6 Ne−rt + r−1‖g‖2 ∀t ∈ R+.

We have thus proved that w ∈ K+(N), and hence K+(N) as well, is closed in Θloc
+ . This proves

Proposition 2.1.
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As was noted above, the topology Θloc
+ is metrizable on any bounded set of the space F∞

+ .

Therefore, by Proposition 2.2, the space K+(N) equipped with the topology Θloc
+ is metrizable and

compact.

Consider the translation semigroup {T (h)} := {T (h), h > 0} acting on the spaces F∞
+ and F loc

+

by the formula T (h)v(t) = v(t + h). The semigroup {T (h)} clearly acts on the trajectory space
K+(N) of equation (1.1). Note that

T (h)K+(N) ⊆ K+(N) ∀h > 0. (2.15)

Indeed, if u(t) ∈ K+(N), then the function T (h)u(t) = u(t + h), t > 0, is a weak solution of (1.1)
as well because (1.1) is autonomous. Moreover, since u(t) satisfies inequality (2.2), we see that, for
all h > 0,

ess sup
{

‖u(t + h + s)‖2 | s > 0
}

6 Ne−r(t+h) + r−1‖g‖2
6 Ne−rt + r−1 ‖g‖

2
, (2.16)

and hence T (h)u(t) also satisfies (2.2), i.e., T (h)u ∈ K+(N), and the proof of (2.15) is completed.

Proposition 2.1 and Eq. (2.15) imply that the translation semigroup {T (h)} acts on the compact
metric space K+(N). It can readily be seen that the semigroup {T (h)} is continuous on F loc

+ (and

hence on K+(N)) in the topology Θloc
+ . These facts imply that the semigroup {T (h)}|K+(N) has a

global attractor A(N) ⊆ K+(N), which is referred to as the trajectory attractor of equation (1.1)
(see [9, 11]). Recall that

A(N) =
⋂

θ>0

[

⋃

h>θ

T (h)K+(N)

]

Θloc
+

. (2.17)

The set A(N) is strictly invariant with respect to {T (h)} : T (h)A(N) = A(N) for all h > 0, and,
for any trajectory set B ⊆ K+(N), the Hausdorff deviation satisfies the relation

distρ(T (h)B,A(N)) → 0 (h → +∞) (2.18)

(see, e.g., [21, 13, 11]). Recall that the Hausdorff deviation of a set X from a set Y in a Banach
space E is the quantity

distE(X,Y ) := sup
x∈X

distE(x, Y ) = sup
x∈X

inf
y∈Y

‖x − y‖E . (2.19)

Proposition 2.2. The trajectory attractor A(N) does not depend on N , A(N) = A for all
N > 0, and

distρ(T (h)B,A) → 0 (h → +∞) ∀B ⊆ K+(N). (2.20)

Moreover, A ⊆ K+(0), i.e.,

‖u(·)‖
2
L∞(R+;H1) = ess sup

{

‖u(s)‖2 | s > 0
}

6 r−1‖g‖2 ∀u ∈ A. (2.21)

Proof. It follows from the definition of K+(N) that K+(N) ⊆ K+(N1) for any N1 > N. There-
fore, formula (2.17) implies that A(N) ⊆ A(N1) for N1 > N . At the same time, we can see from
inequality (2.2) that T (h)K+(N1) ⊆ K+(N) for any h > r−1 ln(N1/N). Using (2.17) once again
yields A(N1) ⊆ A(N) for any N1 > N . We conclude that A(N1) = A(N) for N1 > N . In particular,
A(N) = A(0) ⊆ K+(0), and (2.21) is also established.

Using (2.21) and (2.3), we obtain the following assertion.

Corollary 2.1. For any u ∈ A, the following inequalities hold :

‖u(·)‖2
L∞(R+;H1) 6 r−1‖g‖2, (2.22)

‖∂tu(·)‖L∞(R+;H−1) 6 C1

(

(1 + r−1)‖g‖2 + 1
)

. (2.23)
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Now let us define the space F∞ similarly to F∞
+ (replacing R+ by R in (2.1)), and let Π+ be

the operator of restriction to the semiaxis R+.

The kernel K of system (1.1) consists of all functions {u(x, t), t ∈ R} ∈ F∞ which are bounded
(in H1) complete weak distribution solutions of (1.1) on the entire time axis R which satisfy the
inequality

‖u(·)‖
2
L∞(R;H1) = ess sup

{

‖u(·, s)‖2 | s ∈ R
}

6 r−1‖g‖2 ∀u ∈ K. (2.24)

Proposition 2.3. The attractor A coincides with the set Π+K,

A = Π+K (2.25)

where K is the kernel of (1.1) in the space F∞.

Proof. Let u(·) ∈ K. We claim that Π+u ∈ A. Consider the set Bu = {Π+u(h + ·) | h ∈ R}.
Each function Π+u(h + t), t > 0, is clearly a weak solution of (1.1), and it follows from (2.24)
that Bu ∈ K+(0). Moreover, the set B is strictly invariant with respect to the semigroup {T (h)} :
T (h)Bu = Bu for all h > 0. Therefore, Bu ⊆ A(0) = A, and thus Π+K ⊆ A. Let us prove the
converse inclusion. We must prove that any solution u(t), t > 0, belonging to A can be extended to
the negative semiaxis as a weak solution satisfying (2.24). Indeed, since A is strictly invariant, there
is a function u1(t), t > 0, such that u1 ∈ A ⊆ K+(0) and T (1)u1(t) = u(t), i.e., u1(t + 1) = u(t) for
any t > 0. We now set ũ(t) = u1(t + 1) for t > −1. Then ũ(t) is a solution of (1.1), ũ(t) = u(t)
for t > −1, and

ess sup
{

‖ũ(t)‖2 | t > −1
}

6 r−1‖g‖2.

Continuing this procedure for u1 instead of u, we extend u(t) as a solution to the sets t > −2,
t > −3, etc. As a result, we obtain a complete weak solution ũ(t), t ∈ R, of (1.1) satisfying the
inequality

ess sup
{

‖ũ(t)‖2 | t ∈ R
}

6 r−1‖g‖2,

i.e., ũ ∈ K, and Π+ũ = u. Hence, A ⊆ Π+K, and identity (2.25) is proved.

Remark 2.1. The following embedding is continuous:

Θloc
+ ∩ F loc

+ ⊆ C loc(R+;Hδ) ∀δ ∈ [0, 1[

(see [16, 11]). The trajectory attractor A = Π+K satisfies (2.20) and hence

distC([0,M ];Hδ)(T (h)B,A) → 0 (h → +∞),

for any set B ∈ K+(N), where M is an arbitrary positive number (see the definition of distE(· , ·)
in (2.19)).

Remark 2.2. In the case of g = 0, it follows from (2.25) and (2.24) that the trajectory attractor
of (1.1) is trivial, A = {0}. Moreover, by (2.2), every weak solution to (1.1) tends to the zero solution
exponentially.

3. DISSIPATIVE 2D NAVIER–STOKES SYSTEM AND
LIMITS OF ITS SOLUTIONS AS VISCOSITY VANISHES

Consider the following 2D Navier–Stokes system with the dissipation term −ru and with viscosity
ν > 0:

∂tu + B(u, u) − ν∆u + ru = g(x), (∇, u) = 0, x = (x1, x2) ∈ T
2, t > 0. (3.1)

Here the notation is the same as that for the Euler system with dissipation (1.1) treated in Section 1.
The pressure p(x, t) is eliminated from the system by applying the Leray operator P.

System (3.1) also has a geophysical interpretation (see [1]). The essential dissipation occurs in the
planetary boundary layer described by the term −ru, whereas the viscosity term ν∆u is responsible
for small-scale dissipation (note that 0 < ν ≪ r in physically relevant cases).
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Remark 3.1. Studying the classical Navier–Stokes system with viscosity ν > 0 (at r = 0) and
with periodic boundary conditions, one usually assumes that the functions u and g have zero means
over the torus T

2, in order to avoid any linear growth of the solutions. For r > 0, this assumption
can be dropped since the term −ru introduces an additional dissipation.

As is well known, the Cauchy problem (3.1), (1.3) is uniquely solvable. Moreover, for u0 ∈ H1,
the corresponding solution u(x, t) belongs to the class Cb(R+;H1) ∩ Lb

2(R+;H2), and we have
∂tu ∈ Lb

2(R+;H). Thus, the solution is strong (see [5–7]; the case r = 0 is considered, e.g., in [17, 13,
21, 11, 22, 9]). Note that the dissipative term −ru does not influence in this result. Moreover, any
solution u(x, t) to problem (3.1), (1.3) satisfies the following identities:

1

2

d

dt
|u(t)|2 + ν |∇u(t)|2 + r |u(t)|2 = (g, u(t)), (3.2)

1

2

d

dt
|∇u(t)|

2
+ ν |∆u(t)|

2
+ r |∇u(t)|

2
= (∇g,∇u(t)), (3.3)

which are analogous to the identities known for the standard 2D Navier–Stokes system with r = 0
(see, e.g., [13, 21, 11, 22]). Identities (1.8) and (1.11) are used in the proof of (3.2) and (3.3).

Identities (3.2) and (3.3) imply the following inequality:

d

dt
‖u(t)‖

2
+ r ‖u(t)‖

2
+ 2ν |∇u(t)|

2
+ 2ν |∆u(t)|

2
6 r−1‖g‖2. (3.4)

Omitting the terms containing the coefficient ν, here we obtain the inequality

‖u(t)‖
2

6 ‖u0‖
2
e−rt + r−1‖g‖2, (3.5)

similar to inequality (1.14). Recall that ‖v‖
2

= |∇v|
2

+ |v|
2

= ‖v‖
2
H1 .

Integrating (3.4) over [t, t + 1] and using (3.5), we obtain

2ν

∫ t+1

t

|∆u(s)|2 ds 6 ‖u0‖
2 e−rt + 2r−1‖g‖2. (3.6)

It follows from (3.1) that

‖∂tu(t)‖H−1 6 ‖B(u(t), u(t))‖H−1 + r ‖u(t)‖H−1 + ν ‖u(t)‖H1 + ‖g‖H−1

6 C
(

‖u(t)‖
2
L4(T2)2 + ‖u(t)‖H1 + ‖g‖

)

6 C1

(

‖u(t)‖
2
H1 + ‖g‖2 + 1

)

, (3.7)

where the constant C1 depends on r and does not depend on ν, 0 < ν 6 1. The proof of (3.7) is
similar to that of (1.18) and (2.4) and uses inequalities (1.19) and (1.20). Now, by (3.5), we can
conclude that

‖∂tu(t)‖H−1 6 C1

(

‖u0‖
2 e−rt + (1 + r−1)‖g‖2 + 1

)

. (3.8)

Remark 3.2. Note that the constants on the right-hand sides of inequalities (3.5), (3.6), and
(3.8) do not depend on ν, 0 < ν 6 1. These estimates are similar to the inequalities established in
Sections 1 and 2 for the weak solutions of the 2D Euler equation with dissipation.

Let us now study the behavior of solutions of system (3.1) as ν → 0+.

Let {uν(x, t), 0 < ν 6 1} be a family of solutions to the dissipative 2D Navier–Stokes system
(3.1) such that

‖uν(·)‖L∞(R+;H1) 6 M, ‖∂tuν(·)‖L∞(R+;H−1) 6 M. (3.9)

Using (3.5) and (3.8), we see that property (3.9) holds if the initial data u0 for system (3.1)
satisfy the inequality

‖uν(0)‖ 6 m (3.10)

and M = M(m) is sufficiently large.
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Theorem 3.1. Consider a sequence of solutions {uνk
(x, t), 0 < νk 6 1} to (3.1) that satisfy

(3.9). Assume that νk → 0+ as k → ∞. Then there is a subsequence {νk′} ⊂ {νk} such that

uνk′
(·) → w(·) as k′ → ∞ in Θloc

+ , (3.11)

where w(x, t) is a weak solution to the 2D Euler equation with dissipation (1.1) and w ∈ K+(M).

Proof. The function uνk
(x, t) satisfies the equation

∂tuνk
+ B(uνk

, uνk
) − ν∆uνk

+ ruνk
= g(x). (3.12)

The sequence {uνk
(x, t)} is weakly compact in Θloc

+ since it satisfies (3.9), and therefore contains a
convergent subsequence {uνk′

(x, t)},

uνk′
(·) → w(·) as k′ → ∞ in Θloc

+

for some w(·) ∈ F∞
+ , i.e.,

uνk′
(·) ⇁ w(·) (k′ → ∞) ∗-weakly in Lloc

∞ (R+;H1), (3.13)

∂tuνk′
(·, t) ⇁ ∂tw(·, t) (k′ → ∞) ∗-weakly in Lloc

∞ (R+;H−1). (3.14)

Following the lines of reasoning in the proof of Proposition 2.1 (from formula (2.5) to formula
(2.13)), we obtain

B(uνk′
(t), uνk′

(t)) → B(w(t), w(t)) (k′ → ∞) ∗-weakly in Lloc
∞ (R+;H−1). (3.15)

Consider the term ν∆uνk
in equation (3.12). By estimate (3.9), we have

‖νk∆uνk
(·)‖L∞(R+;H−1) 6 νkC ‖uνk

(·)‖L∞(R+;H1) 6 νkCM → 0 (νk → 0+), (3.16)

or, equivalently,
ν∆uνk

(·) → 0 strongly in Lloc
∞ (R+;H−1). (3.17)

Combining relations (3.13), (3.14), (3.15), and (3.17), we can pass to the limit in equation (3.12)
as k′ → ∞ in the distribution space D′(R+;H−1) and see that the function w(x, t) satisfies the
equation

∂tw + B(w,w) + rw = g(·)

in the distribution sense, i.e., w is a weak solution to (1.1).

It remains to show that w(x, t) ∈ K+(M). Since uν(·) ∈ Cb(R+;H1), it follows from (3.9) that

‖uνk
(0)‖ 6 M.

Each function uνk
(x, t) satisfies inequality (3.5),

ess sup
{

‖uνk
(t + s)‖2 | s > 0

}

6 ‖uνk
(0)‖

2
e−rt + r−1 ‖g‖

2
6 Me−rt + r−1‖g‖2

(see also (3.9)). Since

‖w(t + ·)‖
2
L∞(R+;H1) 6 lim inf

k→∞
‖uνk

(t + ·)‖
2
L∞(R+;H1)

(see (3.13)), we have

ess sup
{

‖w(t + s)‖2 | s > 0
}

6 Me−rt + r−1‖g‖2 ∀t ∈ R+,

and therefore w ∈ K+(M).
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4. CONVERGENCE OF THE TRAJECTORY ATTRACTORS OF
THE DISSIPATIVE 2D NAVIER–STOKES SYSTEM AS ν → 0+

In this section, we study the relationship between the trajectory attractor Aν of the dissipative
2D Navier–Stokes system (3.1) as ν → 0+ and the trajectory attractor A of the 2D Euler equations
(1.1) with dissipation.

Similarly to Section 2, we consider the trajectory space

Kν
+ ⊂ Cb(R+;H1) ∩ Lb

2(R+;H2) ⊂ F∞
+ (4.1)

of system (3.1) with a chosen viscosity coefficient ν > 0. By definition, Kν
+ consists of all solutions

u(x, t), t > 0, to this system with initial data u0 = u(0) ∈ H1. The spaces F∞
+ ,F loc

+ , and Θloc
+ were

defined in Section 2. The trajectory space Kν
+ is closed in Θloc

+ .

The translation semigroup {T (h)} acts on the trajectory space Kν
+ by the usual formula

T (h)u(t) = u(t + h). It is clear that T (h)Kν
+ ⊆ Kν

+ for any h > 0. We claim that the transla-
tion semigroup {T (h)} acting on Kν

+ has a trajectory attractor, Aν ⊂ Kν
+, which attracts bounded

(in F∞
+ ) families of solutions to system (3.1) in the topology Θloc

+ . (See a similar proof in [11, 22]
in the case of r = 0 and Section 2 for ν = 0.)

Recall that the set Aν is strictly invariant with respect to {T (h)},

T (h)Aν = Aν ∀h > 0, (4.2)

and, for any bounded (in F∞
+ ) set Bν ⊆ Kν

+, we have

distρ(T (h)Bν ,Aν) → 0 (h → +∞), (4.3)

where ρ is a metric generating the topology Θloc
+ on a ball in F∞

+ containing Bν (see Section 2).

Using inequalities (3.5), (3.6), and (3.8), we obtain the following assertion.

Proposition 4.1. The trajectory attractors Aν are uniformly bounded for 0 < ν 6 1 in the
space F∞

+ and, for any uν ∈ Aν , we have

‖uν(·)‖L∞(R+;H1) 6 r−1‖g‖2, (4.4)

‖∂tuν(·)‖L∞(R+;H−1) 6 C1

(

(1 + r−1)‖g‖2 + 1
)

, (4.5)

ν

∫ t+1

t

|∆uν(s)|
2
ds 6 r−1‖g‖2.

Comparing Corollary 2.1 and Proposition 4.1, we see that the trajectory attractor A of the
2D Euler equations (1.1) with dissipation and the trajectory attractors Aν of the dissipative
2D Navier–Stokes system (3.1) belong to the same ball B(0, R0) in F∞

+ of the radius R0, where

R2
0 = max

{

r−1‖g‖2, C1

(

(1 + r−1)‖g‖2 + 1
)}

,

A ⊂ B(0, R0) and Aν ⊂ B(0, R0) ∀ν ∈]0, 1]. (4.6)

Now let us study the Hausdorff deviation of Aν from A as ν tends to zero in the topology Θloc
+

generated by the metric ρ described in Section 2.
The main result of this section is the following theorem.

Theorem 4.1. The trajectory attractors Aν of system (3.1) converge in metric ρ as ν → 0+ to
the trajectory attractor A of system (1.1),

distρ(Aν ,A) → 0+ as ν → 0+. (4.7)

Let Bν be bounded (in F∞
+ ) sets of trajectories of system (3.1),

‖Bν‖F∞

+
6 M (0 < ν 6 1). (4.8)

In this case,
distρ(T (h)Bν ,A) → 0 as ν → 0+ and h → +∞. (4.9)
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Proof. It suffices to prove (4.9), which implies (4.7) if one takes Bν = Aν (by property (4.2)).
Assume that relation (4.9) fails to hold. Then there is a neighborhood O(A) in Θloc

+ and two
sequences νn and hn, νn → 0+ and hn → +∞ as n → ∞, such that

T (hn)Bνn
6⊂ O(A). (4.10)

Thus, there are solutions wνn
∈ Bνn

such that the functions

Wνn
(t) := T (hn)wνn

(t) = wνn
(hn + t)

do not belong to O(A),
Wνn

(t) /∈ O(A) ∀n ∈ N. (4.11)

Note that Wνn
(t) is a solution to equation (3.1) on the semiaxis [−hn,+∞) with ν = νn since Wνn

(t)
is a backward shift of wνn

(t) at time hn. Recall that equation (3.1) is autonomous. Moreover, it
follows from (4.8) that

ess sup
s>−hn

‖Wνn
(s)‖H1 + ess sup

s>−hn

‖∂tWνn
(s)‖H−1 6 M, (4.12)

and inequality (3.5) yields

ess sup
s>−hn+τ

‖Wνn
(s)‖H1=ess sup

s>τ

‖wνn
(s)‖H16‖wνn

(0)‖e−rτ+ r−1 ‖g‖
2
6Me−rτ+ r−1‖g‖2 ∀τ > 0.

(4.13)

Inequality (4.12) implies that the sequence {Wνn
(·)} is ∗-weakly compact in the space

Θ−M,M = L∞,∗w(−M,M ;H1) ∩ {v | ∂tv ∈ L∞,∗w(−M,M ;H−1)}

for every M if we consider elements νn whose indices n satisfy the inequality hn > M. Therefore,
for any chosen M > 0, we can find a subsequence {νn′} ⊂ {νn} such that {Wνn′

(·)} converges
weakly in Θ−M,M . Therefore, using the standard Cantor diagonal procedure, we can construct a
function W (t), t ∈ R, and a subsequence {νn′′} ⊂ {νn} such that

Wνn′′
→ W ∗ -weakly in Θ−M,M as n′′ → ∞ for any M > 0. (4.14)

For the limit function W (t), t ∈ R, it follows from (4.12) and (4.13) that

‖W (·)‖L∞(R;H1) + ‖∂tW (·)‖L∞(R;H−1) 6 M, (4.15)

‖W (·)‖L∞(R;H1) 6 Me−rτ + r−1‖g‖2 ∀τ > 0. (4.16)

Passing to the limit in (4.16) as τ → ∞, we obtain

‖W (·)‖L∞(R;H1) 6 r−1 ‖g‖
2
. (4.17)

Let us now apply Theorem 3.1, where we can assume that all the functions are defined on the
semiaxis [−M,+∞) instead of [0,+∞) (because the equations are autonomous). In this case, it
follows from (4.14) that W (x, t) is a weak solution of the 2D Euler system with dissipation (1.1)
for any t ∈ R and, due to (4.17), the solution W (x, t) satisfies estimate (2.24), i.e., W ∈ K, where
K is the kernel of equation (1.1). However, Π+K = A (see Proposition 2.3). Thus, Π+W ∈ A. At
the same time, we have proved that

Wνn′′
→ Π+W in Θloc

+ as n → ∞ (4.18)

(see (4.14)). In particular, for a large n′′,

Wνn′′
∈ O(Π+W ) ⊆ O(A). (4.19)

This contradicts (4.11). Therefore, (4.9) is true. Finally, to prove (4.7), we apply (4.9) for Bν = Aν .

Remark 4.1. Recall that Θloc
+ ∩ F loc

+ ⊂ C loc(R+;Hδ), 0 6 δ < 1, and the convergences (4.7)

and (4.9) also hold in the uniform metric C([0,M ];Hδ) for any M > 0 (see Remark 2.1),

distC([0,M ];Hδ)(Aν ,A) → 0 (ν → 0+), (4.20)

distC([0,M ];Hδ)(T (h)Bν ,A) → 0 (ν → 0+, h → +∞). (4.21)

In conclusion, we formulate two propositions which follow from the well-posedness of the Cauchy
problem for the dissipative 2D Navier–Stokes system (see, e.g., [13, 21]). We use these assertions
in the next section.
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Proposition 4.2. For any ν > 0, the trajectory attractor Aν of equation (3.1) is connected in

the topological space Θloc
+ ∩ F loc

+ .

Proposition 4.3. The family of sets {Aν , 0 < ν 6 1} is upper semicontinuous in Θloc
+ , i.e., for

every ν, 0 < ν 6 1, and for any neighborhood O(Aν), there is a δ = δ(α,O) > 0 such that

Aν′ ⊆ O(Aν) ∀ν′ > 0, |ν′ − ν| < δ. (4.22)

5. MINIMAL LIMIT OF THE TRAJECTORY ATTRACTORS Aν AS ν → 0+

Let Aν be the trajectory attractor of the dissipative 2D Navier–Stokes system (3.1) for some
ν > 0, and let A be the trajectory attractor of the Euler system (1.1) with dissipation. As was
proved above, A,Aν ⊂ B0 ∀ν ∈ ]0, 1] , where B0 = B(0, R0) is the ball in Fb

+ (see (4.6)) whose
radius R0 does not depend on ν,

‖A‖Fb
+

6 R0 and ‖Aν‖Fb
+

6 R0 ∀ν, 0 < ν 6 1. (5.1)

Recall that the ball B0 is compact in the topology Θloc
+ , and the Uryson compactness theorem

implies that the subspace B0∩Θloc
+ equipped with the topology Θloc

+ is metrizable (see [11] for more

details). Denote the corresponding metric in B0 ∩ Θloc
+ by ρ(· , ·) and by Bρ the metric space by

itself. This metric space is compact. As was proved in Theorem 4.1,

distBρ
(Aν ,A) → 0 as ν → 0+, (5.2)

where distBρ
(· , ·) stands for the Hausdorff deviation of sets in Bρ (see (2.19)). Note that, in fact,

the limit relation in (5.2) is stronger than that in (4.20).
Recall that the set A ⊂ Bρ is closed in Bρ. Let Amin be the minimal closed subset of A which

satisfies the attracting property (5.2), i.e.,

lim
ν→0+

distBρ
(Aν ,Amin) = 0,

and Amin belongs to every closed subset A
′ ⊆ A for which

lim
ν→0+

distBρ
(Aν ,A′) = 0.

We refer to the set Amin as the minimal limit of the trajectory attractors Aν as ν → 0+.
We claim that the set Amin exists and is unique. We have just to prove that

Amin =
⋂

0<δ61

[

⋃

0<ν6δ

Aν

]

Bρ

. (5.3)

The set on the right-hand side of (5.3) is clearly nonempty. It is easy to prove that a point w belongs
to the right-hand side of (5.3) if and only if there are wνn

∈ Aνn
, where n = 1, 2, . . . and νn → 0+

as n → ∞, such that ρ(wνn
, w) → 0 as n → ∞. By (5.2), such a limit point w always belongs to

A and, moreover, it belongs to every closed attracting set A
′. The set (5.3) is attracting for Aν

as ν → 0+. Indeed, assuming the converse, we see that there is a sequence wνn
∈ Aνn

such that
νn → 0+ and

distBρ
(wνn

,Amin) > ε (5.4)

for some value ε > 0. Recall that wνn
∈ Bρ and Bρ is a compact metric space. Then, passing to a

subsequence {wνn′
} ⊂ {wνn

}, we may assume that ρ(wνn′
, w′) → 0 as νn′ → 0 for some w′ ∈ Bρ.

Thus, by the above property, w′ ∈ Amin, which contradicts (5.4). We have proved that the set Amin

defined in (5.3) is a minimal closed attracting subset of A.
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Proposition 5.1. The minimal limit Amin of trajectory attractors Aν as ν → 0+ is a connected
subset of A in Bρ.

Proof. Assume the converse. In this case, the set Amin is the union of two closed disjoint subsets
A

1
min and A

2
min, i.e.,

Amin = A
1
min ∪ A

2
min and A

1
min ∩ A

2
min = ∅.

Since the metric space Bρ is compact, there are two open sets O1 and O2 in Bρ such that A
1
min ⊂ O1,

A
2
min ⊂ O2, and O1 ∩ O2 = ∅. Clearly, Amin ⊂ O1 ∪ O2. Therefore, by (5.2), there is a number

ν0 > 0 for which
Aν ⊂ O1 ∪ O2 ∀ν, 0 < ν 6 ν0. (5.5)

Note that every set Aν is connected (see Proposition 4.2), i.e., Aν ⊂ O1 or Aν ⊂ O2 for all ν < ν0.
At the same time, since Amin is the minimal limit of Aν , we can find ν1 and ν2 such that

Aν1
⊂ O1 and Aν2

⊂ O2 (5.6)

(otherwise, we can diminish Amin). To be definite, assume that 0 < ν2 < ν1 < ν0. Write

δ∗ = sup{δ : Aν ⊂ O2, ν2 6 ν < ν2 + δ}. (5.7)

Note that ν2 + δ∗ 6 ν1 < ν0, (see (5.6)) and Aν2+δ∗ ⊂ O1 ∪ O2 since ν2 + δ∗ < ν0 (see (5.5)).
Now we claim that Aν2+δ∗ cannot belong to O2. Indeed, if Aν2+δ∗ ⊂ O2, then, by Proposition 4.3,

there is a small δ2 > 0 such that Aν2+δ∗+δ2
⊂ O2. This contradicts the definition of δ∗ in (5.7). At the

same time, Aν2+δ∗ cannot belong to O1 either. Indeed, if Aν2+δ∗ ⊂ O1, then, by Proposition 4.3
again, there is a small δ1 > 0 such that Aν2+δ∗−δ1

⊂ O1, which contradicts the definition of δ∗.
However, all this contradicts the relation Aν2+δ∗ ⊂ O1 ∪O2. This completes the proof.

Recall that the set Amin is compact. Let us prove the following assertion.

Proposition 5.2. The minimal limit Amin of trajectory attractors Aν as ν → 0+ is strictly
invariant with respect to the translation semigroup {T (h)}, i.e.,

T (h)Amin = Amin ∀h > 0. (5.8)

Proof. Consider an arbitrary w ∈ Amin. By definition, there is a sequence wνn
∈ Aνn

such
that ρ(wνn

, w) → 0 as νn → 0+. The translation semigroup {T (h)} is continuous in Θloc
+ , and

therefore ρ(T (h)wνn
, T (h)w) → 0 as νn → 0+. Since every Aνn

is strictly invariant, we obtain
T (h)wνn

∈ Aνn
. Thus, T (h)w ∈ Amin and we have proved that

T (h)Amin ⊆ Amin ∀h > 0.

Let us now prove the inverse inclusion. For any h > 0 and an arbitrary w ∈ Amin with correspond-
ing wνn

∈ Aνn
such that ρ(wνn

, w) → 0 (νn → 0+), we must find W ∈ Amin such that T (h)W = w.
Since Aνn

is strictly invariant, there is an element Wνn
∈ Aνn

for which T (h)Wνn
= wνn

. The
sequence {Wνn

} belongs to the compact set Bρ. Passing to a subsequence {νn′}, we see that
Wνn′

→ W (n′ → ∞) for some W ∈ Bρ. Then W ∈ Amin. Since {T (h)} is continuous, we ob-
tain T (h)Wνn′

→ T (h)W (n′ → ∞). However, T (h)Wνn′
= wνn′

, and thus we have wνn′
→ T (h)W

(n′ → ∞) and wνn
→ w (n → ∞) simultaneously. Hence, T (h)W = w, and we have proved that

Amin ⊆ T (h)Amin ∀h > 0.

We thus obtain (5.8).

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 15 No. 2 2008



170 V. V. CHEPYZHOV, M. I. VISHIK

REFERENCES

1. J. Pedlosky, Geophysical Fluid Dynamics (Springer, New York, 1979).

2. V. Barcilon, P. Constantin, and E. S. Titi, “Existence of Solutions to the Stommel–Charney Model of
the Gulf Stream,” SIAM J. Math. Anal. 19 (6), 1355–1364 (1988).

3. J.-C. Saut,“Remarks on the Damped Stationary Euler Equations,” Differential Integral Equations 3 (5),
801–812 (1990).

4. A. A. Il’in, “The Euler Equations with Dissipation,” Mat. Sb. 182 (12), 1729–1739 (1991) [Sb. Math.
74 (2), 475–485 (1993)].

5. A. A. Ilyin [Il’in], A. Miranville, and E. S. Titi, “Small Viscosity Sharp Estimates for the Global At-
tractor of the 2-D Damped-Driven Navier–Stokes Equations,” Commun. Math. Sci. 2 (3), 403–426
(2004).

6. A. A. Ilyin [Il’in] and E. S. Titi, “Sharp Estimates for the Number of Degrees of Freedom of the Damped-
Driven 2-D Navier–Stokes Equations,” J. Nonlinear Sci. 16 (3), 233–253 (2006).

7. A. A. Ilyin [Il’in], “Lieb–Thirring Integral Inequalities and Sharp Bounds for the Dimension of the
Attractor of the Navier–Stokes Equations with Friction,” Tr. Mat. Inst. Steklova 255, 146–160 (2006)
[Proc. Steklov Inst. Math. 255, 136–149 (2006)].

8. V. V. Chepyzhov and M. I. Vishik, “Trajectory Attractors for Evolution Equations,” C. R. Acad. Sci.
Paris Series I 321 (10), 1309–1314 (1995).

9. V. V. Chepyzhov and M. I. Vishik, “Evolution Equations and Their Trajectory Attractors,” J. Math.
Pures Appl. 76 (10), 913–964 (1997).

10. M. I. Vishik and V.V. Chepyzhov, “Trajectory and Global Attractors of Three-Dimensional Navier–
Stokes Systems,” Math. Notes 71, 177–193 (2002).

11. V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, AMS Colloquium
Publications 49 (AMS, Providence, 2002).

12. R. Temam, Navier–Stokes Equations, Theory and Numerical Analysis (North-Holland, Amsterdam–
New York–Oxford, 1977).

13. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematics
Series (Springer, New York–Berlin, 1988; 2nd ed., New York, 1997).
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