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Introduction

One of the major mathematical problems in the study of evolution equations arising
in different branches of mechanics and physics is the study of the final behaviour
of solutions of these equations when time is large or tends to infinity. The related
important question concerns the stability of solutions as time t → +∞ or the nature
of instability if a solution is unstable in some sense. In the last decades, considerable
progress in this areas has been achieved in the study of autonomous partial differential
equations. For a number of basic autonomous evolution equations of mathematical
physics, it was shown that the long time behaviour of their solutions is characterized
by finite dimensional global attractors (see, e.g., the books [T88, L91, BV89, H88,
CoF89, SY02] and the references cited therein).

Non-autonomous evolution PDEs and their global attractors are less studied. How-
ever in the last decade, a notable advance has been made in this perspective area
of mathematical researches. In particular, the global attractor has been constructed
and studied for the non-autonomous 2D Navier–Stokes system with external force de-
pending on time t. We note that a process {U(t, τ)} := {U(t, τ) | t ≥ τ ; t, τ ∈ R}
corresponds to this system which maps every solution u := u(t) at time τ into the
value of this solution u at time t ≥ τ : u(τ) 7−→ U(t, τ)u(τ) := u(t). The process
{U(t, τ)} is a two-parameter family of mappings acting in the phase space of the evo-
lution equation. Therefore, the study of the behaviour of solutions u(t) as t→ +∞ of
the considering non-autonomous evolution equation is equivalent to the investigation
of the corresponding process {U(t, τ)} as t → +∞. Thus, in the study of solution
u(t) of non-autonomous equations, processes {U(t, τ)} play the same role as semi-
groups {S(t), t ≥ 0} do in the study of solutions u(t) of autonomous equations as time
t→ +∞.

In the present survey paper, we mostly study non-autonomous partial differential
equations and the corresponding processes {U(t, τ)}. Particular emphasis is placed to
the study of the global attractor of the non-autonomous 2D Navier–Stokes system.

In Chapter 1, we sketch out the general theory of global attractors of semigroups
and some basic autonomous equations of mathematical physics. Besides, we consider
questions related to the dimension and the ε-entropy of invariant sets and we present
upper estimates for the fractal dimension and for the ε-entropy of global attractors of
autonomous equations. We derive such estimates with reasonable details for the 2D
Navier–Stokes system, for the dissipative wave equation, and for the complex Ginzburg–
Landau equation.

In Chapter 2, we study the uniform global attractors of general processes and non-
autonomous equations. We note that, studying global attractors of such an equation,
there is a good reason to introduce a notion of its time symbol σ(t). The time symbol
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of a non-autonomous equation is the collection of all time-dependent terms of this
equation. Along with solutions dynamics, we study the symbols dynamics as t→ +∞.
In Chapter 2, we formulate theorems on the existence of the uniform global attractor A
of the process {Uσ(t, τ)} corresponding to a non-autonomous equation with translation
compact symbol σ(t). Besides, we present a theorem on the structure of the set A. Then
we study the uniform global attractor A of the 2D Navier–Stokes system with time-
dependent external force that is the symbol of this system. We study in great details
the case, when this system has a unique bounded complete solution {z(t), t ∈ R} that
attracts all other solutions {u(t), t ≥ τ} of this 2D Navier–Stokes system as t → +∞
with exponential rate. We also consider similar problems for the non-autonomous
dissipative wave equation and for the non-autonomous Ginzburg–Landau equation.

We note, that a number of important questions related to the global attractors of
non-autonomous equations and the corresponding processes were considered, e.g., in
the books [Ha91, H88, CV02a, SY02], references therein, and in many papers cited in
Bibliography of this report.

It is well known that the fractal dimension of the global attractor of a general
non-autonomous PDE can be infinite (see, e.g., the example in the end of Chapter 2).
However, the ε-entropy of the global attractor is always finite since the attractor is a
compact set. In Chapter 3, we present estimates for the ε-entropy of global attractors
of non-autonomous equations with translation compact symbols. We also consider
applications of these general results to the non-autonomous 2D Navier–Stokes system
and to some other equations of mathematical physics. Particular attention is devoted
to the case, where, for example, the external force of the 2D Navier–Stokes system
is a quasiperiodic function in time with k rationally independent frequencies. In this
case, the global attractor has the finite fractal dimension and the upper estimate for its
dimension has a summand k. This means that the fractal dimension can grow with no
limit as k tends to infinity. The corresponding examples are constructed in the paper.

In Chapter 4, we study the global attractor Aε of the 2D Navier–Stokes system
with singularly oscillating external force of the form g0(x, t) + ε−ρg1(x/ε, t), 0 ≤ ρ ≤
1, 0 < ε ≤ 1. The behaviour of Aε as ε → 0+ is under discussion. The analogous
problem is studied in Chapter 5 for the non-autonomous complex Ginzburg–Landau
equation.

For the readers convenience, each chapter is supplied with a short exposition of its
contents.

This work was partly supported by the Russian Foundation of Basic Researches
(project no. 05-01-00390 and 04-01-00735), Civilian Research & Development Founda-
tion (Grant RUM1-2654-MO-05), and the Russian Science Support Foundation.
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Chapter 1

Attractors of autonomous equations

In this chapter we present some fundamental results concerning the global attractors of
semigroups corresponding to autonomous evolution equations. The detailed materials
can be found in many books on infinite-dimensional dynamical systems and attrac-
tors. See, for example, D.Henry [He81], R.Temam [T88], J.K.Hale [H88], A.V.Babin
and M.I.Vishik [BV89], O.A.Ladyzhenskaya [L91], M.I.Visik [V92], A.Eden, C.Foias,
B.Nicolaenco, and R.Temam [E–T95], I.D.Chueshov [Ch99], C.Foias,O.Manley,R.Rosa,
and R.Temam [F–T01], J.C.Robinson [R01], G.Sell and Y.You [SY02], V.V.Chepyzhov
and M.I.Vishik [CV02a]. Below, we present a short survey of the known methods and
results concerning global attractors of autonomous evolution equations.

1.1 Semigroups and their global attractors

In this section, we consider a general (nonlinear) semigroup {S(t)} acting on a set E.
Usually E is a complete metric space or a Banach space. In particular, E can be a
closed subset of a Banach space.

Definition 1.1.1 A family of mappings S(t) : E → E depending on a real parameter
t ≥ 0 (time) is called a semigroup acting on E and is denoted by {S(t)} if it satisfies
the semigroup identity

S(t1)S(t2) = S(t1 + t2), ∀t1, t2 ≥ 0, (1.1)

and
S(0) = Id. (1.2)

Here and below, we denote by Id the identity operator. In the case where S(t) is
defined for any real t and identity (1.1) holds for any t1 and t2 from R we shall call
{S(t)} a group.

We now introduce some notations which will be used to describe properties of
semigroups. We assume that a semigroup {S(t)} acts in a complete metric or a Banach
space E. Let B(E) be the collection of all bounded sets in E with respect to the metric
in E.
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The semigroup {S(t)} is called (E,E)-bounded if S(t)B ∈ B(E) for every B ∈ B(E)
and for all t ≥ 0. The semigroup {S(t)} is called uniformly (E,E)-bounded if for every
B ∈ B(E) there exists B1 ∈ B(E) such that S(t)B ⊂ B1 for all t ≥ 0.

The dynamical system we are going to study are dissipative. In application to gen-
eral semigroups, the dissipation means the existence of bounded or compact absorbing
or attracting sets.

A set B0 ⊂ E is called absorbing for a semigroup {S(t)} if for every B ∈ B(E)
there exists T = T (B) > 0 such that S(t)B ⊂ B0 for all t ≥ T. A set P ⊂ E is called
attracting for {S(t)} if for any B ∈ B(E)

distE(S(t)B,P ) → 0 as t→ +∞.

Here
distE(X, Y ) = sup

x∈X
inf
y∈Y

‖y − x‖E ; X, Y ⊆ E. (1.3)

This value is called the Hausdorff (non-symmetric) distance from the set X to the set
Y. Clearly, any absorbing set is attracting as well.

The semigroup {S(t)} is said to be a compact semigroup if there exists a compact
absorbing set P, P b E, for {S(t)}. The semigroup {S(t)} is said to be an asymptoti-
cally compact semigroup if there exists a compact attracting set K, K b E. This two
notions generally reflect the dissipativity of dynamical systems under the consideration.

We are going to study continuous semigroups. The semigroup {S(t)} is called
(E,E)-continuous if each mapping S(t) for t ≥ 0 is continuous from E into E.

We are going to study the behavior of semigroups {S(t)} as time t → +∞. This
limit behavior can be described in terms of global attractors.

Definition 1.1.2 A set A ∈ B(E) is called a global attractor for {S(t)}, if it has the
following properties:

1. A is compact in E (A b E);

2. A is an attracting set for {S(t)}, that is, for every B ∈ B(E),

distE(S(t)B,A) → 0 as t→ +∞;

3. A is strictly invariant with respect to {S(t)}, i.e., S(t)A = A for all t ≥ 0.

As it was shown in [BV89] that the global attractor A for {S(t)} is the maximal
bounded invariant set for {S(t)} (see also [L75, L82, L91]) This means the following:
if Y ∈ B(E) and S(t)Y = Y for all t ≥ 0, then Y ⊂ A. This implies, in particular,
that the global attractor for {S(t)} is unique.

Definition 1.1.3 For a bounded set B ∈ B(E), the set

ω(B) =
⋂

h≥0

[

⋃

t≥h

S(t)B

]

E

(1.4)

is said to be an ω-limit set for B. Here [ · ]E denotes the closure in E.
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We now formulate the classical attractor existence theorem.

Theorem 1.1.1 Let {S(t)} be a continuous semigroup in a complete metric space E
having a compact attracting set K, K b E. Then the semigroup {S(t)} has a global
attractor A (A ⊆ K). The attractor A coincides with ω(K) : A = ω(K). (If E is a
Banach space, then the set A is connected).

The proof is given, for example, in [BV89, T88].
We need one more notion to describe the general structure of a global attractor. A

curve u(s), s ∈ R, is called a complete trajectory of the semigroup {S(t)} if

S(t)u(s) = u(t+ s) ∀s ∈ R, t ∈ R+. (1.5)

Definition 1.1.4 The kernel K of the semigroup {S(t)} consists of all its bounded
complete trajectories:

K = { u(·) | u(s) satisfies (1.5) and ‖u(s)‖E ≤ Cu for s ∈ R} .

Definition 1.1.5 The kernel section at a time s ∈ R is the following set from E :

K(s) = {u(s) | u ∈ K} .

Remark 1.1.1 Speaking informally, the kernel K of the semigroup {S(t)} correspond-
ing to autonomous equation (see Section 1.2) consists of all its solutions u(t) determined
on the whole time axis {t ∈ R} that are bounded in E. The kernel includes equilibrium
points, periodic, quasiperiodic, and almost periodic orbits. Heteroclinic and homoclinic
orbits belong to K as well and in general, the structure of K can be extremely complex
even with chaotic behaviour of its elements, i.e., bounded complete trajectories.

Theorem 1.1.2 Under the assumptions of Theorem 1.1.1 the global attractor A of the
semigroup {S(t)} coincides with the kernel section K(0),

A = K(0). (1.6)

One can replace here 0 by an arbitrary s, s ∈ R.

The proof is given, e.g., in [BV89].
In the next sections, we apply Theorems 1.1.1 and 1.1.2 to various semigroups

{S(t)} corresponding to partial differential equations arising in mathematical physics.

1.2 Cauchy problem and corresponding semigroup

For simplicity, below we suppose that E is a Banach space. (Nevertheless, E can be a
complete metric space.) Let {S(t)} act on the whole Banach space E. Such semigroups
are usually generated by evolution equations of the form

∂tu = A(u), (1.7)

where A is a (nonlinear) operator defined on a Banach space E1 and A maps E1 into
another Banach space E0. We suppose that E1 ⊆ E ⊆ E0, where all embeddings are
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dense. We now construct a semigroup {S(t)} acting on E that corresponds to equation
(1.7).

We assume that, for an arbitrary element v0 ∈ E, equation (1.7) with initial data

u|t=0 = u0 (1.8)

has a unique solution u(t), t ≥ 0, such that u(t) ∈ E for all t ≥ 0. The meaning of the
expression “u(t) is a solution of the Cauchy problem (1.7) and (1.8)” should be clarified
in each particular case. Usually for every fixed T > 0, solutions u(t), 0 ≤ t ≤ T, of (1.7)
are taken from the class FT of functions satisfying the conditions u(·) ∈ L∞ (0, T ;E)
and u(·) ∈ Lp (0, T ;E1) , where E1 is a Banach space on which the operator A is
defined and 1 < p ≤ ∞. Moreover, A(u(·)) ∈ Lq (0, T ;E0) for some q, 1 < q < ∞,
and ∂tu(·) ∈ Lq (0, T ;E0) (the derivative is taken in the distribution sense). Equation
(1.7) in this case is understood as an equality in Lq (0, T ;E0) . Thus u(t) satisfies (1.7)
in the distribution sense in D′(]0, T [;E0) (see [Lio69, BV89] for the details). Using
various embedding theorems, (see, e.g., [LioM68, T79]) usually it can be shown that
u(t) ∈ Cw([0, T ];E) and even u(t) ∈ C([0, T ];E) and (1.8) makes sense: u(t) → u0

weakly or strongly in the space E as t→ 0 + . Moreover, u(t) ∈ E for every t ∈ [0, T ].
In particular examples, it is convenient to take the space E0 sufficiently large, since
the extension of E does not cause any difficulties and makes the verification of the
conditions A(u) ∈ E0, ∂tu ∈ E0 more easy.

Operators S(t) : E → E generated by equation (1.7) are usually defined as follows.
For an arbitrary element u0 ∈ E, we consider the corresponding solution u(t), t ≥ 0, of
problem (1.7), (1.8). For all τ ≥ 0, the element u(τ) of the space E is uniquely defined.
Therefore, the formula

S(τ) : u0 = u|t=0 7→ u|t=τ (1.9)

defines the family of mappings {S(τ), τ ≥ 0}, S(τ) : E → E.
We state that these mappings form a semigroup. Indeed, let v0 ∈ E, v1 = S(t1)v0,

t1 > 0, and v2 = S(t2 + t1)v0, t2 > 0. Obviously, v0, v1 and v2 are the values of the
solution u(·) ∈ Ft2+t1 at t = 0, t = t1, and t = t2 + t1, respectively. Consider now the
function u1(t) = u(t+ t1), t ∈ [0, t2]. Since u(·) ∈ Ft2+t1 , it follows that u1(·) ∈ Ft2 . It
is also clear that u1(t) is a solution of (1.7). Obviously also, u1|t=0 = v1, u1|t=t2 = v2

i.e., by the definition of {S(t)}, v2 = S(t)v1. Hence, S(t2)S(t1)v0 = S(t2 + t1)v0 for all
v0 ∈ E and the semigroup identity (1.1) is proved.

Considering below particular equations of the form (1.7), we shall only formulate
the corresponding theorems on the existence and uniqueness of a solution and specify a
space or a set in which the semigroup {S(t)} acts. We shall suppose that the operators
S(t) are defined by formula (1.9).

1.3 Global attractors for autonomous equations of

mathematical physics

1.3.1 2D Navier–Stokes system

The Navier–Stokes system is probably the most popular example of a partial differen-
tial equation having a global attractor. A considerable part of the theory of infinite
dimensional dynamical systems has been developed from this example.
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We consider the autonomous 2D Navier–Stokes system in a bounded domain Ω b

R2. The system reads

∂tu+
2
∑

i=1

ui∂xi
u = ν∆u−∇p + g(x),

(∇, u) = 0, u|∂Ω = 0, (x1, x2) ∈ Ω,
(1.10)

where u = u(x, t) = (u1(x, t), u2(x, t)) is a velocity vector, p = p(x, t) is a scalar function
for the pressure, ν is the kinematic viscosity coefficient, and g = g(x) = (g1(x), g2(x))
is the forcing term.

By H and V = H1 we denote the closure of the set

V =
{

v | v ∈ (C∞
0 (Ω))2 , (∇, v) = 0

}

in the norms | · | and ‖ · ‖ of the spaces (L2(Ω))2 and (H1
0 (Ω))

2
, respectively. Recall

that

‖u‖2 = |∇u|2 =
2
∑

i=1

∫

Ω

|∇ui(x)|2dx.

By P we denote the orthogonal projector from (L2(Ω))2 onto H and its various exten-
sions.

Excluding the pressure, system (1.10) can be written in the form

∂tu+ νLu+B(u, u) = g0(x). (1.11)

Here,

L = −P∆, B(u, v) = P
2
∑

i=1

ui∂xi
v, g0 = Pg.

Let V ′ = V ∗ be the dual space for V. The Stokes operator L, considered as an operator
on V ∩ (H2(Ω))

2
, is positive and self-adjoint. Its minimal eigenvalue λ1 is positive.

Suppose that g(·) ∈ H. The initial conditions are posed at t = 0 :

u|t=0 = u0(x), u0 ∈ H. (1.12)

The operator L is bounded from V into V ′.
The form b

b(u, v, w) = (B(u, v), w) =

∫

Ω

2
∑

i,j=1

ui∂xi
vjwjdx

is trilinear continuous on V and operator B maps V × V into V ′. The form b satisfies
the identities

b(u, v, v) = 0, b(u, v, w) = −b(u, w, v), ∀u, v, w ∈ V. (1.13)

Moreover, the following estimate is valid:

|b(u, u, v)| ≤ c20|u|‖u‖‖v‖, ∀u, v ∈ V (1.14)

(see [L70, T79]), where the constant c0 can be taken from the inequality

‖f‖L4(Ω) ≤ c|f |1/2|∇f |1/2, f ∈ H1
0 (Ω), c0 = c. (1.15)
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The constant c (and c0) does not depend on Ω. In particular, it follows from (1.14)
that

|B(u, u)|V ′ ≤ c20‖u‖|u|.
Thus, if u ∈ L2(0, T ;V )∩L∞(0, T ;H), then −νLu−B(u, u)+ g(x) ∈ L2(0, T ;V ′) and
equation (1.11) can be considered in the distribution sense of the space D′(0, T ;V ′)
and ∂tu ∈ L2(0, T ;V ′).

Proposition 1.3.1 Problem (1.11), (1.12) has a unique solution u(t) ∈ C (R+;H) ∩
Lloc

2 (R+;V ) and ∂tu ∈ Lloc
2 (R+;V ′) . The following estimates hold:

|u(t)|2 ≤ |u(0)|2e−νλt + ν−2λ−2|g|2. (1.16)

|u(t)|2 + ν

∫ t

0

‖u(s)‖2ds ≤ |u(0)|2 + tν−1λ−1|g|2, (1.17)

t‖u(t)‖2 ≤ C
(

t, |u(0)|2
)

(1.18)

where λ = λ1 is the first eigenvalue of the Stokes operator L and C(z, R) is a monotone
continuous functions of z = t and R.

The existence and uniqueness theorem is a classical result. The detailed proof can
be found in [L70, Lio69, T79, BV89, CoF89].

Thus, there exists a semigroup {S(t)} acting in H : S(t) : H → H for t ≥ 0
that corresponds to problem (1.11), (1.12): S(t)u0 = u(t), where u(t) is the solution of
system (1.11), (1.12).

Proposition 1.3.2 The semigroup {S(t)} corresponding to problem (1.11), (1.12) is
uniformly (H,H)-bounded, compact and (H,H)-continuous.

The detailed proof is given, e.g., in [BV89, T88]. The existence of a bounded
absorbing set follows from (1.16). See also Section 2.6.1, where the non-autonomous
system is considered. Propositions 1.3.1 and 1.3.2 imply that the semigroup {S(t)}
satisfies all the conditions of Theorem 1.1.2. The following theorem holds.

Theorem 1.3.1 The semigroup {S(t)} corresponding to problem (1.11), (1.12) has
the global attractor A that is compact in H and coincides with the kernel section:
A = K(0).

We consider the following dimensionless number called the (generalized) Grashof
number

G =
|g|
ν2λ1

.

This number plays an important role in the analysis of the structure of the global
attractor A. First of all we have the following

Proposition 1.3.3 Suppose that

G <
1

c20
, (1.19)

where c0 is the constant from inequality (1.14). Then equation (1.11) has a unique
stationary solution z ∈ V which is globally asymptotically stable, i.e.,

A = {z}.
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Proof. It is well known that equation (1.11) has a stationary solution z (see, for
example [T79]), νLz +B(z, z) = g. It follows from (1.17) that

‖z‖2 = |∇z|2 ≤ |g|2
ν2λ1

. (1.20)

Every solution u(t) of (1.11) can be written as u(t) = z + v(t), where v(t) satisfies the
equation

∂tv + νLv +B(v, v) +B(v, z) +B(z, v) = 0.

Multiplying by v and using (1.14), (1.13), the inequality |v| ≤ λ
−1/2
1 ‖v‖, and (1.20) we

obtain

∂t|v|2 + 2ν‖v‖2 = 2b(v, v, z) ≤ 2c20|v|‖v‖‖z‖
≤ 2c20λ

−1/2
1 ‖v‖2‖z‖ ≤ 2c20λ

−1
1 ν−1|g|‖v‖2.

Finally,
∂t|v|2 + 2

(

ν − c20λ
−1
1 ν−1|g|

)

‖v‖2 ≤ 0

and hence
∂t|v(t)|2 + α|v(t)|2 ≤ 0,

where α = 2(ν − c20λ
−1
1 ν−1|g|)λ−1

1 > 0 since |g|
ν2λ1

= G < c−2
0 . This implies

|v(t)|2 = |u(t) − z|2 ≤ |u(0) − z|2e−αt.

Consequently, the stationary solution is unique, asymptotically stable, and A = {z}.

Remark 1.3.1 Inequality (1.15) was originally proved with c ≤ 21/4 in [L70]. It is

known from [N89] that c <
(

16
27π

)1/4
. In [CI04] it was proved that the constant c20

in (1.14) can be taken c20 = c2√
2

=
(

8
27π

)1/2
. Therefore the attractor A is trivial if

G < 3.2562.

If the Grashof number G = |g|
ν2λ1

is large, then it is very likely from the physical
evidence and simulation results that, as t → +∞, the solutions of the Navier–Stokes
system tend to a more complicated attracting set than a stationary solution. Hence,
the global attractor A can have a very complicated structure, possibly, chaotic. See,
for example, [FT79, FT82, FT83]. In Section 1.4.2, we shall study upper bounds for
the dimension of the global attractors of Navier–Stokes equations which depend of
the Grashof numbers. Thus, roughly speaking, the flows can be described by a finite
number of parameters, which can be extremely large (but finite) despite the fact that
the system itself is an infinite dimensional dynamical system.

1.3.2 Wave equation with dissipation

We consider the following hyperbolic equation with damping (dissipation):

∂2
t u+ γ∂tu = ∆u− f(u) + g(x), u|∂Ω = 0, x ∈ Ω b R

n. (1.21)
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The equation contains a damping term γ∂tu, where γ > 0. We assume that g ∈ L2(Ω)
and the nonlinear function f(v) ∈ C1(R) satisfies the conditions

F (v) ≥ −mv2 − Cm, F (v) =

∫ v

0

f(w)dw, (1.22)

f(v)v − γ1F (v) +mv2 ≥ −Cm, ∀ v ∈ R, (1.23)

where m > 0, γ1 > 0, and m is sufficiently small (m < λ1, where λ1 is the first
eigenvalue of the operator −∆ with zero boundary conditions).

Remark 1.3.2 Conditions (1.22) and (1.23) are valid, for example, if

lim inf
|v|→∞

F (v)

v2
≥ 0, lim inf

|v|→∞

f(v)v − γ1F (v)

v2
≥ 0. (1.24)

Assume that ρ is positive and ρ < 2/(n− 2) when n ≥ 3 and ρ is arbitrary when
n = 1, 2. We suppose also that

|f ′(v)| ≤ C0(1 + |u|ρ). (1.25)

The case ρ < 2/(n−2) for equation (1.21) has been studied in [Ha87, GT87] and in
other references. The case ρ = 2/(n−2) has been considered in [BV89, L87, ArCaH92]
(see also [Fe92, GrP03, PZ06]). We discuss here the case ρ < 2/(n− 2).

Remark 1.3.3 Nonlinear hyperbolic equations of the type (1.21) appear in many
branches of physics, for example, the dynamics of a Josephson junction driven by
a current source is modelled by the sine–Gordon equation of the form (1.21) with

f(u) = β sin u.

Clearly (1.24) is valid. Another important example is encountered in relativistic quan-
tum mechanics with the nonlinear term

f(u) = |u|ρu.
In this case, evidently, F (u) = |u|ρ+2/(ρ + 2) and inequality (1.24) holds with γ1 =
1/(ρ+ 2) (see [T88] and the references therein).

It follows from (1.25) that

|f(v)| ≤ C1(1 + |u|ρ+1). (1.26)

By the Sobolev embedding theorem,

H1
0 (Ω) ⊂ L2(ρ+1)(Ω). (1.27)

For n = 1, 2 this is valid for any ρ, while for n ≥ 3, in view the assumptions made,
2(ρ+1) < 2n/(n−2), where 2n/(n−2) is the critical exponent in the Sobolev theorem.

Now let the function u ∈ L∞(0, T ;H1
0(Ω)) and its derivative ∂tu ∈ L∞(0, T ;L2(Ω)).

Then ∆u ∈ L∞(0, T ;H−1(Ω)) and, due to (1.27), f(u) ∈ L∞(0, T ;L2(Ω)). There-
fore, −γ∂tu + ∆u − f(u) + g(x) ∈ L∞(0, T ;H−1(Ω)) and equation (1.21) can be con-
sidered in the space D′(0, T ;H−1(Ω)) in the distribution sense, in particular, ∂2

t u ∈
L∞(0, T ;H−1(Ω)) (see [Lio69]).

The initial conditions are posed at t = 0:

u|t=0 = u0(x), ∂tu|t=0 = p0(x). (1.28)
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Proposition 1.3.4 If u0 ∈ H1
0 (Ω) and p0 ∈ L2(Ω), then under the above assump-

tions problem (1.21), (1.28) has a unique solution u(t) ∈ C(R+;H1
0(Ω)), ∂tu(t) ∈

C(R+;L2(Ω)) and ∂2
t u(t) ∈ L∞(R+;H−1(Ω)).

We write y(t) = (u(t), ∂tu(t)) = (u(t), p(t)), y0 = (u0, p0) = y(0) for brevity. We
denote by E the space of vector functions y(x) = (u(x), p(x)) with finite energy norm
‖y‖2

E = |∇u|2 + |p|2 in E = H1
0 (Ω) × L2(Ω). Then y(t) ∈ E for every t ≥ 0.

The unique solvability of problem (1.21), (1.28) in the energy space E and properties
of its solutions are proved in [Lio69, BV89, T88, H88]. See also [CV02a], where more
general cases are studied.

Problem (1.21), (1.28) is equivalent to the following system:

{

∂tu = p
∂tp = −γp + ∆u− f(u) + g

{

u|t=0 = u0

p|t=0 = p0

which can be written in a brief form

∂ty = A(y), y|t=0 = y0. (1.29)

Thus, if y0 ∈ E, then problem (1.21), (1.28) has a unique solution y(t) ∈ Cb(R+;E).
This implies that the semigroup {S(t)}, S(t)y0 = y(t) is defined in E.

Proposition 1.3.5 The semigroup {S(t)} corresponding to problem (1.21), (1.28) is
bounded, asymptotically compact and (E,E)-continuous.

We will come back to this assertion in Section 2.6.2 studying more general non-
autonomous hyperbolic equations.

Finally, we conclude that Theorem 1.1.2 and Proposition 1.3.5 imply

Theorem 1.3.2 The semigroup {S(t)} corresponding to (1.21),(1.28) possesses the
global attractor A that is compact in E and coincides with kernel section: A = K(0).

1.3.3 Ginzburg–Landau equation

This equation serves as a model in many areas of physics and mechanics (see, for exam-
ple, [KopHo73, KuTs75]). It appears, for example, in the theory of superconductivity.
The complex Ginzburg–Landau equation is

∂tu = (1 + αi)∆u+Ru− (1 + iβ)|u|2u, x ∈ Ω b R
n. (1.30)

We consider the case of periodic boundary conditions in Ω =]0, 2π[n or zero boundary
conditions u|∂Ω = 0 in an arbitrary domain Ω b Rn. In equation (1.30) u = u1 + iu2,
α, β ∈ R are the dispersion parameters, and R > 0 is the instability parameter. For
u = (u1, u2)> we obtain the system

{

∂tu
1 = ∆u1 − α∆u2 +Ru1 − (|u1|2 + |u1|2) (u1 − βu2)

∂tu
2 = α∆u1 + ∆u2 +Ru2 − (|u1|2 + |u1|2) (βu1 + u2)

. (1.31)

or in a more compact form

∂tu = a∆u+Ru − f(u), (1.32)
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where the matrix a =

(

1 −α
α 1

)

and the function f(u) = |u|2
(

1 −β
β 1

)

u.

Consider the Jacobi matrix of f(u)

fu(u) =

(

3(u1)2 − 2β(u1)(u2) + (u2)2 −β(u1)2 + 2(u2)(u1) − 3β(u2)2

3β(u1)2 + 2(u2)(u1) + β(u2)2 (u1)2 + 2β(u1)(u2) + 3(u2)2

)

. (1.33)

We denote by B the matrix of the bilinear form corresponding to the matrix in the
right-hand side of (1.33):

B =

(

3(u1)2 − 2β(u1)(u2) + (u2)2 β(u1)2 + 2(u2)(u1) − β(u2)2

β(u1)2 + 2(u2)(u1) − β(u2)2 (u1)2 + 2β(u1)(u2) + 3(u2)2

)

.

The diagonal elements of B are positive if |β| ≤
√

3. Moreover,

detB = (3 − β2)
(

(u1)2 + (u2)2
)

= (3 − β2)|u|4

is also positive. Thus, in this case, the matrix B is positive definite. Therefore

fu(u)v · v ≥ 0 ∀u,v ∈ R
2, (1.34)

if |β| ≤
√

3.
We shall use the spaces H = L2(Ω; C), V = H1

0 (Ω; C), and L4 = L4(Ω; C). The
Cauchy problem for equation (1.32) with initial data

u|t=0 = u0(x), u0(·) ∈ H, (1.35)

has a unique weak solution u(t) := u(x, t) such that

u(·) ∈ C(R+;H) ∩ Lloc
2 (R+;V) ∩ Lloc

4 (R+;L4), (1.36)

and the function u(t) satisfies equation (1.32) in the sense of distributions of the space
D′(R+;H−r), where H−r = H−r(Ω; C) and r = max{1, n/4} (recall that n = dim(Ω)).
In particular, ∂tu(·) ∈ L2(0,M ;H−1) + L4/3(0,M ;L4/3) for any M > 0. The existence
of such solution u(t) is proved, for example, using the Galerkin approximation method
(see, e.g. [T88, BV89, CV02a]). The proof of the uniqueness theorem is also standard
and relies on inequality (1.34). (We note that, if (1.34) does not hold, the uniqueness
theorem for n ≥ 3 and for arbitrary values of the dispersion parameters α and β is not
proved yet, see [Mi02, Mi98, Z00] for important partial uniqueness results).

Any solution u(t), t ≥ 0, of system (1.32) satisfies the following differential identity:

1

2

d

dt
‖u(t)‖2 + ‖∇u(t)‖2 + ‖u(t)‖4

L4
− R‖u(t)‖2 = 0, ∀t ≥ 0, (1.37)

where the real function ‖u(t)‖2 is absolutely continuous for t ≥ 0. Here ‖ · ‖ denotes
the usual L2-norm in H.

The proof of (1.37) is analogous to the proof of the corresponding identity for weak
solutions of the reaction-diffusion systems considered in [CV96b, CV02a, CV05].

Equation (1.32) generate a semigroup {S(t)} in H. This semigroup is (H,H)-
continuous and compact (see, e.g., [T88, CV02a]). By Theorem 1.1.1, there exists
a global attractor A of this semigroup. The global attractor describes the long time

14



behaviour of solutions of the Ginzburg–Landau equation. It is known that the dynam-
ics of this system is chaotic for certain values of the parameters, for example, for αβ < 0
(see [Ba–Gis90, D–Ni88]). However, in Section 1.4.2, we show that the dimension of
the global attractor of the Ginzburg–Landau equation is finite.

Consider the case |β| >
√

3, where condition (1.34) is not longer valid. For low
dimensions n = 1, 2 it is still possible to construct a semigroup in H = (L2(Ω))2

which has a compact global attractor, see [GHe87, T88]. For n ≥ 3 one can prove the
existence of a global attractor in Lp = (Lp(Ω))2, p > n, if (α, β) ∈ P(n), where P(n)
is a subset of C, see [D–Ni88, DGiLe94, Mi97, Mi02] for more details.

Thus we see that without condition (1.34) provided that |β| ≤
√

3 it is more
difficult to construct a semigroup and to study its global attractor. Fortunately, this
obstacle can be eliminated by using another approach that is based on the study of
the so-called trajectory attractors (see [CV02a, CV05]). In particular, the method of
trajectory attractors works for the Ginzburg–Landau equation with arbitrary n, α, β.

Inhomogeneous Ginzburg–Landau equation

∂tu = (1 + αi)∆u+Ru− (1 + iβ)|u|2u+ g(x), g ∈ L2(Ω; C),

is also encountered in applications, where, e.g., g(x) = δ exp(ik · x), k ∈ Zn, δ > 0.
This equation also generates a semigroup, and Theorem 1.1.1 is applicable.

1.4 Dimension of global attractors

In this section, we present some known results concerning the dimension of global
attractors of autonomous evolution equations. These questions have been studied in
a number of papers and the corresponding upper and lower dimension estimates have
been summend up in [T88] and [BV89] (see also the reviews [Ch93, B03]).

1.4.1 Dimension of invariant sets

We start with definition of the Kolmogorov ε-entropy of a compact set X in a Hilbert
(or Banach) space E. We denote by Nε(X,E) = Nε(X) the minimum number of open
balls in E with radius ε which is necessary to cover X :

Nε(X) :=

{

minN | X ⊂
N
⋃

i=1

B(xi, ε)

}

.

Here B(xi, ε) = {x ∈ E | ‖x− xi‖E < ε} is the ball in E with center xi and radius ε.
Since the set X is compact, we see that Nε(X) < +∞ for any ε > 0.

Definition 1.4.1 The Kolmogorov ε-entropy of a set X in the space E is the number

Hε(X,E) := Hε(X) := log2Nε(X). (1.38)

For particular sets X, the problem is to study the asymptotic behavior of the quan-
tity Hε(X) as ε→ 0+. This characteristic of compact sets was originally introduced by
A.N.Kolmogorov and was studied in the joint work with V.M.Tikhomirov (see [KTi59]).
In this paper, the ε-entropy of various classes of functions was investigated. Moreover,
an important notion of the entropy dimension of a compact set was also defined. This
dimension is now often called the fractal dimension.
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Definition 1.4.2 The (upper) fractal dimension of a compact set X in the space E
is the number

dF (X,E) := dF (X) := lim sup
ε→0+

Hε(X)

log2 (1/ε)
. (1.39)

The fractal dimension of a compact set in an infinite dimensional space can be
infinite. However, if it is known that 0 < dF (X) < +∞, then Hε(X) ≈ dF (X) log2

(

1
ε

)

,

and therefore, in this case, it is needed Nε(X) ≈
(

1
ε

)dF (X)
points to approximate the

set X with precision ε.
Another important characteristic of a compact set X is the Hausdorff dimension

dH(X) := inf {d | µ(X, d) = 0} ,

where µ(X, d) = inf
∑

rd
i , and the infimum is taken over all the coverings of the set X

by balls B(xi, ri) with radii ri ≤ ε (see [Thi92]). It is apparent that dH(X) ≤ dF (X)
and there are examples of sets such that dH(X) = 0 but dF (X) = +∞. In the
present paper, we shall consider only the fractal dimension of compact sets, because
this dimension is closely connected with ε-entropy of these sets.

Remark 1.4.1 The fractal and Hausdorff dimensions are very fruitful in the study
of the structure of various “non-smooth” sets, for example, the self-similar sets or the
fractals. The simplest example of such a set is the Cantor set K on the segment [0, 1],
for which dF (K) = dH(K) = log3 2 < 1. The fractal (and Hausdorff) dimension of a
compact smooth manifold is equal to its usual dimension, i.e., it is integer. However,
the example of the Cantor set shows that the dimension can be non-integer.

We now study the ε-entropy and the fractal dimension of strictly invariant sets and
global attractors of autonomous evolution equations of the form (1.7). Let the Cauchy
problem (1.7), (1.8) generates a semigroup {S(t)} acting in a Hilbert space E (see
Section 1.1). Consider a compact set X in E, X b E. Let the set X be strictly invariant
with respect to {S(t)}, that is, S(t)X = X for all t ≥ 0. (For example, X = A, where
A is the global attractor of the semigroup.) We assume that the semigroup {S(t)} is
uniformly quasidifferentiable on X in the following sense: for any t ≥ 0 and for every
u ∈ X there is a linear bounded operator L(t, u) : E → E (quasidifferential) such that

‖S(t)v1 − S(t)v − L(t, u)(v1 − v)‖E ≤ γ(‖v1 − v‖E, t)‖v1 − v‖E (1.40)

for all v, v1 ∈ X and the function γ = γ(ξ, t) → 0+ as ξ → 0+ for every fixed t ≥ 0.
We assume that the linear operators L(t, u) are generated by the variational equation
for (1.7) that we present in the form

∂tv = Au(u(t))v, v|t=0 = v0 ∈ E, (1.41)

where u(t) = S(t)u0, u0 ∈ X, and Au(·) is the formal derivative in u of the operator
A(·) in (1.7) and the domain E1 of the operator Au(u(t)) is dense in E. We assume
that, for every u0 ∈ X, the linear problem (1.41) is uniquely solvable for all v0 ∈ E.
By our assumption, the quasidifferentials L(t, u0) in (1.40) act on a vector v0 by the
role L(t, u0)v0 = v(t), where v(t) is the solution of equation (1.41) with initial data v0.
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Let j ∈ N and let L : E1 → E be a linear (possibly, unbounded) operator. The
following number is called the j-trace of the operator L:

TrjL := sup
{ϕi}j

i=1

j
∑

i=1

(Lϕi, ϕi), (1.42)

where the infimum is taken over all the orthonormal in E families of vectors {ϕi}i=1,...,j

belonging to E1 and (ψ, ϕ) denotes the scalar product in E of vectors ψ and ϕ.

Definition 1.4.3 We set

q̃j := lim sup
T→+∞

sup
u0∈X

1

T

T
∫

0

TrjAu(u(t))dt, j = 1, 2, . . . , (1.43)

where u(t) = S(t)u0.

Theorem 1.4.1 We assume that the semigroup {S(t)} acting in E has a compact,
strictly invariant set X and is uniformly quasidifferentiable on X. Let the following
inequalities hold:

q̃j ≤ qj, j = 1, 2, 3, . . . ,

where the numbers q̃j are defined in (1.43). We assume that the function qj is concave
in j (like ∩). Let m be the smallest integer such that qm+1 < 0, (then, clearly, qm ≥ 0).
We set

d = m +
qm

qm − qm+1
. (1.44)

Then, the set X has the finite fractal dimension and

dF (X) ≤ d. (1.45)

Besides, for every δ > 0, there exist real numbers η ∈ (0, 1) and ε0 > 0 such that the
following inequality holds for the ε-entropy Hε(X) of the set X:

Hε(X) ≤ (d+ δ) log2

(

ε0

ηε

)

+ Hε0(X), ∀ε < ε0. (1.46)

The complete proof of this theorem is given in [CV02a]. The proof is based on the
study of the volume contraction properties under the action of the quasidifferentials of
the semigroup operators. Estimates for the Hausdorff dimension of invariant sets that
are similar to (1.45) were originally proved in [DuO80] for a finite dimensional space
E and corresponding results were generalized for an infinite dimensional space E in
[CoFT85, T88] (see also [Il82, BV83a, BV89]).

We note that estimate (1.46) for the ε-entropy of A follows from (1.45) and so it
may appear that it gives no new information concerning the global attractor. However,
studying non-autonomous equations, where global attractors have infinite dimension in
a generic case (see Chapter 3), estimates for the ε-entropy of global attractors become
more informal and even constitutive. This is why we include estimate (1.46) to this
key theorem.
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Remark 1.4.2 In applications, the numbers qj usually have the form qj = ϕ(j), where
ϕ = ϕ(x), x ≥ 0, is a smooth concave function. Consider its root d∗ : ϕ(d∗) = 0.
Evidently, d ≤ d∗, since ϕ is a concave function. When d is large, then the root d∗ is
very close to d given by the formula (1.44). In some cases, d∗ is expressed in a simpler
way than d. So, in particular examples we shall use d∗ instead of d as the upper bound
in (1.45) for the fractal dimension of attractors and, in this case, in (1.46) we can take
δ = d∗ − d if this value is positive.

In the recent work [CI04], the estimates (1.46) and (1.45) has been proved for the
exact values qj = q̃j without the concavity assumption for the function q̃j in j. The
number

dL := m +
q̃m

q̃m − q̃m+1

is conventionally called the (global) Lyapunov dimension of the set X (see [KapY79,
EdFT91]). In the works [DuO80, CoF85, T88], it was proved that dH(X) ≤ dL(X). In
[CI04] it was shown that dF (X) ≤ dL(X). The similar result was obtained earlier in
[BlIl99], namely, it was proved that if q̃m < 0 for some m ∈ N, then dF (X) ≤ m (see
also [Hu96]).

The books [BV89, T88, H88] contains many examples of evolution equations of
mathematical physics and mechanics. For all the problems, the global attractors were
constructed and upper estimates were proved for the Hausdorff and fractal dimension of
these attractors. In the next sections, we present fractal dimensions estimates for global
attractors of autonomous equations of mathematical physics considered in Section 1.3.

1.4.2 Dimension estimates for autonomous equations

2D Navier–Stokes system

We consider the 2D Navier–Stokes system

∂tu = −νLu− B(u, u) + g, (∇, u) = 0, u|∂Ω = 0, (1.47)

u|t=0 = u0, u0 ∈ H, (1.48)

where g ∈ H. Problem (1.47), (1.48) defines the semigroup {S(t)} acting in H (see
Section 1.3.1). By Theorem 1.3.1, this semigroup has the global attractor A and the
set A is bounded in V and compact in H.

Theorem 1.4.2 The fractal dimension of the global attractor A of problem (1.47),
(1.48) satisfies the estimate

dF A ≤ c
|g||Ω|
ν2

, (1.49)

where c depends on the shape of Ω (c(λΩ) = c(Ω) for all λ > 0).
The Kolmogorov ε-entropy of A satisfies the inequality

Hε(A) ≤ c
|g||Ω|
ν2

log2

(

ε0

ηε

)

+ Hε0(A), ∀ε < ε0, (1.50)

where η and ε0 are some small positive numbers.
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Proof. The semigroup {S(t)} is uniformly quasidifferentiable on A in H and its
quasidifferential is the operator L(t, u0)v0 = v(t), v0 ∈ H, where v(t) is the solution of
the corresponding variation equation

∂tv = −νL− B(u(t), v) − B(v, u(t)) := Au(u(t))v, v|t=0 = v0.

(See [BV83a, BV89]). We have to estimate the j-trace of Au(u(t)). Note that for all
v ∈ V we have

(Au(u(t))v, v) = ν‖v‖2 − (B(v, u(t)), v), (1.51)

taking into account that (B(u, v), v) = 0 for u, v ∈ V.
Let ϕ1, . . . , ϕj ∈ V be an arbitrary orthonormal family in H. Using (1.51), we have

j
∑

i=1

(Au(u(t))ϕi, ϕi) = −ν
j
∑

i=1

|∇ϕi|2 −
j
∑

i=1

(B(ϕi, u(t)), ϕi)

= −ν
j
∑

i=1

|∇ϕi|2 −
∫

Ω

j
∑

i=1

2
∑

k,l=1

ϕk
i ∂xk

ul(t)ϕl
idx

≤ −ν
j
∑

i=1

|∇ϕi|2 +

∫

Ω

ρ(x)|∇u(t)|dx ≤ −ν
j
∑

i=1

|∇ϕi|2 + |ρ||∇u(t)|, (1.52)

where ρ(x) =
∑j

i=1 |ϕi(x)|2 (see [CoFT85, T88]).
Since the functions from V vanish on ∂Ω, we extend these functions by zero outside

Ω. Then we obtain the functions ϕi(x), x ∈ R2 belonging to (H1(R2))
2

that are
orthonormal in (L2(R

2))
2
. The following result from [LibTh76] is extremely essential.

Lemma 1.4.1 (Lieb–Thirring inequality) Let ϕ1, . . . , ϕj ∈ (H1(Rn))
m

be an or-
thonormal family of vectors in (L2(R

n))m . Then for ρ(x) =
∑j

i=1 |ϕi(x)|2 the following
inequality holds:

∫

Rn

(ρ(x))1+2/n dx ≤ Cm,n

j
∑

i=1

∫

Rn

|∇ϕi|2dx, (1.53)

where Cm,n depends only on m and n.

Remark 1.4.3 It was proved in [I93] that for m = 2, n = 2 in the case divϕi = 0 the
following inequality holds: C2,2 ≤ 2.

By the variational principle

j
∑

i=1

|∇ϕi|2 ≥ λ1 + λ2 + . . .+ λj, (1.54)

where λ1, λ2, . . . are the ordered eigenvalues of the operator L. It is known that λi ≥
C0|Ω|−1i. Therefore we have

λ1 + λ2 + . . .+ λj ≥ C2
j2

|Ω| , λ1 ≥
C1

|Ω| , (1.55)
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where C0, C1, and C2 are dimensionless constants that depend on the shape of Ω (see,
for example, [Me78]). Using (1.53) with C2,2 = 2, (1.54), and (1.55), we obtain from
(1.52)

−ν
j
∑

i=1

|∇ϕi|2 +

(

2

j
∑

i=1

|∇ϕi|2
)1/2

|∇u(t)|

≤ −ν
2

j
∑

i=1

|∇ϕi|2 +
1

ν
|∇u(t)|2 ≤ −νC2j

2

2|Ω| +
1

ν
|∇u(t)|2.

Thus,

Trj(Au(u(t)) ≤ −νC2j
2

2|Ω| +
1

ν
|∇u(t)|2.

Then using the estimate
∫ t

0

‖u(s)‖2ds ≤ |u(0)|2
ν

+
|g|2
ν2λ1

t

(see (1.17)) we find that

q̃j = lim sup
T→∞

sup
u0∈A

1

T

∫ T

0

Trj(Au(u(t))dt ≤ −νC2j
2

2|Ω| + lim
T→∞

1

ν2T
sup
u0∈A

|u0|2 +
|g|2
ν3λ1

.

Note that supu0∈A |u0|2 ≤ C3, therefore

q̃j ≤ −νC2j
2

2|Ω| +
|g|2
ν3λ1

(1.56)

and using the second estimate for λ1 in (1.55), we find that

q̃j ≤ −νC2j
2

2|Ω| +
|g|2|Ω|
ν3C1

=: ϕ(j) = qj.

We note that the function ϕ(j) is concave in j (like ∩). Looking for the root d∗ of the

equation ϕ(d) = 0, we find d∗ =
√

2
C1C2

|g||Ω|
ν2 . Therefore (1.50) and (1.49) immediately

follow from Theorem 1.4.1 with c =
√

2
C1C2

(see also Remark 1.4.2). �

Remark 1.4.4 Using (1.56), estimate (1.49) can be written in the form:

dF A ≤ c′G, (1.57)

where G = |g|
ν2λ1

is the Grashof number and c′ = 2
√

|Ω|λ1/C2 depends on the shape of
Ω. This estimate was proved in [CoF85, CoFT85] (see also [T88]).

Remark 1.4.5 It was proved in [I96a] that

C1 ≥ 2π, C2 ≥ π,

for every domain Ω with finite measure. Therefore, the constant c in (1.49) satisfies
c ≤ 1/π and for c′ in (1.57) we have that c′ ≤ 2

√

|Ω|λ1/π. These estimates were

improved in [CI04]: c ≤ (2π3/2)−1 and c′ ≤
√

|Ω|λ1/(
√

2π).
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Corollary 1.4.1 Let g ∈ H. Then

dF A ≤ 1√
2π

(|Ω|λ1)
1/2 |g|

ν2λ1

≤ 1

2π3/2

|g||Ω|
ν2

. (1.58)

Observe that the last estimate in (1.58) contains only the explicit physical param-
eters of system (1.47) and the estimate c ≤ (2π3/2)−1 seems the best up-to-date.

Remark 1.4.6 It was proved in Proposition 1.3.3 that A = {z} and, thereby, dF A =

0 if G = |g|
ν2λ1

< 1
c20
. Since λ1 ≥ 2π

|Ω| the last inequality holds if |g||Ω|
ν2 < 2π

c20
. Using the

expression for c20 given in Remark 1.3.1: c20 =
(

8
27π

)1/2
, we conclude that A = {z} and

dF A = 0 provided that |g||Ω|
ν2 <

(

27π3

2

)1/2

≈ 20. 46.

Remark 1.4.7 Estimates (1.58) and (1.49) are valid for the 2D Navier–Stokes systems
in unbounded domains with finite measure (see [I96a] for more details).

Remark 1.4.8 For the 2D Navier–Stokes system (1.47) in Ω = [0, 2π]2 with periodic
boundary conditions, estimate (1.57) was improved in [CoFT88], see also [T88]. It was
shown there that

dF A ≤ c′′G2/3(1 + logG), (1.59)

where G = |g|
λ1ν2 (note that λ1 = 1 in this case). Estimate (1.59) is optimal in some

sense (see [Liu93, Zi97]).

Dissipative wave equation

We study the equation

∂2
t u+ γ∂tu = ∆u− f(u) + g(x), u|∂Ω = 0, x ∈ Ω b R

3, (1.60)

where γ > 0 (see Section 1.3.2). For brevity, we consider the case n = 3. We assume
that g( · ) ∈ L2(Ω), f(v) ∈ C2(R; R), and f satisfies conditions (1.22), (1.23), and
(1.25) with ρ < 2. Moreover we assume that

|f ′(v1) − f ′(v2)| ≤ C(|v1|2−δ + |u2|2−δ + 1)|v1 − v2|δ, 0 ≤ δ ≤ 1. (1.61)

The Hilbert space E = H1
0 (Ω) × L2(Ω) is the phase space for this equation. We

also denote the space E1 = H2(Ω) ×H1
0 (Ω) with norm ‖y‖E1 = (‖u‖2

2 + ‖p‖2
1)

1/2
.

We consider the semigroup {S(t)} in E generated by equation (1.61). By Theorem
1.3.2, this semigroup has the global attractor A b E. In the works [BV89, T88] it was
proved that the set A is bounded in E1 :

‖w‖E1 ≤M, ∀w ∈ A,

where the constant M is independent of w. Then by the Sobolev embedding theorem

‖u(·)‖C(Ω) ≤M1, ∀w = (u(·), p(·)) = w(·) ∈ A. (1.62)

We estimate dFA using Theorem 1.4.1 and the technique described in [GT87] (see
also [T88, CV02a]).
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Theorem 1.4.3 For the fractal dimension of the global attractor A of equation (1.60),
the following estimate takes place

dFA ≤ C

α3
, (1.63)

where α = min {γ/4, λ1/(2γ)} and C = C(M1) (see (1.62)).
For the ε-entropy of A, the following estimate holds:

Hε(A) ≤ C(M1)

α3
log2

(

ε0

ηε

)

+ Hε0(A), ∀ε < ε0, (1.64)

where η, ε0 are some positive numbers.

Proof. Following [GT87, T88], it is convenient to introduce the new variables

w = (u, v) = Rαy = (u, ut + αu), ut = ∂tu, α = min {γ/4, λ1/(2γ)} ,

where λ1 is the first eigenvalue of the operator −∆u, u|∂Ω = 0. Using these variables,
equation (1.60) is equivalent to the following system:

∂tw = Lαw −G(w) =: Aαw, w|t=0 = w0, (1.65)

where w0 ∈ E,

Lα =

(

−αI I
∆ + α(γ − α) −(γ − α)I

)

, G(w) = (0, f(u) − g(x)). (1.66)

Condition (1.61) implies that the operators {S(t)} are uniformly quasidifferentiable
on A and the quasidifferentials L(t, w0)z0 = z(t) satisfy the variation equation of
problem (1.65):

∂tz = Lαz −Gw(w)z =: Aαw(w(t))z, z|t=0 = z0, (1.67)

where z = (r, q) and Gw(w(t))z = (0, f ′(u(t))r) (see, e.g., [T88]). We have to estimate
the following sum:

j
∑

i=1

(Aαw(w(t))ζi, ζi)E. (1.68)

Here ζi = (ri, qi) is an arbitrary orthonormal family in E. We estimate the right hand
side of (1.68):

(Aαw(w(t))ζi, ζi)E = (Lαζi, ζi) − (f ′(u)ri, qi) ≤ −(α/2)‖ζi‖2
E +

C0(M1)‖ri‖0‖qi‖0 ≤ −α/4
(

‖ri‖2
1 + ‖qi‖2

0

)

+ (C1(M1)/α)‖ri‖2
0. (1.69)

The parameter α is chosen in such a way that the operator Lα is negative:

(Lαζi, ζi) ≤ −α/2‖ζi‖2
E.

Observe that it was essential that

sup {‖f ′(u(t))‖Cb
| (u(·), ∂tu(·)) = w(·) ∈ A t ∈ R} ≤ C0(M1) (1.70)
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(see (1.62)). System ζi is orthonormal in E, therefore, it follows from (1.69) that

j
∑

i=1

(Aαw(w(t))ζi, ζi)E ≤ −(α/4)j + (C2
0 (M1)/α)

j
∑

i=1

‖ri‖2
0

≤ −(α/4)j + (C2
0 (M1)/α)

j
∑

i=1

λ−1
i ≤ −(α/4)j + (C1(M1)/α)j1/3, (1.71)

where C1(M1) = c1C
2
0(M1) and λi, i = 1, ..., j, are the first j eigenvalues of the operator

−∆u, u|∂Ω = 0, written in non-decreasing order. It is known that λi ≥ c0i
2/3, therefore,

∑j
i=1 λ

−1
i ≤ c1j

1/3. In the second inequality of (1.71), we have used the inequality

j
∑

i=1

‖ri‖2
0 ≤

j
∑

i=1

λ−1
i

proved in [T88]. Thus,

TrjAαw(w(t)) ≤ ϕ(j) = −(α/4)j + (C1(M1)/α)j1/3,

where the function ϕ(x) is concave. The root of ϕ is

d∗ =
8C1(M1)

3/2

α3
=
C(M1)

α3
, where C(M) = 8C1(M1)

3/2.

Finally we infer (1.64) and (1.63) from Theorem 1.4.1 and Remark 1.4.2.
Consider the sine-Gordon equation with f(u) = β sin(u). It is clear that the constant

C0(M1) = β in inequality (1.70) and, therefore, C1(M1) = c1β
2, that is, C(M1) =

8c
3/2
1 β3 = cβ3. Thus estimates (1.64) and (1.63) for the sine-Gordon equation has the

form

dF (A) ≤ c
β3

α3
, (1.72)

Hε(A) ≤ c
β3

α3
log2

(

ε0

ηε

)

+ Hε0(A), ∀ε < ε0,

where the constant c depends on Ω.

Ginzburg–Landau equation

We consider the inhomogeneous equation similar to (1.30) from Section 1.3.3

∂tu = ν(1 + αi)∆u+Ru− (1 + iβ)|u|2u+ g(x), x ∈]0, 2π[3=: T
3, (1.73)

with periodic boundary conditions in T3 and with g(x) = g1(x) + ig2(x) ∈ L2(T
3; C).

Here ν is a positive parameter. For simplicity, we take n = 3. We assume that

|β| ≤
√

3.

Then equation (1.73) generates a semigroup {S(t)} acting in H = (L2(T
3))

2
and having

the global attractor A that is compact in H (see [T88, CV02a]).
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We rewrite equation (1.73) in a vector form (1.32)

∂tu = νa∆u+Rv − f(u) + g(x), (1.74)

where a =

(

1 −α
α 1

)

, f(v) = |v|2
(

1 −β
β 1

)

v, and g(x) = (g1(x), g2(x))>. In

[BV83a], it is proved that the semigroup {S(t)} is uniformly quasidifferentiable on A
and the corresponding variational equation reads

∂tv = νa∆v+Rv − fu(u)v, v|t=0 = v0 ∈ H, (1.75)

where the matrix fu(u) is given in (1.33). It follows from (1.34) that

〈νa∆v +Rv − fu(u)v,v〉 = −ν‖∇v‖2 +R‖v‖2 − 〈fu(u)v,v〉
≤ −ν‖∇v‖2 +R‖v‖2, ∀v ∈ H2. (1.76)

To apply Theorem 1.4.1 and to estimate dF (A) we have to study the j-trace of the
operator in the right-hand side of (1.75). Using (1.76) we have

j
∑

i=1

(Au(u(t))ϕi, ϕi) =

j
∑

i=1

−ν‖∇ϕi‖2 +R‖ϕi‖2 − 〈fu(u)ϕi, ϕi〉

≤
j
∑

i=1

−ν‖∇ϕi‖2 +R‖ϕi‖2 = −ν
j
∑

i=1

‖∇ϕi‖2 +Rj, (1.77)

where {ϕi, i = 1, . . . , j} is an arbitrary set of functions from V = (H1(T3))2 that is
orthonormal in H.

By the variational principle

j
∑

i=1

|∇ϕi|2 ≥ λ1 + λ2 + . . .+ λj, (1.78)

where λ1, λ2, . . . are the eigenvalues of the operator −∆ in H. It is well known that the
eigenvalues of this operators have the form k2

1 + k2
2 + k2

3, where (k1, k2, k3) ∈ (Z+)3 .
Therefore, λi ≥ C0i

2/3 and

λ1 + λ2 + . . .+ λj ≥ C1j
5/3 (1.79)

for some constants C0 and C1. Using (1.78) and (1.79) in (1.77), we obtain

TrjAu(u(t)) ≤ −νC1j
5/3 +Rj = ϕ(j), ∀j = 1, 2, . . . (1.80)

The function ϕ(x) = −νC1x
5/3 + Rx is concave and it root d∗ =

(

R
C1ν

)3/2

. Thus, we

have proved

Theorem 1.4.4 The fractal dimension of the global attractor A of equation (1.73)
admits the estimate

dF (A) ≤
(

R

C1ν

)3/2

, (1.81)
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where C1 is an absolute constant taken from (1.79) (C1 can be estimated explicitly, see,
e.g. [LiYa83, CV02a]).

The ε-entropy of A satisfies the inequality

Hε(A) ≤
(

R

C1ν

)3/2

log2

(

ε0

ηε

)

+ Hε0(A), ∀ε < ε0, (1.82)

where η and ε0 are some small positive numbers.
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Chapter 2

Attractors of non-autonomous
equations

In this chapter, we consider general processes and we study their global attractors. The
notion of a process is used to describe the behaviour of non-autonomous dynamical
systems. A process is a generalization of the notion of a semigroup that play a key role
in the study of autonomous dynamical systems. Non-autonomous dynamical systems
and their global attractors are discussed in the books A.Haraux [Ha91], V.V.Chepyzhov
and M.I.Vishik [CV02a] (see also D.N.Cheban and D.S.Fakeeh [CheFa94]).

In Section 2.1, we study processes {U(t, τ), t ≥ τ} and their uniform global at-
tractors. Recall, that processes are generated by non-autonomous evolution equations
of mathematical physics, when, for example, an external force or some other terms
of equation depend explicitly on time t. If the Cauchy problem for this equation is
well-posed, then the corresponding process {U(t, τ)} maps the value of a solution u(τ)
at time τ ∈ R into the value of this solution u(t) at time t ≥ τ. We give the defini-
tion of a general process {U(t, τ)} and we define notions of uniformly absorbing and
attracting sets of a process. We study the main properties of ω-limit sets for bounded
sets. Then we define the uniform global attractor A of a process {U(t, τ)}. We prove
the theorem on the existence of a uniform global attractor of a process using the notion
of the ω-limit set. We also define the kernel K of a process and study its properties.

In Section 2.2, we consider uniform and non-uniform global attractors of a pro-
cess and compare their properties. In particular, we present an example of a non-
autonomous equation given by A.Haraux. This example shows that the uniform global
attractor can be larger than the non-uniform one. We also study periodic process for
which uniform and non-uniform global attractors always coincide.

In Section 2.4, we introduce the notion of a time symbol {σ(t), t ∈ R} of a non-
autonomous equation. Roughly speaking, the time symbol is the collection of all terms
of the equation that depend on time. We define the hull H(σ) of a symbol σ. We also
define the notion of a translation compact function. We mostly study non-autonomous
equations having translation compact symbols σ(t). We present translation compact-
ness criterions in various topological spaces that are used in the sequel.

In Section 2.5, we formulate the main theorem on the existence and the structure
of the uniform global attractor of a process {(Uσ(t, τ} of a non-autonomous equation
with translation compact symbol σ(t).

In Section 2.6.1, we study the uniform global attractor of the non-autonomous 2D

26



Navier–Stokes system with translation compact external force. A special attention
is given to the case, where the system has a unique bounded complete solution that
attracts any other solution as t → +∞ with exponential rate. In Sections 2.6.2 and
2.6.3, we consider analogous problems for the non-autonomous hyperbolic equation
with dissipation and for the non-autonomous complex Ginzburg–Landau equation with
translation compact terms.

2.1 Processes and their uniform global attractors

Let E be a complete metric space or a Banach space and let a two-parameter family
of operators {U(t, τ), τ ∈ R, t ≥ τ}, U(t, τ) : E → E, be given.

Definition 2.1.1 A family of mappings {U(t, τ)} := {U(t, τ), τ ∈ R, t ≥ τ} in E is
said to be a process if

1. U(τ, τ) = Id for all τ ∈ R, where Id is the identity operator;

2. U(t, s) ◦ U(s, τ) = U(t, τ) for all t ≥ s ≥ τ, τ ∈ R.

As in Chapter 1, by B(E) we denote the family of all bounded (in the norm of E)
sets in E. The process {U(t, τ)} is called (E,E)-bounded , if U(t, τ)B ∈ B(E) for every
B ∈ B(E), for all τ ∈ R, and for all t ≥ τ. The process {U(t, τ)} is called uniformly
(E,E)-bounded if for every B ∈ B(E) there exists B1 ∈ B(E) such that U(t, τ)B ⊂ B1

for all τ ∈ R, t ≥ τ.
The following two notions describe dissipativity properties for non-autonomous dy-

namical systems. A set B0 ⊂ E is said to be uniformly (w.r.t. τ ∈ R) absorbing for
the process {U(t, τ)} if for any set B ∈ B(E) there is a number h = h(B) such that

U(t, τ)B ⊆ B0 for all t and τ, t− τ ≥ h. (2.1)

A set P ⊂ E is said to be uniformly (w.r.t. τ ∈ R) attracting for the process {U(t, τ)}
if, for every ε > 0, the set Oε(P ) is uniformly absorbing for this process (here and
below Oε(M) denotes an ε-neighborhood of a set M in the space E), that is, for every
bounded set B ∈ B(E), there exists a number h = h(ε, P ) such that

U(t, τ)B ⊆ Oε(P ) for all t and τ, t− τ ≥ h. (2.2)

Property (2.2) can also be formulated in the following manner: for every set B ∈ B(E)

sup
τ∈R

distE (U (τ + h, τ)B,P ) → 0 (h→ +∞) . (2.3)

Here distE (X, Y ) denotes the Hausdorff distance from the set X to the set Y in the
space E (see (1.3)).

A process having a compact uniformly absorbing set is called uniformly compact and
a process having a compact uniformly attracting set is called uniformly asymptotically
compact.

We now define the notion of the uniform global attractor A of a process {U(t, τ)}.
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Definition 2.1.2 A set A ⊂ E is called the uniform (w.r.t. τ ∈ R) global attractor of
a process {U(t, τ)} if it is closed in E, is uniformly attracting for the process {U(t, τ)}
and satisfies the following property of minimality : A belongs to any closed uniformly
attracting set of the process.

It is easy to see that any process has at most one uniform global attractor. The
notion of a uniform global attractor was introduced in [Ha91] (see also [CV92a, CV93d,
CV94a, CV02a]).

For an arbitrary set B ∈ B(E), we define the uniform ω-limit set ω(B):

ω(B) =
⋂

h≥0

[

⋃

t−τ≥h

U(t, τ)B

]

E

. (2.4)

In (2.4), the square brackets [ · ]E denote the closure in the space E and the union
⋃

t−τ≥h is taken for all t, τ such that τ ∈ R and t ≥ τ + h (compare with (1.4)).

Proposition 2.1.1 If a process {U(t, τ)} in E has a compact uniformly attracting set
P , then for any B ∈ B(E)

(i) ω(B) 6= ∅, ω(B) is compact in E, and ω(B) ⊆ P ;

(ii) supτ∈R distE(U(h + τ, τ)B, ω(B)) → 0 (h→ +∞);

(iii) if Y is closed and supτ∈R distE(U(h + τ, τ)B, Y ) (h→ +∞), then
ω(B) ⊆ Y.

Proof. From the definition (2.4) of ω(B), it follows that

y ∈ ω(B) ⇔
{

there are sequences {xn} ⊆ B, {τn} ⊆ R, and {hn} ⊂ R+

such that hn → +∞ and U(τn + hn, τn)xn → y (n→ ∞).
(2.5)

(i) Let us show that ω(B) 6= ∅. For any fixed τ ∈ R and x ∈ B, we consider an
arbitrary positive sequence {hn}, hn → +∞ (n → ∞). According to the uniformly
attracting property (2.3), distE(U(τ + hn, τ)x, P ) → 0 (n → ∞), that is, for some
sequence {yn} ⊆ P

‖U(τ + hn, τ)x− yn‖E → 0 (n→ ∞).

The set P is compact, therefore we can extract from {yn} a subsequence {yn′} converg-
ing to a point y ∈ P . Hence U(τ + hn′ , τ)x → y (n′ → ∞). Having (2.5), we deduce
that the constructed point y ∈ ω(B), that is, ω(B) 6= ∅. Let us verify that ω(B) ⊆ P .
Let y ∈ ω(B) and let {xn} ⊆ B, {τn} ⊆ R, {hn} ⊂ R+ be sequences defined in (2.5).
Using the uniform attracting property of P (see (2.3)), we have

distE(U(τn + hn, τn)xn, P ) → 0 (n→ ∞).

Therefore distE(y, P ) = 0. The set P is closed, that is, y ∈ P for all y ∈ ω(B) and
ω(B) ⊆ P . This implies also that ω(B) is compact, since ω(B) is closed by definition
(see (2.4)).
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(ii) Assume the converse: for some B ∈ B(E),

sup
τ∈R

distE(U(τ + h, τ)B, ω(B)) 6→ 0 (h→ +∞).

That is, for some sequences {xn} ⊆ B, {τn} ⊆ R, {hn} ⊂ R+ (hn → +∞) we have

distE(U(τn + hn, τn)xn, ω(B)) ≥ δ > 0 ∀n ∈ N. (2.6)

The uniform attracting property of P implies that

distE(U(τn + hn, τn)xn, P ) → 0 (n→ ∞),

So once again, we find a sequence {yn} ⊂ P such that

‖U(τn + hn, τn)xn − yn‖E → 0 (n→ ∞).

The set P is compact and we may assume by refining that yn → y (n → ∞) for
some y ∈ P, that is,

U(τn + hn, τn)xn → y (n→ ∞),

and it follows from (2.5) that y ∈ ω(B). However, (2.6) implies that distE(y, ω(B)) ≥
δ > 0, which is a contradiction.

(iii) Let Y be a closed uniformly attracting set of the process {U(t, τ)}. If y ∈ ω(B),
then, in view of (2.5), for some sequences {xn} ⊆ B, {τn} ⊆ R, {hn} ⊂ R+ we have

U(τn + hn, τn)xn → y (hn → ∞).

Since Y is a uniformly attracting set, it follows that

distE(U(τn + hn, τn)xn, Y ) → 0 (n→ ∞)

and, consequently, dist(y, Y ) = 0, that is, y ∈ Y for all y ∈ ω(B) and, hence, ω(B) ⊆ Y .
The proposition is completely proved.

Using Proposition 2.1.1, we formulate the following important

Theorem 2.1.1 If a process {U(t, τ)} is uniformly asymptotically compact, then it
has a compact (in E) uniform global attractor A.

Proof. We claim that the set

A =

[

⋃

n∈N

ω(Bn)

]

E

, (2.7)

(where Bn = {x ∈ E | ‖x‖E ≤ n} is the ball in E of radius n ∈ N) is the required
uniform global attractor. Indeed, for the set A defined in (2.7), we have A ⊆ P (see
Proposition 2.1.1 (i)). Moreover, if B ⊆ B(E), then B ⊆ Bn for some n ∈ N and,
consequently, ω(B) ⊆ ω(Bn) ⊆ A, i.e., A uniformly attracts Uσ(t, τ)B (Proposition
2.1.1 (ii)). At the same time by Proposition 2.1.1 (iii), the set ω(Bn) belongs to every
closed uniformly attracting set. Therefore, the property of minimality is valid for A
defined in (2.7).
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Remark 2.1.1 To this end, we can not claim that A = ω(P ), where P is any compact
uniformly attracting set for {U(t, τ)}. We clearly have the inclusion ω(P ) ⊆ A, since
P ⊆ BN for a large N, so ω(P ) ⊆ ω(BN) and, therefore, ω(P ) ⊆ A. At the same
time in the general case, the inverse inclusion remains unclear because we do not know
whether ω(B) ⊆ ω(P ) for any B ⊆ B(E). However, if B0 is a compact uniformly
absorbing set, then apparently

A = ω(B0) =
⋂

h≥0

[

⋃

t−τ≥h

U(t, τ)B0

]

E

.

Having a compact uniformly attracting set P, the equality A = ω(P ) can be also
proved under some additional assumptions of continuity for the process {U(t, τ)} (see,
for example, Theorem 1.1.1 for an autonomous case and [CV02a] for non-autonomous
cases).

Remark 2.1.2 In Theorem 2.1.1, we do not assume that the process {U(t, τ)} is
continuous in E. (This assumption was essential in the theorems on the existence
of global attractors of semigroups corresponding to autonomous evolution equations.)
The reason is that we use only the property of minimality in the definition of a global
attractor.

To describe the general structure of the uniform global attractor of a process we
need the notion of the kernel of the process that generalizes the notion of a kernel of
a semigroup.

A function u(s), s ∈ R, with values in E is said to be a complete trajectory of the
process {U(t, τ)} if

U(t, τ)u(τ) = u(t) for all t ≥ τ, τ ∈ R. (2.8)

A complete trajectory u(s) is called bounded if the set {u(s), s ∈ R} is bounded in E.

Definition 2.1.3 The kernel K of the process {U(t, τ)} is the family of all bounded
complete trajectories of this process:

K = {u(·) | u satisfies (2.8) and ‖u(s)‖E ≤ Cu ∀s ∈ R} .

The set
K(t) = {u(t) | u(·) ∈ K} ⊂ E, t ∈ R

is called the kernel section at time t.

It is not difficult to prove the following

Proposition 2.1.2 If the process {U(t, τ)} has the global attractor A, then
⋃

t∈R

K(t) ⊆ A. (2.9)

Comparing (2.9) with identity (1.6) in autonomous case, we note that, in non-
autonomous case, first, K(t) may depend on time t and, second, the inclusion in (2.9)
can be strict, that is, in order to describe the structure of the global attractor A of
a process {U(t, τ)} it is not sufficient to know the structure of the kernel K. The
discussion of this problem will be continued in Section 2.5.
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2.2 On non-uniform global attractors of processes

and Haraux’s example

Following A.Haraux [Ha88, Ha91], we define also a (non-uniform) global attractor of
a process {U(t, τ)} acting in E. A set P0 is called a (non-uniform) attracting set of
{U(t, τ)} if for any bounded set B ∈ B(E) and for any fixed τ ∈ R

distE (U (t, τ)B,P0) → 0 (t→ +∞) , (2.10)

that is, for any ε > 0, there exists a number T = T (τ, B, ε) ≥ τ such that

U(t, τ)B ⊆ Oε(P0) for all t ≥ T. (2.11)

A process having a compact attracting set is called asymptotically compact. Similarly
to Definition 2.1.2, we formulate

Definition 2.2.1 A set A0 ⊂ E is called the (non-uniform) global attractor of a
process {U(t, τ)} if it is closed in E, is attracting for the process {U(t, τ)} and satisfies
the property of minimality : A0 belongs to any closed attracting set of the process.

Similarly to Theorem 2.1.1, we prove

Theorem 2.2.1 If a process {U(t, τ)} is asymptotically compact, then it has a compact
(non-uniform) global attractor A0.

It is obvious that a uniformly asymptotically compact process {U(t, τ)} is (non-
uniformly) asymptotically compact as well and, thereby, A0 ⊆ A. However, it was
pointed out by A.Haraux that this inclusion can be strict, i.e. the uniform global
attractor can be larger than the non-uniform one. We now present the example from
[Ha88, Ha91].

We consider the following non-autonomous ordinary differential equation in R:

dtu+ a(t)u+ u3 = 0 (dt = d/dt) (2.12)

with initial data
u|t=τ = uτ , uτ ∈ R, (2.13)

where

a(t) =

∞
∑

n=1

n−2 sin(2n−4t). (2.14)

The function a(t) is almost periodic (see Example 2.4.1) since it is the uniform limit
of almost periodic (and even quasiperiodic) functions. Equation (2.12) generates a
process {U(t, τ)} in R : U(t, τ)uτ = u(t), t ≥ τ, τ ∈ R, where u(t) is a solution of
(2.12), (2.13) with initial data uτ . We set

A(t) =

∫ t

0

a(s)ds =
∞
∑

n=1

n2 sin2(n−4t), t ∈ R. (2.15)
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Let us find a (non-uniform) global attractor of the process {U(t, τ)}. It follows from
(2.12) that

dtu
2 = −2a(t)u2 − 2u4 ≤ −2a(t)u2 (2.16)

and therefore
u2(t) ≤ u2(τ) exp (2A(τ)) exp (−2A(t)) , ∀t ≥ τ.

Taking n = [|t|1/4] + 1 in (2.15) we obtain

A(t) ≥ c|t|1/2 ∀t ∈ R (2.17)

for some c > 0. Hence, u(t) → 0 (t → +∞) and, moreover, U(t, τ)B → 0 (t → ∞) for
each fixed τ ∈ R and for any bounded set B ∈ B(R). We conclude that the process
{U(t, τ)} has a (non-uniform) global attractor A0 = {0}, that is, a single point.

Let us study the uniform global attractor of the process {U(t, τ)}. First of all,
this process is uniformly compact, i.e., it has a compact (bounded in R) uniformly
absorbing set. Indeed, the function a(t) is bounded, so,

−2a(t)u2 − 2u4 ≤ 2Ru2 − 2u4 ≤ −γu2 + C

for appropriate positive R, γ, and C. In view of (2.16), we obtain

dtu
2 ≤ −γu2 + C,

u2(t) ≤ u2(τ) exp (−γ(t− τ)) + C/γ

and hence the set B0 = {|u|2 ≤ 2C/γ} is uniformly absorbing for the process {U(t, τ)}.
The set B0 is compact and, by Theorem 2.1.1, the uniform global attractor A exists.
Clearly, {0} = A0 ⊆ A. We claim that A 6= {0}.

It is sufficient to prove that there exists a nonzero bounded solution ũ(t) of equation
(2.12) defined for all t ∈ R. Such a solution belongs to the kernel K of the process
{U(t, τ)} and, from (2.9), we have that

{
⋃

t∈R
ũ(t)

}

⊆ A, so, A is large than A0 = {0}.
Integrating (2.16) we obtain

dt

(

u2e2A(t)
)

+ 2u4e2A(t) = 0,

dt (v) + 2v2e−2A(t) = 0

where v(t) = u2(t)e2A(t). Integrating once more, we obtain

1

v(t)
=

1

v(0)
+ 2

∫ t

0

e−2A(s)ds.

Notice that e−2A(s) ∈ L1(R; R+) due to (2.17). Finally,

ũ(t) = ±
(

e−2A(t)

1
|u0|2 + 2

∫ t

0
e−2A(s)ds

)1/2

, t ∈ R

is the desired solution of (2.12), if 1
|u0|2 > 2

∫ 0

−∞ e−2A(s)ds. The sign of ũ coincides with

the sign of u0. Indeed, ũ satisfies equation (2.12) for all t ∈ R and is bounded in R.
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Notice that in the case of a periodic process, its uniform global attractor coin-
cides with the non-uniform one (see [VC95, CV94b] for more details). For the readers
convenience, we now present a simple result concerning the periodic processes.

A process {U(t, τ)} is called periodic with period p if

U(t + p, τ + p) = U(t, τ), ∀t ≥ τ, τ ∈ R. (2.18)

Having a periodic process {U(t, τ)}, to prove that a set P is uniformly attracting for
{U(t, τ)} it is sufficient to show, instead (2.3), the limit relation

sup
τ∈[0,p)

distE (U (τ + h, τ)B,P ) → 0 (h→ +∞) . (2.19)

Indeed, for an arbitrary τ ∈ R we have that τ = τ ′ + np, where τ ′ ∈ [0, p) and n ∈ Z.
Therefore, by periodicity,

U (h + τ, τ)B = U (h+ τ ′ + np, τ ′ + np)B = U (h + τ ′, τ ′)B

and (2.19) implies (2.3). Using this observation, we have

Theorem 2.2.2 If a periodic process {U(t, τ)} is uniformly bounded and has a com-
pact (non-uniformly) attracting set, then it is uniformly asymptotically compact. In
particular, the process {U(t, τ)} has both uniform and non-uniform global attractors A
and A0 which coincide, A = A0.

Proof. Let P0 b E be a compact attracting set of the periodic process {U(t, τ)} with
period p. It follows from Theorem 2.2.1 that this process has a (non-uniform) global
attractor A0.

Consider an arbitrary bounded set B ∈ B(E). Since the process {U(t, τ)} is uni-
formly bounded the set

B̃ =
⋃

τ∈[0,p)

U(p, τ)B ∈ B(E).

The set P0 is (non-uniformly) attracting, therefore, for τ = p,

distE

(

U (t, p) B̃, P0

)

→ 0 (t→ +∞) (2.20)

We now observe that, for all τ ∈ [0, p),

U(t, τ)B = U(t, p)U(p, τ)B ⊆ U(t, p)B̃, ∀t ≥ p.

Then, from (2.20), we conclude that

sup
τ∈[0,p)

distE (U (τ + h, τ)B,P0) ≤ distE

(

U (t, p) B̃, P0

)

→ 0 (t→ +∞)

and relation (2.19) is proved for the set P0. Therefore, the process {U(t, τ)} is uniformly
asymptotically compact. Repeating the above reasoning for A0 in place of P0, we
conclude that the set A0 is uniformly attracting. At the same time, A0 is the minimal
uniformly attracting set since it is minimal (non-uniformly) attracting. Thus, A0 = A
is the uniform global attractor of the periodic process {U(t, τ)} .

In our paper, we study mostly uniform global attractors of process corresponding
to non-autonomous evolution equations.
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2.3 Cauchy problem and the corresponding process

We now explain how to construct a process corresponding to a non-autonomous evo-
lution equation. We consider a non-autonomous evolution equation of the form:

∂tu = A(u, t), t ≥ τ (τ ∈ R). (2.21)

Here A(u, t) denotes a nonlinear operator A(·, t) : E1 → E0 for every t ∈ R, where E1

and E0 are Banach spaces such that E1 ⊆ E0. We study solutions u(t) of this equation
that are defined for all t ≥ τ. For t = τ we consider the initial condition:

u(τ) = u|t=τ = uτ , uτ ∈ E, (2.22)

where E is a Banach space such that E1 ⊆ E ⊆ E0.We assume that for every τ ∈ R and
for all uτ ∈ E, the Cauchy problem (2.21), (2.22) has a unique solution u(t) such that
u(t) ∈ E for all t ≥ τ. The meaning of the expression “the function u(t) is a solution
of problem (2.21), (2.22)” should be clarified in each particular example. Similarly
to a solution of autonomous equation (1.7), solutions u(t), τ ≤ t ≤ T, of (2.21) are
taken from the class Fτ,T of functions satisfying the conditions u ∈ L∞ (τ, T ;E) and
u ∈ Lp (τ, T ;E1) . We also assume that A(u, t) ∈ Lq (τ, T ;E0) for some q, 1 < q < ∞,
and ∂tu ∈ Lq (τ, T ;E0). Equality (2.21) holds in the space Lq (τ, T ;E0) . Thus, a
function u(t) from Fτ,T should satisfy (2.21) in the distribution space D′(]τ, T [;E0)
(for the details, see [Lio69, BV89, CV02a]). In order to assign a meaning to the initial
condition (2.22), various embedding theorems can be used (see, e.g., [LioM68, T79]).

We study the following two-parametric family of operators {U(t, τ)}, t ≥ τ, τ ∈ R,
generated by problem (2.21), (2.22) and acting in E by the formula

U(t, τ)uτ = u(t), t ≥ τ, τ ∈ R, (2.23)

where u(t) is a solution of (2.21), (2.22) with initial data uτ ∈ E. Since the Cauchy
problem (2.21), (2.22) is uniquely solvable, the family of operators {U(t, τ)} satisfies the
properties from Definition 2.1.1. Thus, the constructed family of operators {U(t, τ)}
is called the process corresponding to problem (2.21), (2.22).

In the next sections, we are going to study global attractors of processes correspond-
ing to various non-autonomous dissipative evolution equations arising in mathematical
physics.

2.4 Time symbols of non-autonomous equations

General Theorem 2.1.1 is applicable to processes generated by non-autonomous evo-
lution equations. However, this basic theorem adds little to the knowledge of the
structure of the uniform global attractor. To say more we have to study some extra
properties of processes. In this connection, the notion of a kernel of a process is very
useful (see Definition 2.1.3). Recall that the kernel of equation (2.21) is the union of all
bounded complete solutions u(t), t ∈ R, of this equation that are defined on the entire
time axis {t ∈ R}.

Having the global attractor A of non-autonomous equation (2.21), we always have
inclusion (2.9). However, in the generic case, this inclusion can be strict, that is,
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there exist points of the global attractor A that are not values of bounded complete
trajectories of the original equation (2.21) (see Remark 2.6.2). Nevertheless, we shall
show that such points lie on the complete trajectories of “contiguous” equations. To
describe these “contiguous” equations we introduce the notion of time symbol of the
equation under the consideration. Speaking informally, the time symbol reflects the
dependence on time of the right-hand side of a non-autonomous equation. We assume
that all the terms of equation (2.21) that depend explicitly on time t can be written as
a function σ(t), t ∈ R, with values in an appropriate Banach space Ψ. We now rewrite
equation (2.21) itself in the form:

∂tu = Aσ(t)(u), t ≥ τ (τ ∈ R). (2.24)

The function σ(t) is said to be the time symbol of the equation. In applications, σ(t)
consists of the coefficients and terms of the equation that depend on time. For example,
in the non-autonomous Navier–Stokes system

∂tu+ νLu+B(u, u) = g(x, t)

with time dependent external force g(x, t) ∈ Cb(R;H) the time symbol is σ(t) = g(x, t).
(This example will be studied in Section 2.6.1 in great details.)

We assume that the symbol σ(t), as a function of time t, belongs to an enveloping
space

Ξ := {ξ(t), t ∈ R | ξ(t) ∈ Ψ for almost all t ∈ R} ,
equipped with a Hausdorff topology. In the above example of the 2D Navier–Stokes
system, Ψ = H and the space Ξ = Cb(R;H) can be taken as an enveloped space of
this non-autonomous equation. Recall that a function g(x, t) ∈ Cb(R;H) if

‖g(·, ·)‖Cb(R;H) := sup {‖g(·, t)‖H, t ∈ R} < +∞.

We assume that the translation group {T (h), h ∈ R} acting by the formula T (h)ξ(t) =
ξ(h+t) is continuous in Ξ. This assumption is clearly holds for the space Ξ = Cb(R;H).

The symbol of the original equation (2.21) is denoted by σ0(t). Along with this
equation having the symbol σ0(t) we consider equations (2.24) with symbols σh(t) =
σ0(t + h) for any h ∈ R. Moreover, we also consider the equations with symbols σ(t)
that are limits of the sequences of the form σhn(t) = σ0(t+ hn) as n→ ∞ in the space
Ξ. The resulting family of symbols forms the hull H(σ0) of the original symbol σ0(t)
in the space Ξ.

Definition 2.4.1 The set

H(σ0) := [{σ(t + h) | h ∈ R}]Ξ (2.25)

is called the hull H(σ) of the function σ(t) in the space Ξ , where [·]Ξ denotes the
closure in the topological space Ξ.

We are going to study equations of the form (2.21) and (2.24), whose symbols σ(t)
are translation compact functions in Ξ (see also [CV95a, CV95b, CV95c, CV02a]).

Definition 2.4.2 A function σ(t) ∈ Ξ is called translation compact (tr.c.) in Ξ, if
the hull H(σ) is compact in Ξ.
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Consider the main examples of translation compact functions that we shall use in
this paper.

Example 2.4.1 Let Ξ = Cb(R;M), where M is a complete metric space. Let σ0(s)
be an almost periodic (a.p.) function with values in M. It is well-known that, by the
Bochner–Amerio criterion, an a.p. function σ0(s) possesses the following characteristic
property: the set of all its translations {σ0(s + h) = T (h)σ0(s) | h ∈ R} forms a
precompact set in Cb(R;M) (see, e.g., [AP71, LevZh78]). The closure in Cb(R; M)
of this set is said to be the hull H(σ0) of the function σ0(s) (see (2.25)). Thus, by
Definition 2.4.2, σ0(s) is a tr.c. function in Cb(R;M). If the function σ0(s) is almost
periodic, then any function σ(s) ∈ H(σ0) is a.p. as well. Evidently, the time translation
group {T (h) | h ∈ R} is continuous in Cb(R;M).

Example 2.4.2 Let Ξ = Lloc
p (R; E), where p ≥ 1 and E is a Banach space. The space

Lloc
p (R; E) consists of functions ξ(t), t ∈ R with values in E that are p-power locally

integrable in the Bochner sense, that is,

∫ t2

t1

‖ξ(t)‖p
Edt < +∞, ∀[t1, t2] ⊂ R.

We consider the following convergence topology in the space Lloc
p (R; E). By the defini-

tion, ξn(t) → ξ(t) (n→ ∞) in Lloc
p (R; E) if

∫ t2

t1

‖ξn(t) − ξ(t)‖p
Edt→ 0 (n→ ∞)

for every interval [t1, t2] ⊂ R. The space Lloc
p (R; E) is countably normable, metrizable,

and complete. Consider tr.c. functions in the space Lloc
p (R; E). We have the following

criterion (see, for example, [CV02a]): a function σ0(t) is tr.c. in Lloc
p (R; E) if and only

if (i) for any h ≥ 0 the set
{

∫ t+h

t
σ0(s)ds | t ∈ R

}

is precompact in E and (ii) there

exists a positive function β(s) → 0 (s→ 0+) such that

∫ t+1

t

‖σ0(s) − σ0(s+ l)‖p
Eds ≤ β(|l|), ∀t ∈ R.

From this criterion, it follows that

sup
t∈R

∫ t+1

t

‖σ0(s)‖p
Eds < +∞, ∀t ∈ R, (2.26)

for any tr.c. function in Lloc
p (R; E).

It is obvious that the translation group {T (h) | h ∈ R} is continuous in Lloc
p (R; E).

Example 2.4.3 In a similar way, we define translation compact functions in the space
C loc(R; E) that consists of continuous functions ξ(t), t ∈ R with values in E . The space
C loc(R; E) is equipped with the local uniform convergence topology on every interval
[t1, t2] ⊂ R (see [CV02a]). From the Arzelá–Ascoli compactness theorem, we obtain
the following criterion: a function σ0(t) is tr.c. in C loc(R; E) if and only if (i) the set
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{σ0(h) | h ∈ R} is precompact in E and (ii) σ0(t) is uniformly continuous on R, i.e.,
there exists a positive function α(s) → 0 + (s→ 0+) such that

‖σ0(t1) − σ0(t2)‖E ≤ α(|t1 − t2|), ∀t1, t2 ∈ R.

(See [CV02a] for more details). In particular, any tr.c. function in C loc(R; E) is bounded
in E . The translation group {T (h) | h ∈ R} is clearly continuous in C loc(R; E).

Example 2.4.4 Almost periodic functions with values in E , that is, tr.c. functions in
the space Cb(R; E), are also tr.c. in C loc(R; E).

Example 2.4.5 Inside the class of a.p. functions, we consider a subclass of quasiperi-
odic functions. A function σ0(t) ∈ C(R;E) is said to be quasiperiodic (q.p.) if it has
the form:

σ0(t) = φ (α1t, α2t, . . . , αkt) = φ (ᾱt) , (2.27)

where the function φ (ω̄) = φ (ω1, ω2, . . . , ωk) is continuous and 2π-periodic with respect
to each argument ωi ∈ R :

φ (ω1, . . . , ωi + 2π, . . . , ωk) = φ (ω1, . . . , ωi, . . . , ωk) , i = 1, . . . , k.

We denote by Tk = [R mod2π]k the k-dimensional torus. Then φ ∈ C(Tk; E). We
assume that the real numbers α1, α2, . . . , αk in (2.27) are rationally independent (oth-
erwise we can reduce the number of independent arguments ωi in the representation
(2.27)). It follows easily that the hull of the q.p. function σ0(t) in C(R; E) is the
following set:

{

φ(ᾱt + ω̄1) | ω̄1 ∈ T
k
}

= H(σ0), ᾱ = (α1, α2, . . . , αk). (2.28)

Consequently the set H(σ0) is a continuous image of the k-dimensional torus Tk. For
k = 1, we obtain a periodic function: σ0(t+ 2π) = σ0(t).

In [CV02a] other examples of tr.c. functions in C(R; E) are given which are not
a.p. or q.p. functions.

2.5 On the structure of uniform global attractors

We now consider a family of equations (2.24) with symbols σ(t) from the hull H(σ0)
of the symbol σ0(t) of the original equation:

∂tu = Aσ(t)(u), σ ∈ H(σ0), (2.29)

with initial data
u|t=τ = uτ . (2.30)

We assume that the function σ0(t) is tr.c. in the topological space Ξ. For simplicity, we
assume that the set H(σ0) is a complete metric space. In all examples given above, this
assumption holds. We suppose that, for every symbol σ ∈ H(σ0), the Cauchy problem
(2.29), (2.30) has a unique solution for any τ ∈ R and for every initial condition uτ ∈ E.
Thus, we have the family of processes {Uσ(t, τ)}, σ ∈ H(σ0), acting in the space E.

The family of processes {Uσ(t, τ)}, σ ∈ H(σ0), is called (E ×H(σ0), E)-continuous
if for any t and τ, t ≥ τ the mapping (u, σ) 7→ Uσ(t, τ)u is continuous from E ×H(σ0)
into E.
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Proposition 2.5.1 If the process {Uσ0(t, τ)} has a compact uniformly attracting set
P and the family {Uσ(t, τ)}, σ ∈ H(σ0), corresponding to (2.29) is (E ×H(σ0), E)-
continuous, then, for every σ ∈ H(σ0), the set P is also uniformly attracting for the
process {Uσ(t, τ)}. Moreover, Aσ ⊆ A = Aσ0 , where Aσ is the uniform global attractor
of the process {Uσ(t, τ)} (the inclusion Aσ ⊆ Aσ0 can be strict).

The proof can be found in [CV94a, CV02a].

Remark 2.5.1 A tr.c. function σ0 in Ξ is called recurrent if for every σ ∈ H(σ0)
the hull H(σ) = H(σ0). For example, any almost periodic function is recurrent. If in
Proposition 2.5.1 the tr.c. symbol σ0 is recurrent (e.g. almost periodic), then clearly
Aσ = Aσ0 = A for every σ ∈ H(σ0). In this case, the uniform global attractor A
describes the limit behaviour of solutions of the entire family of equations (2.29).

We note that the following translation identity holds for the family of processes
corresponding to (2.29):

UT (h)σ(t, τ) = Uσ(t+ h, τ + h), ∀h ≥ 0, t ≥ τ, τ ∈ R. (2.31)

Here T (h)σ(t) = σ(t+h). This translation identity follows directly from the uniqueness
of the solution u(t) of problem (2.29), (2.30). To prove (2.31) we replace σ(s) in
equation (2.29) by T (h)σ(s) = σ(s + h) and change the variable t + h = t1. Identity
(2.31) means that a shift by h of the argument of the symbol σ(s) in problem (2.29),
(2.30) is equivalent to solving equation (2.29) with symbol σ(s) at time t + h with
initial data

u|t=τ+h = uτ .

We now consider a particular case of the symbol σ0(t) of equation (2.29) such that
the translation semigroup {T (h) | h ≥ 0} maps it into itself: T (h)σ0(t) = σ0(t + h) ≡
σ0(t) for all h ≥ 0. In other words, σ0(t) does not depend on t : σ0(t) = σ0 for
any s ∈ R, where σ0 ∈ Ψ. In this case by (2.31) the corresponding process {Uσ0(t, τ)}
satisfies the equality Uσ0(t, τ) = Uσ0(t+h, τ+h) = Uσ0(t−τ, 0) for all h ≥ 0, t ≥ τ, τ ∈
R. Thus, the process {Uσ0(t, τ)} is completely described by the set of one-parameter
mappings S(t) = Uσ0(t, 0), t ≥ 0. Evidently {S(t)} forms a semigroup corresponding
to the autonomous equation with the constant symbol σ(t) = σ0. Such equations were
treated in Chapter 1. We conclude that semigroups generated by autonomous evolution
equations are particular cases of processes generated by non-autonomous equations.

Having the family of non-autonomous equations (2.29), we consider the extended
phase space E×H(σ0). Using identity (2.31), we construct the semigroup {S(h), h ≥ 0}
acting in the space E ×H(σ0) by the formula:

S(h)(u, σ) = (Uσ(h, 0)u, T (h)σ) , h ≥ 0. (2.32)

We now prove that the family of mappings {S(h)} form a semigroup in E ×H(σ0). It
is sufficient to verify the semigroup relation:

S(h1 + h2)(u, σ) = (Uσ(h1 + h2, 0)u, T (h1 + h2)σ)

= (Uσ(h1 + h2, h2)Uσ(h2, 0)u, T (h1)T (h2)σ)

=
(

UT (h2)σ(h1, 0)Uσ(h2, 0)u, T (h1)(T (h2)σ)
)

= S(h1) (Uσ(h2, 0)u, T (h2)σ) = S(h1)S(h2)(u, σ).
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Here we have used the process property 2. from Definition 2.1.1 and the translation
identity (2.31). It is also obvious that S(0) = Id is the identity mapping.

We denote by Π1 and Π2 the projectors acting from E ×H(σ0) onto E and H(σ0)
by the formulae:

Π1(u, σ) = u, Π2(u, σ) = σ.

We now formulate the main theorem on the structure of the global attractor of equation
(2.21) with tr.c. symbol σ0(t). We denote by {Uσ0(t, τ)} the corresponding original
process with this symbol σ0.

Theorem 2.5.1 We assume that the function σ0(t) is translation compact in Ξ. Let
the process {Uσ0(t, τ)} be asymptotically compact and let the corresponding family of
processes {Uσ(t, τ)}, σ ∈ H(σ0) be (E ×H(σ0), E)-continuous. Then the semigroup
{S(h)} acting in E ×H(σ0) by formula (2.32) has the global attractor A, S(h)A = A

for all h ≥ 0. Moreover

(i) Π2A = H(σ0),

(ii) Π1A = A is the global attractor of the process {Uσ0(t, τ)},

(iii) the global attractor A has the following representation:

A =
⋃

σ∈H(σ0)

Kσ(0) =
⋃

σ∈H(σ0)

Kσ(t), (2.33)

where Kσ is the kernel of the process {Uσ(t, τ)} with symbol σ ∈ H(σ0). Here t is
any fixed number. The kernel Kσ is non-empty for every σ ∈ H(σ0).

The detailed proof of Theorem 2.5.1 can be found in [CV94a, CV02a]. The existence
of the global attractor A follows from the general Theorem 1.1.1. To apply this theorem,
we have to verify the conditions of asymptotic compactness and continuity of the
semigroup {S(h)} acting in E×H(σ0) by formula (2.32). Let P be a compact uniformly
(w.r.t. σ ∈ H(σ0)) attracting set for the family of processes {Uσ(t, τ)}, σ ∈ H(σ0).
Obviously, the set P ×H(σ0) is a compact (in E × Ξ) attracting set for the extended
semigroup {S(h), h ≥ 0}. Clearly, the semigroup {S(h)} is continuous since the family
{Uσ(t, τ)}, σ ∈ H(σ0) is (E × H(σ0), E)-continuous and the translation semigroup
{T (h)} is continuous by assumption. Therefore by Theorem 1.1.1, the set

A = ω(P ×H(σ0)) =
⋂

h≥0

[

⋃

η≥h

S(η)(P ×H(σ0))

]

E×Ξ

(2.34)

is the global attractor of the semigroup {S(h)} and the first assertion of Theorem 2.5.1
is proved. We recall that

A = {γ(0) | γ(·) is a complete bounded trajectory of {S(h)}} (2.35)

(see (1.6) from Theorem 1.1.2). Using this representation, we prove the rest assertions
of Theorem 2.5.1 (see [CV02a] for the details).
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Remark 2.5.2 Using formula (2.33), it is easy to show that A = ω(P ), where P is
an arbitrary compact uniformly attracting set of the process {Uσ0(t, τ)} (see Remark
2.1.1).

Remark 2.5.3 If the time symbol σ0(t) is periodic with period p, σ0(t + p) = σ0(t),
then the corresponding process {Uσ0(t, τ)} is also periodic with period p. In this case,
the uniform and non-uniform attractors coincide, A0 = A (see Theorem 2.2.2 and
[VC95, CV94b]). Moreover, the hull H(σ0) = {σ0(t + h) | h ∈ [0, p)} and formula
(2.33) can be written in a simpler form

A =
⋃

h∈[0,p)

Kσ0(h)

where Kσ0 is the kernel of the original periodic process {Uσ0(t, τ)} (compare with (2.9)).

2.6 Uniform global attractors for non-autonomous

equations of mathematical physics

In this section, the general theory of uniform global attractors of processes correspond-
ing to abstract non-autonomous equations of the form (2.21) and (2.24) will be applied
to some important evolution equation from mathematical physics.

2.6.1 2D Navier–Stokes system with time dependent force

We consider the following non-autonomous 2D Navier–Stokes system with time-depen-
dent external force:

∂tu = −νLu−B(u, u) + g0(x, t), (∇, u) = 0, (2.36)

u|∂Ω = 0, x = (x1, x2) ∈ Ω b R
2.

We use the notations from Section 1.3.1, where the autonomous 2D Navier–Stokes
system (1.11) is considered with time-independent external force g0(x).

We assume that the external force g0(·, t) ∈ H for almost every t ∈ R and g0 has a
finite norm in the space Lb

2(R;H), that is,

‖g0‖2
Lb

2(R;H) = ‖g0‖2
Lb

2
:= sup

t∈R

∫ t+1

t

|g0(·, s)|2ds < +∞. (2.37)

Consider the following initial conditions for equations (2.36):

u|t=τ = uτ , uτ ∈ H (τ ∈ R). (2.38)

Problem (2.36), (2.38) has a unique solution u(t) ∈ C(Rτ ;H)∩Lb
2(Rτ ;V ) such that

∂tu ∈ Lb
2(Rτ ;H−1), Rτ = [τ,+∞) (see [Lio69, L70, T88, BV89, CV02a]). A solution

u(t) from this space satisfies equation (2.36) in the distribution sense of the space
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D′(Rτ ;H−1). Moreover, the following estimates hold:

|u(t)|2 ≤ |u(τ)|2e−νλ(t−τ) + λ−1(1 + (νλ)−1)‖g0‖2
Lb

2
, (2.39)

|u(t)|2 + ν

∫ t

τ

‖u(s)‖2ds ≤ |u(τ)|2 + (νλ)−1

∫ t

τ

|g0(s)|2ds, (2.40)

(t− τ)‖u(t)‖2 ≤ C

(

t− τ, |u(τ)|2,
∫ t

τ

|g0(s)|2ds
)

(2.41)

where λ = λ1 is the first eigenvalue of the Stokes operator L and C(z, R,R1) is a
monotone continuous functions of z = t− τ, R, and R1 (see [CV02a]).

Consequently, problem (2.36), (2.38) generate the process {Ug0(t, τ)} acting in H
by the formula Ug0(t, τ)uτ = u(t), where u(t) is a solution of (2.36), (2.38).

It follows from (2.39) that the process {Ug0(t, τ)} has the uniformly absorbing set
B0 :

B0 = {u ∈ H | |u| ≤ 2R0} , R2
0 = (νλ)−1 (1 + (νλ)−1) ‖g0‖2

Lb
2
,

Besides, due to inequality (2.41), the set

B1 =
⋃

τ∈R

Ug0(τ + 1, τ)B0 (2.42)

is also uniformly absorbing. Moreover, B1 is bounded in V = H1 and, therefore,
compact in H (see [Lio69, CV02a]). Thus, the process {Ug0(t, τ)} is uniformly compact
inH. Applying Theorem 2.1.1 from Section 2.1, we conclude that the process {Ug0(t, τ)}
has the global attractor A and the set A is bounded in V. Moreover, using Remark
2.1.1, we observe that the global attractor can be constructed by the formula

A = ω(B0) =
⋂

h≥0

[

⋃

t−τ≥h

Ug0(t, τ)B0

]

H

.

We now assume that the function g0(·, t) =: g0(t) is translation compact in the
space Lloc

2 (R;H). The corresponding necessary and sufficient conditions are given in
Section 2.4. Another sufficient condition is as follows: a function g0(t) is translation
compact in Lloc

2 (R;H), if g0 ∈ Lb
2(R;H1) and ∂tg0 ∈ Lb

2(R;H−1), where H−1 = (H1)
∗,

that is,

‖g0‖2
Lb

2(R;H1)
:= sup

t∈R

∫ t+1

t

‖g0(·, s)‖2ds ≤M1 < +∞,

‖∂tg0‖2
Lb

2(R;H−1)
:= sup

t∈R

∫ t+1

t

‖∂tg0(·, s)‖2
H−1

ds ≤M−1 < +∞.

(see [CV02a]). We denote by H(g0) the hull of the function g0 in the space Lloc
2 (R;H).

It is clear that
‖g‖2

Lb
2
≤ ‖g0‖2

Lb
2
≤M (2.43)

for every function g ∈ H(g0).
The symbol of equation (2.36) is the function g0(t) = σ0(t). We note that, for every

symbol g ∈ H(g0), the corresponding problems (2.36), (2.38) (with external force g in
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place of g0) are uniquely solvable and their solutions ug(t) satisfy inequalities (2.39) –
(2.41) as well. Hence, the family of processes {Ug(t, τ)}, g ∈ H(g0), acting H is defined.
In [CV02a], it is proved that this family is (H×H(g0))-continuous. Therefore, Theorem
2.5.1 implies that

A =
⋃

g∈H(g0)

Kg(0), (2.44)

where Kg is the kernel of the process {Ug(t, τ)}, which consists of all the bounded
complete solutions ug(t), t ∈ R, of the 2D Navier–Stokes system with external force
g(t). The kernel Kg is non-empty for every g ∈ H(g0). Notice that

A ⊂ B0 = BR0(0), R2
0 = (νλ)−1 (1 + (νλ)−1)‖g0‖2

Lb
2
, (2.45)

A ⊂ B1, B1 = {u ∈ V | ‖v‖ ≤ R′} , (2.46)

where R′ depends on ν, λ, and ‖g0‖2
Lb

2
. In particular we conclude from (2.44) that

‖u(t)‖ ≤ R′, ∀t ∈ R, (2.47)

for every function ug(·) ∈ Kg, g ∈ H(g0).
We now consider the important particular case of system (2.36). Similarly to au-

tonomous case, we define the Grashof number G for the non-autonomous 2D Navier–
Stokes system by the formula

G :=
‖g0‖Lb

2

λν2
.

Proposition 2.6.1 We assume that G satisfies the following inequality:

G <
1

c20
, (2.48)

where the constant c0 is taken from inequality (1.14) (compare with (1.19)). Then, for
every g ∈ H(g0), the Navier–Stokes system

∂tu = −νLu−B(u, u) + g(t) (2.49)

has the unique solution zg(t), t ∈ R, bounded in H, that is, the kernel Kg consists of
the unique trajectory zg(t). This solution zg(t) is exponentially stable, i.e., for every
solution ug(t) of equation (2.49) the following inequality holds:

|ug(t) − zg(t)| ≤ C0|uτ − zg(τ)|e−β(t−τ), ∀t ≥ τ, (2.50)

where ug(t) = Ug(t, τ)uτ (the constants C0 and β are independent of uτ and τ).

Proof. By (2.44), at least one bounded solution zg(t) := z(t) exists. Let ug(t) := u(t)
be an arbitrary solution of (2.49). The function w(t) = u(t)−z(t) satisfies the equation

∂tw + νLw +B(w,w + z) +B(z, w) = 0.

Multiplying by w and using the identities (B(z, w), w) = (B(w,w), w) = 0 (see (1.13))
and inequality (1.14), we obtain that

∂t|w|2 + 2ν‖w‖2 = 2(B(w, z), w) ≤ 2c20|w|‖w‖‖z‖
≤ ν‖w‖2 + c40ν

−1|w|2‖z‖2.
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Since λ|w|2 ≤ ‖w‖2, we have

∂t|w|2 + νλ|w|2 ≤ ∂t|w|2 + ν‖w‖2 ≤ c40ν
−1|w|2‖z‖2. (2.51)

Consequently,
∂t|w|2 +

(

νλ− c40ν
−1‖z(t)‖2

)

|w|2 ≤ 0. (2.52)

Multiplying this inequality by exp
{

∫ t

τ
(νλ− c40ν

−1‖z(s)‖2) ds
}

and integrating over

[τ, t], we obtain

|w(t)|2 ≤ |w(τ)|2 exp

{
∫ t

τ

(

−νλ + c40ν
−1‖z(s)‖2

)

ds

}

= |w(τ)|2 exp

{

−νλ(t− τ) + c40ν
−1

∫ t

τ

‖z(s)‖2ds

}

. (2.53)

By (2.40) we find that

∫ t

τ

‖z(s)‖2ds ≤ ν−1|z(τ)|2 +
(

ν2λ
)−1
∫ t

τ

|g(s)|2ds

≤ ν−1|z(τ)|2 +
(

ν2λ
)−1

(t− τ + 1) ‖g‖2
Lb

2

≤ ν−1|z(τ)|2 +
(

ν2λ
)−1

(t− τ + 1) ‖g0‖2
Lb

2
.

Since z(τ) ∈ AH(g0), it follows from (2.45) that

|z(τ)|2 ≤ (νλ)−1 (1 + (νλ)−1)‖g0‖2
Lb

2
= R2

0.

Hence,
∫ t

τ

‖z(s)‖2ds ≤
(

ν−1R2
0 +

(

ν2λ
)−1 ‖g0‖2

Lb
2

)

+
(

ν2λ
)−1

(t− τ) ‖g0‖2
Lb

2

= R2
1 +

(

ν2λ
)−1

(t− τ) ‖g0‖2
Lb

2
,

where R2
1 = ν−1R2

0 + (ν2λ)
−1 ‖g0‖2

Lb
2
. Substituting this estimate into (2.53) we obtain

the inequality
|w(t)|2 ≤ |w(τ)|2C0 exp (−β(t− τ)) ,

where
β = νλ− c40

(

ν3λ
)−1 ‖g0‖2

Lb
2

and C0 = exp
(

c40ν
−1R2

1

)

.

Notice that

ν−4λ−2‖g0‖2
Lb

2
= G2 <

1

c40

and therefore β = νλc40

(

c−4
0 − ν−4λ−2‖g0‖2

Lb
2

)

> 0. This implies that

|w(t)|2 = |u(t) − z(t)|2 ≤ |u(τ) − z(τ)|2C0e
−β(t−τ).

Inequality (2.50) is proved. Let us show that such a function z(t) is unique. If there
are two bounded complete solutions z1(t) and z2(t), t ∈ R, then by (2.50)

|z1(t) − z2(t)|2 ≤ |z1(τ) − z2(τ)|2C0e
−β(t−τ) ≤ C1C0e

−β(t−τ).
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Fixing t and letting τ → −∞ we obtain |z1(t) − z2(t)|2 = 0 for all t ∈ R.
Properties (2.50) and (2.44) implies that the set

A = [{zg0(t) | t ∈ R}]H =
⋃

g∈H(g0)

{zg(0)} (2.54)

is the global attractor of the original equation (2.36) under condition (2.48).

Remark 2.6.1 In the work [CI04] it is shown that c20 <
(

8
27π

)1/2
(see also Remark

1.3.1). Therefore, formula (2.54) holds for G < 3.2562.

Remark 2.6.2 It is easy to construct examples of functions g0(x, t) satisfying (2.48)
such that the set {zg0(t) | t ∈ R} is not closed in H. Nevertheless, the set A is always
closed and to describe this set we need to consider all the functions zg(t) from the
kernels of equations with external forces g ∈ H(g0).

Remark 2.6.3 Inequality (2.50) implies that, under condition (2.48), the global at-
tractor A of system (2.36) is exponential, i.e. it attracts bounded sets of initial data
with exponential rate.

We now formulate corollaries for some special cases of functions g ∈ H(g0).

Corollary 2.6.1 Let the function g(t) in (2.49) be periodic with period p. Then the
function zg(t) has the period p as well.

Proof. Consider the corresponding bounded complete trajectory zg(t). Consider the
function zg(t+ p) that is, obviously, also a bounded complete trajectory of (2.49) with
external force g(t+ p) ≡ g(t). Therefore, this function belongs to the kernel Kg, which
consists of the unique trajectory zg(t). Hence, zg(t+ p) ≡ zg(t).

Corollary 2.6.2 If a function g(t) ∈ H(g0) is almost periodic, then the function zg(t)
is almost periodic as well.

Proof. Consider the function w(t) = z(t) − z(t + p), where z(t) := zg(t) and p is an
arbitrary fixed number. Similarly to (2.52) we obtain the following inequality:

∂t|w|2 +
(

νλ− c40ν
−1‖z(t)‖2

)

|w|2 ≤ 2|w| · |g(t) − g(t+ p)|,

which implies that

∂t|w|2 +
(

νλ− c40ν
−1‖z(t)‖2 − δ

)

|w|2 ≤ δ−1|g(t) − g(t+ p)|2. (2.55)

Here δ is a fixed positive number specified below. We also get from inequality (2.40)
that

ν

∫ t

τ

‖z(s)‖2ds ≤ |z(τ)|2 + (νλ)−1

∫ t

τ

|g(s)|2ds ≤ |z(τ)|2 + (νλ)−1 (t− τ + 1)‖g‖2
Lb

2

≤ |z(τ)|2 + (νλ)−1 (t− τ + 1)‖g0‖2
Lb

2
. (2.56)

44



Since z(τ) ∈ A, we have from (2.45)

|z(τ)|2 ≤ (νλ)−1 (1 + (νλ)−1)‖g0‖2
Lb

2
= R2

0.

Consequently due to (2.56) we obtain:

∫ t

τ

‖z(s)‖2ds ≤
(

ν−1R2
0 + (ν2λ)−1‖g0‖2

Lb
2

)

+ (ν2λ)−1(t− τ)‖g0‖2
Lb

2

= R2
1 + (ν2λ)−1(t− τ)‖g0‖2

Lb
2
, (2.57)

where R2
1 = ν−1R2

0 + (ν2λ)−1‖g0‖2
Lb

2
.

We denote α(t) = νλ − c40ν
−1‖z(t)‖2 − δ. Multiplying equation (2.55) by

exp
{

∫ t

τ
α(s)ds

}

and integrating over [τ, t] we find that

|w(t)|2 ≤ |w(τ)|2e−
∫ t
τ

α(s)ds +
1

δ

∫ t

τ

|g(θ) − g(θ + p)|2e−
∫ t

θ
α(s)dsdθ. (2.58)

Using (2.57) we have

−
∫ t

θ

α(s)ds ≤ c40ν
−3λ−1‖g0‖2

Lb
2
(t− θ) − (νλ− δ)(t− θ) + c40ν

−1R2
1

= −
(

νλ− c40ν
−3λ−1‖g0‖2

Lb
2
− δ
)

(t− θ) +R2
2

= − (β − δ) (t− θ) +R2
2, (2.59)

where R2
2 = c40ν

−1R2
1 and β = νλ − c40ν

−3λ−1‖g0‖2
Lb

2
. We note that ν−4λ−2‖g0‖2

Lb
2

=

G2 < c−4
0 (see (2.48)) and therefore β = νλ−c40ν−3λ−1‖g0‖2

Lb
2
> 0. We now set δ = β/2.

Then (2.58) implies that

|w(t)|2 ≤ |w(τ)|2eR2
2e−β(t−τ)/2 +

2

β
eR2

2

∫ t

τ

|g(θ) − g(θ + p)|2e−β(t−θ)/2dθ. (2.60)

Let the number p be an ε-period of the function g, i.e., |g(θ) − g(θ + p)| ≤ ε for all
θ ∈ R. Then by (2.60) we have

|w(t)|2 ≤ |w(τ)|2C2e
−β(t−τ)/2 + C2

2

β
ε2

∫ t

τ

e−β(t−θ)/2dθ

≤ |w(τ)|2C2e
−β(t−τ)/2 + C2

(

2ε

β

)2
(

1 − e−β(t−τ)/2
)

≤ |w(τ)|2C2e
−β(t−τ)/2 + C2

(

2ε

β

)2

, where C2 = eR2
2 . (2.61)

Notice that |w(τ)| ≤ C ′ for all τ ∈ R. Therefore using (2.61) and letting τ → −∞ we
obtain the inequality

|w(t)| = |z(t) − z(t + p)| ≤ ε
2
√
C2

β
. (2.62)
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Hence, p is also ε 2
√

C2

β
-period of the function z(t). Then it is straightforward that the

function z(t) is almost periodic.
We now study the case, where the function g0(t) is quasiperiodic, that is,

g0(x, t) = φ (x, α1t, . . . , αkt) = φ (x, ᾱt) , (2.63)

φ (·, ω̄) ∈ CLip(Tk;H), ω̄ = (ω1, . . . , ωk), and real numbers (α1, . . . , αk) = ᾱ are ratio-
nally independent (see Example 2.4.5).

Proposition 2.6.2 Let the condition (2.48) hold and let the function g0(t) be quasi-
periodic. Then the corresponding function z0(t) = zg0(t) (unique by Theorem 2.6.1)
is also quasiperiodic, that is, there exists a function Φ (x, ω̄) ∈ CLip(Tk;H) such that
z0(x, t) = Φ (x, α1t, . . . , αkt) and the frequencies (α1, . . . , αk) are the same as for the
function g0(x, t).

Proof. Consider the external force gω̄(x, t) = φ (x, ᾱt + ω̄) , where ω̄ ∈ Tk. It is obvious
that gω̄ ∈ H(g0) (see (2.28)). By (2.48) to each such external force gω̄ there corresponds
the unique bounded complete trajectory zω̄(x, t) of the Navier–Stokes equation with
external force gω̄(x, t) that satisfies (2.50). We set

Φ (x, ω̄) = zω̄(x, 0) (2.64)

and prove that Φ is the desired function. First of all, we note that

zω̄(x, t + h) = zᾱh+ω̄(x, t). (2.65)

This follows from the uniqueness of the bounded complete trajectory zᾱh+ω̄(x, t) corre-
sponding to the function gᾱh+ω̄(x, t) and it is easy to see that the function zω̄(x, t+ h)
satisfies the Navier–Stokes system with external force φ (x, ᾱ(t+ h) + ω) = gᾱh+ω̄(x, t).
By (2.64) we conclude that

zω̄(x, h) = Φ(x, ᾱh+ ω̄),

that is, zω̄(x, t) = Φ(x, ᾱt+ ω̄) for all t ∈ R.
We now demonstrate that Φ(x, ω̄) = Φ(x, ω1, . . . , ωk) has the period 2π with respect

to each argument ωi. This property follows from the uniqueness of bounded complete
trajectories because

Φ(x, ω̄ + 2πēi) = zω̄+2πēi
(x, 0) = zω̄(x, 0) = Φ(x, ω̄).

Here {ēi, i = 1, . . . , k} is the standard basis in Rk. It only remains to verify the Lipschitz
condition with respect to ω̄ ∈ T

k for the function Φ. We set w(t) = zω̄1(t) − zω̄2(t).
Similarly to (2.60) we prove the inequality

|w(t)|2 ≤ |w(τ)|2C2e
−β(t−τ)/2 +

2

β
C2

∫ t

τ

|gω̄1(θ) − gω̄2(θ)|2e−β(t−θ)/2dθ. (2.66)

The function φ satisfies the inequality

|φ (ω̄1) − φ (ω̄2) | ≤ κ|ω̄1 − ω̄2| ∀ω̄1, ω̄2 ∈ T
k.
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Therefore
|gω̄1(θ) − gω̄2(θ)| ≤ κ|ω̄1 − ω̄2|. (2.67)

Hence, from (2.66) and (2.67) similarly to (2.61) and (2.62) we obtain that

|w(t)| = |zω̄1(t) − zω̄2(t)| ≤ κ
2
√
C2

β
|ω̄1 − ω̄2|,

and finally by (2.64)

|Φ (·, ω̄1) − Φ (·, ω̄2) | = |zω̄1(0) − zω̄2(0)| ≤ κ
2
√
C2

β
|ω̄1 − ω̄2|, (2.68)

that is, Φ (x, ω̄) ∈ CLip(Tk;H).

Corollary 2.6.3 Under the assumptions of Theorem 2.6.2 the global attractor A of
the Navier–Stokes system is a Lipschitz-continuous image of the k-dimensional torus:

A = Φ(Tk) (2.69)

and the set A attracts solutions of the equation with exponential rate (see (2.50)).
Recall that Φ (·, ω̄) = Φ (·, ᾱt+ ω̄) |t=0 = zω̄(x, t)|t=0, ω̄ ∈ Tk.

Remark 2.6.4 If follows from (2.69) that the uniform global attractor A of the
Navier–Stokes system with quasiperiodic external force g0 satisfying (2.48) and (2.63)
is finite dimensional and dF (A) ≤ k,where dF (A) is the fractal dimension of A (see
Section 1.4.1). It is easy to give examples of external forces satisfying (2.48) and (2.63)
such that

dF (A) = k

(see, e.g. [CV94a]). Thus, the dimension of global attractors A of non-autonomous
Navier–Stokes systems may grow to infinity as k → ∞, while the Grashow numbers
(or Reynolds numbers) of these systems remain bounded. Moreover, there are almost
periodic external forces such that dF (A) = ∞ (see Section 2.7). These phenomenons
do not occur in autonomous case, where the dimension of the global attractor is always
less than the multiple of the Grashow number (see Theorem 1.4.2 and (1.57)). In
Chapter 3, we study the Kolmogorov ε-entropy and the fractal dimension of uniform
global attractors of non-autonomous equations in great details.

2.6.2 Non-autonomous damped wave equations

We study the non-autonomous wave equation with damping

∂2
t u+ γ∂tu = ∆u− f0(u, t) + g0(x, t), u|∂Ω = 0, x ∈ Ω b R

n, (2.70)

where γ∂tu is a dissipation term (γ > 0). The autonomous case was considered in
Section 1.3.2. We assume that the function f0(v, t) ∈ C1(R × R; R) and the following
inequalities hold:

F0(v, t) ≥ −mv2 − Cm, F0(v, t) :=

∫ v

0

f0(w, t)dw, (2.71)

f0(v, t)v − γ1F0(v, t) +mv2 ≥ −Cm, ∀ (v, t) ∈ R × R, (2.72)
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where m > 0 and γ1 > 0. The number m is sufficiently small.
Let ρ be a positive number such that ρ < 2/(n− 2) when n ≥ 3 and ρ is arbitrary

large when n = 1, 2. We suppose that

|∂vf0(v, t)| ≤ C0(1 + |v|ρ), |∂tf0(v, t)| ≤ C0(1 + |v|ρ+1), (2.73)

∂tF0(v, t) ≤ δ2F0(v, t) + C1, ∀ (v, t) ∈ R × R, (2.74)

where δ is sufficiently small.

Remark 2.6.5 Let f0(v, t) = f(v)ϕ(t), where, for example, f(v) = |v|ρv or f(v) =
R + β sin(v), |β| < R), and ϕ(s) is a positive bounded continuous function such that

ϕ′(t) ≤ δ2ϕ(t) ∀t ∈ R,

then f0(v, s) satisfies (2.71) – (2.74).

It follows from (2.73) that

|f0(v, t)| ≤ C ′
0(1 + |v|ρ+1), |F0(v, s)| ≤ C ′

0(1 + |v|ρ+2). (2.75)

Concerning the term g0(x, t), we assume that g0 ∈ Lb
2(R;L2(Ω)).

The initial conditions are posed at t = τ :

u|t=τ = uτ (x), ∂tu|t=τ = pτ (x), τ ∈ R. (2.76)

Proposition 2.6.3 If uτ ∈ H1
0 (Ω) and pτ ∈ L2(Ω), then problem (2.70), (2.76)

has a unique solution u(t) ∈ C(Rτ ;H
1
0 (Ω)), ∂tu(t) ∈ C(Rτ ;L2(Ω)), and ∂2

t u(t) ∈
Lloc

2 (Rτ ;H
−1(Ω)).

The proof is given, e.g., in [T88, H88, BV89, CV02a].
We set y(t) = (u(t), ∂tu(t)) = (u(t), p(t)) and yτ = (uτ , pτ ) = y(τ) for brevity. We

denote by E the space of vector functions y(x) = (u(x), p(x)) with finite energy norm

‖y‖2
E = ‖(u, p)‖2

E = |∇u|2 + |p|2

in the space E = H1
0(Ω)×L2(Ω). Recall that | · | denotes the norm in L2(Ω). It follows

from Proposition 2.6.3 that y(t) ∈ E for all t ≥ 0.
Problem (2.70), (2.76) is equivalent to the system

{

∂tu = p
∂tu = −γp + ∆u− f0(u, t) + g0(x, t),

{

u|t=τ = uτ

p|t=τ = pτ ,

which can be rewritten in the operator form

∂ty = Aσ0(t)(y), y|t=τ = yτ , (2.77)

for an appropriate operator Aσ0(t)( · ), where σ0(t) = (f0(v, t), g0(x, t)) is the symbol of
equation (2.77) (see Section 2.4). If yτ ∈ E then, by Proposition 2.6.3, problem (2.77)
has a unique solution y(t) ∈ Cb(Rτ ;E). This implies that the process {Uσ0(t, τ)} given
by the formula Uσ0(t, τ)yτ = y(t) is defined in E.
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Proposition 2.6.4 The processes {Uσ0(t, τ)} corresponding to problem (2.77) is uni-
formly bounded and the estimate

‖y(t)‖2
E ≤ C1‖yτ‖ρ+2

E exp(−β(t− τ)) + C2, β > 0, (2.78)

holds, where y(t) = Uσ0(t, τ)yτ and the constants C1 and C2 are independent of yτ .

The proof is given in [CV02a].
It follows from Proposition 2.6.4 that the process {Uσ0(t, τ)} has a bounded (in E)

uniformly absorbing set B0,

B0 =
{

y = (u, p) | ‖y‖2
E ≤ 2C2

}

,

i.e., Uσ0(t, τ)B ⊆ B0 for t− τ ≥ h(B) for every B ∈ B(E). The following result is more
complicated (for the proof, see [CV02a]).

Proposition 2.6.5 The process {Uσ0(t, τ)} corresponding to problem (2.77) is uni-
formly asymptotically compact in E.

It follows from Theorem 2.1.1 and Proposition 2.6.5 that the process {Uσ0(t, τ)}
has the global attractor A and the set A is compact in E.

We now define the enveloped space Ξ for the symbol σ0(t) = (f0(v, t), g0(x, t)) of
equation (2.77). We suppose that g0(x, t) is a tr.c. function in Lloc

2 (R;L2(Ω)), the
function f0(v, t) satisfies (2.71)-(2.74), and the function (f0(v, t), ∂tf0(v, t)) is tr.c. in
C(R;M). Here M is the space of the functions

{

(ψ(v), ψ1(v)), v ∈ R | (ψ, ψ1) ∈ C(R; R2)
}

endowed with the following norm:

‖(ψ, ψ1)‖M = sup
v∈R

{ |ψ(v)| + |ψ1(v)|
|v|ρ+1 + 1

+
|ψ′(v)|
|v|ρ + 1

}

. (2.79)

Evidently, M is a Banach space. The function σ0(t) = (f0(v, t), g0(x, t)) is clearly tr.c.
in Ξ = C(R;M) × Lloc

2 (R;H).
Consider the hull H(σ0) of the symbol σ0 in the space Ξ. It is easy to show that for

any σ(t) = (f(v, t), g(x, t)) ∈ H(σ0), the function f(v, t) satisfies inequalities (2.71) –
(2.74) with the same constants as f0(v, t).

Thus, problem (2.77) is well posed for all σ ∈ H(σ0) and generates the family
of processes {Uσ(t, τ)}, σ ∈ H(σ0), acting in E. The following assertion is proved in
[CV02a].

Proposition 2.6.6 The family of processes {Uσ(t, τ)}, σ ∈ H(σ0), corresponding to
(2.77) is (E ×H(σ0), E)-continuous.

Applying now Theorem 2.5.1, we have
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Theorem 2.6.1 If the symbol σ0(t) = (f0(v, t), g0(x, t)) is tr.c. in the space Ξ =
C(R;M)×Lloc

2 (R;L2(Ω)), then the process {Uσ0(t, τ)} corresponding to problem (2.77)
has the uniform global attractor

A =
⋃

σ∈H(σ0)

Kσ(0),

where Kσ is the kernel of the process {Uσ(t, τ)} with symbol σ ∈ H(σ0). The kernel Kσ

is non-empty for all σ ∈ H(σ0). Besides, we have the following formula

A = ω(B0) =
⋂

h≥0

[

⋃

t−τ≥h

U(t, τ)B0

]

E

.

We now consider a particular case of equation (2.70), namely, the following sine-
Gordon type equation with dissipation:

∂2
t u+ γ∂tu = ∆u− f(u) + g0(x, t), u|∂Ω = 0, x ∈ Ω. (2.80)

Here Ω b Rn, γ > 0, f ∈ C(R), g0(·, t) ∈ Lloc
2 (R;L2(Ω)). We suppose for the function

f(u) the inequalities

|f(v)| ≤ C, ∀v ∈ R, (2.81)

|f(v1) − f(v2)| ≤ K|v1 − v2|, ∀v1, v2 ∈ R. (2.82)

Remark 2.6.6 For f(u) = K sin(u), equation (2.80) is the sine-Gordon equation with
dissipation (see [T88]).

We assume that the external force g(x, t) satisfies the condition

‖g0‖2
Lb

2
= sup

t∈R

∫ t+1

t

‖g0(s)‖2
L2(Ω)ds < +∞. (2.83)

As before for equation (2.80), we consider the Cauchy problem with initial conditions

u|t=τ = uτ ∈ H1
0 (Ω), ∂tu|t=τ = pτ ∈ L2(Ω). (2.84)

Similarly to Proposition 2.6.3, we prove that, for any given uτ (x) ∈ H1
0 (Ω) and pτ (x) ∈

L2(Ω), problem (2.80), (2.84) has a unique solution u(t) ∈ C(Rτ ;H
1
0 (Ω)), ∂tu(t) ∈

C(Rτ ;L2(Ω)), and ∂2
t u(t) ∈ Lloc

2 (Rτ ;H
−1(Ω)). (see, e.g. [T88, H88, BV89, CV02a]).

Denoting y(t) = (u(t), p(t)) = (u(t), ∂tu(t)) and yτ = (uτ , pτ ), we observe that y(t) ∈
C(Rτ ;E), y(τ) = yτ . Then, problem (2.80), (2.84) has the form of evolution equation

{

∂tu = p
∂tp = −γp + ∆u− f(u) + g0(x, t),

,

{

u|t=τ = uτ

p|t=τ = pτ
. (2.85)

(see (2.77)). The time symbol of this system is now a one component function σ0(t) =
g0(·, t) with values in L2(Ω). Since (2.85) has a unique solution it defines via y(t) =
Ug0(t, τ)yτ a process {Ug0(t, τ)} acting in E. We study the uniform global attractor
A of this process. Propositions hold for the process {Ug0(t, τ)} (with ρ = 0) and we
obtain from Theorem 2.1.1
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Proposition 2.6.7 Under the conditions (2.81), (2.82), and (2.83), problem (2.85)
has the global attractor A and the set A is compact in E.

See also [CV02a, CV94a, CVW05]. We note that the process {Ug0(t, τ)} is not uni-
formly compact but only uniformly asymptotically compact since a hyperbolic equation
does not smooth its solutions in time.

In order to study the structure of the global attractor A we assume that the function
g0(x, t) is tr.c in the space Lloc

2 (R;L2(Ω)). Consider its hull H(g0). For any symbol
g ∈ H(g0), problem (2.85) with g instead of g0 generates the process {Ug(t, τ)} in E.
In [CV02a], it is proved that the family of processes {Ug(t, τ)}, g ∈ H(g0), is (E ×
H(g0), E)-continuous. Using Theorem 2.5.1, we obtain the following result.

Proposition 2.6.8 Let the function g0(x, t) be tr.c. in Lloc
2 (R;L2(Ω)). Then the global

attractor A of the process {Ug0(t, τ)} can be represented by the formula

A =
⋃

g∈H(g0)

Kg(0), (2.86)

where Kg is the kernel of equation (2.85) with symbol g ∈ H(g0). The kernel Kg is
non-empty for every g.

We now specify the case when the global attractor A has a simple structure and
is exponentially attracting. We denote by λ the first eigenvalue of the Laplacian on
H1

0 (Ω). We have the following

Theorem 2.6.2 Let the Lipschitz constant K in (2.82) satisfy the inequality

K < λ; (2.87)

and let the dissipation rate γ in (2.80) satisfy

γ2 > γ2
0 := 2

(

λ−
√
λ2 −K2

)

. (2.88)

Then for every g ∈ H(g0), equation (2.85) with external force g has a unique bounded
(in E) solution z(t) = (w(t), ∂tw(t)) for all t ∈ R. Moreover, for any solution y(t) =
Ug(t, τ)yτ of equation (2.85), the following inequality holds:

‖y(t) − z(t)‖E ≤ C‖yτ − z(τ)‖Ee
−β(t−τ), (2.89)

where C > 0 and β > 0 are independent of yτ .

Proof. For the readers convenience, we repeat the arguments from [CVW05]. In what
follows all the relations can be justified using the Galerkin approximation method (see
[Lio69, T88, BV89]). Let u1(x, t) and u2(x, t) be two solutions of (2.80) having the
external force g ∈ H(g0). Then the difference w(x, t) := u1(x, t) − u2(x, t) solves

∂2
t w + γ∂tw = ∆w − (f(u1) − f(u2)) in Ω and w|∂Ω = 0, (2.90)

We rewrite this equation in the form

∂t (∂tw + αw) + (γ − α)(∂tw + αw) − ∆w − α(γ − α)w = − (f(u1) − f(u2)) . (2.91)
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Here α is a suitable parameter to be chosen later on. Multiplying equation (2.91) by
v = ∂tw+αw and integrating the result over Ω, we obtain after employing integration
by parts and using condition (2.82), the inequality

1

2

d

dt

(

|v|2 + |∇w|2 − α(γ − α)|w|2
)

+ (γ − α)|v|2 +

α
(

|∇w|2 − α(γ − α)|w|2
)

= − (f(u1) − f(u2), v) ≤ K|w||v|. (2.92)

We now choose α > 0 such that

α(γ − α) < λ. (2.93)

Then, using Poincaré inequality λ|w|2 ≤ |∇w|2, we obtain

λ|w|2 − α(γ − α)|w|2 ≤ |∇w|2 − α(γ − α)|w|2,

that is,

|w|2 ≤ |∇w|2 − α(γ − α)|w|2
λ− α(γ − α)

. (2.94)

Using (2.94) and (2.92) we find that

1

2

d

dt

(

X2 + Y 2
)

+

{

(γ − α)X2 + αY 2 − K
√

λ− α(γ − α)
XY

}

< 0, (2.95)

where we denote X2 = |v|2 = |∂tw + αw|2 and Y 2 = |∇w|2 − α(γ − α)|w|2.
The quadratic form {. . .} is positive definite provided α > 0, γ − α > 0, and the

determinant

α(γ − α) − K

4 (λ− α(γ − α))
> 0. (2.96)

We set % = α(γ − α). Inequality (2.96) is equivalent to

%2 − λ% +
K2

4
< 0. (2.97)

Since we assume that K < λ the quadratic inequality (2.97) is satisfied for every %
with

λ−
√
λ2 −K2

2
< % <

λ+
√
λ2 −K2

2
. (2.98)

We note that, from (2.98), it follows that % < λ, i.e., α(γ−α) < λ and condition (2.93)
is satisfied. Thus, we have to produce a number α > 0 that satisfies the inequalities

λ−
√
λ2 −K2

2
< α(γ − α) <

λ+
√
λ2 −K2

2
. (2.99)

Such an α always exists if the maximum of α(γ − α) with respect to α is greater than
the left bound in (2.99), i.e., when

γ2

4
>
λ−

√
λ2 −K2

2
. (2.100)
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This inequality just coincides with assumption (2.88). Consequently, taking an α that
satisfies both inequalities in (2.99), we obtain that the quadratic form {. . .} in (2.95)
is positive definite and

(γ − α)X2 + αY 2 − K
√

λ− α(γ − α)
XY ≥ β

(

X2 + Y 2
)

, β > 0, (2.101)

where β depends explicitly on γ, λ, and K.
Then (2.95) becomes

1

2

d

dt

(

X2 + Y 2
)

+ β
(

X2 + Y 2
)

< 0

and the Gronwall’s inequality yields

X2(t) + Y 2(t) ≤
(

X2(τ) + Y 2(τ)
)

e−2β(t−τ). (2.102)

We see that the expression X2 +Y 2 = |∂tw+αw|2 + |∇w|2−α(γ−α)|w|2 is equivalent
to the norm ‖y1 − y2‖2

E = |∂tw|2 + |∇w|2. Hence, (2.102) implies the inequality

‖y1(t) − y2(t)‖2
E ≤ C2‖y1(τ) − y2(τ)‖2

Ee
−2β(t−τ), ∀t ≥ τ, (2.103)

with some constant C = C(γ, λ, α).
By Proposition 2.6.8, the kernel Kg of (2.85) is non-empty, i.e. there is a bounded

(in E) solution z(t) = zg(t), t ∈ R, of system (2.85).
If we substitute this solution z(t) into (2.103), then we obtain for any other solution

y(t) = Ug(t, τ)yτ the estimate

‖y(t) − z(t)‖E ≤ C‖yτ − z(τ)‖Ee
−β(t−τ), ∀t ≥ τ. (2.104)

This inequality also implies that z(t) is the unique bounded complete trajectory of the
process {Ug(t, τ)} corresponding to (2.85).

In conclusion, we formulate some corollaries from Theorem 2.6.2 that can be proved
in analogous manner as for the corresponding propositions for the 2D Navier–Stokes
system in Section 2.6.1 (see Corollaries 2.6.1 – 2.6.3 and Proposition 2.6.2).

Corollary 2.6.4 Under conditions (2.87) and (2.88), the global attractor of equation
(2.85) has the forms

A = [{zg0(t) | t ∈ R}]E =
⋃

g∈H(g0)

{zg(0)} . (2.105)

Corollary 2.6.5 The constructed global attractor A is exponential, i.e., for every
bounded set B ⊂ E

distE (Ug0(t, τ)B,A) ≤ C‖B‖Ee
−β(t−τ) ∀t ≥ τ, (2.106)

where ‖B‖E = sup{‖y‖E | y ∈ B}.

Corollary 2.6.6 If the function g(t) is periodic with period p, then zg(t) is also periodic
with period p.
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Corollary 2.6.7 If g(t) is almost periodic, then zg(t) is almost periodic as well.

Proof. Similarly to (2.102), we establish that the function w(t) = zg(t) − zg(t + p)
satisfies the inequality

d

dt

(

X2 + Y 2
)

+ 2β
(

X2 + Y 2
)

≤ 2|g(t) − g(t+ p)||v|, (2.107)

where X2 = |v(t)|2 = |∂tw(t) + αw(t)|2 and Y 2 = |∇w(t)|2 − α(γ − α)|w(t)|2 . Using
the estimate

2|g(t) − g(t+ p)||v| ≤ βX2 + β−1|g(t) − g(t+ p)|2, (2.108)

we find that
d

dt

(

X2 + Y 2
)

+ β
(

X2 + Y 2
)

≤ β−1|g(t) − g(t+ p)|2. (2.109)

If now a number p is an ε-period of the function g, i.e., |g(t) − g(t + p)| < ε for all
t ∈ R, then from (2.109) we obtain that

X2(t) + Y 2(t) ≤
(

X2(τ) + Y 2(τ)
)

e−β(t−τ) +
ε2

β2
.

Fixing t and letting τ → −∞, we have that

‖zg(t) − zg(t+ p)‖2
E ≤ C

(

X2(t) + Y 2(t)
)

≤ C
ε2

β2
, ∀t ∈ R, (2.110)

that is, the number p is an ε
√
C/β-period of the function zg and, thereby, zg(t) is

almost periodic.
We now assume that the function g0(t) is quasiperiodic and it has k rationally

independent frequencies, i.e.,

g0(t) = φ(x, α1t, . . . , αkt) = φ(x, ᾱt), (2.111)

where φ ∈ C lip(Tk;L2(Ω)), ᾱ = (α1, . . . , αk) ∈ R (see Example 2.4.5).

Proposition 2.6.9 If g0(t) is a quasiperiodic function of the form (2.111), then the
corresponding function zg0(t) is also quasiperiodic. Thus, there exists a function Φ ∈
C lip(Tk;L2(Ω)) such that

zg0(t) = Φ(x, α1t, . . . , αkt).

The proof is analogous to the proof of Proposition 2.6.2.

Corollary 2.6.8 If the external force g0(t) has the form (2.111), then the global at-
tractor A of equation (2.80) is a Lipschitz continuous image of a k-dimensional torus
Tk :

A = Φ(Tk) and dF (A) ≤ k.

Remark 2.6.7 It is easy to construct external forces g0(t) of the form (2.111) such that
dF (A) = k. Moreover, there exist almost periodic external forces such that dF (A) = ∞
(see Section 2.7).

Remark 2.6.8 Changing in (2.80) the time variable t = t′/γ, we obtain the equation

ε∂2
t u+ ∂tu = ∆u− f(u) + g0(x, t), u|∂Ω = 0,

where ε = γ−2. The above result are applicable to this equation provided that

|f ′(u)| < λ, ∀u ∈ R, and 0 < ε < ε0 := 2−1
(

λ−
√
λ2 − k2

)−1

.
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2.6.3 Non-autonomous Ginzburg–Landau equation

We consider shortly the following non-autonomous generalization of the Ginzburg–
Landau equation from Section 1.3.3 with zero boundary conditions (periodic boundary
conditions can be treated in a similar way):

∂tu = (1 + iα0(t))∆u+R0(t)u− (1 + iβ0(t))|u|2u+ g0(x, t), u|∂Ω = 0. (2.112)

Here u = u1(x, t) + iu2(x, t) is an unknown complex function and x ∈ Ω b Rn. The
coefficients α0(t), β0(t), and R0(t) are given real functions belonging to the space
Cb(R). We assume that

|β0(t)| ≤
√

3, ∀t ∈ R. (2.113)

The phase space for equation (2.112) is H = L2(Ω; C). The norm in H is denoted by
‖ · ‖. We denote also V = H1

0 (Ω; C) and L4 = L4(Ω; C). We assume that the function
g0(x, t) = g1

0(x, t) + ig2
0(x, t) belongs to the space Lb

2(R;H), that is,

‖g0‖2
Lb

2(R;H) := sup
τ∈R

∫ τ+1

τ

‖g0(·, s)‖2ds. (2.114)

Recall that equation (2.112) is equivalent to the following system for the vector-
function u = (u1, u2)> :

∂tu =

(

1 −α0(t)
α0(t) 1

)

∆u +R0(t)u −
(

1 −β0(t)
β0(t) 1

)

|u|2u + g0(x, t),

where g0 = (g1
0, g

2
0)

>.
Under the above assumption, the Cauchy problem for equation (2.112) with initial

data
u|t=τ = uτ (x), uτ (·) ∈ H, τ ∈ R, (2.115)

has a unique weak solution u(t) := u(x, t) belonging to the space

u(·) ∈ Cb(Rτ ;H) ∩ Lb
2(Rτ ;V) ∩ Lb

4(Rτ ;L4),

and the function u(t) satisfies (2.112) in a weak distribution sense (see [T88, BV89,
CV02a]).

Any solution u(t), t ≥ τ, of equation (2.112) satisfies the differential identity

1

2

d

dt
‖u(t)‖2 + ‖∇u(t)‖2 + ‖u(t)‖4

L4
−R(t)‖u(t)‖2 = 〈g0(t), u(t)〉 , ∀t ≥ τ, (2.116)

The function ‖u(t)‖2 is absolutely continuous for t ≥ τ . We note that the parameters
α0(t) and β0(t) are missing in this identity. The proof of (2.116) is analogous to the
proof of the corresponding identities for weak solutions of general reaction-diffusion
systems considered in [CV02a, CV96b] (see also [CV05]).

Using the standard transformations and the Gronwall lemma, we deduce from
(2.116) that any weak solution u(t) of equation (2.112) satisfies the inequality

‖u(t)‖2 ≤ ‖u(τ)‖2e−2λ(t−τ) + C2
0 , ∀t ≥ τ. (2.117)
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where λ is the first eigenvalue of the operator {−∆u, u|∂Ω = 0} and the constant C0

depends on ‖R0‖Cb
= supt∈R |R(t)| and ‖g0‖Lb

2(R;H).
Let {U(t, τ)} be the process corresponding to problem (2.112), (2.115) and acting

in the space H. Recall that the mappings U(t, τ) : H → H, t ≥ τ, τ ∈ R, are defined
by the formula

U(t, τ)uτ = u(t), ∀uτ ∈ H, (2.118)

where u(t), t ≥ τ, is a solution of equation (2.112) with initial data u|t=τ = uτ . It
follows from estimates (2.117) that the process {U(t, τ)} has the uniformly absorbing
set

B0 = {v ∈ H | ‖v‖ ≤ 2C0} (2.119)

that is bounded in H.
We claim that the process {U(t, τ)} has a compact in H uniformly absorbing set

B1 = {v ∈ V | ‖v‖V ≤ C ′
0} (2.120)

for an appropriate C ′
0. For the proof see [CV02a, CV05] and Section 5.1. The set B1 is

bounded in V and compact in H since the embedding V b H is compact. Thus, the
process {U(t, τ)} corresponding to (2.112) is uniformly compact.

Applying Theorem 2.1.1, we conclude that the process {U(t, τ)} has the global
attractor A and the set A is compact in H, bounded in V, and can be constructed by
the formula

A = ω(B0) =
⋂

h≥0

[

⋃

t−τ≥h

U(t, τ)B0

]

H

.

The time symbol of equation (2.112) is the function

σ0(t) = (α0(t), β0(t), R0(t), g0(x, t)), t ∈ R.

The values of σ0(t) belong to Ψ = R3 × H. We assume that β0(t) satisfies (2.113).
Let the functions α0(t), β0(t), and R0(t) be tr.c. in the space C loc(R) and let

the function g0(x, t) be tr.c. in Lloc
2 (R;H). Then clearly the function σ0(t) is tr.c. in

Ξ = C loc(R; R3)×Lloc
2 (R;H). Consider the hull H(σ0) of the function σ0(t) in the space

C loc(R; R3) × Lloc
2 (R;H).

Along with equation (2.112), we consider the family of equations

∂tu = (1 + iα(t))∆u+R(t)u− (1 + iβ(t))|u|2u+ g(x, t), σ ∈ H(σ0), (2.121)

with symbols σ(t) = (α(t), β(t), R(t), g(x, t)), where σ ∈ H(σ0). We note that for
every σ = (α, β, R, g) ∈ H(σ0), the function β(t) satisfies inequality (2.113) and
g(x, t) satisfies (2.114). Therefore, equations (2.121) generates the family of processes
{Uσ(t, τ)}, σ ∈ H(σ0), acting in H (see [CV02a, CV05]). Recall that {U(t, τ)} =
{Uσ0(t, τ)} is the process corresponding to the original Ginzburg–Landau equation
(2.112). Consider the kernels Kσ, σ ∈ H(σ0), of equations (2.121). In [CV02a, CV05],
it is proved that the family {Uσ(t, τ)}, σ ∈ H(σ0), is (H×H(σ0);H)-continuous. Then,
by Theorem 2.5.1, we observe that

A =
⋃

σ∈H(σ0)

Kσ(0), (2.122)
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where the kernel Kσ of equation (2.121) is non-empty for all σ ∈ H(σ0).
In conclusion, we present an example of the Ginzburg–Landau equation having a

simple global attractor.

Proposition 2.6.10 Let the function β0(t) satisfy (2.113) and let the coefficient R0(t)
satisfy the inequality

R0(t) ≤ λ− δ, ∀t ∈ R, (0 < δ < λ). (2.123)

Then, for any σ ∈ H(σ0), the kernel Kσ of equation (2.121) consists of the unique
element {zσ(t), t ∈ R}. Moreover, the function {zσ(t), t ∈ R} satisfies the following
property of exponential attraction of any solutions {uσ(t), t ≥ τ} of equation (2.121):

‖uσ(t) − zσ(t)‖ ≤ e−δ(t−τ)‖uσ(τ) − zσ(τ)‖, ∀t ≥ τ. (2.124)

Proof. It is established that the kernel Kσ of equation (2.121) is non-empty. So, there
exists a bounded complete solution zσ(t), t ∈ R, of this equation. Consider any other
solution {uσ(t), t ≥ τ} of equation (2.121). Then the difference w(t) = uσ(t) − zσ(t)
satisfies the equation

∂tw(t) = (1 + iα(t))∆w(t) +R(t)w(t)− (1 + iβ(t))
(

|u(t)|2u(t) − |z(t)|2z(t)
)

. (2.125)

We set

A(t)v = (1 + iα(t))∆v +R(t)v and f(t, v) = (1 + iβ(t))|v|2v.

Using (2.123), we find that

〈A(t)w,w〉 = −〈(1 + iα(t))∇w,∇w〉 + 〈R(t)w,w〉
= −〈∇w,∇w〉+ 〈R(t)w,w〉 ≤ −λ‖w‖2 +R(t)‖w‖2 ≤ −δ‖w‖2. (2.126)

Inequality (2.113) implies that the function f(t, u) is monotone with respect to u :

〈f(t, u) − f(t, z), u− z〉 = 〈f ′
u(t, v)(u− z), u− z〉 = 〈f ′

u(t, v)w,w〉 ≥ 0, (2.127)

where v = z + θ(u− z), 0 ≤ θ(x, t) ≤ 1. See (1.34) and [CV02a] for more details.
Multiplying equation (2.125) by w, taking the scalar product in H, and using (2.126)

and (2.127), we obtain the inequality

1

2

d

dt
‖w(t)‖2 = 〈A(t)w,w〉 − 〈f(t, u) − f(t, z), w〉

≤ −δ‖w‖2 − 〈f ′
u(t, v)w,w〉 ≤ −δ‖w‖2. (2.128)

This implies that

‖u(t) − z(t)‖2 = ‖w(t)‖2 ≤ e−2δ(t−τ)‖w(τ)‖2 = e−2δ(t−τ)‖u(τ) − z(τ)‖2, ∀t ≥ τ,

and inequality (2.124) is proved for any function zσ(t) from the kernel Kσ of (2.121).
It follows from inequality (2.124) that {zσ(t), t ∈ R} is the unique element of the

kernel Kσ of equation (2.121).
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Remark 2.6.9 Property (2.124) of the exponential attraction by the unique trajec-
tory {zσ(x, t), t ∈ R} of all solutions {uσ(x, t), t ≥ τ} of equation (2.121) is the non-
autonomous analogue of the exponential stability of the unique stationary point {z(x)}
of the autonomous equation (2.21) when R < λ and |β| ≤

√
3.

Finally, we formulate some natural corollaries from Proposition 2.6.10.

Corollary 2.6.9 Under the assumptions of Proposition 2.6.10, the global attractor A
of equation (2.112) has the following forms

A =
[

⋃

t∈R
{zσ0(t)}

]

H

=
⋃

σ∈H(σ0)

{zσ(0)} . (2.129)

Moreover, the global attractor A is exponential, i.e., for every bounded set B ⊂ H

distH (Uσ0(t, τ)B,A) ≤ C (‖B‖) e−δ(t−τ) ∀t ≥ τ, (2.130)

where ‖B‖ = sup{‖y‖ | y ∈ B}.

Corollary 2.6.10 If the symbol σ(t) is periodic, then zσ(t) is periodic. If σ(t) is almost
periodic, then zσ(t) is almost periodic as well. If the initial symbol σ0(t) is quasiperiodic
of the form

σ0(t) = φ(α1t, . . . , αkt) = φ(ᾱt),

where φ ∈ C lip(Tk; R3 × H) and the numbers ᾱ = (α1, . . . , αk) are rationally inde-
pendent, then the function zσ0(t) is also quasiperiodic, i.e., there exists a function
Φ ∈ C lip(Tk;H) such that

zσ0(t) = Φ(α1t, . . . , αkt).

Moreover, the global attractor A is a Lipschitz continuous image of a k-dimensional
torus T

k :
A = Φ(Tk) and dF (A) ≤ k.

The proofs are analogous to the proofs of Corollaries 2.6.1 – 2.6.3 and 2.6.4 – 2.6.8.

Remark 2.6.10 There are symbols σ0(t) satisfying (2.113) and (2.123) such that
dF (A) = k. Moreover, it is easy to construct almost periodic symbols such that
dF (A) = ∞.

2.7 On the dimension of global attractors of pro-

cesses

Dealing with non-autonomous evolution equations, we see that the dimension of their
uniform global attractors depends on the dimension of the symbol hulls of these equa-
tions. E.g., for evolution equations with quasi-periodic time symbols, the fractal dimen-
sion of global attractors depends on the number of rationally independent frequencies
of the symbols (see Remarks 2.6.4, 2.6.7, and 2.6.10).
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In conclusion we demonstrate, that uniform global attractors of processes corre-
sponding to general non-autonomous evolution equation can have infinite fractal di-
mension.

Consider a process {U(t, τ)} acting in a Hilbert (or Banach) space E. We assume
that the process {U(t, τ)} is uniformly asymptotically compact. Then, by Theorem
2.1.1, this process has the global attractor A. Consider the kernel K of the process
{U(t, τ)}. It follows from Proposition 2.1.2 that the set

K =
⋃

τ∈R

K(τ)

consisting of all values of all complete trajectories u ∈ K of the process belongs to A.
Moreover, the closure K of this set in E also belongs to A since the global attractor is
a closed set.

We claim that the set K can have infinite dimension

dFK = +∞ (2.131)

for all the problems described in Section 2.6. For example, for the Navier-Stokes system
we set

u0(x, t) =

∞
∑

j=1

aj(x) cos(µjt) + bj(x) sin(µjt), (2.132)

where aj(x) = (a1
j(x), a

2
j(x)), bj(x) = (b1j(x), b

2
j(x)) are smooth linear independent

vector functions such that aj|∂Ω = 0, (∇, aj) = 0, bj|∂Ω = 0, (∇, bj) = 0. We assume
that series (2.132) and its derivatives with respect to x and t converge rapidly. We also
assume that the frequencies µj (j = 1, 2, . . .) are rationally independent real numbers.
We set

g0(x, t) = ∂tu0(x, t) + νLu0(x, t) +B(u0(x, t), u0(x, t)), (2.133)

and see that g0(·) ∈ Cb(R;H). System (2.36) with such an external force g0(x, t)
generates a process {U(t, τ)} in H having the compact attractor A (see Section 2.6.1).
The process {U(t, τ)} has at least one complete bounded solution, namely u0(t), so
its kernel K is non-empty and u0 ∈ K. It is easy to show that the projection uN

0 (x, t)
of the function u0(x, t) onto 2N -dimensional space spanned by the vector functions
{(aj(x), bj(x)) | j = 1, . . . , N} provides a dense winding of the N -dimensional torus
T

N ⊂ H. (Here we use the fact that the frequencies {µj} are rationally independent).

Therefore, the set Im u0 = {u0(·, t) : t ∈ R} has the fractal dimension greater than
N : dF Im u0 ≥ N for each N ∈ N, i.e.,

dF Imu0 = ∞.

Evidently, Imu0 ⊆ K and hence, dFK = +∞ . We recall that K ⊆ A and thereby

dFA = +∞.

In the next chapter, we study the fractal dimension and the Kolmogorov ε-entropy
of uniform global attractors of non-autonomous evolution equations.
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Chapter 3

Kolmogorov ε-entropy of global
attractors

In the end of the previous chapter, it was shown that the fractal dimension of the
global attractor A of a non-autonomous evolution equation can be infinite. At the
same time, global attractors are always compact sets in the corresponding phase spaces.
Then it is reasonable to study their Kolmogorov ε-entropy since this quantity is finite
for every ε. In this chapter, we find upper estimates for the Kolmogorov ε-entropy
of global attractors of non-autonomous evolution equations with translation compact
symbols. These estimates are optimal in some sense and generalize the estimates for
the ε-entropy of finite dimensional global attractors of the corresponding autonomous
equations considered in Section 1.4.

In Section 3.1, we present a general upper estimate for the ε-entropy of the uniform
global attractor A of a process {Uσ(t, τ)} corresponding to a non-autonomous equation
∂tu = Aσ(t)(u) with translation compact symbol σ(t).

In Section 3.2, we consider cases, when the fractal dimension dFA of the uniform
global attractor A is finite. This property holds when, for example, the time symbol
σ(t) is a quasiperiodic function in time t with k rationally independent frequencies.
Then we prove that dFA ≤ d+k for an appropriate value d depending on the problem
under the study. This means that the dimension dFA can grow to infinity as k → +∞.

In Section 3.3, the mentioned above results are applied to the estimates of the
ε-entropy and the fractal dimension of the uniform global attractor of some non-
autonomous equations of mathematical physics, namely, the 2D Navier–Stokes sys-
tem with translation compact external force, damped wave equation with translation
compact terms, and the non-autonomous complex Ginzburg–Landau equation.

We have to highlight the fundamental role of the paper [KTi59] in the study of the
ε-entropy of compact sets in Hilbert or Banach spaces.

3.1 Estimates for ε-entropy

Using the notations from Chapter 2 and Section 2.5, we consider the family of non-
autonomous equations

∂tu = Aσ(t)(u), u|t=τ = uτ , uτ ∈ E, (3.1)
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with symbols σ(t) ∈ H(σ0(t)). Here E is a Hilbert space. We assume that symbol
σ0(t) of the original equation (2.21) is a translation compact function in the space Ξ.
The topological space Ξ is assumed to be a Hausdorff space. Usually in applications,
Ξ = C(R; Ψ) or Ξ = Lloc

p (R; Ψ) (p ≥ 1), where Ψ is a Banach space. We can also
assume that Ξ is a product of a number of such spaces. The space Ξ is endowed with
local uniform convergence topology on every bounded segment from R. By definition,
a sequence {σn(·)} converges to an element σ(·) as n→ ∞ in Ξ if

‖Πt1,t2 (σn(·) − σ(·))‖Ξt1,t2
→ 0 (n→ ∞)

for every closed interval [t1, t2] ⊂ R. Here Πt1,t2 denotes the restriction operator onto
the interval [t1, t2], Ξt1 ,t2 are the family of Banach spaces generating Ξ, and ‖ξ‖Ξt1,t2

is
the norm of ξ in Ξt1,t2 . For example, if Ξ = C(R; Ψ), then Ξt1,t2 = C([t1, t2]; Ψ), and
σn(·) → σ(·) (n→ ∞) in C(R; Ψ) if

max
s∈[t1,t2]

‖σn(s) − σ(s)‖Ψ → 0 as n→ ∞ (3.2)

for every [t1, t2] ⊂ R. Similarly, σn(·) → σ(·) (n→ ∞) in Ξ = Lloc
p (R; Ψ) if

∫ t2

t1

‖σn(s) − σ(s)‖p
Ψds→ 0 as n→ ∞ (3.3)

for all [t1, t2] ⊂ R (see [CV02a] for more details). In addition, we assume that the
norms in the spaces Ξt1,t2 satisfy the following condition:

‖Πt′1,t′2
ξ‖Ξt′1,t′2

≤ ‖Πt1,t2ξ‖Ξt1,t2
, ∀ [t′1, t

′
2] ⊂ [t1, t2]. (3.4)

The spaces C([t1, t2]; Ψ) and Lloc
p (t1, t2; Ψ) clearly satisfy (3.4).

We suppose that, for every σ ∈ H(σ0), the Cauchy problem (3.1) generates a process
{Uσ(t, τ)} acting in E, by the formula Uσ(t, τ)uτ = u(t), t ≥ τ, τ ∈ R, where u(t) is a
solution of (3.1) with initial data uτ ∈ E.

We assume that the conditions of Theorem 2.5.1 take place. Then the process
{Uσ0(t, τ)} has the global attractor A that has the form (2.33).

The problem is to study the ε-entropy Hε(A) = Hε(A, E) of the global attractor
A in the space E (see Definition 1.4.1). We are going to estimate Hε(A) using the
information on the behaviour of the ε-entropy of the sets

Π0,lH(σ0)

in the space Ξ0,l (where, e.g., Ξ0,l = C([0, l]; Ψ) or Ξ0,l = Lloc
p (0, l; Ψ)). This behaviour

is assumed to be known as l → +∞ and ε → 0 + . Here Π0,l denotes the restriction
operator on the segment [0, l].

Let us formulate some additional notions and conditions for the process {Uσ0(t, τ)}
that we need to formulate the main theorem. First of all, we have to generalize for
processes the property of quasidifferentiability (1.40) introduced in Section 1.4.1 for
semigroups. Let {U(t, τ)} be a process in E. Consider the kernel K of this process (see
Definition 2.1.3). The kernel sections, clearly, satisfy the following invariance property:

U(t, τ)K(t) = K(τ), ∀t ≥ τ, τ ∈ R. (3.5)
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Definition 3.1.1 A process {U(t, τ)} in E is called uniformly quasidifferentiable on
K, if there exists a family of linear bounded operators {L(t, τ, u)}, where u ∈ K(τ)
and t ≥ τ, τ ∈ R, such that

‖U(t, τ)u1 − U(t, τ)u− L(t, τ, u)(u1 − u)‖E ≤ γ(‖u1 − u‖E, t− τ)‖u1 − u‖E (3.6)

for all u, u1 ∈ K(τ), and τ ∈ R, where the function γ = γ(ξ, s) → 0+ as ξ → 0+ for
each fixed s ≥ 0.

We now assume that the process {Uσ0(t, τ)} corresponding to (3.1) is uniformly
quasidifferentiable on the kernel Kσ0 and its quasidifferentials are generated by the
variational equation

∂tv = Aσ0u(u(t))v, v|t=τ = vτ , vτ ∈ E, (3.7)

where u(t) = Uσ0(t, τ)uτ , uτ ∈ Kσ0(τ), that is, L(t, τ, uτ)vτ = v(t), where v(t) is a
solution of problem (3.7) with initial data vτ . It is assumed that this Cauchy problem
is uniquely solvable for all uτ ∈ Kσ0(τ) and for every vτ ∈ E.

Similar to (1.43) we introduce the numbers

q̃j := lim sup
T→+∞

sup
τ∈R

sup
uτ∈K(τ)

1

T

τ+T
∫

τ

TrjAσ0u(u(t))dt, (3.8)

where u(t) = Uσ0(t, τ)uτ and the j-trace Trj(L) of a linear operator L in a Hilbert
space E is defined in (1.42).

We also assume that the following Lipschitz condition holds for the family of pro-
cesses {Uσ(t, τ)}, σ ∈ H(σ0), corresponding to (3.1):

‖Uσ1(h, 0)u0 − Uσ2(h, 0)u0‖E ≤ C(h)‖σ1 − σ2‖Ξ0,h
, (3.9)

∀σ1, σ2 ∈ H(σ0), ∀u0 ∈ A, ∀h ≥ 0.

It follows from (3.9) that

|Uσ1(t, τ)uτ − Uσ2(t, τ)uτ | ≤ C(|t− τ |)‖σ1 − σ2‖Ξτ,t ∀σ1, σ2 ∈ H(σ0), ∀uτ ∈ A,

for all t > τ, τ ∈ R.
We now are ready to formulate the main theorem of this chapter.

Theorem 3.1.1 Let the assumptions of Theorem 2.5.1 hold. Assume that the original
process {Uσ0(t, τ)} is uniformly quasidifferentiable on Kσ0 , its quasidifferentials are
generated by the variational equation (3.7), and the numbers q̃j (see (3.8)) satisfies the
inequalities

q̃j ≤ qj, j = 1, 2, 3, . . . (3.10)

We also assume that the Lipschitz condition (3.9) holds for the family of processes
{Uσ(t, τ)}, σ ∈ H(σ0), and the function qj is concave in j (like ∩). Let m be the
smallest number such that qm+1 < 0 (then qm ≥ 0). We denote

d = m+ qm/(qm − qm+1). (3.11)
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Then for every δ > 0 there exist numbers η ∈ (0, 1), ε0 > 0, h > 0 such that

Hε(A) ≤ (d+δ) log2

(

ε0

ηε

)

+Hε0(A)+H εη
4C(h)

(

Π0,h log1/η(
ε0
ηε)

H(σ0)
)

, ∀ε < ε0. (3.12)

The value C(h) is the Lipschitz constant from condition (3.9).

Recall that in the right-hand side of (3.12) the valueHε (Π0,lH(σ0)) denotes the ε-
entropy of the set H(σ0) restricted to the interval [0, l] and this ε-entropy is measured in
the space Ξ0,l (e.g., in C([0, l]; Ψ) or Lloc

p (0, l; Ψ)). The complete proof of this theorem
is given in [CV93e, CV02a].

Remark 3.1.1 Comparing inequality (3.12) with estimate (1.46) in the autonomous
case, we observe that the term (d + δ) log2 (ε0/ηε) corresponds to the upper estimate
for the ε-entropy of the kernel sections K(τ) and in particular

dFK(τ) ≤ d, ∀τ ∈ R, (see [CV02a]).

Remark 3.1.2 We note that, when δ is small, inequality (3.12) is optimal with respect
to the estimate of the ε-entropy of the kernel sections. However, another important
parameter, namely h, in (3.12) approaches infinity as δ → 0+. This parameter controls
the denominator in ε = εη

4C(h)
, where the function C(h) is the Lipschitz constant in

(3.9) which usually grows exponentially when h goes to infinity. So, if the hull H(σ0) is
infinite dimensional, then the ε-entropy of H(σ0) can grow extremely rapidly as ε→ 0+
and faster than the value D log

(

1
ε

)

for arbitrary D. Thus, it is reasonable to optimize
estimate (3.12) with respect to small values of h. The following theorem presents a
result in this direction. The proof is given in [CV02a].

Theorem 3.1.2 Let the assumptions of Theorem 3.1.1 be valid and

q̃j ≤ qj, j = 1, 2, . . . .

Assume that
qj

j
→ −∞ (j → ∞). (3.13)

Then for any h > 0 there exist D > 0 and ε0 > 0 such that

Hε(A) ≤ D log2

(

2ε0

ε

)

+ Hε0 (A) + H ε
8C(h)

(

Π
0,h log2(

2ε0
ε )H(σ0)

)

(3.14)

for all ε ≤ ε0. (Usually in applications, C(h) approaches 1 as h→ +0).

We now consider a particular case, where σ0(t) is an almost periodic function, that
is, the hull H(σ0) is compact in Cb(R; Ψ) with respect to the topology of uniform
convergence on R. The norm in Cb(R; Ψ) is given by

‖ξ‖Cb(R;Ψ) := sup
t∈R

‖ξ(t)‖Ψ.

Since
‖ξ‖C([0,l];Ψ) ≤ ‖ξ‖Cb(R;Ψ), ∀l > 0,

we clearly have that

Hε(Π0,lH(σ0);C([0, l]; Ψ)) ≤ Hε(H(σ0);Cb(R; Ψ)) = Hε(H(σ0)), ∀l > 0, (3.15)

and Theorems 3.1.1 and 3.1.2 imply
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Corollary 3.1.1 We assume that the function σ0(t) is almost periodic. Let the as-
sumptions of Theorem 3.1.1 be valid. Then

Hε(A) ≤ (d+ δ) log2

(

ε0

ηε

)

+ Hε0(A) + H εη
4C(h)

(H(σ0)) , ∀ε < ε0, (3.16)

where Hε (H(σ0)) is the ε-entropy of the hull H(σ0) in the space Cb(R; Ψ).

Corollary 3.1.2 Under the assumptions of Theorem 3.1.2, let H(σ0) b Cb(R; Ψ).
Then

Hε(A) ≤ D log2

(

2ε0

ε

)

+ Hε0 (A) + H ε
8C(h)

(H(σ0)) , ∀ε < ε0. (3.17)

Remark 3.1.3 If it is known that H(σ0) b Lb
p(R; Ψ), i.e., σ0(t) is an almost periodic

functions in the Stepanov sense, then estimates (3.16) and (3.17) are also valid. In this
case, Hε (H(σ0)) denotes the ε-entropy of H(σ0) in the space Lb

p(R; Ψ) measured in the
norm

‖f‖Lb
p(R;Ψ) :=

(

sup
t∈R

∫ t+1

t

‖f(s)‖p
Ψds

)1/p

.

The estimate (3.16) shows that for a generic almost periodic function σ0(t) having
infinite number rationally independent frequencies, the main contribution to the esti-
mate for the ε-entropy of the global attractor A is made by the ε/L-entropy of the hull

H(σ0), where L = 4C(h)
η
. However, if the function σ0(t) has a finite number of frequen-

cies, i.e., it is quasiperiodic, then the contribution of this quantity is comparable with

the contribution of the term d log2

(

ε0

αη

)

. This leads to the finite dimensionality of the

global attractor of the non-autonomous equation under the consideration. We discuss
this question in the next section.

In conclusion, we consider two more important characteristics of a compact set X
in the space E introduced in [KTi59]. The number

df(X,E) = df(X) := lim sup
ε→0+

log2 (Hε(X))

log2 log2 (1/ε)
(3.18)

is called the functional dimension of the set X in E and the number

q(X,E) = q(X) := lim sup
ε→0+

log2 (Hε(X))

log2 (1/ε)
(3.19)

is called its metric order in E. It is easy to see that df(X) = 1, q(X) = 0, if dF (X) <
+∞. Thus the values df(X) and q(X) characterize infinite dimensional sets. Some
examples of calculations of these values are given in [KTi59] (see also [VC98, VC03]).

Using Corollaries 3.1.1 and 3.1.2, we obtain

Corollary 3.1.3 Let σ0(t) be an almost periodic function, then

df(A, E) ≤ df (H(σ0), Cb(R; Ψ)) , (3.20)

q(A, E) ≤ q (H(σ0), Cb(R; Ψ)) . (3.21)
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3.2 The cases of finite fractal dimension of global

attractors

In this section, we study the fractal dimension of the uniform global attractor A of the
process {Uσ0(t, τ)} corresponding to (2.21) and its dependence on the fractal dimension
of the hull H(σ0). Recall that the fractal dimension dF (X) = dF (X,E) of a compact
set X b E in a Banach space E is the number

dF (X) := lim sup
ε→0+

Hε(X)

log2 (1/ε)
.

We start with a very important example of a quasiperiodic symbol σ0(t) (see Ex-
ample 2.4.5):

σ0(t) = ϕ(α1t, α2t, ..., αkt) = ϕ(ᾱs),

where ϕ(ω̄), ω̄ = (ω1, ..., ωk), is a 2π-periodic function in each argument ωi, i =
1, ..., k; ᾱ = (α1, α2, . . . , αk), αi ∈ R, {αi} are rationally independent numbers. We
assume that ϕ(ω̄) is a Lipschitz continuous function on the k-dimensional torus Tk =
[R mod2π]k with values in a Banach space Ψ, ϕ ∈ C lip(Tk; Ψ), i.e.,

‖ϕ(ω̄1) − ϕ(ω̄2)‖Ψ ≤ L|ω̄1 − ω̄2|Tk ∀ω̄1, ω̄2 ∈ T
k. (3.22)

Here | · |Tk denotes the usual Euclidean norm in Rk. By (2.28) the hull H(σ0) of the
function σ0(t) in the space Cb(R; Ψ) coincides with

{ϕ(ᾱs + θ̄) | θ̄ ∈ T
k} = H(σ0). (3.23)

Proposition 3.2.1 If σ0(t) is a quasiperiodic function, then

Hε(H(σ0)) := Hε(H(σ0), Cb(R; Ψ)) ≤ HLε(T
k) ≤ k log2

(

2

Lε

)

(3.24)

for all ε < L−1 and

dF (H(σ0)) = dF (H(σ0), Cb(R; Ψ)) ≤ k.

Proof. If σ1, σ2 ∈ H(σ0), then by (3.23) σi = ϕ(ᾱs+ θ̄i) for some θ̄i ∈ Tk, i = 1, 2 and
by (3.22)

‖σ1 − σ2‖Cb(R;Ψ) := sup
t∈R

‖σ1(t) − σ2(t)‖Ψ

= sup
t∈R

‖ϕ(ᾱt + θ̄1) − ϕ(ᾱt+ θ̄2)‖Ψ ≤ L|θ̄1 − θ̄2|Tk .

Therefore
Nε(H(σ0)) ≤ NLε(T

k).

It is known that the torus Tk with Euclidean metric can be covered by at most
(

2
ε

)k

balls of radius ε < 1 (see, e.g., [ConSl88]). Hence,

Nε(H(σ0)) ≤
(

2

Lε

)k

,

Hε(H(σ0)) ≤ k log2

(

2

Lε

)

, ∀ε < L−1,
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and consequently

dF (H(σ0)) := lim sup
ε→0+

Hε(H(σ0))

logε (1/ε)
≤ k,

which complete the proof.

Remark 3.2.1 In the generic case, H(σ0) is clearly a Lipschitz continuous manifold
in Cb(R; Ψ) isometric to the torus Tk, therefore dF (H(σ0)) = k.

Theorem 3.2.1 Let in the assumptions of Theorem 3.1.1 the function σ0(t) be quasi-
periodic of the form σ0(t) = φ(α1t, α2t, . . . , αkt) = φ(ᾱt), where φ(ω1, ω2, . . . , ωk) =
φ(ω̄) ∈ CLip(Tk; Ψ). Then the estimate (3.16) becomes

Hε(A) ≤ (d+ δ) log2

(

ε0

ηε

)

+ Hε0(A) + k log2

(

8C(h)

Lηε

)

, ∀ε < ε0, (3.25)

where L is the Lipschitz constant from inequality (3.22). Moreover,

dF (A) ≤ d+ k. (3.26)

Proof. Indeed, inequality (3.16) along with (3.24) gives

Hε(A) ≤ (d+ δ) log2

(

ε0

ηε

)

+ Hε0 (A) + H εη
4C(h)

(H(σ0))

≤ (d+ δ) log2

(

ε0

ηε

)

+ Hε0 (A) + k log2

(

8C(h)

Lηε

)

.

Passing to the limit in the ratio Hε(A)/ log2(1/ε) as ε→ 0+ we obtain

dF (A) ≤ d+ δ + k.

Since δ was arbitrary small, we have (3.26).
Recall that, in the autonomous case with k = 0, estimate (1.45) is an analog of

estimate (3.26), where X = A : dF (A) ≤ d. In the non-autonomous case, when
k 6= 0, estimate dF (A) ≤ d + k holds, where the number k of rationally independent
frequencies of the function σ0(t) is added to the quantity d.

We now generalize Theorem 3.2.1 for more general symbols σ0(t) that are not almost
periodic, however, the dimension of the corresponding global attractors A is also finite.

Let, as before, σ0(t) be a tr.c. function in Ξ and, thereby, its hull H(σ0) is compact
in Ξ. (For example, the space Ξ is C(R; Ψ) or Ξ = Lloc

p (R; Ψ).) In [CV02a], it is proved
that the value

lim sup
ε→0+

Hε

(

Π0,l log2(K/ε)Σ
)/

log2 (1/ε) (3.27)

is independent of a number K > 0 for any compact subset Σ b Ξ. We now define the
following number for Σ :

dloc
F (Σ, l) := lim sup

ε→0+
Hε

(

Π0,l log2(1/ε)Σ
)/

log2 (1/ε) (3.28)

depending on a positive parameter l.
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Remark 3.2.2 If Σ = H(σ0), where σ0 is a smooth q.p. function with k independent
frequencies, then dloc

F (Σ, l) ≤ k for any l because H(σ0) is a Lipschitz continuous image
of a k-dimensional torus Tk (see Proposition 3.2.1).

If for some l the value dloc
F (Σ, l) < +∞ for a set Σ, then we say, by definition, that

Σ has a local fractal dimension dloc
F (Σ, l) in the topological space C(R; Ψ).

Theorem 3.2.2 Under the conditions of Theorem 3.1.1 assume that

dloc
F (H(σ0), h1) < +∞,

where h1 = h(δ)/ log2(1/η). Then, for any δ > 0,

dF (A) ≤ d+ δ + dloc
F (H(σ0), h1). (3.29)

Moreover, if
dloc

F (H(σ0), h) ≤ k, ∀h > 0,

then
dF (A) ≤ d+ k.

Indeed, dividing (3.12) by log2 (1/ε) and changing the variables ε = η
4C(h)

ε, we find

dF (A) ≤ (d+ δ) + lim sup
ε→0+

Hε

(

Π
0,h log1/α(

ε0
4C(h)ε)

H(σ0)

)/

(

log2 (1/ε) + log2
η

4C(h)

)

= (d+ δ) + lim sup
ε→0+

Hε

(

Π
0,h1 log2(K/ε)

H(σ0)
)

log2(1/ε)
= (d+ δ) + dloc

F (H(σ0), h1),

where K = ε0/ (4C(h)) . Here we used the fact that (3.27) is independent of K.

3.3 Applications to non-autonomous equations of

mathematical physics

3.3.1 2D Navier–Stokes system

We consider the family of equations

∂tu+ νLu +B(u, u) = g(x, t),
u|t=τ = uτ , uτ ∈ H,

(3.30)

(see Section 2.6.1) with external forces g ∈ H(g0). We assume that the original external
force g0(x, t) is a tr.c. function in Lloc

2 (R;H) =: Ξ. The space Lloc
2 (R;H) is endowed

with the strong convergence topology on every [t1, t2] ⊂ R. Then clearly g0 ∈ Lb
2(R;H)

and

‖g‖2
Lb

2
≤ ‖g0‖2

Lb
2

= sup
t∈R

∫ t+1

t

|g0(s)|2ds <∞, (3.31)

for every function g ∈ H(g0) (see (2.37) and (2.43)).
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We consider the family of processes {Ug(t, τ)}, g ∈ H(g0), corresponding to problem
(3.30) and acting in H. In Section 2.6.1, it was proved that the process {Ug0(t, τ)} has
the uniform global attractor A b H and the set A has the structure form

A =
⋃

g∈H(g0)

Kg(0), (3.32)

where Kg is the kernel of the process {Ug(t, τ)} with external force g ∈ H(g0).
We now study the Kolmogorov ε-entropy Hε(A) of the set A in H.
In [CV02a], it is proved that the family {Ug(t, τ)}, g ∈ H(g0), satisfies the Lipschitz

condition (3.9), namely, we have the inequality

|Ug1(h, 0)u0 − Ug2(h, 0)u0| ≤ C(h)‖g1 − g2‖L2(0,h;H) ∀g1, g2 ∈ H(g0), u0 ∈ A, (3.33)

where the Lipschitz constant C(h) depends also on ν, λ1, and ‖g0‖2
Lb

2
and has an expo-

nential growth in h.
Let us discuss the property of quasidifferentiability. In [CV02a], it is proved that

the process {Ug0(t, τ)} is uniformly quasidifferentiable on Kg0 and the corresponding
variation equation reads

∂tv = −νLv − B(u(t), v) −B(v, u(t)) =: Ag0u(u(t), t)v, v|t=τ = vτ , (3.34)

where u(t) = Ug0(t, τ)uτ , uτ ∈ Kg0(τ) (the proof is based on the methods from
[BV89] and [T88]). Thus, the quasidifferentials are the maps L(t, τ ; uτ ) : H →
H, L(t, τ ; uτ )vτ = v(t), where v(t) is a solution of (3.34).

Following the scheme described in Section 3.1, we set

q̃j := lim sup
T→∞

sup
τ∈R

sup
uτ∈Kg0 (τ)

(

1

T

∫ τ+T

τ

TrjAg0u(u(s))ds

)

, j ∈ N,

where u(t) = Ug0(t, τ)uτ , and Trj is the j-dimensional trace of an operator. Similar to
the autonomous case (see the proof of Theorem 1.4.2 in Section 1.4.2), we obtain the
following estimate:

∫ t

τ

TrjAg0u(u(s))ds ≤ −νC2j
2

2|Ω| (t− τ) +
1

ν2
|uτ |2 +

1

λ1ν3

∫ t

τ

|g0(s)|2ds.

Therefore

q̃j ≤ −νC2j
2

2|Ω| +
|Ω|
C1ν3

M(|g0|2) =: ϕ(j) = qj, j = 1, 2, . . . (3.35)

where

M(|g0|2) := lim sup
T→∞

sup
τ∈R

(

1

T

∫ τ+T

τ

|g0(t)|2dt
)

≤ ‖g0‖2
Lb

2
<∞.

The dimensionless constants C1 and C2 were defined in (1.55) (see also Remark 1.4.5).
The function ϕ(j) in (3.35) is concave with respect to j.

Let m be the smallest integer such that qm+1 = ϕ(m+ 1) < 0 (see Theorem 3.1.1).
We set

d = m +
qm

qm − qm+1
.
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Let also d∗ be the root of the equation ϕ(x) = 0, i.e.,

d∗ = c
M(|g0|2)1/2|Ω|

ν2
, c =

(

2
C1C2

)1/2

. (3.36)

Then, clearly,

d∗ ≤ c
‖g0‖Lb

2
|Ω|

ν2
,

since M(|g0|2) ≤ ‖g0‖2
Lb

2
. It is obvious that

d ≤ d∗ ≤ c
‖g0‖Lb

2
|Ω|

ν2
, (3.37)

because the function ϕ is concave (see Remark 1.4.2).
Now Theorem 3.1.1 is applicable and we have the following result.

Theorem 3.3.1 For any δ > 0 there exist h > 0, ε0 > 0, and η < 1 such that

Hε(A) ≤
(

c
‖g0‖Lb

2
|Ω|

ν2 + δ

)

log2

(

ε0

ηε

)

+ Hε0 (A) + H εη
4C(h)

(

Π0,h log1/η(
ε0
ηε)

H(g0)
)

(3.38)

for all ε ≤ ε0 (the constant C(h) is taken from (3.33)). Here Hε (Π0,lH(g0)) denotes
the ε-entropy of the set Π0,lH(g0) in the space L2(0, l;H).

Remark 3.3.1 The best up-to-date estimate for the constant c in (3.38) is:

c ≤ 1

2π3/2

(see Remark 1.4.5 and [CI04]).

We note that ϕ(j)/j → −∞ (j → ∞) (see (3.35)). Thus, using Theorem 3.1.2 we
obtain the following result.

Theorem 3.3.2 For any h > 0 there exist D > 0 and ε0 > 0 such that

Hε(A) ≤ D log2

(

2ε0

ε

)

+ Hε0 (A) + H ε
8C(h)

(

Π
0,h log2(

2ε0
ε )H(g0)

)

(3.39)

for all ε ≤ ε0.

We now consider a special case, where g0(x, t) is a quasiperiodic function, i.e.,

g0(x, t) = G(x, α1t, α2t, ..., αkt) = G(x, ᾱt).

Here G(·) ∈ C lip(Tk;H) and the numbers ᾱ = (α1, α2, . . . , αk) are rationally indepen-
dent (see Section 3.2). Thus, H(g0) = {G(x, ᾱt + θ̄) | θ̄ ∈ T

k}.
It follows from Kronecker–Weyl’s theorem (see, e.g., [KoSiFo80]) that

M(|g0|2) := lim
T→∞

sup
θ̄∈Tk

(

1

T

∫ T

0

|G(·, θ̄ + ᾱt)|2dt
)

=
1

|2π|k
∫

· · ·
∫

Tk

|G(·, ω1, . . . , ωk)|2dω1 · · ·dωk =: Γ2.
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Then from (3.36) we conclude that

d ≤ d∗ = c
M(|H(g0)|2)1/2|Ω|

ν2
= c

Γ|Ω|
ν2

.

Using Theorem 3.2.1 we obtain the

Theorem 3.3.3 The fractal dimension of the uniform attractor A of the 2D Navier-
Stokes system with quasiperiodic external force g0(x, s) = G(x, ᾱs), G ∈ C(Tk;H)
satisfies the estimate

dFA ≤ c
Γ|Ω|
ν2

+ k, (3.40)

where the dimensionless constant c depends on the shape of Ω (c(Ω) = c(λΩ)) and
admits the following absolute upper bound: c < 1

2π3/2 .

Remark 3.3.2 In the autonomous case (k = 0) estimate (3.40) becomes the upper
bound (1.49) for the fractal dimension of the attractor of the autonomous Navier-
Stokes system (where Γ = |g0|, g0 = g0(x)). In the non-autonomous case, the estimate
(3.40) contains also the term k = dim Tk that is the dimension of the hull H(g0) =
{G(x, ᾱs + θ̄) | θ̄ ∈ T

k}, where k is the number of rationally independent frequencies
of the q.p. external force g0(x, t).

Remark 3.3.3 It was proved in [CV02a] that

dFKg(t) ≤ c
Γ|Ω|
ν2

∀t ∈ R,

and since dFH(g0) ≤ dim Tk = k we conclude that estimate (3.40) agrees well with the
representation (3.32).

Remark 3.3.4 Suppose that functions Gk(x, ω1, . . . , ωk) = Gk(x, ω̄
k), ω̄k ∈ Tk, k =

1, 2, . . . are given such that

Γk =

(

1

|2π|k
∫

Tk

|Gk( . , ω̄
k)|2dω̄k

)1/2

≤ R ∀ k ∈ N.

Assume also that 1/ν ≤ R1. Consider the global attractors {Ak} of the 2D Navier–
Stokes systems with external forces g0k(x, t) = Gk(x, α1t, α2t, ..., αkt), where the se-
quence {αi} consists of rationally independent numbers, then it follows from (3.40)
that

dFAk ≤ k +D, ∀ k ∈ N, (3.41)

where D = D(R,R1). Therefore, the right-hand side of (3.41) tends to infinity as
k → ∞, while the non-autonomous analogues of the Reynolds number Re and Grashof
number Gr depending on R, 1/ν, and |Ω| remain bounded.

Let us present an example of external forces {Ĝk(x, ω̄
k)} satisfying the conditions

of Remark 3.3.4 such that
dFATk ≥ k. (3.42)

70



Consider the following function:

û(x, t) =

k
∑

i=1

(ai(x) cos(αit) + ai+k(x) sin(αit)) , (3.43)

where ai(x) (i = 1, . . . , 2k, . . .) are linearly independent vector-functions, ai(x) =
(a1

i (x), a
2
i (x)), satisfying the conditions: ai(x) ∈ (C2(Ω̄))2, (∇, ai(x)) = 0, ai|∂Ω = 0.

We assume that the frequencies (α1, . . . , αk, . . .) are rationally independent. We set

ĝk(x, ᾱt) = ∂tû+ νLû+B(û, û), (3.44)

where û(x, t) is defined by formula (3.43). Obviously, ĝk(x, αt) is a q.p. function.
The function û(x, t) is a complete bounded trajectory of the Navier-Stokes system
with external force ĝk. If the coefficients ai(x) in (3.43) decay rapidly, then Γk ≤ R
for all k ∈ N. We note that, û(·, t) ∈ A for all t ∈ R. It is easy to see that
the trajectory û(·, t) provides an everywhere dense winding of a k-dimensional torus
T̃k ⊂ H. Therefore, the closure in H : {û(t) | t ∈ R} = T̃k belongs to A. Hence,

dF T̃
k = k ≤ dFA.

This example shows that the main term k in estimate (3.41) is precise.

3.3.2 Wave equations with dissipation

We consider the non-autonomous wave equation from Section 2.6.2

∂2
t u+ γ∂tu = ∆u− f0(u, t) + g0(x, t), u|∂Ω = 0,
u|t=τ = uτ , ∂tu|t=τ = pτ , uτ ∈ H1

0 (Ω), pτ ∈ L2(Ω),
(3.45)

where x ∈ Ω b R3. The function f0(v, t) ∈ C1(R × R; R) satisfies conditions (2.71) –
(2.74) from Section 2.6.2 and the following inequality that is analogous to (1.61):

|fv(v1, t) − fv(v2, t)| ≤ C(|v1|2−δ + |u2|2−δ + 1)|v1 − v2|δ, (3.46)

for all v1, v2 ∈ R, t ∈ R, where 0 < δ ≤ 1.
Moreover, we assume that the function (f0(v, t), f0t(v, t)) is tr.c. in C(R;M2) and

the function g0(x, t) is tr.c. in Lloc
2 (R;L2(Ω)). The norm in the Banach space M2 is

defined in (2.79). The symbol of problem (3.45) is σ0(t) = (f0(v, t), g0(x, t)). It is clear
that the function σ0(t) is tr.c. in Ξ = C(R;M2) × Lloc

2 (R;L2(Ω)). As usual, H(σ0)
denotes the hull of σ0(t) in Ξ. Consider the family of problems (3.45) with symbols
σ(t) = (f(v, t), g(x, t)) ∈ H(σ0). By Proposition 2.6.3, problem (3.45) generates a
family of processes {Uσ(t, τ)}, σ ∈ H(σ0), Uσ(t, τ) : E → E, acting in the energy
space E = H1

0 (Ω) × L2(Ω).
By Propositions 2.6.5 and 2.6.6, the process {Uσ0(t, τ)} is uniformly asymptoti-

cally compact and the family {Uσ(t, τ)}, σ ∈ H(σ0), is (E × H(σ0), E)-continuous.
Propositions 2.6.1 implies that the process {Uσ0(t, τ)} has the uniform global attractor

A =
⋃

σ∈H(σ0)

Kσ(0),
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where Kσ is the kernel of {Uσ(t, τ)}. The set A is compact in E.
In [CV02a] it is proved that A is bounded in E1 = H2(Ω) × H1

0 (Ω) (recall that
Ω b R3),

‖y‖E1 ≤M, ∀y ∈ A,
where the constant M is independent of y. Then by the Sobolev embedding theorem

‖u(·)‖C(Ω) ≤ M1, ∀y = (u(·), p(·)) ∈ A. (3.47)

We study the ε-entropy of the global attractor A in E.
In [CV02a], it is proved that the family of processes {Uσ(t, τ)}, σ ∈ H(σ0), corre-

sponding to problem (3.45) satisfies the Lipschitz condition (3.6): for any h > 0

|Uσ1(h, 0)y − Uσ2(h, 0)y| ≤ C(h)‖σ1 − σ2‖Ξ0,h
(3.48)

∀σ1, σ2 ∈ H(σ0), y ∈ A.

Here Ξ0,h = C([0, h];M2)×Lloc
2 (0, h;L2(Ω)). Moreover, in [CV02a], an explicit formula

for the Lipschitz constant C(h) is presented.
Similar to autonomous case (see the proof of Theorem 1.4.3), we rewrite the problem

(3.45) in the form

∂tw = A(w) = Lαw −Gσ0(t)(w), w|t=τ = wτ , (3.49)

where we use the new variable w = (u, v) = (u, p+ αu), the operator Lα is defined in
(1.66), and Gσ0(t)(w) = (0, f0(u, t) − g0(x, t)). Here α is a real parameter to be chosen
later on.

The variational equation for (3.49) has the form

∂tz = Lαz −Gσ0w(w(t))z := Aσ0w(w(t))z, z|t=τ = zτ , z = (r, q), (3.50)

where Gσ0w(w(t))z = (0, fu(u(t), t)r). Similarly to autonomous case (see [BV89]), we
prove that the process {Uσ0(t, τ)} of problem (3.49) is uniformly quasidifferentiable on
the kernel Kσ0 and its quasidifferentials are generated by the system (3.50). We set

q̃j := lim sup
T→∞

sup
τ∈R

sup
wτ∈Kσ0(τ)

(

1

T

∫ τ+T

τ

TrjAσ0w(w(t))dt

)

, j = 1, 2, . . . ,

where w(t) = Uσ0(t, τ)wτ . Using the reasoning from the proof of Theorem 1.4.3, we
obtain the following estimate for the numbers q̃j:

q̃j ≤ qj = −(α/4)j + (C(M1)/α)j1/3 =: ϕ(j), ∀j ∈ N, (3.51)

where M1 is due to the inequality

sup
{

‖u(·, t)‖C(Ω̄) | t ∈ R, (u(·), ∂tu(·)) ∈ Kσ0

}

≤M1 (see (3.47)).

The function ϕ(x), x ≥ 0, in (3.51) is concave and its root is d∗ = 8C1(M1)
3/2α−3 =:

C(M1)α
−3. All the assumptions of Theorem 3.1.1 are verified so we have
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Theorem 3.3.4 For any δ > 0, there exist h > 0, ε0 > 0, and η < 1 such that

Hε(A0) ≤
(

C

α3
+ δ

)

log2

(

ε0

ηε

)

+ Hε0 (A0) + H εη
4C(h)

(

Π0,h log1/η(
ε0
ηε)

H(σ0)
)

(3.52)

for all ε ≤ ε0, where α = min {γ/4, λ1/(2γ)} and C = C(M1) (see (3.51)). Here
Hε (Π0,lH(σ0)) denotes the ε-entropy of the set H(σ0) measured in the space Ξ0,l =
C([0, l];M2) × Lloc

2 (0, l;L2(Ω)).

Remark 3.3.5 We cannot apply Theorem 3.1.2 to the hyperbolic equation (3.45)
because the function ϕ(j) in (3.51) does not satisfies (3.13).

In conclusion, we consider a hyperbolic equation with quasiperiodic terms. We
suppose that

f0(v, t) = Φ(v, α1t, α2t, ..., αkt) = Φ(v, ᾱt),

g0(x, t) = G(x, α1t, α2t, ..., αkt) = G(x, ᾱt),

where Φ(v, ω̄) ∈ C lip(Tk;M2) and G(x, ω̄) ∈ C lip(Tk;L2(Ω)). To obtain inequality
(2.74) we assume that

|ᾱ| ≤κ � 1,

where κ = κ(δ). Now, if Φ(v, ω̄) satisfies the inequality

|Φω̄(v, ω̄)| ≤ δ2
1Φ(v, ω̄) + C1, ∀ (v, ω̄) ∈ R × T

k,

then (2.74) is also valid for a small κ. It follows that

H(σ0) =
{(

Φ(v, ᾱt + θ̄), G(x, ᾱs+ θ̄)
)

| θ̄ ∈ T
k
}

and hence
dF (H(σ0), Cb(R;M2 × L2(Ω)) = dFH(σ0) ≤ k.

Using Theorem 3.2.1 we obtain the

Theorem 3.3.5 The fractal dimension of the uniform global attractor A of the hyper-
bolic equation (3.45) with quasiperiodic symbol σ0(t) = (Φ(v, ᾱt), G(x, ᾱt)) satisfies the
estimate

dFA ≤ C

α3
+ k. (3.53)

To illustrate Theorem 3.3.5 we consider the dissipative sine-Gordon equation with
quasiperiodic forcing term

∂2
t u+ γ∂tu = ∆u− β sin(u) + ψ(ᾱt)g(x), u|∂Ω = 0, Ω b R

3, (3.54)

where ψ ∈ C1(Tk; R) and g ∈ L2(Ω). Observe that the constant C in (3.52) and (3.53)
does not exceed cβ3, where c depends on Ω (see (1.69) and (1.70)). For the global
attractor A of problem (3.54) we have the estimate

dFA ≤ c
β3

α3
+ k. (3.55)

Remark 3.3.6 In the autonomous case k = 0, estimates (3.53) and (3.55) coincided
with (1.63) and (1.72).
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3.3.3 Ginzburg–Landau equation

Here, we continue to study the non-autonomous Ginzburg–Landau equation (2.112)
from Section 2.6.3. We consider the family of problems with periodic boundary condi-
tions:

∂tu = ν(1 + iα)∆u+Ru− (1 + iβ(t))|u|2u+ g(x, t), x ∈ T3,
u|t=τ = uτ(x), uτ ∈ H = L2(T

3; C).
(3.56)

For simplicity, we assume that coefficients α and R are independent on time. The
symbol σ(t) = (β(t), g(x, t)) of (3.56) belongs to the hull H(σ0) of the original symbol
σ0(t) = (β0(t), g0(x, t)). We assume that σ0(t) is a tr.c. function in C loc(R+; R) ×
Lloc

2 (R+;H) =: Ξ and the parameter β0(t) satisfies inequality (2.113).
Similar to the autonomous case (see Section 1.4.2), we rewrite equation (3.56) in a

vector form

∂tu = νa∆u +Ru − f(u, β(t)) + g(x, t), u|t=τ = uτ , uτ ∈ H. (3.57)

where a =

(

1 −α
α 1

)

, f(v,β) = |v|2
(

1 −β
β 1

)

v, and g(x) = (g1(x), g2(x))
>.

We know from Section 2.6.3 that, for every σ ∈ H(σ0), problem (3.56) has a unique
solution u ∈ C(Rτ ;H) ∩ Lloc

2 (Rτ ;V) ∩ Lloc
4 (Rτ ;L4). (see also [BV89, CV94a, CV96a]).

Thus for a given initial symbol σ0(t), problem (3.56) generates a family of processes
{Uσ(t, τ)}, σ ∈ H(σ0), acting in H. It is proved that the process {Uσ0(t, τ)} has the
uniform global attractor A and

A =
⋃

σ∈H(σ0)

Kσ(0),

where Kσ is the kernel of the process {Uσ(t, τ)}. The set A is bounded in V.
In [CV02a], Lipschitz condition is established for the family of processes {Uσ(t, τ)},

σ ∈ H(σ0):

‖Uσ1(h, 0)u0 − Uσ2(h, 0)u0‖H

≤ C(h)
(

‖β1 − β2‖C([0,h]) + ‖g1 − g2‖L2(0,h;H)

)

, (3.58)

∀σ1 = (β1, g1) ∈ H(σ0), σ2 = (β2, g2) ∈ H(σ0), u0 ∈ A.

Now, to apply Theorem 3.1.1 we have to check that the process {Uσ0(t, τ)} corre-
sponding to problem (3.57) with the original symbol σ0(t) is uniformly quasidifferen-
tiable on the kernel Kσ0 . This fact is proved in [CV02a]. Recall that the variational
equation for (3.57) is

∂tv = νa∆v +Rv − fu(u(t), β(t))v =: Aσ0u(u(t))v, v|t=τ = vτ ∈ H, (3.59)

where the Jacobi matrix fu(u, β) is defined in (1.33). Similar to autonomous case, we
prove that

q̃j = lim sup
T→∞

sup
τ∈R

sup
uτ∈Kσ0(τ)

(

1

T

∫ τ+T

τ

Trj(Aσ0u(u(t))dt

)

≤ −νC1j
5/3 +Rj =: ϕ(j) = qj, j = 1, 2, . . . ,
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where u(t) = Uσ0(t, τ)uτ and finally (see (3.11))

d ≤ d∗ =

(

R

C1ν

)3/2

,

where d∗ is the root of the equation ϕ(x) = 0 and C1 was defined in (1.79).We conclude
that Theorem 3.1.1 is applicable to the Ginzburg–Landau equation (3.57) and we have
the following

Theorem 3.3.6 For any δ > 0 there exist h > 0, ε0 > 0, and η < 1 such that

Hε(A) ≤
(

(

R

C1ν

)3/2

+ δ

)

log2

(

ε0

ηε

)

+ Hε0 (A) + H εη
4C(h)

(

Π0,h log1/η(
ε0
ηε)

H(σ0)
)

,

for all ε ≤ ε0 (C(h) is defined in (3.58)). Here Hε (H(σ0)0,l) denotes the ε-entropy of
H(σ0) in C([0, l]) × L2(0, l;H).

Theorem 3.1.2 implies the

Theorem 3.3.7 For any h > 0 there exist D > 0 and ε0 > 0 such that

Hε(A) ≤ D log2

(

2ε0

ε

)

+ Hε0 (A) + H ε
8C(h)

(

Π
0,h log2(

2ε0
ε )H(σ0)

)

for all ε ≤ ε0.

Let us study the Ginzburg–Landau equation with quasiperiodic terms

β0(t) = B(α1t, α2t, ..., αkt) = B(ᾱt),

g0(x, t) = G(x, α1t, α2t, ..., αkt) = G(x, ᾱt),

where B(ω̄) ∈ C lip(Tk; R), |B| ≤
√

3, and G(x, ω̄) ∈ C lip(Tk;H). We suppose that the
numbers (α1, α2, . . . , αk) =: ᾱ are rationally independent. As we know,

H(σ0) =
{(

B(ᾱt+ θ̄), G(x, ᾱt+ θ̄)
)

| θ̄ ∈ T
k
}

and
dF (H(σ0), Cb(R) × L2(R;H)) = dFH(σ0) ≤ k

(see Section 3.2).
Using Theorem 3.2.1 we obtain the

Theorem 3.3.8 The fractal dimension of the global attractor A of the Ginzburg–
Landau equation with quasiperiodic symbol σ(s) = (B(ᾱt), G(x, ᾱt)) satisfies the es-
timate

dFA ≤
(

R

C1ν

)3/2

+ k. (3.60)
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Now similarly to the Navier-Stokes system we consider the sequence of functions
Bk(ω̄

k) and Gk(x, ω̄
k) which satisfy the above conditions. We denote by A(k) the

corresponding uniform global attractors. Inequality (3.60) implies that

dFA(k) ≤ k +D, (3.61)

where the constant D does not depend on k.
Similarly to the examples from the end of Section 3.3.1 we can construct examples

of Ginzburg–Landau equations with terms Bk(ω̄
k) and Gk(x, ω̄

k) and with uniform
global attractors A(k) such that

k ≤ dFA(k).

Therefore the main term k in estimate (3.61) is exact.
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Chapter 4

Uniform global attractor of
non-autonomous 2D Navier–Stokes
system with singularly oscillating
external force

In this chapter, we study the global attractor Aε of the non-autonomous 2D Navier–
Stokes (N.–S.) system with singularly oscillating external force of the form g0(x, t) +
ε−ρg1 (x/ε, t) , x ∈ Ω b R2, t ∈ R, 0 < ρ ≤ 1. If the functions g0(x, t) and g1 (z, t)
are translation bounded in the corresponding spaces, then it is known that the global
attractor Aε is bounded in the space H (see Section 2.6.1). However, its norm ‖Aε‖H ,
as a function of ε, can be unbounded as ε → 0+ since the magnitude of the external
force is growing.

Assuming that the function g1 (z, t) has a divergence representation of the form
g1 (z, t) = ∂z1G1(z, t) + ∂z2G2(z, t), z = (z1, z2) ∈ R

2, where the functions Gj(z, t) ∈
Lb

2(R;Z) (see Section 4.2), we prove that the global attractors Aε of the N.–S. system
are uniformly bounded: ‖Aε‖H ≤ C for all 0 < ε ≤ 1.

We also consider the “limiting” 2D N.–S. system with external force g0(x, t). We find
an explicit estimate for the deviation of a solution uε(x, t) of the original N.–S. system
from a solution u0(x, t) of the “limiting” N.–S. system with the same initial data. If
the function g1 (z, t) admits the divergence representation and the functions g0(x, t)
and g1 (z, t) are translation compact in the corresponding spaces, then we prove that
the global attractors Aε converge to the global attractor A0 of the “limiting” system
as ε → 0+ in the norm of H. In the last section, we present an explicit estimate for
the Hausdorff deviation of Aε from A0 of the form: distH(Aε,A0) ≤ C(ρ)ε1−ρ in the
case, when the global attractor A0 is exponential (providing that the Grashof number
of the “limiting” 2D N.–S. system is small).

Some problems related to the homogenization and averaging of global attractors for
the Navier–Stokes systems and for other evolution equations of mathematical physics
with rapidly (non-singularly) oscillating coefficients and terms were studied in [HVe90,
I96b, I98, VC01, VFi02, VC03, EfZ02, CVW05, CGoV05].
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4.1 2D Navier–Stokes system with singularly oscil-

lating force

We consider the non-autonomous 2D N.–S. system of the form

∂tu+ u1∂x1u+ u2∂x2u = ν∆u−∇p+ g0(x, t) +
1

ερ
g1

(x

ε
, t
)

, (4.1)

∂x1u1 + ∂x2u2 = 0, u|∂Ω = 0, x := (x1, x2) ∈ Ω, Ω b R
2.

Here, u = u(x, t) = (u1(x, t), u2(x, t)) is the velocity vector field, p = p(x, t) is the
pressure and ν is the kinematic viscosity. In equation (4.1), ε is a small parameter,
0 < ε ≤ 1, and ρ is fixed, 0 ≤ ρ ≤ 1. We assume that the origin 0 ∈ Ω.

The vector functions g0(x, t) = (g01(x, t), g02(x, t)), x ∈ Ω, t ∈ R, and g1 (z, t) =
(g11 (z, t) , g12 (z, t)), z ∈ R2, t ∈ R, are given. The function g0(x, t) + 1

ερg1

(

x
ε
, t
)

is
called the external force. We assume that, for every fixed ε, this external force belongs
to the space Lloc

2 (R;L2(Ω)2) (we shall clarify this assumption later on). Under this
condition, the Cauchy problem for equation (4.1) is well-studied (see, [Lio69, L70,
T79, CoF89, BV89, CV02a] and Section 2.6.1).

As usual, we denote by H and V = H1 the function spaces that are closures of
the set V0 :=

{

v ∈ (C∞
0 (Ω))2 | ∂x1v1(x) + ∂x2v2(x) = 0, ∀x ∈ Ω

}

in the norms | · | and
‖ · ‖ of the spaces L2(Ω)2 and H1

0 (Ω)2, respectively. We recall that

‖v‖2 = |∇v|2 =

∫

Ω

(

|∂x1v
1(x)|2 + |∂x2v

1(x)|2 + |∂x1v
2(x)|2 + |∂x2v

2(x)|2
)

dx.

The space V ′ = V ∗ is dual to V . We denote by P the orthogonal projector from L2(Ω)2

onto H (see Section 1.3.1). We set

gε(x, t) = Pg0(x, t) +
1

ερ
Pg1

(x

ε
, t
)

.

Applying the operator P to both sides of equation (4.1), we exclude the pressure
p(x, t) and obtain the following equation for the velocity vector field u(x, t) :

∂tu+ νLu+B(u, u) = gε(x, t), (4.2)

where L = −P∆ is the Stokes operator, B(u, v) = P [u1∂x1v + u2∂x2v] and gε(·, t) ∈
Lloc

2 (R;H). The Stokes operator L is self-adjoint and the minimal eigenvalue λ1 of the
operator L is positive.

We assume that the function g0(·, t) ∈ L2(Ω)2 for almost every t ∈ R and has a
finite norm in the space Lb

2(R;L2(Ω)2), that is,

‖g0‖2
Lb

2(R;L2(Ω)2) = ‖g0‖2
Lb

2
:= sup

τ∈R

∫ τ+1

τ

(

‖g0(·, s)‖2
L2(Ω)2

)

ds < +∞. (4.3)

To describe the vector function g1(z, t), z = (z1, z2) ∈ R2, t ∈ R, we use the space
Z = Lb

2(R
2
z; R

2). By definition, a vector function ϕ(z) = (ϕ1(z1, z2), ϕ2(z1, z2)) ∈ Z, if

‖ϕ(·)‖2
Z = ‖ϕ(·)‖2

Lb
2(R

2
z ;R2) := sup

(z1,z2)∈R2

∫ z1+1

z1

∫ z2+1

z2

|ϕ(ζ1, ζ2)|2dζ1dζ2 < +∞.
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We now assume that the function g1(·, t) ∈ Z for almost every t ∈ R and has a finite
norm in the space Lb

2(R;Z), that is,

‖g1(·)‖2
Lb

2(R;Z) := sup
τ∈R

∫ τ+1

τ

(

‖g1(·, s)‖2
Z

)

ds

= sup
τ∈R

∫ τ+1

τ

(

sup
(z1,z2)∈R2

∫ z1+1

z1

∫ z2+1

z2

|g1(ζ1, ζ2, s)|2dζ1dζ2
)

ds < +∞. (4.4)

For equation (4.1), we consider the initial data at an arbitrary time τ ∈ R :

u|t=τ = uτ , uτ ∈ H. (4.5)

For a fixed ε > 0, the Cauchy problem (4.1) and (4.5) has a unique solution u(t) :=
u(x, t) in a weak sense, that is, u(t) ∈ C(Rτ ;H) ∩ Lloc

2 (Rτ ;V ), ∂tu ∈ Lloc
2 (Rτ ;V

′), and
u(t) satisfies equation (4.1) in the distribution sense of the space D′(Rτ ;V

′), where
Rτ = [τ,+∞) (see [Lio69, L70, CoF89, BV89, CV02a, T88] and Sections 1.3.1, 2.6.1).

Recall that every weak solution u(t) of equation (4.1) satisfies the following energy
equality

1

2

d

dt
|u(t)|2 + ν‖u(t)‖2 = 〈u(t), gε(t)〉 , ∀t ≥ τ, (4.6)

where the function |u(t)|2 is absolutely continuous in t (see Section 1.3.1).
We need the following lemma proved in [CV02a].

Lemma 4.1.1 Let a real function y(t), t ≥ 0, be uniformly continuous and satisfy the
inequality

y′(t) + γy(t) ≤ f(t), ∀t ≥ 0, (4.7)

where γ > 0, f(t) ≥ 0 for all t ≥ 0, and f ∈ Lloc
1 (R+). Suppose also that

∫ t+1

t

f(s)ds ≤M, ∀t ≥ 0. (4.8)

Then
y(t) ≤ y(0)e−γt +M(1 + γ−1), ∀t ≥ 0. (4.9)

Using the standard transformations and the Poincaré inequality, we obtain from
(4.6) the following differential inequalities:

d

dt
|u(t)|2 + ν‖u(t)‖2 ≤ (νλ1)

−1 |g(t)|2, (4.10)

⇓
d

dt
|u(t)|2 + νλ1|u(t)|2 ≤ (νλ1)

−1 |g(t)|2. (4.11)

Applying Lemma 4.1.1 to (4.11) with y(t) = |u(t + τ)|2, f(t + τ) = (νλ1)
−1 |gε(t)|2,

γ = νλ1, and M = (νλ1)
−1 ‖gε‖2

Lb
2(R;H)

, we obtain the following main apriori estimate

for a weak solution u(t) of equation (4.1):

|u(t+ τ)|2 ≤ |u(τ)|2e−νλ1t +D‖gε‖2
Lb

2(R;H), (4.12)

where D = (νλ1)
−1 (1 + (νλ1)

−1). Inequality (4.10) implies that

|u(t)|2 + ν

∫ t

τ

‖u(s)‖2ds ≤ |u(τ)|2 + (νλ1)
−1

∫ t

τ

|gε(s)|2ds. (4.13)
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Lemma 4.1.2 If the function ϕ(z) ∈ Z = Lb
2(R

2
z; R

2), then ϕ
(

x
ε

)

∈ L2(Ω)2 for all
ε > 0 and

∥

∥

∥
ϕ
( ·
ε

)
∥

∥

∥

L2(Ωx)2
≤ C ‖ϕ (·)‖Lb

2(R
2
z ;R2) , (4.14)

where the constant C is independent of ε and ϕ.

Proof. Indeed, changing the variables x
ε

= z, dx = ε2dz, we have

∥

∥

∥
ϕ
( ·
ε

)
∥

∥

∥

2

L2(Ω)2
=

∫

Ω

∣

∣

∣
ϕ
(x

ε

)
∣

∣

∣

2

dx = ε2

∫

ε−1Ω

|ϕ (z)|2 dz

≤ Cε−2 sup
(z1,z2)∈R2

ε2

∫ z1+1

z1

∫ z2+1

z2

|ϕ(ζ1, ζ2)|2dζ1dζ2 = C2 ‖ϕ (·)‖2
Lb

2(R2
z ;R2) .

Here, in the last inequality, we have used the fact that the domain ε−1Ω can be covered
by at most Cε−2 unit squares of the form [z1, z1 + 1]× [z2, z2 + 1], where C depend on
the area of the domain Ω only.

Corollary 4.1.1 If the functions g0(x, t) ∈ Lb
2(R;L2(Ω)2) and g1(z, t) ∈ Lb

2(R;Z),
where Z = Lb

2(R
2
z; R

2), then the external force gε(x, t) = Pg0(x, t)+
1
ερPg1

(

x
ε
, t
)

belongs
to the space Lb

2(R;H) and

‖gε‖Lb
2(R;H) ≤ ‖g0‖Lb

2(R;L2(Ω)2) +
C

ερ
‖g1‖Lb

2(R;Z), (4.15)

where the constant C is independent of ε.

Inequality (4.15) follows directly from Lemma 4.1.2 and the formulas for the norm
(4.3) and (4.4) in the spaces Lb

2(R;L2(Ω)2) and Lb
2(R;Z).

We now apply inequality (4.15) in (4.12) and obtain

|u(t+ τ)|2 ≤ |u(τ)|2e−νλ1t + C2
0 + ε−2ρC2

1 , (4.16)

where the constants C0 and C1 depend on ν, λ1, and the norms ‖g0‖Lb
2(R;L2(Ω)2) and

‖g1‖Lb
2(R;Z), respectively.

We now consider the process {Uε(t, τ)} := {Uε(t, τ), t ≥ τ, τ ∈ R} corresponding to
problem (4.2) and (4.5) and acting in the space H (see Section 2.6.1). Recall that the
mapping Uε(t, τ) : H → H is defined by the formula

Uε(t, τ)uτ = u(t), ∀uτ ∈ H, t ≥ τ, τ ∈ R, (4.17)

where u(t) is the solution of (4.2), (4.5).
It follows from estimate (4.16) that for every ε, 0 < ε ≤ 1, the process {Uε(t, τ)}

has the uniformly (w.r.t. τ ∈ R) absorbing set

B0,ε =
{

v ∈ H | |v| ≤ 2(C0 + C1ε
−ρ)
}

(4.18)

and the set B0,ε is bounded in H for a fixed ε. That is, for any bounded (in H) set B,
there exists a time t′ = t′(B) such that the set U(t+ τ, τ)B ⊆ B0,ε for all t ≥ t(B) and
τ ∈ R.
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Using the standard argument, we prove that the process {Uε(t, τ)} has a compact
in H uniformly absorbing set

B1,ε =
{

v ∈ V | ‖v‖ ≤ C2(ν, λ1, C0 + C1ε
−ρ)
}

(4.19)

where C2(y1, y2, y3) is a positive increasing function in each yj, j = 1, 2, 3 (see inequality
(2.41)). So, the process {Uε(t, τ)} corresponding to problem (4.1) and (4.5) is uniformly
compact and it has a compact uniformly absorbing set B1,ε (bounded in V ) defined in
(4.19). Consequently, the process {Uε(t, τ)} has the uniform global attractor Aε (see
Section 2.6.1) and Aε ⊆ B0,ε ∩B1,ε.

Since Aε ⊆ B0,ε, we conclude from (4.16) and (4.18) that

‖Aε‖H ≤ (C0 + C1ε
−ρ). (4.20)

Remark 4.1.1 For ρ > 0, the norm in H of the uniform global attractor Aε of the 2D
N.–S. system (4.1) may grow up as ε→ 0+ . In the next sections, we present conditions
that provide the uniform boundedness of Aε in H with respect to ε. Moreover, we also
study the convergence of Aε as ε→ 0+ to the global attractor A0 of the corresponding
“limiting” equation.

Along with the original N.–S. system (4.1), we consider the following “limiting”
system

∂tu+ u1∂x1u+ u2∂x2u = ν∆u−∇p+ g0(x, t), (4.21)

∂x1u1 + ∂x2u2 = 0, u|∂Ω = 0,

without the term depending on ε. Excluding the pressure, we obtain the equivalent
equation

∂tu+ νLu +B(u, u) = Pg0(x, t), (4.22)

where, clearly Pg0(x, t) ∈ Lb
2(R;H). Then the Cauchy problem for equation (4.22) also

has a unique solution u(t) := u(x, t) (in a weak distribution sense). Hence, there is a
“limiting” process {U0(t, τ)} acting in H : U0(t, τ)uτ = u(t), t ≥ τ, τ ∈ R, where u(t)
is the solution of problem (4.22), (4.5). Similarly to (4.12) and (4.13), we have the
inequalities

|u(t+ τ)|2 ≤ |u(τ)|2e−νλ1t +D‖Pg0‖2
Lb

2(R;H), (4.23)

|u(t)|2 + ν

∫ t

τ

‖u(s)‖2ds ≤ |u(τ)|2 + (νλ1)
−1

∫ t

τ

|Pg0(s)|2ds. (4.24)

It follows from (4.16) that

|u(t+ τ)|2 ≤ |u(τ)|2e−νλ1t + C2
0 , (4.25)

which implies that the set

B0,0 = {v ∈ H | |v| ≤ 2C0} (4.26)
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is uniformly absorbing for the process {U0(t, τ)}. (The constant C0 is the same as in
(4.16)). Moreover, this process has a compact (in H) absorbing set

B1,0 = {v ∈ V | ‖v‖ ≤ C2(ν, λ1, C0)} . (4.27)

Therefore, the process {U0(t, τ)} is uniformly compact and has a compact global at-
tractor A0 such that A0 ⊂ B0,0 ∩ B1,0 and

∥

∥A0
∥

∥

H
≤ C0. (4.28)

4.2 Divergence condition and some properties of

the global attractors Aε

We consider the non-autonomous 2D N.–S. system (4.2) with external force gε(x, t) =
Pg0(x, t) + 1

ερPg1

(

x
ε
, t
)

. We assume that the function g0(x, t), x ∈ Ω, t ∈ R, satisfies
(4.3), i.e., ‖g0(·)‖2

Lb
2(R;L2(Ω)2)

< +∞ and the function g1(z, t), z ∈ R2, t ∈ R, satisfies

(4.4), i.e., ‖g1(·)‖2
Lb

2(R;Z)
< +∞, where Z = Lb

2(R
2
z; R

2). We now formulate

Divergence condition. There exist vector functions Gj(z, t) ∈ Lb
2(R;Z), j = 1, 2,

such that ∂zj
Gj(z, t) ∈ Lb

2(R;Z) and

∂z1G1(z1, z2, t) + ∂z2G2(z1, z2, t) = g1(z1, z2, t), ∀(z1, z2) ∈ R
2, t ∈ R. (4.29)

Theorem 4.2.1 If the function g1(z, t) satisfies the divergence condition (4.29), then,
for every ρ, 0 ≤ ρ ≤ 1, the global attractors Aε of the 2D N.–S. system are uniformly
(w.r.t. ε ∈]0, 1]) bounded in H, that is,

‖Aε‖H ≤ C2, ∀ε ∈]0, 1], (4.30)

where C2 is independent of ε.

Proof. Taking the scalar product in H of equation (4.2) and u(t), we have equality
(4.6), i.e.,

1

2

d

dt
|u(t)|2 + ν‖u(t)‖2 = 〈u(t), gε(t)〉

= (g0(·, t), u(·, t)) + ε−ρ
(

g1

( ·
ε
, t
)

, u(·, t)
)

. (4.31)

For the first term in (4.31), we have the inequality

(g0(·, t), u(·, t)) ≤
1

4
ν‖u(t)‖2 +

1

νλ1

|g0(t)|2. (4.32)

For the second term in (4.31) using (4.29), we have

ε−ρ
(

g1

( ·
ε
, t
)

, u(·, t)
)

= ε−ρ
2
∑

j=1

∫

Ω

(

∂zj
Gj

(x

ε
, t
)

, u(x, t)
)

dx

= ε1−ρ
2
∑

j=1

∫

Ω

(

∂xj
Gj

(x

ε
, t
)

, u(x, t)
)

dx = −ε1−ρ
2
∑

j=1

∫

Ω

(

Gj

(x

ε
, t
)

, ∂xj
u(x, t)

)

dx

≤ ε2(1−ρ)ν−1

2
∑

j=1

∫

Ω

∣

∣

∣
Gj

(x

ε
, t
)
∣

∣

∣

2

dx +
1

4
ν‖u(t)‖2. (4.33)
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In the third equality above we have integrated by parts in x taking into account the
zero boundary condition in (4.1). Using (4.33) and (4.32) in (4.31), we have that

d

dt
|u(t)|2 + ν‖u(t)‖2 ≤ 2

νλ1

|g0(t)|2 + 2ε2(1−ρ)ν−1
2
∑

j=1

∫

Ω

∣

∣

∣
Gj

(x

ε
, t
)
∣

∣

∣

2

dx,

and therefore, due to the Poincaré inequality,

d

dt
|u(t)|2 + νλ1|u(t)|2 ≤ h(t), (4.34)

where h(t) = 2
νλ1

|g0(t)|2 + 2ε2(1−ρ)ν−1
∑2

j=1

∫

Ω

∣

∣Gj

(

x
ε
, t
)
∣

∣

2
dx.

By the assumptions,

∫ t+1

t

|g0(t)|2ds ≤ ‖g0(·)‖2
Lb

2(R;L2(Ω)2) = M0, ∀t ∈ R. (4.35)

It follows from Lemma 4.1.2 that
∫ t+1

t

∫

Ω

∣

∣

∣
Gj

(x

ε
, t
)
∣

∣

∣

2

dx ≤ C ‖Gj (·)‖Lb
2(R;Z) = Mj, ∀t ∈ R, j = 1, 2, (4.36)

where C is independent of ε.
Applying Lemma 4.1.1 with y(t) = |u(t + τ)|2, γ = νλ1, and M = 2 (νλ1)

−1M0 +
2ε2(1−ρ)ν−1 (M1 +M2), we obtain the following main estimate for the function u(t):

|u(t+ τ)|2 ≤ |u(τ)|2e−νλ1t +
[

2 (νλ1)
−1M0 + 2ε2(1−ρ)ν−1(M1 +M2)

]

D1, (4.37)

where D1 =
(

1 + (νλ1)
−1).

Since 0 ≤ ρ ≤ 1 and 0 < ε ≤ 1, inequality (4.37) implies that the process {Uε(t, τ)}
corresponding to equation (4.1) has a uniformly absorbing set

B̃ = {v ∈ H | |v| ≤ C2} , (4.38)

where C2
2 = 2

[

2 (νλ1)
−1M0 + 2ν−1(M1 +M2)

]

D1. It is clear, that the global attractor
Aε belongs to any absorbing set, i.e.,

‖Aε‖H ≤ C2, ∀ε, 0 < ε ≤ 1, (4.39)

when the divergence condition (4.29) holds and the theorem is proved.
We now estimate the deviation of solutions of the original 2D N.–S. system (4.2)

from the corresponding solutions of the “limiting” system (4.22).
We supplement equations (4.2) and (4.22) with the same initial data at t = τ :

u|t=τ = uτ , u
0|t=τ = uτ , uτ ∈ B̃, (4.40)

where the absorbing ball B̃ is defined in (4.38). Recall that the set B̃ is independent
of ρ, 0 ≤ ρ ≤ 1 and ε, 0 < ε ≤ 1.

Let u(x, t) and u0(x, t) be the solutions of equations (4.2) and (4.22), respectively,
with the same initial data (4.40) taken from the ball B̃. We are going to estimate
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the deviation of u(x, t) from u0(x, t) for t ≥ τ. We set w(x, t) = u(x, t) − u0(x, t). For
simplicity, we take τ = 0. The function w(x, t) satisfies the equation

∂tw + νLw +B(u, u) − B(u0, u0) =
1

ερ
Pg1

(x

ε
, t
)

(4.41)

and zero initial data
w|t=0 = 0. (4.42)

We note that

B(u, u) − B(u0, u0) = B(w, u0) +B(u0, w) +B(w,w).

Taking the scalar product in H of equation (4.41) and w, we have

1

2

d

dt
|w(t)|2 + ν‖w(t)‖2 +

〈

B(w, u0), w
〉

+
〈

B(u0, w), w
〉

+ 〈B(w,w), w〉 =
1

ερ

〈

g1

( ·
ε
, t
)

, w
〉

. (4.43)

It follows from (1.13) that 〈B(u0, w), w〉 = 0 and 〈B(w,w), w〉 = 0. Therefore,

1

2

d

dt
|w(t)|2 + ν‖w(t)‖2 +

〈

B(w, u0(t)), w
〉

=
1

ερ

〈

g1

( ·
ε
, t
)

, w
〉

. (4.44)

Using the divergence condition, similarly to (4.33), we observe that

ε−ρ
〈

g1

( ·
ε
, t
)

, w
〉

= −ε1−ρ
2
∑

j=1

∫

Ω

(

Gj

(x

ε
, t
)

, ∂xj
u(x, t)

)

dx

≤ 1

2
ε2(1−ρ)ν−1

2
∑

j=1

∫

Ω

∣

∣

∣
Gj

(x

ε
, t
)
∣

∣

∣

2

dx+
1

2
ν‖u(t)‖2. (4.45)

It follows from (1.13) and (1.14) that

|
〈

B(w, u0), w
〉

| = |
〈

B(w,w), u0
〉

| ≤ c20|w|‖w‖‖u0‖. (4.46)

Then

|
〈

B(w, u0), w
〉

| ≤ c20|w|‖u0‖‖w‖ ≤ 1

2
ν‖w‖2 +

1

2

c40
ν
|w|2‖u0‖2. (4.47)

Combining (4.45) and (4.47) in (4.44), we find that

d

dt
|w(t)|2 ≤ c40

ν
|w(t)|2‖u0(t)‖2 + ε2(1−ρ)ν−1

2
∑

j=1

∫

Ω

∣

∣

∣
Gj

(x

ε
, t
)
∣

∣

∣

2

dx.

We set
z(t) = |w(t)|2, γ(t) = c40ν

−1‖u0(t)‖2

and

b(t) = ε2(1−ρ)ν−1

2
∑

j=1

∫

Ω

∣

∣

∣
Gj

(x

ε
, t
)
∣

∣

∣

2

dx.
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Then we have the following differential inequality:

z′(t) ≤ b(t) + γ(t)z(t), z(0) = 0. (4.48)

Applying the Gronwall lemma, we obtain:

z(t) ≤
∫ t

0

b(s) exp

(
∫ t

s

γ(θ)dθ

)

ds ≤
(
∫ t

0

b(s)ds

)

exp

(
∫ t

0

γ(s)ds

)

. (4.49)

Recall that u0(t) satisfies (4.24) and u0 ∈ B̃, i.e.
∫ t

0

γ(s)ds = c40ν
−1

∫ t

0

‖u0(t)‖2ds ≤ c20ν
−2

(

|u0|2 + (νλ1)
−1

∫ t

0

|g0(s)|2ds
)

≤ c40ν
−2
(

C2
2 + (νλ1)

−1 (t+ 1)‖g0(·)‖2
Lb

2(R;L2(Ω)2)

)

≤ C3(t+ 1). (4.50)

Using (4.36), we see that

∫ t

0

b(s)ds = ε2(1−ρ)ν−1
2
∑

j=1

∫ t

0

∫

Ω

∣

∣

∣
Gj

(x

ε
, s
)
∣

∣

∣

2

dxds

≤ ε2(1−ρ)ν−1C(t + 1)

2
∑

j=1

‖Gj (·)‖Lb
2
≤ ε2(1−ρ)ν−1(t + 1)(M ′

1 +M ′
2) (4.51)

Replacing (4.50) and (4.51) to (4.49), we find the following inequality

|w(t)|2 ≤ ε2(1−ρ)ν−1(t+ 1)(M ′
1 +M ′

2)e
C3(t+1)

= ε2(1−ρ)ν−1(M ′
1 +M ′

2)ε
teC3(t+1) = ε2(1−ρ)C2

4e
2rt, (4.52)

where C2
4 = ν−1(M ′

1 +M ′
2)e

C3 , 2r = C3 + 1. The constants C4 and r are independent
of ε. Inequality (4.52) holds for all ρ, 0 ≤ ρ ≤ 1. We have proved the following

Theorem 4.2.2 Let the function g1(z, t) satisfy the divergence condition (4.29). Then,
for every initial data uτ ∈ B̃ (see (4.38)), the difference w(x, t) = u(x, t) − u0(x, t) of
the solutions of the N.–S. equations (4.2) and (4.22), respectively, with initial data
(4.40) taken from the ball B̃, satisfies the following inequality:

|w(t)| = |u(t) − u0(t)| ≤ ε(1−ρ)C4e
r(t−τ), ∀ε, 0 < ε ≤ 1, (4.53)

where the constant C4 and r are independent of ε, uτ ∈ B̃, and 0 ≤ ρ ≤ 1.

In Section 4.4 using Theorems 4.2.1 and 4.2.2, we prove that the global attractors
Aε converge to A0 in the strong norm of H as ε→ 0 + .

4.3 On the structure of the global attractors Aε

We start with consideration translation compact (tr.c.) functions with values in the
spaces L2(Ω)2 and Z. The definition of a tr.c. function in Ξ = Lloc

p (R;E) with values
in a Banach space E is given in Section 2.4 (see Example 2.4.2). Below, we consider
tr.c. functions in Ξ = Lloc

p (R;L2(Ω)2) and in Ξ = Lloc
p (R;Z).

Consider the vector functions g0(x, t), x ∈ Ω, t ∈ R, and g1 (z, t) , z ∈ R2, t ∈ R,
that appear on the right-hand side of the 2D N.–S. system. We assume that g0(x, t) ∈
Lloc

2 (R;L2(Ω)2) and g1 (z, t) ∈ Lloc
2 (R;Z).
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Proposition 4.3.1 If the function g1 (z, t) is tr.c. in Lloc
2 (R;Z), then, for every fixed

ε, 0 < ε ≤ 1, the function g1 (x/ε, t) is tr.c. in the space Lloc
2 (R;L2(Ω)2), Ω b R2.

Proof. We have to establish that the set of function {g1(x/ε, t + h) | h ∈ R} is
precompact in Lloc

2 (R;L2(Ω)2). Let {hn, n = 1, 2, . . .} be an arbitrary sequence of
real numbers. Since the function g1 (z, t) is tr.c. in Lloc

2 (R;Z) there is a subsequence
{hn′} ⊂ {hn} such that g1(z, t + hn′) converges to a function ĝ1(z, t) as n′ → ∞ in
Lloc

2 (R;Z) i.e., for every interval [t1, t2] ⊂ R,

∫ t2

t1

‖g1(·, s+ hn′) − ĝ1(·, s)‖2
Zds→ 0 (n′ → ∞).

Using inequality (4.14), we conclude that

∫ t2

t1

‖g1(·/ε, s+ hn′) − ĝ1(·/ε, s)‖2
L2(Ω)2ds ≤ C2

∫ t2

t1

‖g1(·, s+ hn′) − ĝ1(·, s)‖2
Zds,

that is, g1(x/ε, t + hn′) converges to ĝ1(x/ε, t) as n′ → ∞ in Lloc
2 (R;L2(Ω)2) . Thus,

the set {g1(x/ε, t+ h) | h ∈ R} is precompact in Lloc
2 (R;L2(Ω)2).

Proposition 4.3.2 Let g0(x, t) be tr.c. in the space Lloc
2 (R;L2(Ω)2) and g1 (z, t) be

tr.c. in Lloc
2 (R;Z). Consider the function gε(x, t) = g0(x, t) + ε−ρg1(x/ε, t) as an ele-

ment of the space Lloc
2 (R;L2(Ω)2). Then this function is tr.c. in Lloc

2 (R;L2(Ω)2) and
the hull H(gε(x, t)) (in the space Lloc

2 (R;L2(Ω)2)) consists of (tr.c. in Lloc
2 (R;L2(Ω)2))

functions ĝε(x, t) of the form ĝε(x, t) = ĝ0(x, t) + ε−ρĝ1(x/ε, t) for some ĝ0(x, t) ∈
H(g0(x, t)) and ĝ1(z, t) ∈ H(g1(z, t)), where H(g0(x, t)) and H(g1(z, t)) are the hulls of
the functions g0(x, t) and g1 (z, t), respectively.

Proof. It follows from Proposition 4.3.1 that, for a fixed ε ∈ (0, 1], the function
gε(x, t) = g0(x, t) + ε−ρg1(x/ε, t) is tr.c. in Lloc

2 (R;L2(Ω)2) (as the sum of two tr.c.
functions). Let now ĝε(x, t) ∈ H(gε(x, t)), i.e., there is a sequence {hn} such that
gε(x, t+hn) = g0(x, t+hn)+ε−ρg1(x/ε, t+hn) → ĝε(x, t) as n→ ∞ in Lloc

2 (R;L2(Ω)2).
Since the functions g0(x, t) and g1 (z, t) are tr.c. in Lloc

2 (R;L2(Ω)2) and Lloc
2 (R;Z),

respectively, we may assume passing to a subsequence {hn′} ⊂ {hn} that g0(x, t +
hn′) → ĝ0(x, t) in Lloc

2 (R;L2(Ω)2) and g1(z, t+ hn′) → ĝ1(z, t) in Lloc
2 (R;Z) as n′ → ∞.

Therefore, gε(x, t+ hn′) = g0(x, t+ hn′) + ε−ρg1(x/ε, t+ hn′) → ĝ0(x, t) + ε−ρĝ1(x/ε, t)
as n→ ∞ in Lloc

2 (R;L2(Ω)2). So,

ĝε(x, t) = lim
n→∞

[

g0(x, t + hn) + ε−ρg1(x/ε, t+ hn)
]

= lim
n′→∞

g0(x, t + hn′) + lim
n′→∞

ε−ρg1(x/ε, t+ hn′) = ĝ0(x, t) + ε−ρĝ1(x/ε, t).

Thus, every function ĝε(x, t) ∈ H(gε(x, t)) has the form ĝε(x, t) = ĝ0(x, t)+ε
−ρĝ1(x/ε, t)

for some ĝ0(x, t) ∈ H(g0(x, t)) and ĝ1(z, t) ∈ H(g1(z, t)).
We now consider equation (4.2)

∂tu+ νLu+B(u, u) = gε(x, t), (4.54)

where gε(x, t) = Pg0(x, t)+ ε−ρPg1(x/ε, t) and ε is fixed. We assume that the function
g0(x, t) is tr.c. in the space Lloc

2 (R;L2(Ω)2) and g1 (z, t) is tr.c. in the space Lloc
2 (R;Z).

In particular, g0(x, t) ∈ Lb
2(R;L2(Ω)2) and g1(z, t) ∈ Lb

2(R;Z).
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Let H(gε) be the hull of the function gε(x, t) in the space Lloc
2 (R;H) :

H(gε) = [{gε(·, t+ h) | h ∈ R}]Lloc
2 (R;H) . (4.55)

Recall that H(gε) is compact in Lloc
2 (R;H) and, by Proposition 4.3.2, each element

ĝε(x, t) ∈ H(gε(x, t)) can be written in the form

ĝε(x, t) = P ĝ0(x, t) + ε−ρP ĝ1(x/ε, t) (4.56)

for some functions ĝ0(x, t) ∈ H(g0(x, t)) and ĝ1(z, t) ∈ H(g1(z, t)), where H(g0(x, t))
and H(g1(z, t)) are the hulls of the functions g0(x, t) and g1 (z, t) in Lloc

2 (R;L2(Ω)2) and
Lloc

2 (R;Z), respectively.
We note that

‖ĝ0‖Lb
2(R;L2(Ω)2) ≤ ‖g0‖Lb

2(R;L2(Ω)2), ∀ĝ0 ∈ H(g0);

‖ĝ1‖Lb
2(R;Z) ≤ ‖g1‖Lb

2(R;Z), ∀ĝ1 ∈ H(g1).

Then it follows easily from Corollary 4.1.1 that

‖ĝε‖Lb
2(R;H) ≤ ‖g0‖Lb

2(R;L2(Ω)2) +
C

ερ
‖g1‖Lb

2(R;Z), ∀gε ∈ H(gε), (4.57)

where the constant C is independent of g0, g1, ρ, and ε (see (4.14) and (4.15)).
It was shown in Section 4.1 that the process {Uε(t, τ)} := {Ugε(t, τ)} corresponding

to equation (4.54) has the uniform global attractor Aε ⊆ B0,ε ∩ B1,ε, (see (4.18) and
(4.19)) and

‖Aε‖H ≤ (C0 + C1ε
−ρ), (4.58)

where the constants C0 and C1 depend on ‖g0‖Lb
2(R;L2(Ω)2) and ‖g1‖Lb

2(R;Z), respectively.
We now describe the structure of the attractor Aε.

Along with equation (4.54), we consider the family of equations

∂tû+ νLû+B(û, û) = ĝε(x, t), (4.59)

with external forces ĝε ∈ H(gε). It is clear that, for every ĝε ∈ H(gε), equation (4.59)
generates the process {Uĝε(t, τ)} acting in H. We note that the processes {Uĝε(t, τ)}
satisfy the similar properties as the process {Ugε(t, τ)} corresponding to the 2D N.–
S. system (4.54) with original external force gε(x, t) = Pg0(x, t) + ε−ρPg1(x/ε, t). In
particular, the sets B0,ε and B1,ε are absorbing for each process {Uĝε(t, τ)}, ĝε ∈ H(gε)
(see (4.57)). Moreover, every process {Uĝε(t, τ)} has a uniform global attractor Aĝε

that belongs to the global attractor Aε = Agε of the 2D N.–S. system (4.54) with initial
external force gε(x, t), Aĝε ⊆ Agε (the inclusion can be strict, see Proposition 2.5.1).

Proposition 4.3.3 Let the function g0(x, t) be tr.c. in the space Lloc
2 (R;L2(Ω)2) and

let g1 (z, t) be tr.c. in Lloc
2 (R;Z). Then for any fixed ε, 0 < ε ≤ 1, the family of

processes {Uĝε(t, τ)}, ĝε ∈ H(gε), corresponding to equations (4.59) has an absorbing
set B1,ε, which is bounded in H and V and satisfies

‖B1,ε‖H ≤ (C0 + C1ε
−ρ). (4.60)

The family {Uĝε(t, τ)}, ĝε ∈ H(gε), is (H ×H(gε);H)-continuous, that is, if

ĝε
n → ĝε (n→ ∞) in Lloc

2 (R;H) and uτn → uτ (n→ ∞) in H, (4.61)

then
Uĝε

n
(t, τ)uτn → Uĝε(t, τ)uτ (n→ ∞) in H. (4.62)
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The proof of these properties is analogous to the proof given, e.g., in [CV02a], for
the case of a non-oscillating tr.c. external force in Lloc

2 (R;H)).
We denote by Kĝε the kernel of equation (4.59) (and of the process {Uĝε(t, τ)})

with external force ĝε ∈ H(gε). Recall that the kernel Kĝε is the family of all complete
solutions û(t), t ∈ R, of (4.59) which are bounded in the norm of H :

|û(t)| ≤Mû, ∀t ∈ R. (4.63)

The set
Kĝε(s) = {û(s) | û ∈ Kĝε} , s ∈ R,

(belonging to H) is called the kernel section at time t = s.
We recall the theorem on the structure of the uniform global attractor Aε of the

2D Navier-Stokes system (4.54) (see also (2.44)) .

Theorem 4.3.1 If the function gε(x, t) is tr.c. in the space Lloc
2 (R;H), then the process

{Ugε(t, τ)} corresponding to equations (4.59) has the uniform global attractor Aε and
the following identity holds:

Aε =
⋃

ĝε∈H(gε)

Kĝε(0). (4.64)

Moreover, the kernel Kĝε is non-empty for all ĝε ∈ H(gε).

The proof of Theorem 4.3.1 is given in [CV02a].
We also note that the attractor Aε is given by the following formula

Aε = ω(B0) =
⋂

h≥0

[

⋃

t−τ≥h

Ugε(t, τ)B0

]

,

i.e., to construct the attractor Aε of the entire family of processes {Uĝε(t, τ)}, ĝε ∈
H(gε), one can use only the process {Ugε(t, τ)} of original equation (4.54) with external
force gε = Pg0(x, t) + ε−ρPg1(x/ε, t).

All the above results are also applicable to the “limiting” 2D N.–S. system (4.22)

∂tu+ νLu +B(u, u) = g0(x, t) (4.65)

with tr.c. external force g0(t) := Pg0(·, t) ∈ Lloc
2 (R;H). Equation (4.65) generates the

“limiting” process {U0(t, τ)} = {Ug0(t, τ)} which has the uniform global attractor A0

(see the end of Section 4.1).
Consider the family of equations

∂tû+ νLû+B(û, û) = ĝ0(x, t), (4.66)

with external forces ĝ0 ∈ H(g0) (the hull H(g0) is taken in the space Lloc
2 (R;H)) and

the corresponding family of processes {Uĝ0(t, τ)}, ĝ0 ∈ H(g0).
We note that we can apply Proposition 4.3.3 and Theorem 4.3.1 directly to the

equations (4.65) and (4.66) taking the function g1(z, t) ≡ 0. Therefore, the family of
processes {Uĝ0(t, τ)}, ĝ0 ∈ H(g0), has a uniformly absorbing set B1,0 (bounded in V ),

‖B1,0‖H ≤ C0, (4.67)
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and the family {Uĝ0(t, τ)}, ĝ0 ∈ H(g0), is (H × H(g0);H)-continuous. Moreover, the
attractor A0 of the “limiting” equation (4.65) has the form

A0 =
⋃

ĝ0∈H(g0)

Kĝ0(0), (4.68)

where Kĝ0 is the kernel of equation (4.66) with external forces ĝ0 ∈ H(g0).
The formulas (4.64) and (4.68) will be important in the next section, where we

study the strong convergence of the attractors Aε to A0 as ε→ 0 + .

4.4 Convergence of the global attractors Aε to A0

In this section, we consider equations (4.54) and (4.65), where the functions g0(x, t) and
g1 (z, t) are tr.c. in the spaces Lloc

2 (R;L2(Ω)2) and Lloc
2 (R;Z), respectively.

We also assume that the function g1 (z, t) satisfies the divergence condition (4.29).
Then due to Theorem 4.2.1 the uniform global attractors Aε of equations (4.54) with
external forces gε(x, t) = Pg0(x, t) + ε−ρPg1(x/ε, t) are uniformly bounded in H with
respect to ε :

‖Aε‖H ≤ C2, ∀ε, 0 < ε ≤ 1, (4.69)

where the constant C2 is independent of ε. We also consider the global attractor A0 of
the “limiting” equation (4.65) with external force g0(t) = Pg0(·, t). Clearly, the set A0

is also bounded in H (see (4.67)).
We need a generalization of Theorem 4.2.2 that can be applied to the solution of

entire families of equations (4.59) and (4.66).
We choose an arbitrary element uτ ∈ B̃. Let û(·, t) = Uĝε(t, τ)uτ , t ≥ τ, be the

solution of equation (4.59) with external force ĝε = P ĝ0 + ε−ρP ĝ1 ∈ H(gε). Let also
ũ0(·, t) = Ug̃0(t, τ)uτ , t ≥ τ, be the solution of (4.66) with external force g̃0 ∈ H(g0).
We assume that the initial data at t = τ of these two solutions are the same: û(·, τ) =
ũ0(·, τ) = u0, and u0 ∈ B̃, where the absorbing ball B̃ is defined in (4.38). (Notice that
the function g̃0 can be different from the function ĝ0 = P ĝ0 being the first summand
in the representation ĝε = P ĝ0 + ε−ρP ĝ1.) We now consider the difference

ŵ(x, t) = û(x, t) − ũ0(x, t), t ≥ τ.

Proposition 4.4.1 Let the original functions g0(x, t) and g1 (z, t) in (4.1) be tr.c.
in Lloc

2 (R;L2(Ω)2) and Lloc
2 (R;Z), respectively. Let also the function g1(z, t) satisfy

the divergence condition (4.29). We set gε(x, t) = Pg0(x, t) + ε−ρPg1(x/ε , t) and
g0(x, t) = Pg0(x, t). Then, for every external force ĝε = P ĝ0 + ε−ρP ĝ1 ∈ H(gε), there
exist an external force g̃0 ∈ H(g0) such that, for every initial data uτ ∈ B̃ (see (4.38)),
the difference

ŵ(t) = û(t) − ũ0(t) = Uĝε(t, τ)uτ − Ug̃0(t, τ)uτ

of the solutions of the 2D N.–S. systems (4.59) and (4.66) with external forces ĝε(x, t) =
P ĝ0(x, t) + ε−ρP ĝ1(x/ε, t) and g̃0(x, t), respectively, and with the same initial data uτ

satisfies the following inequality:

|ŵ(t)| = |û(t) − ũ0(t)| ≤ ε(1−ρ)C4e
r(t−τ), ∀ε, 0 < ε ≤ 1, (4.70)

where the constant C4 and r are the same as in Theorem 4.2.2 and they are independent
of ε and 0 ≤ ρ ≤ 1.
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Proof. Consider the functions

u(t) = Ugε(t, τ)uτ and u0(t) = Ug0(t, τ)uτ , ∀t ≥ τ, (4.71)

where gε(t) = Pg0(t) + ε−ρPg1(t) and g0(t) = Pg0(t) are the original external forces.
Using (4.71), we rewrite inequality (4.53) in the form

|Ugε(t, τ)uτ − Ug0(t, τ)uτ | ≤ ε(1−ρ)C4e
r(t−τ). (4.72)

By Theorem 4.2.2, inequality (4.72) holds for all uτ ∈ B̃. We claim that this inequality
also hold for the time shifted external forces

gε
h(t) = gε(t+ h) = Pg0(t+ h) + ε−ρPg1(t+ h),

g0
h(t) = g0(t + h) = Pg0(t + h),

where h ∈ R is arbitrary, that is,

|Ugε
h
(t, τ)uτ − Ug0

h
(t, τ)uτ | ≤ ε(1−ρ)C4e

r(t−τ), (4.73)

where the constants C4 and r are independent of h. Indeed, for every h ∈ R, the time
shifted function g1h(z, t) = g1(z, t + h) apparently satisfies the divergence condition
(4.29) for the time shifted functions Gh

j (z, t) = Gj(z, t + h) ∈ Lb
2(R;Z), j = 1, 2. So,

(4.73) follows directly from Theorem 4.2.2.
We recall that the family of processes {Uĝε(t, τ)}, ĝε ∈ H(gε), is (H × H(gε);H)-

continuous. In particular, (see (4.61) and (4.62)) for a fixed uτ ∈ B̃, if

ĝε
n → ĝε (n→ ∞) in Lloc

2 (R;H),

then
Uĝε

n
(t, τ)uτ → Uĝε(t, τ)uτ (n→ ∞) in H, (4.74)

and similarly
Uĝ0

n
(t, τ)uτ → Ug̃0(t, τ)uτ (n→ ∞) in H, (4.75)

when ĝ0
n → g̃0 (n→ ∞) in Lloc

2 (R;H) for some g̃0 ∈ H(g0).
We now fix the external forces ĝε = P ĝ0 + ε−ρP ĝ1 ∈ H(gε). The function ĝε(t) is

tr.c. in Lloc
2 (R;H). Therefore, there exists a sequence {hi} ⊂ R such that

gε
hi
→ ĝε (n→ ∞) in Lloc

2 (R;H), (4.76)

where gε
hi

(t) = gε(t+hi). Consider now the sequence of external forces g0
hi

= g0(t+hi).
Since the function g0(t) is tr.c. in Lloc

2 (R;H), there exists a function g̃0 ∈ H(g0) such
that

g0
hi
→ g̃0 (n→ ∞) in Lloc

2 (R;H). (4.77)

(Here we have possibly passed to a subsequence of hi which we label the same). It
follows from (4.73) that

|Ugε
hi

(t, τ)uτ − Ug0
hi

(t, τ)uτ | ≤ ε(1−ρ)C4e
r(t−τ), ∀i ∈ N. (4.78)

Using (4.76) and (4.77) in (4.74) and (4.75), we pass to the limit in (4.78) as i → ∞
and obtain the required inequality:

|Uĝε(t, τ)uτ − Ug̃0(t, τ)uτ | ≤ ε(1−ρ)C4e
r(t−τ). (4.79)

So, inequality (4.70) is proved.
We are now ready to formulate the main theorem of this chapter.
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Theorem 4.4.1 Let the functions g0(x, t) and g1 (z, t) in (4.1) be tr.c. in the space
Lloc

2 (R;L2(Ω)2) and Lloc
2 (R;Z), respectively. Let also the function g1(z, t) satisfy the

divergence condition (4.29). Then the global attractors Aε of equation (4.54) converges
to the global attractor A0 of the “limiting” equation (4.65) in the strong norm of H as
ε→ 0+, that is

distH(Aε,A0) → 0 (ε→ 0+). (4.80)

Proof. For a given ε, let uε be an arbitrary element of Aε. By (4.64), there exists a
bounded complete solution ûε(t), t ∈ R, of equation (4.59) with some external force
ĝε = P ĝ0 + ε−ρP ĝ1 ∈ H(gε),where ĝ0 ∈ H(g0) and ĝ1 ∈ H(g1), such that

uε = ûε(0). (4.81)

We consider the point ûε(−R) which clearly belongs to Aε and hence

ûε(−R) ∈ B̃, (4.82)

(see (4.38)). Recall that B̃ is the absorbing set and the global attractor Aε belongs to
B̃. The number R will be chosen later on.

For the constructed external force ĝε, we apply Proposition 4.4.1: there is a “lim-
iting” external force g̃0 ∈ H(g0) such that, for any τ ∈ R and for all uτ ∈ B̃, the
following inequality holds:

|Uĝε(t, τ)uτ − Ug̃0(t, τ)uτ | ≤ ε(1−ρ)C4e
r(t−τ), ∀t ≥ τ. (4.83)

Consider the “limiting” equation (4.65) with the chosen “limiting” external force
g̃0. We set τ = −R. Let ũ0(t), t ≥ −R, be the solution of this equation with initial
data

ũ0|t=−R = ûε(−R). (4.84)

Taking −R in place of τ and −R+ t in place of t, it follows from (4.83) (see also (4.82))
that

|ûε(−R + t) − ũ0(−R + t)| ≤ ε(1−ρ)C4e
rt, ∀t ≥ 0, (4.85)

where ûε(−R+t) = Uĝε(−R+t,−R)ûε(−R) and ũ0(−R+t) = Ug̃0(−R+t,−R)ûε(−R).

The set A0 attracts Uĝ0(t + τ, τ)B̃ in H as t → +∞ (uniformly with respect to
τ ∈ R and ĝ0 ∈ H(g0)) (see [CV02a]). Then, for any δ > 0, there exist a number
T = T (δ) such that

distH(Uĝ0(t + τ, τ)B̃,A0) ≤ δ

2
, ∀τ ∈ R, ∀ĝ0 ∈ H(g0), ∀t ≥ T (δ).

Hence, for τ = −R and ûε(−R) ∈ B̃,

distH(Uĝ0(−R + t,−R)ûε(−R),A0) ≤ δ

2
, ∀ĝ0 ∈ H(g0), ∀t ≥ T (δ).

In particular, for the function g̃0 specified above

distH(ũ0(−R + t),A0) = distH(Ug̃0(−R + t,−R)ûε(−R),A0) ≤ δ

2
, ∀t ≥ T (δ). (4.86)
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Recall that T (δ) is independent of uε ∈ Aε.
It follows from (4.86) and (4.85) that

distH(ûε(−R + t),A0) ≤ |ûε(−R + t) − ũ0(−R + t)| + distH(ũ0(−R + t),A0)

≤ ε(1−ρ)C4e
rt +

δ

2
, ∀t ≥ T (δ). (4.87)

We now set t = R = T (δ) in (4.87) and since ûε(0) = uε we obtain that

distH(uε,A0) = distH(ûε(0),A0) ≤ ε(1−ρ)C4e
rT (δ) +

δ

2
, ∀uε ∈ Aε.

Consequently,

distH(Aε,A0) ≤ ε(1−ρ)C4e
rT (δ) +

δ

2
, ∀δ > 0. (4.88)

Finally, for an arbitrary δ > 0, we define ε0 = ε0(δ) such that ε
(1−ρ)
0 C4e

rT (δ) = δ/2.
Thus, if

ε ≤ ε0(δ) =

(

δ

2C4erT (δ)

)
1

1−ρ

,

then
distH(Aε,A0) ≤ δ.

We conclude that
distH(Aε,A0) → 0 (ε→ 0+).

The theorem is proved.

4.5 Estimate for the distance from Aε to A0

In this section, we consider the 2D N.–S. system (4.54) when the Grashof number of the
corresponding “limiting” N.–S. system (4.65) is small. In this case, the global attractor
A0 is exponential, i.e., A0 attracts bounded sets of initial data with exponential rate
as time tends to infinity. This property allows to estimate explicitly the distance from
the global attractor Aε to A0.

We consider the “limiting” system (4.65) with external force g0(t) := Pg0(·, t) ∈
Lloc

2 (R;H). Let the Grashof number G of this 2D N.–S. system satisfy the following
inequality:

G :=
‖g0‖Lb

2

λ1ν2
<

1

c20
, (4.89)

where the constant c20 is taken from the inequality (1.14).
Then, by Proposition 2.6.1, the equation (4.65) has the unique solution zg0(t), t ∈ R

bounded in H, that is, the kernel Kg0 consists of the unique trajectory zg0(t). This
solution zg0(t) is exponentially stable, i.e., for every solution ug0(t) of equation (4.65)
the following inequality holds:

|ug0(t + τ) − zg0(t+ τ)| ≤ C0|uτ − zg0(τ)|e−βt ∀t ≥ 0, (4.90)

where ug0(t+ τ) = Ug0(t+ τ, τ)uτ (in (4.90), C0 and β are independent of uτ and τ).
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Property (4.90) implies that the set

A0 = [{zg0(t) | t ∈ R}]
H

=
⋃

g∈H(g0)

{zg(0)} (4.91)

is the global attractor of the equation (4.65) under condition (4.89) ( see (2.54)).

Remark 4.5.1 It is shown in [CI04] that inequality (1.14). holds with c21 =
(

8
27π

)1/2
=

0.3071 . . .. Using the numerical result from [We83], it was also shown in [CI04] that
c20 = 0.2924 . . .. This value is possibly the best for inequality (1.14). Hence, (4.90) and
(4.91) are valid if G < 3.42.

Remark 4.5.2 Inequality (4.90) implies that the global attractor A0 of system (4.65)
is exponential under the condition (4.89), i.e., for any bounded set B in H

sup
τ∈R

distH(Ug0(t+ τ, τ)B,A0) ≤ C1(|B|)e−βt, (4.92)

where C1 depends on the norm B in H.

We now formulate the following result concerning the distance from Aε and A0.

Theorem 4.5.1 Under the assumptions of Theorem 4.4.1, we assume that the Grashof
number G of the “limiting” 2D N.–S. system satisfies (4.89). Then the Hausdorff
distance (in H) from the global attractor Aε of the original 2D N.–S. system (4.54)
to the global attractor A0 of the corresponding “limiting” system (4.65) satisfies the
following inequality:

distH(Aε,A0) ≤ C(ρ)ε1−ρ, ∀ε, 0 < ε ≤ 1.

Here 0 ≤ ρ < 1 and C(ρ) > 0 also depends on ν, ‖g0‖Lb
2
, and ‖g1‖Lb

2
.

The proof of Theorem 4.5.1 is analogous to the proof of the similar result concerning
the complex Ginzburg–Landau equation with singularly oscillating terms (see Section
5.4).

Remark 4.5.3 In this chapter, we consider the non-autonomous 2D N.–S. systems
with singularly oscillating external forces and prove some results concerning the be-
haviour of their global attractors. We have proved analogous theorems for other non-
autonomous evolution equations of mathematical physics with singularly oscillating
terms, e.g., for the following damped wave equation

∂2
t u+ γ∂tu = ∆u− f(u) + g0(x, t) + ε−ρg1(x, t/ε), u|∂Ω = 0,

where
γ > 0, 0 ≤ ρ ≤ ρ0, 0 < ε ≤ 1, t ∈ R, x ∈ Ω b R

n

and the functions g0(x, t) and g1(x, t) are tr.c. in the corresponding space (see [VC06])).

In the next chapter, we study the complex Ginzburg–Landau equation with singu-
larly oscillating terms.
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Chapter 5

Uniform global attractor of
Ginzburg–Landau equation with
singularly oscillating terms

In this chapter, we study the global attractor Aε of the non-autonomous complex
Ginzburg–Landau (G.–L.) equation with constant dispersion parameters α, β and with
singularly oscillating external force of the form g0(x, t) + ε−ρg1 (x/ε, t) , x ∈ Ω b

R
n, n ≥ 3, 0 < ρ ≤ 1. We assume that |β| ≤

√
3. In this case, the Cauchy problem

for the G.–L. equation has a unique solution and the corresponding process {Uε(t, τ)}
acting in the space H = L2(Ω; C) has the global attractor Aε (see Sections 1.3.3
and 2.6.3). Along with this G.–L. equation, we consider its “limiting” equation with
external force g0(x, t). We assume that the function g1(z, t) has the following divergence
presentation: g1(z, t) = Σn

i=1∂z1Gi(z, t) (z = (z1, . . . , zn) ∈ Rn
z ), where the norms of the

functions Gi(z, t) are bounded in the space Lb
2(R;Z), Z = Lb

2(R
n
z ; C) (see Section 5.1).

We find the estimate for the deviation (in H) of the solutions of the original G.–L.
equation from the solutions of the corresponding “limiting” equation with the same
initial data.

If the function g1 (z, t) admits the divergence representation and the functions
g0(x, t) and g1 (z, t) are translation compact in the corresponding spaces, then we prove
that the global attractors Aε converges to the global attractor A0 of the “limiting” sys-
tem as ε→ 0+ in the strong norm of H.

We also study the case where the global attractor A0 of the “limiting” G.–L. equa-
tion is exponential. In such a situation, we prove the estimate for the deviation of the
global attractor Aε from A0: distH(Aε,A0) ≤ C(ρ)ε1−ρ for all ε, 0 < ε ≤ 1, where the
constant C(ρ) is independent of ε.

5.1 Ginzburg–Landau equation with singularly os-

cillating external force

We consider the following non-autonomous Ginzburg–Landau (G.–L.) equation:

∂tu = (1 + iα)∆u+Ru− (1 + iβ)|u|2u+ g0(x, t) +
1

ερ
g1

(x

ε
, t
)

, u|∂Ω = 0. (5.1)
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Here u = u1(x, t)+ iu2(x, t) is an unknown complex function depending on x ∈ Ω b R
n

and t ∈ R (see Sections 1.3.3 and 2.6.3). We assume that 0 ∈ Ω and

|β| ≤
√

3. (5.2)

In equation (5.1), 0 ≤ ρ ≤ 1 and ε is a small positive parameter. We set H = L2(Ω; C)
and Z = Lb

2(R
n; C). The norm in H is denoted by ‖ · ‖H. A function f(z) ∈ Z =

Lb
2(R

n
z ; C) (z = (z1, z2, . . . , zn) ∈ Rn) if

‖f(·)‖2
Z

= ‖f(·)‖2
Lb

2(Rn
z ;C) := sup

z∈Rn

∫ z1+1

z1

· · ·
∫ zn+1

zn

|f(ζ1, . . . , ζn)|2dζ1 · · ·dζn < +∞.

(5.3)
We assume that the function g0(x, t) = g01(x, t) + ig02(x, t), x = (x1, x2, . . . , xn) ∈ Rn,
belongs to the space Lb

2(R;H) and the function g1(z, t) = g11(z, t) + ig12(z, t), z =
(z1, z2, . . . , zn) ∈ Rn, belongs to Lb

2(R;Z), i.e., the following norms of these functions
are finite:

‖g0(·, ·)‖2
Lb

2(R;H) := sup
τ∈R

∫ τ+1

τ

‖g0(·, s)‖2
H
ds (5.4)

= sup
τ∈R

∫ τ+1

τ

(
∫

Ω

|g0(x, s)|2dx
)

ds < +∞,

‖g1(·, ·)‖2
Lb

2(R;Z) := sup
τ∈R

∫ τ+1

τ

‖g1(·, s)‖2
Z
ds (5.5)

= sup
τ∈R

∫ τ+1

τ

(

sup
z∈Rn

∫ z1+1

z1

· · ·
∫ zn+1

zn

|g1(ζ1, . . . , ζn, s)|2dζ1 · · ·dζn
)

ds < +∞,

where z = (z1, z2, . . . , zn).
Equation (5.1) is equivalent to the following system of two equations for the real

vector-function u = (u1, u2)
> :

∂tu =

(

1 −α
α 1

)

∆u +Ru −
(

1 −β
β 1

)

|u|2u + g0(x, t) +
1

ερ
g1

(x

ε
, t
)

, (5.6)

where g0 = (g01, g02)
> and g1 = (g11, g12)

>.
Under the above assumption for every fixed ε, 0 < ε ≤ 1, the Cauchy problem for

equation (5.1) with initial data

u|t=τ = uτ (x), uτ(·) ∈ H, (5.7)

(here, τ is arbitrary and fixed), has a unique solution u(t) := u(x, t) such that

u(·) ∈ C(Rτ ;H) ∩ Lloc
2 (Rτ ;V) ∩ Lloc

4 (Rτ ;L4), (5.8)

V = H1
0 (Ω; C), L4 = L4(Ω; C), Rτ = [τ,+∞).

and the function u(t) satisfies equation (5.1) in the sense of distributions of the space
D′(Rτ ;H

−r), where H−r = H−r(Ω; C) and r = max{1, n/4} (recall that n = dim(Ω)).
In particular, ∂tu(·) ∈ L2(τ, T ;H−1) + L4/3(τ, T ;L4/3) for any T > τ. The proof of
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the existence of such solution u(t) uses the Galerkin approximation method (see, e.g.
[T88, BV89, CV02a]). The proof of the uniqueness relies on inequality (5.2) (see, e.g.,
[CV02a]).

We recall that, if (5.2) does not hold, the uniqueness for n ≥ 3 and for arbitrary
values of the dispersion parameters α and β is not proved yet, see [Mi02, Mi98, Z00]
for known uniqueness theorems.

For brevity, we set ‖ · ‖ := ‖ · ‖H. Any solution u(t), t ≥ τ, of equation (5.1) satisfies
the following differential identity:

1

2

d

dt
‖u(t)‖2 + ‖∇u(t)‖2 + ‖u(t)‖4

L4
−R‖u(t)‖2 = 〈gε(t), u(t)〉 , ∀t ≥ τ, (5.9)

where we denote gε(t) := g0(x, t) + ε−ρg1

(

x
ε
, t
)

. The function ‖u(t)‖2 is absolutely
continuous for t ≥ τ. The proof of (5.9) is analogous to the proof of the corresponding
identity for weak solutions of the reaction-diffusion systems considered in [CV02a,
CV96b] (see also [CV05]).

Using the standard transformations and the Gronwall lemma, we deduce from (5.9)
that any solution u(t) of equation (5.1) satisfies the inequality

‖u(t+ τ)‖2 ≤ ‖u(τ)‖2e−2λ1t + C2
0 + C2

1ε
−2ρ, ∀t ≥ 0, τ ∈ R. (5.10)

where λ1 is the first eigenvalue of the operator {−∆u, u|∂Ω = 0} , the constant C0

depends on R and ‖g0‖Lb
2(R;H) and the constant C1 depends on ‖g1‖Lb

2(R;Z) (see (5.4)
and (5.5)). We also use the following inequality:

∫ t

τ

∫

Ω

∣

∣

∣
g1

(x

ε
, s
)
∣

∣

∣

2

e−λ1(t−s)dxds ≤ C‖g1‖2
Lb

2(R;Z), ∀t ≥ τ, τ ∈ R, (5.11)

where C is independent of ε. Indeed,

∫ t

τ

∫

Ω

∣

∣

∣
g1

(x

ε
, s
)
∣

∣

∣

2

e−λ1(t−s)dxds =

∫ t

τ

e−λ1(t−s)

(

εn

∫

ε−1Ω

|g1 (z, s)|2 dz
)

ds

≤ C ′
∫ t

τ

e−λ1(t−s)

(

sup
z∈Rn

∫ z1+1

z1

· · ·
∫ zn+1

zn

|g1(ζ1, . . . , ζn, s)|2dζ1 · · ·dζn
)

ds

≤ C ′′(λ1)‖g1‖2
Lb

2(R;Z),

since we can cover the domain ε−1Ω by C ′ε−n unit boxes (see the proof of Lemma
4.1.2) and, therefore, (5.11) is proved.

Integrating (5.9) in time from τ to τ + t and using (5.10), we obtain that

1

2
‖u(τ + t)‖2 +

∫ τ+t

τ

(

‖∇u(s)‖2 + ‖u(s)‖4
L4

)

ds

≤ 1

2
‖u(τ)‖2 +R

∫ τ+t

τ

‖u(s)‖2ds+

∫ τ+t

τ

‖gε(s)‖ · ‖u(s)‖ds,
∫ t

τ

(

‖∇u(s)‖2 + ‖u(s)‖4
L4

)

ds

≤ 1

2
‖u(τ)‖2 + C2(t + 1) + C3

(

‖g0‖2
Lb

2(R;H) + ε−2ρ‖g1‖2
Lb

2(R;Z)

)

t, (5.12)
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(see (5.4) and (5.5)).
We consider the process {Uε(t, τ)} := {Uε(t, τ) | t ≥ τ, τ ∈ R} corresponding to

problem (5.1), (5.7) and acting in the space H (see formula (2.118)). It follows from
estimates (5.10) that the process {Uε(t, τ)} has the uniformly absorbing set

B0,ε = {v ∈ H | ‖v‖ ≤ 2
(

C0 + C1ε
−ρ
)

} (5.13)

that is bounded in H for every fixed ε > 0.
We now establish that the process {Uε(t, τ)} has a compact in H uniformly absorb-

ing set
B1,ε = {v ∈ V | ‖v‖V ≤ C ′

0 + C ′
1ε

−ρ}. (5.14)

To prove this fact we take the scalar product in H of equation (5.1) with the term
−t∆u. After the standard transformations, we obtain

1

2

d

dt

(

t‖∇u‖2
)

− 1

2
‖∇u‖2 + t‖∆u‖2 −Rt‖∇u‖2

−
〈

(1 + iβ)|u|2u, t∆u
〉

= −〈g0, t∆u〉 − ε−ρ 〈g1(x/ε), t∆u〉 . (5.15)

We denote

f(v) = |v|2
(

1 −β
β 1

)

v, v = (v1, v2).

We notice that since |β| ≤
√

3 the matrix f ′
v
(v) is positive definite, that is,

f ′
v
(v)w · w ≥ 0, ∀v = (v1, v2),w = (w1, w2), ∀t ≥ 0 (5.16)

(see (1.34)). Therefore, the term in (5.15) containing β is also positive. Indeed,

−
〈

(1 + iβ)|u|2u, t∆u
〉

= −〈f(u), t∆u〉 = t
n
∑

i=1

∫

Ω

(f ′
u
(u)∂xi

u,∂xi
u) dx ≥ 0, ∀t ≥ 0.

(5.17)
Integrating both sides of (5.15) in t and taking into account (5.17), we have

1

2
t‖∇u(t)‖2 − 1

2

∫ t

0

‖∇u(s)‖2ds+

∫ t

0

s‖∆u(s)‖2ds−R

∫ t

0

s‖∇u(s)‖2ds

≤ −
∫ t

0

〈g0(s), s∆u(s)〉ds− ε−ρ

∫ t

0

〈g1(x/ε, s), s∆u(s)〉ds. (5.18)

Using (5.12), we obtain from (5.18) the inequality

1

2
t‖∇u(t)‖2 + C5

∫ t

0

s‖∆u(s)‖2ds ≤ R

∫ t

0

s‖∇u(s)‖2ds

+ C6

(
∫ t

0

s‖g0(s)‖2ds+ ε−2ρ

∫ t

0

s‖g1(x/ε, s)‖2ds

)

. (5.19)

Applying in (5.19) an inequality similarly to (5.11), we find that

t‖∇u(t)‖2 ≤ C7(t‖u(0)‖2 + t+ 1 + t‖g0‖2
Lb

2(R;H) + tε−2ρ‖g1‖2
Lb

2(R;Z)).
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Assuming that u(0) ∈ B0,ε and setting t = 1, we obtain

‖∇u(1)‖ ≤ C8(1 + ‖g0‖Lb
2(R;H) + ε−ρ‖g1‖Lb

2(R;Z)). (5.20)

Clearly, the same inequalities holds if we replace 0 and t with τ and τ + t :

t‖∇u(τ + t)‖2 ≤ C7(t‖u(τ)‖2 + t+ 1 + t‖g0‖2
Lb

2(R;H) + tε−2ρ‖g1‖2
Lb

2(R;Z)),

So, if u(τ) ∈ B0,ε, then

‖∇u(τ + 1)‖ ≤ C8(1 + ‖g0‖Lb
2(R;H) + ε−ρ‖g1‖Lb

2(R;Z)), ∀τ ≥ 0. (5.21)

It follows from (5.21) that the set

B1,ε = {v ∈ V | ‖v‖V ≤ C8(1 + ‖g0‖Lb
2
+ ε−ρ‖g1‖Lb

2
)} (5.22)

is uniformly absorbing for the process {Uε(t, τ)} corresponding to the G.–L. equation
(5.1). The set B1,ε is bounded in V and compact in H since the embedding V b H
is compact. Recall that a process having a compact uniformly absorbing set is called
uniformly compact. We have proved the following

Proposition 5.1.1 For any fixed ε > 0, the process {Uε(t, τ)} corresponding to equa-
tion (5.1) is uniformly compact in the space H. It has the compact uniformly absorbing
set B1,ε defined in (5.22).

Along with the G.–L. equation (5.1), we consider its “limiting” equation

∂tu
0 = (1 + iα)∆u0 +Ru0 − (1 + iβ)|u0|2u0 + g0(x, t), u

0|∂Ω = 0, (5.23)

where the coefficients α, β, R and the external force g0(x, t) are the same as in (5.1).
In particular, conditions (5.2) and (5.4) hold. Therefore, the Cauchy problem for this
equation with initial data

u0|t=τ = uτ (x), uτ (·) ∈ H, (5.24)

also has a unique solution u0(x, t) and there is the corresponding process {U0(t, τ)} in
H : U0(t, τ)uτ = u0(t), t ≥ τ ∈ R, where u0(t), t ≥ τ, is a solution of equation (5.23)
with initial data u|t=τ = uτ . Similar to (5.10), the main a priory estimate for equation
(5.23) reads

‖u0(τ + t)‖2 ≤ ‖u0(τ)‖2e−2λ1t + C2
0 . (5.25)

Following the above reasoning, we prove that the process {U0(t, τ)} has the uni-
formly absorbing set

B0,0 = {v ∈ H | ‖v‖ ≤ 2C0} (5.26)

(Comparing with (5.13), we observe that in (5.26) the parameter ε is missing since the
term ε−ρg1 (x/ε, t) is missing in equation (5.23).) Moreover, the process also has the
uniformly absorbing set

B1,0 = {v ∈ V | ‖∇v‖V ≤ C8(1 + ‖g0‖Lb
2(R;H))} (5.27)
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which is bounded in V and compact in H. Consequently, the process {U0(t, τ)} corre-
sponding to the “limiting” equation (5.23) is uniformly compact in H and Proposition
5.1.1 holds for the “limit” case ε = 0 as well.

Using this results, it follows easily that the processes {Uε(t, τ)}, ε > 0, and {U0(t, τ)}
have the uniform global attractors Aε and A0, respectively (see [CV02a] and Section
2.6.3), that satisfy the inequalities

‖Aε‖H ≤ C0 + C1ε
−ρ,

‖A0‖H ≤ C0.

However, the formulated above conditions for the function g1(z, t) is not sufficient to
establish that the global attractors Aε are uniformly (with respect to ε > 0) bounded
in H.

We now present the assumption that provide the uniform boundedness of global
attractors Aε for 0 < ε ≤ 1. We assume that the function g1(z, t) satisfies the following

Divergence condition. There exist vector functions Gj(z, t) ∈ Lb
2(R;Z), j = 1, n,

such that ∂zj
Gj(z, t) ∈ Lb

2(R;Z) and

n
∑

j=1

∂zj
Gj(z, t) = g1(z, t), ∀z ∈ R

n, t ∈ R. (5.28)

Theorem 5.1.1 If the function g1(z, t) satisfies the divergence condition (5.28), then,
for every ρ, 0 ≤ ρ ≤ 1, the global attractors Aε of the G.–L. equations are uniformly
(with respect to ε ∈]0, 1]) bounded in H, that is,

‖Aε‖
H
≤ C2, ∀ε ∈]0, 1]. (5.29)

The proof is analogous to the proof of Theorem 4.2.1.

5.2 Deviation estimate for solutions of the G.–L.

equation with oscillating external forces from

solutions of the “limiting” equation

We consider equation (5.1)

∂tu = (1 + iα)∆u+Ru− (1 + iβ)|u|2u+ g0(x, t) +
1

ερ
g1

(x

ε
, t
)

, u|∂Ω = 0. (5.30)

We assume that the coefficients of this equation satisfy conditions (5.2) – (5.5) and
0 < ρ ≤ 1. The corresponding “limiting” equation is

∂tu
0 = (1 + iα)∆u0 +Ru0 − (1 + iβ)|u0|2u0 + g0(x, t), u

0|∂Ω = 0. (5.31)

For t = τ, we consider the same initial data

u|t=τ = uτ (x), u
0|t=τ = uτ(x), uτ (·) ∈ H. (5.32)
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Let u(x, t), t ≥ τ, and u0(x, t), t ≥ τ, be solutions of problems (5.30), (5.32) and (5.31),
(5.32), respectively. We set w(x, t) = u(x, t) − u0(x, t). The function w(t) := w(·, t)
satisfies the equation

∂tw = (1 + iα)∆w +Rw − (1 + iβ)
(

|u|2u− |u0|2u0
)

+
1

ερ
g1

(x

ε
, t
)

, w|∂Ω = 0, (5.33)

and has the initial data w(τ) = 0.

Theorem 5.2.1 Under the divergence condition (5.28), the difference w(t) = u(·, t)−
u0(·, t) of the solutions u(x, t) and u0(x, t) of equations (5.30) and (5.31), respectively,
with common initial data (5.32) satisfies the following inequality:

‖w(t)‖ = ‖u(·, t) − u0(·, t)‖ ≤ Cε(1−ρ)er(t−τ), ∀t ≥ τ, (5.34)

where

r =

{

0, for R < λ1

R − λ1 + δ, for R ≥ λ1
, (5.35)

δ > 0 is arbitrary small, and C = C(δ) for R ≥ λ1.

Proof. We assume for simplicity that τ = 0. Taking the scalar product in H of
equation (5.33) and w, we have

1

2

d

dt
‖w‖2 + ‖∇w‖2 − R‖w‖2

+
〈

(1 + iβ)
(

|u|2u− |u0|2u0
)

, u− u0
〉

= ε−ρ
〈

g1

(x

ε
, t
)

, w
〉

. (5.36)

Since |β| ≤
√

3, it follows from (5.16) that

〈

(1 + iβ)
(

|u|2u− |u0|2u0
)

, u− u0
〉

≥ 0 (5.37)

(see also (1.34) and ([CV02a])). From (5.36) and (5.37), we obtain

d

dt
‖w‖2 + 2‖∇w‖2 ≤ 2R‖w‖2 + 2ε−ρ

〈

g1

(x

ε
, t
)

, w
〉

, (5.38)

Applying (5.28), we find that

2ε−ρ
〈

g1

(x

ε
, t
)

, w
〉

ds = 2ε−ρ
n
∑

j=1

〈

∂zj
Gj

(x

ε
, t
)

, w
〉

= 2ε1−ρ
n
∑

j=1

〈

∂xj
Gj

(x

ε
, t
)

, w
〉

= −2ε1−ρ
n
∑

j=1

〈

Gj

(x

ε
, t
)

, ∂xj
w
〉

≤ λ1

2δ
ε2(1−ρ)

n
∑

j=1

∫

Ω

∣

∣

∣
Gj

(x

ε
, t
)
∣

∣

∣

2

dx +
2δ

λ1

∫

Ω

|∇w(x, t)|2dx, δ > 0. (5.39)

We claim that
∫

Ω

∣

∣

∣
Gj

(x

ε
, t
)
∣

∣

∣

2

dx = εn

∫

ε−1Ω

|Gj (z, t)|2 dx ≤ C ‖Gj(·, t)‖2
Z
. (5.40)
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Here, we use the n-dimensional analog of Lemma 4.1.2. Hence,

n
∑

j=1

∫

Ω

∣

∣

∣
Gj

(x

ε
, t
)
∣

∣

∣

2

dx ≤ C

n
∑

j=1

‖Gj(·, t)‖2
Z
, ∀t ∈ R. (5.41)

It follows from (5.39) and (5.41) that

2ε−ρ
〈

g1

(x

ε
, t
)

, w
〉

≤
(

λ1

2δ
ε2(1−ρ)C

)

h(t) +
2δ

λ1
‖∇w‖2, δ > 0,

where we set

h(t) =
n
∑

j=1

‖Gj(·, t)‖2
Z
.

Consequently from (5.38), we have

d

dt
‖w‖2 + (2 − 2δλ−1

1 )‖∇w‖2 ≤ 2R‖w‖2 +

(

λ1

2δ
ε2(1−ρ)C

)

h(t). (5.42)

We assume that δ < λ1. From the Poincaré inequality, we conclude that

d

dt
‖w‖2 ≤ 2(R− λ1 + δ)‖w‖2 +

(

λ1

2δ
ε2(1−ρ)C

)

h(t). (5.43)

If now R ≥ λ1, then r = R− λ1 + δ > 0 and hence

d

dt
‖w(t)‖2 ≤ r‖w(t)‖2 +

(

λ1

2δ
ε2(1−ρ)C

)

h(t), ‖w(0)‖2 = 0.

Applying the Granwall inequality (see (4.48) and (4.49)), we have

‖w(t)‖2 ≤
(

λ1

2δ
ε2(1−ρ)C

)
∫ t

0

h(s)er(t−s)ds. (5.44)

Recall that Gj(z, t) ∈ Lb
2(R;Z) since g1 satisfies the divergence condition. Therefore,

∫ t+1

t

h(s)ds ≤
n
∑

j=1

‖Gj‖2
Lb

2(R;Z) =: M. (5.45)

and hence
∫ t

0

h(s)e−rsds =

∫ 1

0

h(s)e−rsds+

∫ 2

1

h(s)e−rsds+ . . .+

∫ t

[t]

h(s)e−rsds

≤
∫ 1

0

h(s)ds+ e−r

∫ 2

1

h(s)ds+ . . .+ e−[t]

∫ t

[t]

h(s)ds

≤ M
(

1 + e−r + . . .+ e−[t]
)

≤M
(

1 + e−r + . . .
)

=
M

1 − e−r
≤M(1 + r−1).
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Using this estimate in (5.45), we obtain

‖w(t)‖2 ≤
(

λ1

2δ
ε2(1−ρ)CM(1 + r−1)

)

ert, ∀t ≥ 0, (5.46)

that is,
‖w(t)‖ ≤ C(δ)ε(1−ρ)ert,

where r = R − λ1 + δ and C(δ) = (δ−12−1λ1CM(1 + r−1))
1/2

.
If R < λ1, then −r1 = R−λ1 + δ < 0 for a sufficiently small δ > 0. Then have from

(5.43) that
d

dt
‖w‖2 ≤ −r1‖w‖2 +

(

λ1

2δ
ε2(1−ρ)C

)

h(t). (5.47)

Using Lemma 4.1.1 and (5.45), we have

‖w(t)‖2 ≤ ‖w(0)‖2e−r1t + 2−1δ−1λ1CM(1 + r−1
1 )ε2(1−ρ), ∀t ≥ 0,

and since w(0) = 0,
‖w(t)‖ ≤ C(δ)ε(1−ρ),

where C(δ) =
(

2−1δ−1λ1CM(1 + r−1
1 )
)1/2

, r1 = λ1 − R− δ > 0.
Inequality (5.34) is proved.

5.3 On the structure of the attractors Aε and A0

We now consider the G.–L. equation (5.30)

∂tu = (1 + iα)∆u+Ru− (1 + iβ)|u|2u+ gε(x, t), u|∂Ω = 0, (5.48)

where ε is fixed and gε(x, t) = g0(x, t)+ε−ρg1(x/ε, t) is the time symbol of the equation
(see Section 2.4). We assume that the function g0(x, t) is tr.c. in the space Lloc

2 (R;H)
and g1 (z, t) is tr.c. in the space Lloc

2 (R;Z). In particular, g0(x, t) ∈ Lb
2(R;H) and

g1(z, t) ∈ Lb
2(R;Z).

Let H(gε) be the hull of the symbol gε(x, t) in the space Lloc
2 (R;H) :

H(gε) = [{gε(·, t+ h) | h ∈ R}]Lloc
2 (R;H) . (5.49)

Recall that H(gε) is compact in Lloc
2 (R;H) and each element ĝε(x, t) ∈ H(gε(x, t)) can

be written in the form

ĝε(x, t) = ĝ0(x, t) + ε−ρĝ1(x/ε, t) (5.50)

for some functions ĝ0 ∈ H(g0) and ĝ1 ∈ H(g1), where H(g0) and H(g1) are the hulls
of the functions g0(x, t) and g1 (z, t) in Lloc

2 (R;H) and Lloc
2 (R;Z), respectively (see

Proposition 4.3.2 which is also true for the n-dimensional complex spaces H and Z).
It was shown in Section 5.1 that the process {Uε(t, τ)} := {Ugε(t, τ)} corresponding

to equation (5.48) has the uniform global attractor Aε ⊆ B0,ε ∩ B1,ε, (see (5.13) and
(5.14)) and

‖Aε‖
H
≤ (C0 + C1ε

−ρ). (5.51)
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We now describe the structure of the attractor Aε.
Along with equation (5.48), we consider the family of equations

∂tû
ε = (1 + iα)∆ûε +Rûε − (1 + iβ)|ûε|2ûε + ĝε(x, t), ûε|∂Ω = 0, (5.52)

with symbols ĝε ∈ H(gε). It is clear that, for every ĝε ∈ H(gε), equation (5.52) generates
the process {Uĝε(t, τ)} acting in H. We note that the processes {Uĝε(t, τ)} satisfy the
similar properties as the process {Ugε(t, τ)} corresponding to the G.–L. equation (5.48)
with original symbol gε(x, t) = g0(x, t) + ε−ρg1(x/ε, t). In particular, the sets B0,ε and
B1,ε are absorbing for each process of the family {Uĝε(t, τ)}, ĝε ∈ H(gε).

We denote by Kĝε the kernel of equation (5.52) (and of the process {Uĝε(t, τ)}) with
symbol ĝε ∈ H(gε). Recall that the kernel Kĝε is the family of all complete solutions
ûε(t), t ∈ R, of (5.52) which are bounded in the norm of H :

|ûε(t)| ≤Mûε , ∀t ∈ R. (5.53)

As usual,
Kĝε(s) = {ûε(s) | ûε ∈ Kĝε} , s ∈ R,

denotes the kernel section at time t = s (a set from H).
We recall the theorem on the structure of the uniform global attractor Aε of the

G.–L. equation (5.48) (see Section 2.6.3 and (2.122)).

Theorem 5.3.1 If the function gε(x, t) is tr.c. in the space Lloc
2 (R;H), then the process

{Ugε(t, τ)} corresponding to equations (5.52) has the uniform global attractor Aε and
the following identity holds:

Aε =
⋃

ĝε∈H(gε)

Kĝε(0). (5.54)

Moreover, the kernel Kĝε is non-empty for every ĝε ∈ H(gε).

All the above results are also applicable to the “limiting” G.–L. equation (5.31)

∂tu
0 = (1 + iα)∆u0 +Ru0 − (1 + iβ)|u0|2u0 + g0(x, t), u0|∂Ω = 0, (5.55)

with tr.c. symbol g0(t) := g0(·, t) ∈ Lloc
2 (R;H). Equation (5.55) generates the “limit-

ing” process {U0(t, τ)} := {Ug0(t, τ)} which has the uniform global attractor A0 (see
Section 5.2).

Consider the family of equations

∂tû
0 = (1 + iα)∆û0 +Rû0 − (1 + iβ)|û0|2û0 + ĝ0(x, t), û0|∂Ω = 0, (5.56)

with symbols ĝ0 ∈ H(g0) and the family of processes {Uĝ0(t, τ)}, ĝ0 ∈ H(g0).
Notice that we can apply Theorem 5.3.1 directly to the equations (5.55) and (5.56)

taking the function g1(z, t) ≡ 0. Therefore, the attractor A0 of the “limiting” equation
(5.55) has the form

A0 =
⋃

ĝ0∈H(g0)

Kĝ0(0), (5.57)

where Kĝ0 is the kernel of equation (5.56) with symbol ĝ0 ∈ H(g0).
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5.4 Convergence of the global attractors Aε to A0

and the estimate for their deviation

All the results of Sections 4.3 and 4.4 can be obtained to the G.–L. equation.
We consider equations (5.48) and (5.55), where the functions g0(x, t) and g1 (z, t)

are tr.c. in the spaces Lloc
2 (R;H) and Lloc

2 (R;Z), respectively.
We also assume that the function g1 (z, t) satisfies the divergence condition (5.28).

Then due to Theorem 5.1.1 the uniform global attractors Aε of equations (5.48) with
external forces gε(x, t) = g0(x, t) + ε−ρg1(x/ε, t) are uniformly (with respect to ε)
bounded in H:

‖Aε‖
H
≤ C2, ∀ε, 0 < ε ≤ 1. (5.58)

We also consider the global attractor A0 of the “limiting” equation (5.55) with external
force g0(t) = g0(·, t).

We have to generalize Theorem 5.2.1 in order to apply estimate (5.34) to the families
of equations (5.52) and (5.56).

Consider an arbitrary initial data uτ ∈ H. Let ûε(·, t) = Uĝε(t, τ)uτ , t ≥ τ,
be the solution of equation (5.52) with symbol ĝε = ĝ0 + ε−ρĝ1 ∈ H(gε). Let also
ũ0(·, t) = Ug̃0(t, τ)uτ , t ≥ τ, be the solution of (5.56) with symbol g̃0 ∈ H(g0) and with
the same initial data. (We note that the symbol g̃0 can be different from the function
ĝ0 = ĝ0 in the representation ĝε = ĝ0 + ε−ρĝ1). We now consider the difference

ŵ(x, t) = ûε(x, t) − ũ0(x, t), t ≥ τ.

Proposition 5.4.1 Let the original functions g0(x, t) and g1 (z, t) in (5.1) be tr.c.
in Lloc

2 (R;H) and Lloc
2 (R;Z), respectively. Let also the function g1(z, t) satisfy the

divergence condition (5.28). We set gε(x, t) = g0(x, t) + ε−ρg1(x/ε, t) and g0(x, t) =
g0(x, t). Then, for every symbol ĝε = ĝ0 + ε−ρĝ1 ∈ H(gε), there exist a symbol g̃0 ∈
H(g0) such that, for every initial data uτ ∈ H, the difference

ŵ(t) = ûε(t) − ũ0(t) = Uĝε(t, τ)uτ − Ug̃0(t, τ)uτ

of the solutions of the G.–L. equations (5.52) and (5.56) with symbols ĝε(x, t) =
ĝ0(x, t) + ε−ρĝ1(x/ε, t) and g̃0(x, t), respectively, and with the same initial data uτ

satisfies the following inequality:

‖ŵ(t)‖ = ‖ûε(·, t) − ũ0(·, t)‖ ≤ Cε(1−ρ)er(t−τ), ∀t ≥ τ, (5.59)

where the constant C and r are the same as in Theorem 5.2.1 and they are independent
of ε and 0 ≤ ρ ≤ 1.

The proof is similar to the proof of Proposition 4.4.1.
We now formulate the analog of Theorem 4.4.1 on the strong convergence of the

global attractors Aε of the G.–L. equation (5.30) to the global attractor A0 of the
“limiting” equation (5.31) as ε→ 0 + .

Theorem 5.4.1 Let the functions g0(x, t) and g1 (z, t) in (5.30) be tr.c. in the space
Lloc

2 (R;H) and Lloc
2 (R;Z), respectively. Let also the function g1(z, t), z ∈ Rn, satisfy the

divergence condition (5.28). Then the global attractors Aε of equation (5.30) converges
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to the global attractor A0 of the “limiting” equation (5.31) in the strong norm of H as
ε→ 0+, that is

distH(Aε,A0) → 0 (ε→ 0+). (5.60)

The proof is similar to the proof of Theorem 4.4.1.
We now estimate the value distH(Aε,A0) explicitly under the assumption that the

global attractor A0 is exponential using the results of Proposition 2.6.10.
We assume that

R ≤ λ1 − κ, ∀t ∈ R, (5.61)

where the number κ > 0 and λ1 is the first eigenvalue of the operator {−∆, u|∂Ω = 0}.
Then the global attractor has a simple structure. We reformulate the corresponding
results from Section 2.6.3.

Proposition 5.4.2 Under the assumptions of Theorem 5.4.1, let R satisfy inequality
(5.61). Then

(i) for every ĝ0 ∈ H(g0), there exists a unique bounded (in H) complete solution
zĝ0(t), t ∈ R, of equation (5.56) with symbol ĝ0, i.e., the kernel Kĝ0 consists of the
unique element zĝ0 , and, in this case, the formula (5.57) for the global attractor
A0 has the form

A0 =
⋃

ĝ0∈H(g0)

{zĝ0(0)}; (5.62)

(ii) the complete solution zĝ0(t), t ∈ R, attracts any solution ûĝ0(t) = Uĝ0(t, τ)uτ , t ≥ τ,
with exponential rate:

‖ûĝ0(t) − zĝ0(t)‖ ≤ ‖ûĝ0(τ) − zĝ0(τ)‖e−κ(t−τ), ∀t ≥ τ, τ ∈ R, (5.63)

and, therefore, the global attractor A0 is exponential, i.e.,

sup
ĝ0∈H(g0)

distH(Uĝ0(t, τ)B,A) ≤ Ce−κ(t−τ), C = C (‖B‖H) , (5.64)

where B is a bounded (in H) set of initial data and κ is taken from (5.61).

Combining Propositions 5.4.1 and 5.4.2, we obtain

Theorem 5.4.2 Let 0 < ρ < 1. Then, under the assumptions of Theorem 5.4.1 and
(5.61), the Hausdorff distance (in H) from the global attractor Aε to the “limiting”
global attractor A0 satisfies the inequality

distH(Aε,A0) ≤ C(ρ)ε1−ρ, ∀ε, 0 < ε ≤ 1. (5.65)

Proof. We fix ε. Let uε be an arbitrary element of Aε. By (5.54), there exists a
bounded complete solution ûε(t), t ∈ R, of equation (5.48) with some symbol ĝε =
ĝ0(x, t) + ε−ρĝ1 (x/ε, t) ∈ H(gε), such that

ûε(0) = uε. (5.66)
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We consider the point ûε(−T ) which clearly belongs to Aε. So, it follows from (5.58)
that

‖ûε(−T )‖ ≤ C2, (5.67)

where C2 is independent of ε and T .
For the constructed external force ĝε, we apply Proposition 5.4.1: there is a “lim-

iting” external force g̃0 ∈ H(g0) such that, for any τ ∈ R and for all uτ ∈ H, the
following inequality holds:

‖Uĝε(t+ τ, τ)uτ − Ug̃0(t+ τ, τ)uτ‖ ≤ Cε(1−ρ), ∀t ≥ 0, (5.68)

where r = 0 since R < λ1 (see (5.35)). Here C is independent of uτ .
Consider the “limiting” equation (5.56) with the chosen “limiting” external force

g̃0. We set τ = −R. Let ũ0(t), t ≥ −T, be the solution of this equation with initial
data

ũ0|t=−T = ûε(−T ). (5.69)

It follows from Proposition 5.4.2 that there is a unique bounded complete solution
z0(t), t ∈ R, of equation (5.56) with symbol g̃0 such that

‖ũ0(−T + t) − z0(−T + t)‖ ≤ ‖ũ0(−T ) − z0(−T )‖e−κt, ∀t ≥ 0. (5.70)

Recall that z0(t) ∈ A0 for all t ∈ R and therefore

‖z0(−T )‖ ≤ ‖A0‖ ≤ C ′, (5.71)

where C ′ is independent of z0 and T. Using (5.69) and (5.67), we observe that

‖ũ0(−T )‖ = ‖ûε(−T )‖ ≤ C2. (5.72)

From (5.70), (5.71), and (5.72) we obtain

‖ũ0(−T + t) − z0(−T + t)‖ ≤ C ′′e−κt, ∀t ≥ 0, (5.73)

where C ′′ = C ′ + C2.
Setting τ = −T in (5.68), we have that

‖ûε(−T + t) − ũ0(−T + t)‖
= ‖Uĝε(t+ τ, τ)uτ − Ug̃0(t+ τ, τ)uτ‖ ≤ Cε(1−ρ), ∀t ≥ 0. (5.74)

Using (5.73) and (5.74), we find that

‖ûε(−T + t) − z0(−T + t)‖
≤ ‖ûε(−T + t) − ũ0(−T + t)‖ + ‖ũ0(−T + t) − z0(−T + t)‖
≤ Cε(1−ρ) + C ′′e−κt. (5.75)

We now choose T from the equation

ε(1−ρ) = e−κT , that is, T =
1 − ρ

κ
log

(

1

ε

)

106



and we set t = T in (5.75). Then we obtain

‖ûε(0) − z0(0)‖ ≤ (C + C ′′) ε(1−ρ)

and hence

distH(uε,A0) ≤ ‖uε − z0(0)‖ = ‖ûε(0) − z0(0)‖ ≤ C(ρ)ε(1−ρ),

where C(ρ) = (C + C ′′) . Since uε is an arbitrary point of Aε we find that

distH(Aε,A0) ≤ C(ρ)ε(1−ρ).

The theorem is proved.

Remark 5.4.1 If R < λ1, then Proposition 5.4.2 holds also for equation (5.48) with
symbols gε(x, t) = g0(x, t) + ε−ρg1(x/ε, t) and for the family of equation (5.52) with
symbols ĝε ∈ H(gε) (see Proposition 2.6.10 and Corollary 2.6.9). In particular, the
global attractor Aε of equation (5.48) is exponential as well as the global attractor A0

and the attraction rate is the same.

Remark 5.4.2 In fact, inequality (5.65) holds (with another constant C) for the sym-
metric distance dists

H
(Aε,A0) = distH(Aε,A0) + dists

H
(A0,Aε) :

dists
H

(Aε,A0) ≤ C1(ρ)ε
1−ρ, ∀ε, 0 < ε ≤ 1.

This result relies on the property of the exponential attraction of solutions to the global
attractor Aε mentioned in Remark 5.4.1.
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the possibility of soft and hard turbulence in the complex Ginzburg–Landau
equation, Physica D, 44 (1990), pp.412–444.

[BiLaS71] J.E.Billotti and J.P.LaSalle, Dissipative periodic processes, Bull. Amer. Math.
Soc., 77 (1971), pp.1082–1088.

[BlIl99] M.A.Blinchevskaya and Yu.S.Ilyashenko, Estimate for the entropy dimension of
the maximal attractor for k-contracting systems in an infinite-dimensional space,
Russian J. Math. Physics, 6, 1 (1999), pp. 20–26.

[Bo90] S.M.Borodich, On the behaviour as t → +∞ of solutions of some non-
autonomous equations, Vestnik Mosk. Univ., Ser.1, Mat.Mekh., 45, 6 (1990),
pp.51–53. English transl.: Moscow Univ. Math. Bull, 45, 6 (1990), pp.19–21.

108



[CheFa94] D.N.Cheban and D.S.Fakeeh, Global attractors of the dynamical systems without
uniqueness. Kishinev, Sigma, 1994 (in Russian).

[CI02] V.V.Chepyzhov and A.A.Ilyin, A note on the fractal dimension of attractors of
dissipative dynamical systems, Nonlin. Anal. The. Meth. & Appl., 44, 6 (2001),
pp.811–819.

[CI04] V.V.Chepyzhov and A.A.Ilyin, On the fractal dimension of invariant sets; ap-
plications to Navier-Stokes equations, Discr. Cont. Dynam. Syst. 10 (2004), N
1&2, pp. 117-135.

[CGoV05] V.V.Chepyzhov, A.Yu.Goritsky, and M.I.Vishik, Integral manifolds and attrac-
tors with exponential rate for nonautonomous hyperbolic equations with dissipa-
tion, Russian. J. Math. Phys., 12 (2005), no.1, pp.17–39.

[CV92a] V.V.Chepyzhov and M.I.Vishik, Non-autonomous dynamical systems and their
attractors, Appendix in the book: M.I.Vishik, Asymptotic behaviour of solutions
of evolutionary equations, Cambridge University Press, Cambridge, 1992.

[CV92b] V.V.Chepyzhov and M.I.Vishik, Non-autonomous evolution equations with al-
most periodic symbols, Rendiconti del Seminario Matematico e Fisico di Milano,
Vol.LXXII (1992), pp.185–213.

[CV93a] V.V.Chepyzhov and M.I.Vishik, Attractors for non-autonomous evolution equa-
tions with almost periodic symbols, C. R. Acad. Sci. Paris, 316, Série I (1993),
pp.357–361.

[CV93b] V.V.Chepyzhov and M.I.Vishik, Families of semiprocesses and their attractors,
C. R. Acad. Sci. Paris, 316, Série I (1993), pp.441–445.

[CV93c] V.V.Chepyzhov and M.I.Vishik, Dimension estimates for attractors and kernel
sections of non-autonomous evolution equations, C. R. Acad. Sci. Paris, 317,
Série I (1993), pp.367–370.

[CV93d] V.V.Chepyzhov and M.I.Vishik, Non-autonomous evolution equations and their
attractors, Russian J. Math. Physics, 1, 2 (1993), pp. 165–190.

[CV93e] V.V.Chepyzhov and M.I.Vishik, A Hausdorff dimension estimate for kernel sec-
tions of non-autonomous evolution equations, Indiana Univ. Math. J., 42, 3
(1993), pp.1057–1076.

[CV94a] V.V.Chepyzhov and M.I.Vishik, Attractors of non-autonomous dynamical sys-
tems and their dimension, J. Math. Pures Appl., 73, 3 (1994), pp.279–333.

[CV94b] V.V.Chepyzhov and M.I.Vishik, Periodic processes and non-autonomous evo-
lution equations with time-periodic terms, Topol. Meth. Nonl. Anal., J.Juliusz
Schauder Center, 4, 1 (1994), pp.1–17.

[CV95a] V.V.Chepyzhov and M.I.Vishik, Attractors of non-autonomous evolution equa-
tions with translation-compact symbols, Operator Theory: Advances and Appli-
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