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Abstract. We study the relations between the global dynamics of the 3D
Leray-α model and the 3D Navier–Stokes system. We prove that time shifts
of bounded sets of solutions of the Leray-α model converges to the trajec-
tory attractor of the 3D Navier–Stokes system as time tends to infinity and α

approaches zero. In particular, we show that the trajectory attractor of the
Leray-α model converges to the trajectory attractor of the 3D Navier–Stokes
system when α → 0+ .

1. Introduction. The 3D Navier–Stokes (N.–S.) system for viscous incompressible
fluids has the form

{

∂tu− ν∆u+ (u · ∇)u + ∇p = g(x),
∇ · u = 0, x = (x1, x2, x3) ∈ R

3,
(1)

where u =
(

u1(x, t), u2(x, t), u3(x, t)
)

is the unknown velocity field of a fluid pat-
tern at point x and at time t, p = p(x, t) is the unknown pressure, and g(x) =
(

g1(x), g2(x), g3(x)
)

is a given external force. The positive parameter ν is the kine-
matic viscosity of the fluid.
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In [23], Leray considered the following regularization of system (1) in order to
prove the existence of a solution to the Navier–Stokes system in R

3 :
{

∂tvα − ν∆vα + (uα · ∇)vα + ∇pα = g(x),
∇ · vα = 0, x ∈ R

3,
(2)

where uα = Φα ∗ vα and Φα is a smoothing kernel such that the function uα

approaches vα, in some sense, as α→ 0+ . Therefore in some sense, the system (2)
converges to the 3D N.–S. system (1).

In this paper, the systems (1) and (2) are supplemented with periodic boundary

conditions, i.e., it is assumed that x = (x1, x2, x3) ∈ T
3 := [R mod 2πL]3 and all

the functions in (1) and (2) are periodic in each xi, i = 1, 2, 3, with period 2πL.
In [14], a special smoothing kernel was considered, namely, the Green function

associated with the Helmholtz operator I − α2∆, that is,

uα(x) − α2∆uα(x) = vα(x), x ∈ T
3,

uα = Φα ∗ vα = (I − α2∆)−1vα.
(3)

This kernel works as a kind of spatial filter with width α. The parameter α also
reflects a sub-grid length scale in the model.

The system (2) and (3) was considered in [14] (see also [18, 19]) as a large eddy
simulation sub-grid scale model of 3D turbulence and was called the Leray-α model.

This model was inspired by the Navier–Stokes-α model (also known as the vis-
cous Camassa–Holm system or Lagrangian averaged Navier–Stokes-α equations) of
turbulence (see [3, 4, 5, 16, 17]). It has been demonstrated analytically and com-
putationally in many works that the Navier–Stokes-α model is a powerful tool in
the study of turbulence (see, e.g., [3, 4, 5, 6, 16, 17]). In particular, it was found
that the explicit steady analytical solutions of the Navier–Stokes-α equations com-
pare successfully with empirical and numerical data for a wide range of Reynolds
numbers in turbulent channel and pipe flows (see [3, 4, 5]). At the same time, the
use of the Leray-α system as a closure model for the Reynolds averaged equations
in channels and pipes leads to exactly the same reduced system of equations as the
Navier–Stokes-α model under the corresponding symmetries (see, e.g., [3, 4, 5]).
This comparison means that Leray-α model and the Navier–Stokes-α equations are
equally useful as closure models for the mean effects of sub-grid excitations. Along
the same lines it is worth mentioning that other α-models such as the Clark-αmodel
[2] and the modified-Leray-α model [21] yield the same reduced system of equations
in turbulent channels and pipes and therefore they enjoy the same success stories as
the Navier–Stokes-α and Leray-α systems as sub-grid scale models of turbulence.

In [14], the Cauchy problem for the Leray-α model was studied, the global at-
tractor for this system was constructed, an upper bound for the dimension of this
global attractor was established in terms of the relevant physical parameters, and
some other turbulence related features and characteristics (such as energy spectra
and boundary layers) were discussed. We stress that the proved upper estimates
for the dimension of the global attractor (the number of the degree of freedom) of
the Leray-α model demonstrate the great potential of this model to become a good
sub-grid scale large eddy simulation model of the turbulence.

The theory of trajectory attractors for evolution equations of mathematical
physics was developed in [8, 11, 13] with an emphasis on equations for which the
uniqueness of a solution of the corresponding Cauchy problem is not known, e.g.
for the 3D Navier–Stokes system (see also [27, 28]). For such equations, the tradi-
tional theory of global attractors is not directly applicable. The trajectory attractors
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were constructed for a number of important equations and systems of mathematical
physics, e.g. for the 3D N.–S. system, for the complex Ginzburg–Landau equation,
various reaction-diffusion systems, the dissipative hyperbolic equation with arbi-
trary polynomial growth of the nonlinear term, and for other equations (see, e.g.,
[7, 9, 10, 12, 13, 31, 32]).

In the present paper, we study the connection between the long-time dynamics
of the Leray-α model and the 3D Navier–Stokes equations as α→ 0+ . Our purpose
is to prove the following main result: bounded (in the energy norm) families Bα of
solutions {vα(x, t), t ≥ 0}, 0 < α ≤ 1, of the Leray-α model (2) and (3) converge
(in the sense specified below) as α → 0+ to the trajectory attractor A of the 3D
N.–S. system with periodic boundary conditions. In particular, we show that the
trajectory attractor of the Leray-α model converges to the trajectory attractor of
the 3D Navier–Stokes system when α→ 0+ .

In Section 1, we give the definition and the main properties of the trajectory
attractor of the 3D N.–S. system. We also define the kernel K of this system:
the set K is the family of all bounded (in the energy norm) complete trajectories
{u(t), t ∈ R} of system (1) that satisfy the energy inequality. We show that the
restriction Π+ of the kernel K onto the semi-axis R+ coincides with trajectory
attractor of the 3D N.–S. system: A = Π+K.

In Section 2, we present the functional setting of the Leray-αmodel. The Cauchy
problem for (2) and (3) has a unique weak solution and moreover this solution is
regular. This is a classical result. Following [14], we establish the existence of the
global attractor for the Leray-α model.

In Sections 3 and 4, we prove the main theorem on the convergence of transla-
tions T (h)Bα (by definition, T (h)w(t) = w(t+h)) of bounded (in the energy norm)
families of solutions {vα(x, t), t ≥ 0} of the Leray-α model to the trajectory attrac-
tor A of the 3D N.–S. system (1) as h → +∞ and α → 0+ . We deduce from this
assertion that the trajectory attractors Aα of the Leray-α model converge to the
trajectory attractor A of the 3D N.–S. system as α→ 0+ . The analogous statement
holds for the kernels Kα and K of the corresponding equations. Part of the results
presented here has been announced in [33].

In a forthcoming paper, we shall prove similar and new results concerning the
relation between the non-autonomous NS-α model (also known as viscous Camassa–
Holm equations or Lagrangian averaged Navier–Stokes-α equations, see, e.g., [3, 17]
and references therein) and the corresponding 3D Navier–Stokes system.

2. Trajectory attractor and kernel of the 3D N.–S. system. We consider
the following autonomous 3D N.–S. system with periodic boundary conditions:

∂tu− ν∆u +

3
∑

i=1

ui∂iu+ ∇p = g0(x), t ≥ 0, (4)

3
∑

i=1

∂iu
i = 0, x ∈ T

3 := [R mod 2πL]
3
. (5)

Here u = u(x, t) =
(

u1(x, t), u2(x, t), u3(x, t)
)

is the unknown vector field in T
3 de-

scribing the motion of the fluid, the scalar function p(x, t) is the unknown pressure,
and g0(x) =

(

g1
0(x), g

2
0(x), g3

0(x)
)

is a given field of external forces with zero spatial

mean, i.e.,
∫

T3 g0(x)dx = 0. We assume that the function u(x, t) is periodic with

respect to x = (x1, x2, x3) ∈ T
3, and has zero spatial mean, i.e.,

∫

T3 u(x, t)dx = 0.
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We denote byH and V the closure of the space V = {v(x) =
(

v1(x), v2(x), v3(x)
)

,

x ∈ T
3 | v(x) is a trigonometrical vector polynomial with period 2πL in each

xi, i = 1, 2, 3, such that ∇ · v = 0 and
∫

T3 v(x)dx = 0} in the norms | · | and

‖ · ‖ of the spaces L2(T
3)3 and H1(T3)3, respectively. Recall that the orthogonal

complement H⊥ of the space H in L2(T
3)3 is {∇p(x) | p(·) ∈ H1(T3)} (see, e.g.,

[15, 29]). Let P : L2(T
3)3 → H be the Helmholtz–Leray orthogonal projector onto

H and let A = −P∆ be the Stokes operator with domain D(A) = H2(T3)3 ∩ V .
We observe that, in the periodic case, A = −∆. The operator A is self-adjoint,
positive, and has a compact resolvent. Therefore, the space H has an orthonormal
basis {wj}

∞
j=1 of eigenfunctions of A, that is, Awj = λjwj , where

0 < λ1 < λ2 ≤ . . . ≤ λj → +∞.

We denote by

((u, v)) := (A1/2u,A1/2v) = (∇u,∇v), ‖u‖ := |A1/2u|, u, v ∈ V,

the scalar product and the norm in V, respectively. The Poincaré inequality reads

|u|2 ≤ λ−1
1 ‖u‖2, ∀u ∈ V. (6)

Let V ′ be the dual space of V. For any v ∈ V ′, we denote by 〈v, u〉 the value of the
functional v from V ′ on a vector u ∈ V. The operator A is a isomorphism from V
to V ′. In particular, ((w, u)) = 〈Aw, u〉 for all w, u ∈ V.

We apply the operator P to both sides of equation (4) and obtain an equivalent
system:

∂tu+ νAu+B(u, u) = g(x), t ≥ 0. (7)

Here, we denote B(u, v) = P [(u · ∇)v] = P
∑3

i=1 u
i∂iv and g = Pg0 (see, e.g.,

[15, 22, 24, 29]). The operator B(u, v) maps V ×V to V ′ and satisfies the following
inequality:

| 〈B(u, v), w〉 | ≤ c|u|1/4‖u‖3/4|v|1/4‖v‖3/4‖w‖, ∀u, v, w ∈ V, (8)

where c is an absolute constant (see, e.g., [15, 22, 29]). In particular,

‖B(u, u)‖V ′ ≤ c|u|1/2‖u‖3/2, ∀u ∈ V. (9)

From the standard formula

B(u, v) = P

3
∑

i=1

∂i

(

uiv
)

, (10)

(see [24, 29, 15]) it follows that

〈B(u, v), w〉 = −〈B(u,w), v〉 , ∀u, v, w ∈ V, (11)

〈B(u, v), v〉 = 0, ∀u, v ∈ V. (12)

Let a function u(·) ∈ L2(0,M ;V ) ∩ L∞(0,M ;H) be given. Therefore, νAu ∈
L2(0,M ;V ′) and due to (9) we have

B(u(·), u(·)) ∈ L4/3(0,M ;V ′). (13)

Consider the space of distributions D′(0,M ;V ′). The function u(·) has the time
derivative ∂tu(·) in the space D′(0,M ;V ′) (see [24]). A function u(·) ∈ L2(0,M ;V )∩
L∞(0,M ;H) is called a weak solution of equation (7) if it satisfies this equation in
the space D′(0,M ;V ′). Then, clearly, from (13), we have ∂tu(·) ∈ L4/3(0,M ;V ′)
for any weak solution u(·) of (7) and hence u(·) ∈ C([0,M ];V ′). Recall that u(·) ∈
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L∞(0,M ;H). Then, by the classical lemma from [25] (see also [29]), the function
u(·) ∈ Cw([0,M ];H) and the initial data

u|t=0 = u0(x) ∈ H (14)

is meaningful for equation (7) in the class of solutions belonging to L2(0,M ;V ) ∩
L∞(0,M ;H).

We now formulate the classical theorem on the existence of a weak solution of
the Cauchy problem for the 3D N.–S. system in the form we need in the sequel (see
[15, 22, 24, 29]).

Theorem 1. Let g ∈ V ′ and u0 ∈ H. Then for every M > 0, there exists a weak
solution u(t) of equation (7) from the space L2(0,M ;V ) ∩ L∞(0,M ;H) such that
u(0) = u0 and u(t) satisfies the energy inequality

1

2

d

dt
|u(t)|2 + ν‖u(t)‖2 ≤ 〈g, u(t)〉 , t ∈ [0,M ]. (15)

Inequality (15) means the following: for any function ψ(·) ∈ C∞
0 (]0,M [), ψ(t) ≥ 0,

−
1

2

∫ M

0

|u(t)|2ψ′(t)dt+ ν

∫ M

0

‖u(t)‖2ψ(t)dt ≤

∫ M

0

〈g, u(t)〉ψ(t)dt. (16)

The proof of Theorem 1 uses the Galerkin approximation method. For every
m ∈ N, we construct the Galerkin approximation um(x, t) ∈ C1([0,M ];H2 ∩ V )
of order m, that is a solution of the corresponding system of ordinary differential
equations, and prove the existence of a subsequence {mj} ⊂ {m} such that umj (x, t)
converges in a weak sense to a weak solution u(x, t) of problem (7) and (14). The
Galerkin approximation um(x, t) satisfies the energy equality

1

2

d

dt
|um(t)|2 + ν‖um(t)‖2 = 〈g, um(t)〉 , t ∈ [0,M ]. (17)

Passing to a limit in (17) in a weak sense as mj → ∞, we obtain (15) in the form
(16) (see [13, 15, 24]).

Remark 1. For the 3D Navier–Stokes system the question of the uniqueness of a
weak solution of problem (7) and (14) remains open. It is also unknown, whether
every weak solution satisfies the energy inequality (15) (and what is more, the
energy equality). Nevertheless, it is known that every weak solution resulting from
the Galerkin approximation method satisfies the energy inequality (15).

Remark 2. Inequality (16) is equivalent to the following assertion: there exists a
set Q ⊂ [0,M ] having zero Lebesgue measure such that

1

2

{

|u(t)|2 − |u(τ)|2
}

+ ν

∫ t

τ

‖u(t)‖2dt ≤

∫ t

τ

〈g, u(t)〉 dt (18)

for all τ ∈ [0,M ]\Q and for all t ≥ τ (see, e.g., [13, 15]).

We now construct the trajectory attractor for the N.–S. equation (7). The de-
tailed theory of trajectory attractors can be found in [11, 13]. Here, we only give
the key elements of the trajectory attractor construction.

At first, we define the trajectory space K+ of equation (7). We consider weak
solutions u(t), t ≥ 0, of this equation in the space Lloc

2 (R+;V ) ∩ Lloc
∞ (R+;H), i.e.,

functions u(t), t ∈ [0,M ], belong to L2(0,M ;V ) ∩ L∞(0,M ;H) and satisfy (7) in
the space D′(0,M ;V ′) for any M > 0.
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Definition 1. The trajectory space K+ is the set of all weak solutions u(·) of
equation (7) in the space Lloc

2 (R+;V )∩Lloc
∞ (R+;H) that satisfy the energy inequality

(15) for all t ≥ 0, that is,

−
1

2

∫ ∞

0

|u(t)|2ψ′(t)dt + ν

∫ ∞

0

‖u(t)‖2ψ(t)dt ≤

∫ ∞

0

〈g, u(t)〉ψ(t)dt (19)

for all ψ ∈ C∞
0 (R+), ψ ≥ 0.

It follows from Theorem 1 that, for any u0 ∈ H, there is a trajectory u ∈ K+

such that u(0) = u0. Hence, the trajectory space K+ is non-empty and sufficiently
large.

We need the Banach space

Fb
+ = {v(·) ∈ Lb

2(R+;V ) ∩ L∞(R+;H), ∂tv(·) ∈ Lb
4/3(R+;V ′)}

with norm

‖v‖Fb
+

= ‖v‖Lb
2
(R+;V ) + ‖v‖L∞(R+;H) + ‖∂tv‖Lb

4/3
(R+;V ′), (20)

where ‖v‖2
Lb

2
(R+;V )

= supt≥0

∫ t+1

t ‖v(s)‖2ds, ‖v‖L∞(R+;H) = ess supt≥0 |v(t)|, and

‖∂tv‖
4/3

Lb
4/3

(R+;V ′)
= supt≥0

∫ t+1

t ‖v(s)‖
4/3
V ′ ds.

We denote by {T (h)} := {T (h), h ≥ 0} the translation semigroup acting on a
function {v(t), t ≥ 0} by the formula

T (h)v(t) = v(t+ h), t ≥ 0.

For example, the semigroup {T (h)} acts on Fb
+. We consider {T (h)} on the tra-

jectory space K+ of equation (7). Clearly, if u(·) ∈ K+, then uh(·) = T (h)u(·) =
u(· + h) ∈ K+ for all h ≥ 0. Therefore,

T (h)K+ ⊆ K+, ∀h ≥ 0. (21)

Our aim is to construct the global attractor of the translation semigroup {T (h)}
in K+. We call this attractor the trajectory attractor because the semigroup {T (h)}
acts in the trajectory space K+. In [13], the following proposition is proved.

Proposition 1. Let g ∈ V ′. Then

1. The trajectory space K+ ⊆ Fb
+;

2. for any function u(·) ∈ K+,

‖T (h)u(·)‖Fb
+
≤ C0‖u(·)‖

2
C∞(0,1;H)e

−βh +R2
0, ∀h ≥ 1, (22)

where β = νλ1, the constant C0 depends on ν, λ1 and R0 depends on ν, λ1,
‖g‖V ′ .

We introduce a topology in the space K+. Consider the space

F loc
+ = {v(·) ∈ Lloc

2 (R+;V ) ∩ Lloc
∞ (R+;H), ∂tv(·) ∈ Lloc

4/3(R+;V ′)}.

We define on F loc
+ the following sequential topology which we denote Θloc

+ . By

definition, a sequence of functions {vn} ⊆ F loc
+ converges to a function v ∈ F loc

+ in

the topology Θloc
+ as n→ +∞ if, for any M > 0,

vn(·) ⇁ v(·) (n→ ∞) weakly in L2(0,M ;V ),

vn(·) ⇁ v(·) (n→ ∞) weakly-∗ in L∞(0,M ;H),

and
∂tvn(·) ⇁ ∂tv(·) (n→ ∞) weakly in L4/3(0,M ;V ′).
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It is easy to describe the topology Θloc
+ in terms of open neighbourhoods and to prove

that Θloc
+ is a Hausdorff topology with a countable base of its topology (however,

Θloc
+ is not metrizable) (see [11, 13]). We note that Fb

+ ⊆ Θloc
+ . Besides, any ball

BR = {v ∈ Fb
+ | ‖v‖Fb

+
≤ R} is compact in Θloc

+ . Hence, the set BR with topology

induced by Θloc
+ is metrizable and the corresponding metric space is complete. This

property makes it possible to construct the trajectory attractor (in the topology
Θloc

+ ) of the semigroup {T (h)} acting on K+. It follows easily from the definition of

the topology Θloc
+ that the translation semigroup {T (h)} is continuous in Θloc

+ . The
following assertion is important for us (see the proof in [13]) .

Proposition 2. The trajectory space K+ is closed in Θloc
+ .

In a standard way, we define an attracting set for K+ in the topology Θloc
+ .

Definition 2. A set P ⊆ Fb
+ is called attracting for the space K+ in the topology

Θloc
+ if, for any bounded (in the norm of Fb

+) set B ⊂ K+, the set P attracts T (h)B

in the topology Θloc
+ as h→ +∞, that is, for any neighbourhood O(P ) (in Θloc

+ ) of
the set P, there is a number h1 = h1(B,O) such that T (h)B ⊆ O(P ) for all h ≥ h1.

We now define the trajectory attractor.

Definition 3. A set A ⊂ K+ is called the trajectory attractor of the semigroup
{T (h)} in the topology Θloc

+ if

1. A is bounded in Fb
+ and compact in Θloc

+ ;
2. A is strictly invariant with respect to {T (h)} : T (h)A = A, ∀h ≥ 0;
3. A is an attracting set in the topology Θloc

+ for {T (h)} on K+.

The set A is also called the (Fb
+,Θ

loc
+ )-attractor of the semigroup {T (h)}|K+ (see

also [1]).
It follows from the main inequality (22) that the ball B2R0

in Fb
+ is an attracting

(and even absorbing) set of the semigroup {T (h)} on K+. The ball B2R0
is clearly

compact in Θloc
+ . Therefore, the continuous semigroup {T (h)} has a compact at-

tracting set. Consequently, the translation semigroup {T (h)} has the trajectory
attractor A ⊂ K+ ∩B2R0

and moreover

A =
⋂

s>0





⋃

h≥s

T (h)(K+ ∩B2R0
)





Θloc
+

,

where [·]Θloc
+

denotes the closure in Θloc
+ . The detailed consideration of global at-

tractors for semigroups in topological spaces can be found in [13] (see also [26]).
To describe the general structure of the trajectory attractor A we need the notion

of the kernel of equation (7). The kernel K is the set of all weak solutions u(t), t ∈ R,
bounded in the space

Fb = {v(·) ∈ Lb
2(R;V ) ∩ L∞(R;H), ∂tv(·) ∈ Lb

4/3(R;V ′)}

that satisfies an inequality in a similar way to (19) for all ψ ∈ C∞
0 (R), ψ ≥ 0, and

the integrals are taken over the entire time axis R :

−
1

2

∫ ∞

−∞

|u(t)|2ψ′(t)dt + ν

∫ ∞

−∞

‖u(t)‖2ψ(t)dt ≤

∫ ∞

−∞

〈g, u(t)〉ψ(t)dt. (23)

(The norm in Fb is defined in a similar way to the norm in Fb
+ (see (20)) replacing

R+ by R).
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We denote by Π+ the restriction operator onto R+. It is proved in [13] that the
trajectory attractor A of the 3D Navier–Stokes system coincides with the restriction
of the kernel K of equation (7) onto R+ :

A = Π+K. (24)

It is clear that the set K is bounded in Fb and compact in Θloc. The topology Θloc

is defined similar to Θloc
+ where the intervals (0,M) are replaced by (−M,M).

Notice that the following embeddings are continuous:

Θloc
+ ⊂ Lloc

2 (R+;H1−δ), (25)

Θloc
+ ⊂ C loc(R+;H−δ), for 0 < δ ≤ 1, (26)

(see [24, 13]). Hence, the trajectory attractor A = Π+K satisfies the following
properties: for any bounded (in Fb

+) set B ⊂ K+,

distL2(0,M ;H1−δ)(T (h)B,A) → 0 (h→ +∞),

distC([0,M ];H−δ)(T (h)B,A) → 0 (h→ +∞),

where M is an arbitrary positive number.

3. Leray-α model of viscous incompressible fluid and its global attractor.

We consider the following system subject to periodic boundary conditions:

∂tv − ν∆v + (u · ∇)v + ∇p = g0(x), ∇ · v = 0, (27)

v = u− α2∆u, x = (x1, x2, x3) ∈ T
3. (28)

This system is an approximation of the 3D Navier–Stokes equations considered in
the previous section. In system (27) and (28), the unknown functions are the vector
fields v = v(x, t) = (v1, v2, v3) or u = u(x, t) = (u1, u2, u3), and the scalar function
p = p(x, t). We assume that the functions v, u, p, and g0 are all periodic with
respect to each variable xi, i = 1, 2, 3, with period 2πL and they have zero spatial
mean. In equation (28), α is a fixed positive parameter which is called the sub-grid
(filter) length scale of the model (see [14]). For α = 0, the function v = u and we
obtain exactly the 3D Navier–Stokes system (4) and (5). System (27) and (28) is
called the Leray-α model.

We now rewrite system (27) and (28) in an equivalent form using the standard
projector P in H and excluding the pressure as in the previous section, where all
the necessary notations were defined. We obtain the system

∂tv + νAv +B(u, v) = g(x), (29)

v = u+ α2Au. (30)

Here as in equation (7), A = −P∆ = −∆ denotes the Stokes operator and the
bilinear operator B(u, v) = P (u · ∇)v satisfies properties (8) – (12).

It is obvious that, for every v ∈ H, equation (30) has a unique solution u ∈ H2∩V
such that

‖u‖H2 := |Au| ≤
1

α2
|v|, ∀v ∈ H. (31)

Here, we denote H2 = H2(T3)3. It follows from the embedding theorem in R
3 that

H2(T3) ⊂ L∞(T3). In particular, we have the energy inequality

‖u‖L∞(T3)3 ≤ C(α)|u + α2Au| = C(α)|v|, ∀u ∈ H2 ∩ V, (32)
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where v = u+ α2Au. In [14], it was proved that

C(α) ≤
5

4
+

8

5

(

L

c1α

)3/2

, (33)

where c1 is an absolute positive constant. Notice that C(α) → +∞ as α → 0+ .
We obtain from inequality (32) that

|B(u, v)| ≤ |(u · ∇)v| ≤ c‖u‖L∞(T3)3‖v‖ ≤ C1(α)|v|‖v‖, ∀v ∈ V, (34)

where v = u+ α2Au.
Consider an arbitrary function v(·) ∈ L2(0,M ;V ) ∩L∞(0,M ;H) and the corre-

sponding function u(·) ∈ L∞(0,M ;H2). Then from (34), we conclude

B(u(·), v(·)) ∈ L2(0,M ;H). (35)

(Compare with (13) for the 3D Navier–Stokes system, where α = 0).
We study weak solutions v(x, t) of system (29) and (30) belonging to the space

L2(0,M ;V ) ∩ L∞(0,M ;H), M > 0. Then Av(·) ∈ L2(0,M ;V ′) and, by (35),

∂tv(·) ∈ L2(0,M ;V ′). (36)

We supplement system (29) and (30) with initial data

v|t=0 = v0(x) ∈ H. (37)

We now formulate the theorem on the existence and uniqueness of a weak solution
of the Cauchy problem (29), (30), and (37) for the Leray-α model (α > 0).

Theorem 2. Let α > 0, g ∈ V ′, and v0 ∈ H. Then problem (29), (30), and (37) has
a unique solution v(·) ∈ L2(0,M ;V )∩L∞(0,M ;H) such that ∂tv(·) ∈ L2(0,M ;V ′)
and v satisfies the energy equality

1

2

d

dt
|v(t)|2 + ν‖v(t)‖2 = (g, v(t)), (38)

where the function |v(t)|2, t ∈ [0,M ], is absolutely continuous, its time derivative
has the usual sense, and (38) holds for almost every t ∈ [0,M ]. Moreover, v ∈
C([0,M ];H).

Proof. The standard Galerkin approximation method is used (see [14]). All the
reasonings are quite analogous to the proof of the existence and uniqueness theorem
for the 2D Navier–Stokes system (see [1, 15, 29]). Energy equality (38) follows from
(36). We take the scalar product of equation (29) with v(·) ∈ L2(0,M ;V ) and use
Lemma 1.2 from [29, Ch.3] which implies that

2 〈∂tv, v〉 =
d

dt
|v(t)|2 for a.e. t ∈ [0,M ].

Here, we have used also the identity 〈B(u, v), v〉 = 0 (see (11)). Hence, the function
|v(t)|2 is absolutely continuous. Recall that the function v(t), t ∈ [0,M ], is weakly
continuous in H . Therefore it is strongly continuous in H as well.

The energy equality implies the main a priori estimates of problem (29), (30),
and (37).
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Proposition 3. Any solution v(t) of problem (29), (30), and (37) satisfies the
following inequalities:

|u(t)|2 ≤ |v(t)|2 ≤ |v(0)|2e−νλ1t +
‖g‖2

V ′

ν2λ1
, (39)

ν

∫ t+1

t

‖u(s)‖2ds ≤ ν

∫ t+1

t

‖v(s)‖2ds ≤ |v(0)|2e−νλ1t +
‖g‖2

V ′

ν2λ1
+

‖g‖2
V ′

ν
,(40)

where u(t) is the solution of equation (30).

Proof. It follows from (30) that

|u(t)|2 ≤ |v(t)|2, ‖u(t)‖2 ≤ ‖v(t)‖2, ∀t ≥ 0. (41)

From (38), we have

1

2

d

dt
|v(t)|2 + ν‖v(t)‖2 = (g, v(t)) ≤

ν

2
‖v(t)‖2 +

‖g‖2
V ′

2ν
.

Using the Poincaré inequality (29), we obtain

d

dt
|v(t)|2 + νλ1|v(t)|

2 ≤
d

dt
|v(t)|2 + ν‖v(t)‖2 ≤

‖g‖2
V ′

ν
(42)

and, therefore,

|v(t)|2 ≤ |v(0)|2e−νλ1t +
‖g‖2

V ′

ν2λ1
. (43)

We have proved (39). We now integrate inequality (42) over [t, t+ 1] and reach

|v(t+ 1)|2 + ν

∫ t+1

t

‖v(s)‖2ds ≤ |v(t)|2 +
‖g‖2

V ′

ν
≤ |v(0)|2e−νλ1t +

‖g‖2
V ′

ν2λ1
+

‖g‖2
V ′

ν
.

Hence, (40) is also proved.

We note that estimates (39) and (40) are independent of α.
Let us establish some smoothness properties of solutions of (29) and (30) for

α > 0.

Proposition 4. If g ∈ H, then any solution v(t) of problem (29), (30), and (37)
satisfies the inequality

t‖v(t)‖2 + ν

∫ t

0

s|Au(s)|2ds ≤ C2(α, t, |v(0)|, |g|), ∀t ≥ 0, (44)

where C2(α, z,R1, R2) is a positive monotone function with respect to z, R1, and
R2 for every fixed α > 0.

Proof. At first, we prove inequality (44) for the Galerkin approximation vm(t) of
the exact solution v(t). After that, we obtain (44) for v(t) passing to the limit in
the inequality for the Galerkin approximation as m → ∞. For brevity, we sketch
the reasoning for the Galerkin system omitting the index m. Multiplying equation
(29) by tAv(t), we have

1

2

d

dt

{

t‖v(t)‖2
}

−
1

2
‖v(t)‖2 + νt|Av(t)|2 + t(B(u, v), Av) = t(g,Av(t)). (45)

Recall that

|(g,Av)| ≤
ν

4
|Av(t)|2 +

1

ν
|g|2. (46)
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Besides from (34), we conclude that

|(B(u, v), Av)| ≤ C1(α)|v| · ‖v‖ · |Av| ≤
ν

4
|Av(t)|2 +

C2
1 (α)

ν
|v|2‖v‖2. (47)

Replacing (46) and (47) to (45), we have

d

dt

{

t‖v(t)‖2
}

+ νt|Av(t)|2 ≤ ‖v(t)‖2 + t
2C2

1(α)

ν
|v(t)|2‖v(t)‖2 + t

2

ν
|g|2. (48)

Integrating inequality (48) over [0, t] we reach

t‖v(t)‖2 +ν

∫ t

0

s|Au(s)|2ds ≤

∫ t

0

‖v(s)‖2ds+ t

∫ t

0

2C2
1 (α)

ν
|v(s)|2‖v(s)‖2ds+

t2

ν
|g|2.

(49)
It follows from inequality (39) that

|v(s)|2 ≤ |v(0)|2 +
‖g‖2

V ′

ν2λ1
. (50)

Integrating (42) over [0, t], we obtain

ν

∫ t

0

‖v(s)‖2ds ≤ |v(0)|2 + t
‖g‖2

V ′

ν
. (51)

Consequently from (49), we conclude that

t‖v(t)‖2 + ν

∫ t

0

s|Au(s)|2ds ≤
|v(0)|2

ν
+ t

‖g‖2
V ′

ν2

+ t
2C2

1 (α)

ν

(

|v(0)|2 +
‖g‖2

V ′

ν2λ1

) (

|v(0)|2

ν
+ t

‖g‖2
V ′

ν2

)

+
t2

ν
|g|2

≤ C2(α, t, |v(0)|, |g|),

where C2(α, z,R1, R2) =
R2

1

ν + z
R2

2

ν2λ1
+ z

2C2
1(α)
ν

(

R1 +
R2

2

ν2λ2
1

)

×
(

R1
2

ν + z
R2

2

ν2λ1

)

+

z2

ν R
2
2.

Consider the semigroup {Sα(t)} = {S(t)} acting in H by the formula S(t)v0 =
v(t), where v0 ∈ H and v(t) is a solution of problem (29), (30), and (37). It follows
from inequality (39) that the semigroup {S(t)} has a bounded (in H) absorbing set

P0 = {v | |v| ≤ R0}, where R2
0 =

2‖g‖2

V ′

ν2λ1
. The set P1 = S(1)P0 is also absorbing

and, due to Proposition 4, P1 is bounded in V and therefore compact in H. It can
be proved that the semigroup {S(t)} is continuous in H. All these facts imply the
existence of the global attractor Aα, for α > 0, of the Leray-α model, that is Aα is
compact in H, strictly invariant with respect to H, and

distH(S(t)B,Aα) → 0 as t→ +∞

for any bounded set B ⊂ H of initial data (see [1, 15, 20, 28, 30]). Moreover, the
set Aα is bounded in V.

In the next section, we study the behavior of solutions of the Leray-α model
as α → 0 + . We establish the relation between these solutions and the trajectory
attractor of the 3D Navier–Stokes system constructed in Section 1.
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4. The 3D Leray-α model and its relation to the 3D Navier–Stokes sys-

tem. We have proved estimates (39) and (40) for the solution v(t) of system (29),
(30), and (36). The same estimates hold for the function u(t), where v(t) =
u(t) + α2Au(t), and the estimates do not depend on α. We need one more esti-
mate for the time derivative ∂tv(t).

Proposition 5. Let g ∈ V ′. Then the solution v(t) of (29), (30), and (36) satisfies
the inequality

(
∫ t+1

t

‖∂tv(s)‖
4/3
V ′ ds

)3/4

≤ C4|v(0)|2e−βt +R2
1, (52)

where β = λ1ν, C4 depends on λ1 and ν, and R1 depends on λ1, ν, and ‖g‖V ′ . The
numbers C4 and R1 are independent of α.

Proof. Consider the operator B(u(t), v(t)), where v = u+ α2Au. We note that

|u| ≤ |v| and ‖u‖ ≤ ‖v‖. (53)

From inequalities (8) and (53), we conclude that

‖B(u, v)‖V ′ ≤ c|u|1/4‖u‖3/4|v|1/4‖v‖3/4 ≤ c|v|1/2‖v‖3/2. (54)

Consequently,

(
∫ t+1

t

‖B(u(s), v(s))‖
4/3
V ′ ds

)3/4

≤ c

(
∫ t+1

t

|v(s)|2/3‖v(s)‖2ds

)3/4

≤ c · ess sup
s∈[t,t+1]

|v(s)|1/2

(
∫ t+1

t

‖v(s)‖2ds

)3/4

≤ c

(

|v(0)|2e−νλ1t +
‖g‖2

V ′

ν2λ1

)1/4 (

1

ν
|v(0)|2e−νλ1t +

‖g‖2
V ′

ν3λ1
+

‖g‖2
V ′

ν2

)3/4

≤ C′
4|v(0)|2e−νλ1t + (R′

1)
2

= C′
4|v(0)|2e−βt + (R′

1)
2
. (55)

Using the triangle inequality, it follows from equation (29) that

(
∫ t+1

t

‖∂tv(s)‖
4/3
V ′ ds

)3/4

≤ ν

(
∫ t+1

t

‖Av(s)‖
4/3
V ′ ds

)3/4

+

(
∫ t+1

t

‖B(u(s), v(s))‖
4/3
V ′ ds

)3/4

+ ‖g‖V ′

≤ ν

(
∫ t+1

t

‖v(s)‖2ds

)1/2

+

(
∫ t+1

t

‖B(u(s), v(s))‖
4/3
V ′ ds

)3/4

+ ‖g‖V ′

≤ ν

(

1

ν
|v(0)|2e−νλ1t +

‖g‖2
V ′

ν3λ1
+

‖g‖2
V ′

ν2

)1/2

+ C′
4|v(0)|2e−νλ1t + (R′

1)
2

+ ‖g‖V ′

≤ C4|v(0)|2e−βt +R2
1.

Here, we have used the equality ‖Av‖V ′ = ‖v‖, the inequality

(
∫ t+1

t

‖v(s)‖4/3ds

)3/4

≤

(
∫ t+1

t

‖v(s)‖2ds

)1/2

,

and estimate (55).
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We now consider the Banach space Fb
+ defined in Section 1. Recall that

Fb
+ = {w(t), t ∈ R+| w(·) ∈ Lb

2(R+;V ) ∩ Lb
∞(R+;H), ∂tw(·) ∈ Lb

4/3(R+;V ′)}.

From inequalities (39), (40), and (52), we obtain

Corollary 1. Let g ∈ V ′. Then, for any solution v(t) of problem (29), (30), and
(36), we have v(·) ∈ Fb

+ and

‖T (h)v(·)‖Fb
+
≤ C5|v(0)|2e−βh +R2

4, ∀h ≥ 0, (56)

where C5 and R4 are independent of α; C5 depends on λ1, ν, and R4 depends on
λ1, ν, ‖g‖V ′ .

Let v = u+ α2Au. Then, together with (53), we have

‖∂tu‖V ′ ≤ ‖∂tv‖V ′ , (57)

which implies

Corollary 2. The function u(t) corresponding to the solution v(t) of problem (29),
(30), and (36) satisfies the following inequality:

‖T (h)u(·)‖Fb
+
≤ C5|v(0)|2e−βh +R2

4, ∀h ≥ 0, (58)

Similar to the trajectory space K+ of the N.–S. system introduced in Section 1,
we define the trajectory space K+

α of the Leray-αmodel (29) and (30). By definition,
the space K+

α is the union of all weak solutions v(t) = v(x, t), t ≥ 0, of equations
(29) and (30) with initial data v(0) ∈ H. It follows from Corollary 1 that K+

α ⊂ Fb
+

for all α > 0.
We need the energy equality (38) that we rewrite in the equivalent form similar

to energy inequality (19) for the 3D N.–S. system.

Proposition 6. For any v ∈ K+
α

−
1

2

∫ ∞

0

|v(t)|2ψ′(t)dt+ ν

∫ ∞

0

‖v(t)‖2ψ(t)dt =

∫ ∞

0

〈g, v(t)〉ψ(t)dt (59)

for all ψ ∈ C∞
0 (R+).

To prove (59), we multiply (38) by ψ(t) and integrate by parts.
In the space K+

α , we consider the topology Θloc
+ defined in Section 1. Recall that

Fb
+ ⊂ Θloc

+ .

Proposition 7. Let a sequence of functions vαn(t) ∈ K+
αn
, n ∈ N, satisfy the fol-

lowing properties:

1. {vαn(·)} is bounded in Fb
+;

2. αn → 0+ as n→ ∞;
3. vαn(·) → v(·) in the topology Θloc

+ as n→ ∞.

Then v(·) is a weak solution of the 3D N.–S. system and, moreover, v ∈ K+, that
is v(t) satisfies the energy inequality (19) for t ≥ 0.

Proof. By assumption,
‖vαn(·)‖Fb

+
≤ C, ∀n ∈ N. (60)

Hence, due to the convergence vαn(·) → v(·) as n→ ∞ in Θloc
+ ,

‖v(·)‖Fb
+
≤ C (61)

as well.
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We denote by uαn(t) the solution of equation (30) corresponding to vαn(t). It
follows from (61) that

‖uαn(·)‖Fb
+
≤ C, ∀n ∈ N. (62)

We prove that v(·) is a weak solution of the 3D N.–S. system on every interval
(0,M). The function vαn(·) satisfies the equation

∂tvαn + νAvαn +B(uαn , vαn) = g (63)

in the space D′(0,M ;V ′). By assumptions,

vαn(·) ⇁ v(·) as n→ ∞ (64)

weakly in L2(0,M ;V ), ∗-weakly in L∞(0,M ;H), and, in addition,

∂tvαn(·) ⇁ ∂tv(·) as n→ ∞ (65)

weakly in L4/3(0,M ;V ′). Then the convergences in (64) and (65) hold in a weaker
topology of the space D′(0,M ;V ′). From (64) we obtain

Avαn(·) ⇁ Av(·) as n→ ∞ (66)

in D′(0,M ;V ′).
In order to establish the equality

∂tv + νAv +B(v, v) = g, (67)

it is sufficient to prove that the sequence B(uαn(·), vαn(·)) converges to B(v(·), v(·))
in D′(0,M ;V ′) as n→ ∞.

Notice that

uαn(·) ⇁ v(·) as n→ ∞ (68)

weakly in L2(0,M ;V ). Indeed, the functions uαn(·) satisfies the equation

uαn + α2
nAuαn = vαn . (69)

Recall that {uαn(·)} is bounded in L2(0,M ;V ). Then, passing to a subsequence,
we may assume that {uαn(·)} converges to a function w(·) weakly in L2(0,M ;V ) :

uαn(·) ⇁ w(·) as n→ ∞. (70)

Then the sequence Auαn(·) ⇁ Aw(·) weakly in L2(0,M ;V ′) as n → ∞ and, there-
fore, αnAuαn(·) ⇁ 0 weakly in L2(0,M ;V ′) as n → ∞. Hence in equality (69), we
may pass to the limit in the space L2(0,M ;V ′) and obtain that

w = w- lim
n→∞

uαn = w- lim
n→∞

vαn = v. (71)

Consequently, (70) and (71) imply (68).
The sequences {∂tvαn(·)} and {∂tuαn(·)} are bounded in L4/3(0,M ;V ′). Then

the Aubin compactness theorem (see [15, 24, 29]) implies that, passing to a subse-
quence, we may assume that {vαn(·)} and {uαn(·)} both converge to v(·) strongly
in L2(0,M ;H). Recall that L2(0,M ;H) ⊆ L2(T

3×]0,M [)3 and, therefore, we may
assume that

vαn(x, t) → v(x, t), uαn(x, t) → v(x, t) for a.e. (x, t) ∈ T
3×]0,M [. (72)

Identity (10) implies

B(uαn , vαn) = P

3
∑

i=1

∂i

(

ui
αn

· vαn

)

. (73)
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From (72), we conclude that

ui
αn

(x, t) · vαn(x, t) → vi(x, t) · v(x, t) (n→ ∞) for a.e. (x, t) ∈ T
3×]0,M [.

Furthermore, due to (54), ui
αn

(·)vαn(·) is bounded in the space L4/3(0,M ;H) and,

moreover, in L4/3(T
3×]0,M [)3. Applying Lemma 1.3 from [24, Ch.1, Sec.1] on the

weak convergence in Lq-spaces, we conclude that

ui
αn

(·) · vαn(·) ⇁ vi(·) · v(·) as n→ ∞

weakly in L4/3(T
3×]0,M [)3 and weakly in L4/3(0,M ;H). Then, finally,

B(uαn(·), vαn(·)) ⇁ B(v(·), v(·)) as n→ ∞ (74)

weakly in L4/3(0,M ;V ′) and, therefore, in D′(0,M ;V ′). We have proved that v(·)
is a weak solution of the 3D N.–S. system.

We have to prove now that the function v(·) satisfies the energy inequality (16)
on every interval (0,M). Indeed, the functions vαn(·) satisfy the energy equality
(59), that is

−
1

2

∫ M

0

|vαn(t)|2ψ′(t)dt + ν

∫ M

0

‖vαn(t)‖2ψ(t)dt =

∫ M

0

〈g, vαn(t)〉ψ(t)dt (75)

for any function ψ ∈ C∞
0 (]0,M [). Let ψ(t) ≥ 0 for t ∈]0,M [. We have already

proved that vαn(·) → v(·) strongly in L2(0,M ;H) as n → ∞ (see the paragraph
after (71)). Then, clearly, the real functions |vαn(·)| → |v(·)| strongly in L2(0,M)
as n→ ∞. In particular, passing to a subsequence, we may assume that

|vαn(t)|2 → |v(t)|2 for a.e. t ∈ [0,M ].

Consider the functions |vαn(t)|2ψ′(t), t ∈ [0,M ]. It follows from estimate (39)
that these functions have a integrable majorant on [0,M ]. The Lebesgue dominant
convergence theorem implies that

∫ M

0

|vαn(t)|2ψ′(t)dt →

∫ M

0

|v(t)|2ψ′(t)dt as n→ ∞. (76)

We note that vαn(·)
√

ψ(·) ⇁ v(·)
√

ψ(·) weakly in L2(0,M ;V ). Therefore,
∫ M

0

‖v(t)‖2ψ(t)dt ≤ lim inf
n→∞

∫ M

0

‖vαn(t)‖2ψ(t)dt. (77)

We also have
∫ M

0

〈g, vαn(t)〉ψ(t)dt →

∫ M

0

〈g, v(t)〉ψ(t)dt as n→ ∞. (78)

Using (76)–(78), we pass to the limit in (75) and obtain the inequality

−
1

2

∫ M

0

|v(t)|2ψ′(t)dt+ ν

∫ M

0

‖v(t)‖2ψ(t)dt ≤

∫ M

0

〈g, v(t)〉ψ(t)dt (79)

for any ψ ∈ C∞
0 (]0,M [), ψ(·) ≥ 0.

We have proved that v(·) is a weak solution of the 3D Navier–Stokes system
which satisfies the energy inequality. Thus, v ∈ K+.

Remark 3. The proof that we have produced above is along the lines of the Leray
program in which he proved in R

3 that the weak solutions of the 3D N.–S. equations
are in some sense the limit of his mollified system, which, in our care, we take it
to be the Leray-α. In our study, it is very important that every weak solution of
the 3D N.–S. system producing from the Leray-α system by passing to the limit
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as α → 0+ satisfies the energy inequality (19). We will use this fact in the next
sections.

In the next section, we apply Proposition 7 to prove the convergence of solutions
of the Leray-α model to the trajectory attractor of the 3D Navier–Stokes system as
α→ 0+ .

5. Convergence of bounded sets of trajectories of the Leray-α model to

the trajectory attractor of the N.–S. system. We denote by A0 the trajectory
attractor of the 3D N.–S. system

∂tu+ νAu +B(u, u) = g(x) (80)

that was constructed in Section 1. Recall that A0 ⊂ K+ and the set A0 is bounded
in Fb

+ and compact in Θloc
+ .

Let Bα = {vα(x, t), t ≥ 0}, 0 < α ≤ 1, be a family of solutions (trajectories) of
the Leray-α model that are uniformly (with respect to α ∈ (0, 1]) bounded in the
norm of Fb

+ :

∂tvα + νAvα +B(uα, vα) = g(x), vα = uα + α2Auα, (81)

that is Bα ⊂ K+
α (see Section 2) for α ∈ (0, 1] and, in addition,

‖vα‖Fb
+

= ‖vα‖Lb
2
(R+;V ) + ‖vα‖Lb

∞
(R+;H) + ‖∂tvα‖Lb

4/3
(R+;V ′) ≤ R, ∀vα ∈ Bα, (82)

where R is an arbitrary fixed positive number. We also denote by

B̃α =
{

uα ∈ Fb
+ | uα + α2Auα = vα ∈ Bα

}

= (1 + α2A)−1Bα.

Recall that ‖uα‖Fb
+
≤ ‖vα‖Fb

+
(see (41) and (57)). Therefore,

‖uα‖Fb
+
≤ R, ∀uα ∈ B̃α, 0 < α ≤ 1. (83)

We denote by K0 the kernel of equation (80). Recall that K0 is the union of all
bounded (in the nom Fb) complete weak solutions {u(t), t ∈ R} of equation (80)
that satisfy the energy inequality (19). In Section 1, it was shown that A0 = Π+K0.

Consider the topology Θloc
+ in the space F loc

+ , which is a weak convergence topol-
ogy in the corresponding spaces on any bounded interval [0,M ].

We now formulate the main theorem of the paper.

Theorem 3. Let Bα = {vα(x, t), t ≥ 0}, 0 < α ≤ 1, be bounded sets of solutions of
the Leray-α model (81) that satisfy the inequality

‖Bα‖Fb
+
≤ R, 0 < α ≤ 1.

Then the shifted sets of solutions {T (h)Bα} (T (h)w(t) = w(t+ h)) converge to the
trajectory attractor A0 = Π+K0 of the 3D N.–S. system (80) in the topology Θloc

+

as h→ +∞ and α→ 0+ :

T (h)Bα → A0 in Θloc
+ as h→ +∞ and α→ 0+ . (84)

The same convergence holds for the corresponding sets B̃α = (1 + α2A)−1Bα :

T (h)B̃α → A0 in Θloc
+ as h→ +∞ and α→ 0+ . (85)
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Proof. Clearly, it is sufficient to prove (84). Assume the converse: there exists a
neighbourhood (in Θloc

+ ) O(A0) of the set A0 and sequences αn → 0+, hn → +∞ as
n→ ∞ such that

T (hn)Bαn 6⊂ O(A0). (86)

Then, for some solutions wαn(·) ∈ Bαn , the functions vn(t) = T (hn)wαn(t) =
wαn(hn + t) do not belong to O(A0) :

vn(·) /∈ O(A0). (87)

Notice that the function vn(t) is a solution of the Leray-αn system (81) with α = αn

on the interval [−hn,+∞), since the equation is autonomous and vn(t) is a time
shift of the solution wαn(·). Moreover, it follows from (82) that

sup
t≥−hn

|vn(t)|+

(

sup
t≥−hn

∫ t+1

t

‖vn(s)‖2ds

)1/2

+ sup
t≥−hn

(
∫ t+1

t

‖vn(s)‖4/3ds

)3/4

≤ R.

(88)
This inequality implies that the sequence {vn(·)} is weakly compact in Θ−M,M =
L2(−M,M ;V ) ∩ L∞(−M,M ;H) ∩ {∂tv ∈ L4/3(−M,M ;V ′)} for every M , if we
consider elements of {vn(·)} with indices n such that hn ≥M. Therefore, for every
fixed M > 0, we can choose a subsequence {nl} ⊂ {n} such that {vnl

(·)} converges
weakly in Θ−M,M . Then, using the standard Cantor diagonal procedure, we can
construct a function u(t), t ∈ R, and a subsequence {n′

l} such that

vn′

l
(·) → u(·) weakly in Θ−M,M as n′

l → ∞ for any M > 0.

From (88), we obtain

sup
t∈R

|u(t)| +

(

sup
t∈R

∫ t+1

t

‖u(s)‖2ds

)1/2

+ sup
t∈R

(
∫ t+1

t

‖u(s)‖4/3ds

)3/4

≤ R,

that is u ∈ Fb = Lb
2(R;V ) ∩ L∞(R;H) ∩ {∂tu ∈ Lb

4/3(R;V ′)}.

We now apply Proposition 7, where we can clearly assume that functions vαn(t)
are defined on the semiaxis [−M,+∞) instead of [0,+∞) since the equations are
autonomous. We obtain from this proposition that u(x, t) is a weak solution of the
3D N.–S. system for all t ∈ R and satisfies the energy inequality, that is u ∈ K0,
where K0 is the kernel of equation (80). Then we conclude that Π+u ∈ Π+K0 = A0

and Π+vn′

l
(·) → Π+u(·) in Θloc

+ as n→ ∞. In particular for a large n′
l, we have

Π+vn′

l
∈ O(Π+u) ⊆ O(A0). (89)

This contradicts (87) and completes the proof.

In fact, we have proved a slightly stronger assertion.

Corollary 3. Under the assumptions of Theorem 3, the set T (h)Bα converges
towards the kernel K0 of equation (80) in the weak topology of the space Θ−M,M as

h→ +∞ and α→ 0+ for every M > 0. The same results holds for the set T (h)B̃α,

where B̃α = (1 + α2A)−1Bα.

We now reformulate this result in terms of Hausdorff (non-symmetric) semi-
distance from a set X to a set Y in a Banach space E

distE(X,Y ) := sup
x∈X

distE(x, Y ) = sup
x∈X

inf
y∈Y

‖x− y‖E .
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Recall that the following embeddings are continuous

Θ−M,M ⊆ L2(−M,M ;H1−δ),

Θ−M,M ⊆ C([−M,M ];H−δ), ∀0 < δ ≤ 1.

Hence, we obtain

Corollary 4. For any fixed M > 0 and for any sets Bα ⊂ K+
α uniformly bounded

in Fb
+, the following limit relations hold:

distL2(−M,M ;H1−δ) (T (h)Bα,K0) → 0+,

distC([−M,M ];H−δ) (T (h)Bα,K0) → 0+ as h→ +∞ and α→ 0 + .

In conclusion, we consider the behaviour of trajectory attractors of the Leray-α
model as α→ 0+ .

We consider the trajectory space K+
α , α > 0, of system (81) that was constructed

in Section 2. The translation semigroup {T (h)} acts on K+
α (recall that T (h)vα(t) =

vα(t + h), h ≥ 0, where vα ∈ K+
α ). It is easy prove that the space K+

α is closed
in Θloc

+ . Proposition 3 implies that K+
α ⊂ Fb

+ and there exists an absorbing set of

the semigroup {T (h)} in K+
α , bounded in Fb

+ and compact in Θloc
+ . Then, similar

to Section 1, we prove the existence of the trajectory attractor Aα of the Leray-
α model for α > 0, that is, Aα ⊂ K+

α , Aα is bounded in Fb
+ and compact in

Θloc
+ ; T (h)Aα = Aα for all h ≥ 0; and T (h)Bα → Aα in Θloc

+ as h → +∞ for any
bounded set Bα ⊂ K+

α . In addition, Aα = Π+Kα, where Kα is the kernel of equation
(81). Moreover, it follows from Proposition 3 that the trajectory attractors Aα are
uniformly (with respect to α ∈ (0, 1]) bounded in Fb

+.
Theorem 3 implies

Corollary 5. The following limit relations hold:

Aα → A0 in Θloc
+ as α→ 0+,

Kα → K0 in Θloc as α→ 0+ .

To prove Corollary 5, we recall that the family { Aα, 0 < α ≤ 1} is uniformly
bounded in Fb

+. Thus, we apply (84) for Bα = Aα and obtain

T (h)Aα → A0 in Θloc
+ as h→ +∞ and α→ 0+ .

However, T (h)Aα = Aα for all h ≥ 0. Therefore,

Aα → A0 in Θloc
+ as α→ 0+ .

Similarly, we prove that

Kα → K0 in Θloc as α→ 0+ .

Using Corollary 81 we then have

Corollary 6. For any M > 0

distL2(−M,M ;H1−δ) (Kα,K0) → 0+,

distC([−M,M ];H−δ) (Kα,K0) → 0+ as α→ 0+ .

Finally, we establish the relation between the trajectory attractor Aα and the
global attractor Aα of the 3D Leray-α model for a fixed α > 0. The global attractor
Aα was constructed in [14].
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Proposition 8. The trajectory attractor of the Leray-α model

Aα = {v(t) = S(t)v0, t ≥ 0 | v0 ∈ Aα}.

It follows from Proposition 4 that the trajectory attractor Aα is bounded in the

space Fb,s
+ = Lb

2(R+;H2) ∩ L∞(R+;V ) ∩ {∂tw(·) ∈ Lb
2(R+;H)} and Aα attracts

bounded set of trajectories from K+
α in the strong topology of the space Θloc,s

+ =

Lloc
2 (R+;H2) ∩Lloc

∞ (R+;V ) ∩ {∂tw(·) ∈ Lloc
2 (R+;H)}. This statements is proved in

a similar way to the analogous results for 2D N.–S. system (see [10, 13]). Of course,
these properties do not persist when we pass to the limit as α→ 0+ .
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