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Various versions of the Riemann—Hilbert problem
for linear differential equations

R.R. Gontsov and V. A. Poberezhnyi

Abstract. A counterexample to Hilbert’s 21st problem was found by Boli-
brukh in 1988 (and published in 1989). In the further study of this problem
he substantially developed the approach using holomorphic vector bundles
and meromorphic connections. Here the best-known results of the past
that were obtained by using this approach (both for Hilbert’s 21st problem
and for certain generalizations) are presented.
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Introduction

This paper is devoted to Hilbert’s 21st problem (the Riemann—Hilbert problem),
which, in one form or another, was considered as far back as the middle of the 19th
century by Riemann, and to certain generalizations of it that appeared at the end
of the 20th century. This problem belongs to the analytic theory of differential
equations and consists in constructing a linear differential equation (or a system
of equations) of a certain class that has given singular points and given ramification
type of solutions at these singular points.

The most substantial achievements in solving the Riemann—Hilbert problem are
associated with the name of A. A. Bolibrukh. Before him the problem had long been
wrongly regarded as solved in the affirmative. However, Bolibrukh constructed the
first counterexample, which stimulated the development of the theory in the new
direction outlined in his survey “The Riemann-Hilbert problem” [1].
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In the present paper we focus on the main recent achievements in the study of the
Riemann-Hilbert problem and its generalizations, and we indicate some questions
that arise naturally in the consideration of these results.

The basic notions of the analytic theory of linear differential equations and the
general approach to studying the classical Riemann—Hilbert problem for Fuchsian
systems on the Riemann sphere, together with the best-known results, are presented
in the first two sections.

In §3 we consider the Riemann—Hilbert problem for scalar Fuchsian equations
and its relation to non-linear differential equations (Painlevé VI equations, Garnier
systems).

Possible generalizations of the classical Riemann—Hilbert problem to the case
of Fuchsian systems defined on a compact Riemann surface of arbitrary genus are
presented in §4.

The generalized Riemann—Hilbert problem for linear systems with irregular sin-
gular points is considered in § 5.

A Dbrief description of some geometric notions and constructions related to the
Riemann—Hilbert problem is given in §6.

The authors are deeply grateful to D. V. Anosov, V.P. Leksin, and I. V. V’yugin
for useful remarks and discussions which were helpful in the preparation of this

paper.

8 1. Basic definitions and statement of the classical problem

We consider a system of p linear differential equations on the Riemann sphere C,
written in matrix form

dy
di = B(Z) Y, y(Z) € (Cp7 (1)
z
where B(z) is the coefficient matrix of the system and is meromorphic on the
Riemann sphere, with singularities at the points a1, ..., a,.

Definition 1. A singular point a; of the system (1) is said to be Fuchsian if
the matrix B(z) has a pole of the first order at this point.

A singular point a; of the system (1) is said to be regular if any solution of the
system has at most polynomial growth in a neighbourhood of this point. A singular
point that is not regular is said to be irregular.

From many viewpoints, Fuchsian singularities are the simplest type of singular
points of the system (1). According to Sauvage’s theorem [2], a Fuchsian singu-
lar point of a linear system is always regular (see also [3], Theorem 11.1).

Regular singularities of a linear system are next in complexity after Fuchsian
ones. Generally speaking, the coefficient matrix of the system can have a pole of
order higher than 1 at a regular singular point.! In such a case it turns out to

IThe notions of regular and Fuchsian singular points coincide only in the case where a system
consists of a single equation (p = 1). This fact can be verified by a straightforward integration of
the equation.
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be difficult to find out whether the singularity is regular or not. (In the general
case, verification of all existing criteria for regularity of a singular point of a linear
system is fairly difficult; one of the first such criteria was obtained by Moser [4],
and subsequently other criteria also appeared [5], [6].) However, there is a simple
necessary condition for the regularity of a singular point obtained by Horn [7],
which consists in the following. We write the Laurent series for the coefficient
matrix B(z) of the system (1) in a neighbourhood of a singular point z = a in the

form B B
B(z) = _—2—r=t .. —1
(2) (z —a)rtt ot z—a

+By+-+, B_,_1#0.

(The number r is called the Poincaré rank of the system (1) at this point, or the
Poincaré rank of the singular point z = a. For example, the Poincaré rank of
a Fuchsian singularity is equal to zero.)

If z = a is a regular singular point of the system (1) and r > 0, then B_,_1 is
a nilpotent matriz.

We now give another simple necessary condition for the regularity of a singular
point of a linear system.

If z = a is a reqular singular point of the system (1) and r > 0, then tr B_,_; =
o =trB_o=0.

This condition follows from the fact that, by the well-known Liouville theorem,
the determinant of a fundamental matrix Y (z) of the system (1) (a matrix whose

columns form a basis in the solution space of the system) satisfies the equation

d
= detY = trB(z)detY. If a singular point z = a of the system (1) is regular,
z

then it is a regular (consequently, Fuchsian) singularity of the latter equation.
Therefore, the function tr B(z) must have a simple pole at this point.

Irregular singular points form the most complicated type of singularities of a lin-
ear system.

A system (1) is said to be Fuchsian if all its singular points are Fuchsian. If
infinity is not among the singularities of a Fuchsian system, then the system can
be written in the form

d " B =
dzz(zz—zai)y’ ;Bi:o.

=1

(If one of the singularities, say a,, is situated at infinity, then the coefficient matrix
has the form B(z) = Z?;ll B;/(z —a;), but the sum of the residues B; is no longer
equal to the zero matrix.)

One of the important characteristics of a linear system is its monodromy repre-
sentation (or monodromy), which is defined as follows.

In a neighbourhood of a non-singular point zy we consider a fundamental matrix
Y (z) of the system (1). The result of the analytic continuation of the matrix Y (2)
along a loop v starting at the point zy and contained in C\ {ay,...,a,} is, gen-
erally speaking, another fundamental matrix Y’(z) Two bases are connected by
a non-singular transition matrix G corresponding to the loop ~:
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The map [7] — G, (which depends only on the homotopy class [v] of the loop 7)
defines a representation

X: 771(@\ {al,...,an},zo) — GL(p,C)

of the fundamental group of the space C\ {ai,...,a,} into the space of non-
singular complex p X p matrices. This representation is called the monodromy of
the system (1).

The monodromy matriz of the system (1) at a singular point a; (with respect to
a fundamental matrix Y (z)) is defined as the matrix G; corresponding to a simple
loop v; around the point a;, that is, G; = x([y;]). The matrices Gq,...,G,, are
generators of the monodromy group —the image of the map yx. By the condition
1 - -+ Yn = e in the fundamental group, these matrices are connected by the relation
G1--- G, = I (henceforth, I denotes the identity matrix).

If initially another fundamental matrix Y’ (z) = Y (2)C, C € GL(p,C), is consid-
ered instead of the fundamental matrix Y'(z), then the corresponding monodromy
matrices have the form G} = C~'G;C. The dependence of the matrices G; on the
choice of the initial point zg is of similar nature. Thus, the monodromy of a linear
system is determined up to conjugation by a constant non-singular matrix and,
more precisely, is an element of the space

My =Hom(m (C\ {a1,...,a,}),GL(p,C))/GL(p,C)

of conjugacy classes of representations of the group m; (@\ {a1,..., an}).

The number of parameters on which the monodromy depends can be calculated
by considering only irreducible representations (since for n > 2 the reducible ones
form a subspace of some positive codimension). In such a case, the dimension of
the conjugacy class

{(S71G1S,...,57'G,,S) | S € GL(p,C)} = GL(p,C)/st(Gh, . .., G)

of the element (G1,...,G},) is equal to dim GL(p, C) —dimst(Gy,...,G,) = p>—1.
(According to Schur’s lemma, if a matrix S commutes with all the matrices G;,
then it is a scalar matrix; therefore, dimst(Gy,...,G,) = 1.) Consequently, the
dimension of the space

My = {(Gy,...,Gp) | Gy Gy = I}/GL(p,C)

is equal to (n — 1)p? — (p> — 1) = (n — 2)p? + 1.

The classical Riemann—Hilbert problem is stated as follows.

Is it possible to realize a given set of singular points ai,...,a, and a given
representation

x: m(C\{ai1,...,an}, 20) — GL(p,C) (2)

by a Fuchsian system? (that is, is it possible to construct a Fuchsian system with
given singularities and monodromy?)

Thus, the Riemann-Hilbert problem is a question about the surjectivity of the
monodromy map (g : M, — M, from the space

'ﬂ; = {(Bla o 7Bn) ‘ B; € Mat(pa C)? Bi+--+ B, = 0}/GL(p7 C)
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of Fuchsian systems with fixed singularities ay, . .., a, (considered up to equivalence
B; ~S7'B;S, i =1,...,n) into the space .#,. Although the dimensions of these
spaces are the same, the map pu, is not surjective, and the problem has a negative
solution in the general case. The first counterexample appears in dimension p = 3
for the number of singular points n = 4 (Bolibrukh [8]; see also [9], Ch. 2). We
shall discuss the monodromy map in more detail in §6.

There exist numerous sufficient conditions for a positive solution of the classical
Riemann-Hilbert problem. We present the best-known of them and also focus on
some analogues of them in the analysis of various generalizations of the classical
problem (the simplest proofs of most of these sufficient conditions are presented
in [10]).

1) If one of the generators Gy, ..., Gy, of the representation (2) is diagonalizable,
then the Riemann—Hilbert problem has a positive solution? (Plemelj [12]).

2) If the representation (2) is two-dimensional (p=2), then the Riemann—Hilbert
problem has a positive solution (Dekkers [13]).

3) If the representation (2) is irreducible, then the Riemann—Hilbert problem has
a positive solution (Bolibrukh [14], Kostov [15]).

4) If the representation (2) is the monodromy of some scalar linear differential
equation of order p with regular singularities ay, . .., a,, then the Riemann—Hilbert
problem has a positive solution (Bolibrukh [16]).

We make several remarks about the last sufficient condition. The monodromy
of a linear differential equation

dPy dr—ly
Zop P01 oy o+ bp(2)y =0 3)

of order p with singular points a1, ..., a, (poles of the coefficients) is defined in the
same way as for the system (1), only instead of a fundamental matrix Y'(z) one
must consider a row (y1,...,y,) whose elements form a basis in the solution space
of the equation.

In contrast to a system, for a scalar equation there exists a simple criterion
for the regularity of a singular point of this equation, obtained by Fuchs [17] (see
also [3], Theorem 12.1): a singularity a; of equation (3) is reqular if and only if the
coefficient b;(z) has at this point a pole of order at most j (j =1,...,p). Scalar
differential equations with regular singular points are said to be Fuchsian.

Initially, Riemann [18] stated the problem about constructing precisely a Fuch-
sian differential equation with given singular points and monodromy. However,
Poincaré [19] showed that, unlike a Fuchsian system, the number of parameters
on which a Fuchsian equation depends is less than the dimension of the space
M, of monodromy representations.®> After that, Hilbert [20] included in his list of
“Mathematical problems” the problem of constructing a Fuchsian system with given

2This condition was improved by Kostov [11]: If one of the matrices G1, ..., Gy in its Jordan
form has at most one block of size 2, while the other blocks are of size 1, then the Riemann—Hilbert
problem has a positive solution. Further improvement of this condition in terms of the Jordan
form of one of the monodromy matrices is impossible, since there exist counterexamples to the
Riemann—Hilbert problem in which the Jordan forms of the monodromy matrices contain one
block of size 3 or two blocks of size 2.

3Therefore, in the construction of a Fuchsian equation with a given monodromy in the gen-
eral case there necessarily emerge additional (apart from ai,...,an) apparent singular points at
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singularities and monodromy, which is what became known as the Riemann—Hilbert
problem (details of the history of studies of the Riemann—Hilbert problem and its
definitive solution can be found in [21], [22]).

8§ 2. Method of solution

In the study of problems related to the Riemann—Hilbert problem, a very useful
tool is provided by linear gauge transformations of the form

y' =T(z)y (4)

of the unknown function y(z). The transformation (4) is said to be holomorphically
(meromorphically) invertible at some point z if the matrix I'(z) is holomorphic
(meromorphic) at this point and detI'(zg) # 0 (detI'(z) # 0). This transformation
transforms the system (1) into the system

/

CC% =B'(2)y, B'(z) = Z—E ' 4+TB(z)r 1, (5)
which is said to be, respectively, holomorphically or meromorphically equivalent to
the original system in a neighbourhood of the point zj.

An important property of meromorphic gauge transformations is the fact that
they preserve the monodromy (being meromorphic, the matrix I'(z) is single-valued
on the punctured Riemann sphere; therefore the ramification of the fundamen-
tal matrix I'(2)Y(z) of the new system coincides with the ramification of the
matrix Y'(z)).

A transformation that is holomorphically invertible in a neighbourhood of a sin-
gular point a; of the system (1) does not change the Poincaré rank of this singularity,
whereas a meromorphically invertible transformation may increase or decrease this
rank.

Locally, in a neighbourhood of each point ay, it is easy to produce a system
for which aj is a Fuchsian singularity and the monodromy matrix at this point
coincides with the corresponding generator Gy, = x([yx]) of the representation (2).
This system is

d’y Ek 1
—_— = 5 E = 71 G 5 6
dz  z—ay T om 08k (6)
with fundamental matrix (2 — ay)Er := eFrloe(z=ar) (the branch of the logarithm
of the matrix Gy, is chosen so that the eigenvalues pj, of the matrix Ej, satisfy the
condition 0 < Re p;, < 1). Indeed,
d ) = Ey

—(z—a = Z—a
dz( g z—ak( K

)

)

and a single circuit around the point aj counterclockwise transforms the matrix
(z — ax)P* into the matrix

eEk(log(z—ak)-i-QTri) _ eE’“ log(z—ak)eQﬂ'iE,€ _ (Z _ ak)Eka_

which the coefficients of the equation have singularities but the solutions are single-valued mero-
morphic functions, and hence the monodromy matrices at these points are identity matrices. In
what follows, by additional singular points of an equation or a system we mean precisely such
singularities.
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We note that in the case when the representation (2) is commutative (that is,
when the matrices Gy,...,G,, commute pairwise) the Riemann—Hilbert problem
has a positive solution. The above arguments must be applied to the fundamental
matrix Y (z) = (z —a1)P - (2 — ap_1)F 1 (2 — an) PP, D =" | E;, of the

global Fuchsian system
n—1
dy E; E,—-D
i (B e )y

i=1
with singularities aq,...,a, € C. (Here one makes essential use of the relations
[G:,G;] = 0 and the consequent relations [G, (z —a;) ] = [Gi, (2 — a,)E~P] = 0;

the commutativity also implies that logGy---G,, = logG1 + - -+ + log G, and, in
view of the condition Gy ---G,, = I, ensures that D is a diagonal integer-valued
matrix that does not affect the monodromy at the point a,.)

It is interesting that a positive solution of the Riemann—Hilbert problem when
the representation (2) is commutative was first obtained by Lappo-Danilevskii [23].
This sufficient condition had not been noted before him (he mentioned this fact at
his dissertation defense in 1929).

Of course, not every system with the Fuchsian singularity a; and the local mon-
odromy matrix Gy, is holomorphically equivalent to the system (6) in a neighbour-
hood of this point.

Let Ay = diag()},...,A}) be a diagonal integer-valued matrix whose elements
)\i form a non-increasing sequence, and Sj; a non-singular matrix reducing the
matrix Ej, to an upper-triangular form E; = SkEkSlgl. Then according to (5)
the transformation

Y =T()y, T(2)= (2 —ar)™ S
transforms the system (6) into the system

(2

B,
+(z— ak)A" ——k
Z— ag Z = ag

dz (2 — ak)_Ak>y/’ (7)
for which the point ay, is also a Fuchsian singularity (it follows from the form of the
matrices Ay, and Ej, that the matrix (z — ax)** E} (2 — ax) ~** is holomorphic) and
the matrix Gy, is the monodromy matrix.

According to Levelt’s theorem [24], in a neighbourhood of a singular point ay
any Fuchsian system is holomorphically equivalent to a system of the form (7). At
the same time, in a neighbourhood of a regular (in particular, Fuchsian) singular
point aj the meromorphic equivalence class of the system is uniquely determined by
its local monodromy matrix G, since such a system is meromorphically equivalent
to a system of the form (6).

We call aset {Aq,...,A,,S1,...,5,} of matrices having the properties described
above, a set of admissible matrices.

The Riemann—Hilbert problem has a positive solution if it is possible to pass from
the local systems (7) to a global Fuchsian system defined on the whole Riemann
sphere. The use of holomorphic vector bundles and meromorphic connections proves
to be effective in the study of this question.
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We briefly recall the basic notions of the theory of holomorphic vector bundles
(a detailed exposition of scope quite sufficient for applications to linear differential
equations in the complex domain is contained in [10], as well as in [25], Ch. 3).

A holomorphic vector bundle 7: F — B of rank p over a (one-dimensional)
complex manifold B has the following properties:

a) for any point z € B the fibre 771(2) is a p-dimensional vector space and there
exists a neighbourhood U of z such that the inverse image 7~1(U) is biholomor-
phically equivalent to U x CP (furthermore, the biholomorphic equivalence maps
7 1(z) onto {z} x CP isomorphically as vector spaces);

b) for any neighbourhoods Uy, Ug with non-empty intersection, the local charts
Uy x CP, Ug x CP are compatible:

Yo: T H(Uy) — Uy x CP, wp: ™ H(Ug) — Ug x CP;
a0 95t (Ua NUp) x CP — (Ua NUp) x CP,
(2,9) = (2.9a8(2)y),

where go3: Uy NUg — GL(p, C) is a holomorphic map.
A set {gap(z)} of holomorphically invertible matrix functions satisfying the con-
ditions
Yap = gg(i, 9aB9pryGva =1 (for Uy NUz N U, # @),

is called a gluing cocycle corresponding to a covering {U,} of the manifold B.
Bundles F and F' over B are (holomorphically) equivalent if there exists a set
{ha(2)} of holomorphic maps hy: U, — GL(p, C) such that

hagap = faphs (8)

for gluing cocycles {gas(2)}, {fas(2)} of these bundles.

A bundle F is holomorphically trivial if it is equivalent to the direct product
B x CP, that is, if the relations (8) hold for a cocycle {gas(2)} with fo5(2z) = I for
all a, 3.

A subbundle E' C E of rank ¢ is characterized by the condition that for any
point z € B the set 7~1(2)NE’ is a g-dimensional vector subspace of 7=1(z). Then
the cocycle {gn3(2)} can be chosen to be block-upper-triangular:

Jop  *
Jos = ( i 936) 7
where the g(lw are ¢ X g matrices forming a cocycle of the bundle E’.

A section of a bundle E is defined to be a map s: B — FE such that
mos=id. In local charts U, x CP a holomorphic (meromorphic) section is given
by a set {s4(2)} of holomorphic (meromorphic) functions s, : U, — CP such that
©va(s(2)) = (z,54(%)) and satisfying the conditions s,(2) = gap(2)sg(z) on the
intersections Uy, NUp # @.

A holomorphic connection V: T'(E) — I'(7}; ® E) is a linear map of the space
I'(E) of holomorphic sections of the bundle £ into the space of holomorphic sections
of the bundle 75 ® E, where 75 is the cotangent bundle over B. Sections of the
bundle 753 ® E are F-valued differential 1-forms on B. Such sections are given by



Riemann—Hilbert problem for linear differential equations 611

a set {2, } of (vector) differential 1-forms defined in corresponding neighbourhoods
U, and satisfying the conditions 0, = go3(2)2s on the intersections U, NUs # @.

In local coordinates of the sets U, x CP, a connection V is given by a set {w, }
of matrix holomorphic differential 1-forms defined in the corresponding neighbour-
hoods U,,. The coordinate action of the connection V on the functions s, (z) defin-
ing a section s has the form

Sa = Qo = dsq — WaSa-
Then the compatibility conditions for {s,} and {Q,} are rewritten for {w,} as

wa = (d9a8) 9,5 + Japwpdny  (for Ua NUs # 2). 9)

Similarly, a meromorphic connection V: M(E) — M (75 ® E) is a linear map of
the corresponding spaces of meromorphic sections and is given by a set of matrix
meromorphic differential 1-forms. A meromorphic connection is said to be loga-
rithmic (Fuchsian) if all the singular points of these 1-forms are poles of the first
order.

A section s is said to be horizontal (with respect to a connection V) if V(s) =0
or, in coordinates, ds, = waSq. Thus, horizontal sections of a holomorphic vector
bundle with a meromorphic connection are determined by solutions of a system of
linear differential equations. At the same time, every set of p linearly independent
sections can be regarded as a basis in the space of horizontal sections with respect
to some meromorphic connection.

The monodromy of a connection characterizes the ramification of horizontal sec-
tions under analytic continuation along closed paths in B avoiding singular points
of the connection, and its definition is similar to that of the monodromy of the
system (1).

The approach to solving the Riemann—Hilbert problem based on using holomor-
phic vector bundles emerged in the papers of Rohrl [26], Levelt [24], Deligne [27].
It was developed by Bolibrukh and enabled him to obtain various sufficient condi-
tions for a positive solution of the problem (some of them were given above, and
one more will be given in what follows). We now briefly present this approach (see
details in [9], [10]).

1. First, from the representation (2) over the punctured Riemann sphere B =
C\ {a1,...,a,}, we construct a holomorphic vector bundle F of rank p with
a holomorphic connection V that has the given monodromy (2). The bundle F
over B is obtained from the holomorphically trivial bundle B x CP over the univer-
sal covering B of the punctured Riemann sphere after identifications of the form
(2,y) ~ (02, x(0)y), where Z € B, y € CP, and o is an element of the group of cov-
ering transformations of B which is identified with the fundamental group 71 (B).
Thus, F = B x CP/~ and m: F — B is the natural projection.

We show that a gluing cocycle {gog} of the bundle F is constant. Consider
a set {U,} of small neighbourhoods covering B, and a set Z,: U, — v~ 1(Uy,) of
local holomorphic sections of the universal covering v: B — B. On the non-empty
intersections U, N Ug the functions Z,(z), Z3(z) are connected by the relation

50(2) = apZ(2),  bap € m(B)
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(the maps d43: Uy N Ug — m1(B) are locally constant; therefore, we can even
consider them to be constant, for example, when all the U, N Ug are connected).
Local maps ¢, : 7~ (U,) — U, x CP are given by the relations

Yo [Za(2),y] = (2,9),

where [Z4(2), y] is the equivalence class of an element (34 (2),y) € BxCP. Therefore,
for z € Uy, N Ug we have

Pa 095 (2,9) = 9allZ8(2),4]) = ¢a([6552a(2), )

= 0o ([Ea(2), X(ap)]) = (2, X(3ap)¥),

that is, gag(2) = x(dap) = const.

The connection V can now be given by the set {w,, } of matrix differential 1-forms
wq = 0, which obviously satisfy the gluing conditions (9) on the intersections
Uo NUg # @. Furthermore, it follows from the construction of the bundle F'
that the monodromy of the connection V coincides with x.

2. Next, the pair (F,V) is extended to a bundle F° with a logarithmic con-
nection V° over the whole Riemann sphere. For this, the set {U,} should be
supplemented by small neighbourhoods Oy, ..., O, of the points a1, ..., a,, respec-
tively. An extension of the bundle F' to each point a; looks as follows. For some
non-empty intersection O; N U, we set gijo(2) = (z — a;)% in this intersection. For
any other neighbourhood Ups that intersects O; we define g;3(z) as the analytic
continuation of the matrix function g;o(z) into O; N Ug along a suitable path (so
that the set {gas, gia(2)} defines a cocycle for the covering {U,, O;} of the Riemann
sphere). An extension of the connection V to each point a; is given by the matrix

differential 1-form w; =

dz, which has a simple pole at this point. Then the
zZ— Qa;

set {wq,w; } defines a logarithmic connection VY in the bundle F°, since along with

conditions (9) for non-empty U, N Us the conditions

E;
(dgioz)g;al + giozwag;al = ] dz = Wi, Oz N Ua 7& a,

also hold (see (6)). The pair (F°, V) is called the canonical extension of the
pair (F, V).

3. In a way similar to that for the construction of the pair (F°, V), we can
construct the family .# of bundles F* with logarithmic connections V* having
given singularities and monodromy. For this the matrices g;,(z) in the construction
of the pair (F°, V) must be replaced by the matrices

gin(2) = (2 — @)™ Si(z — @)™,

and the forms w; by the forms

d
wh = (A + (2 — )M El(z — a;) ™M) =2 |
Z — Q;
where {Aq,...,A,,S1,...,9,} are all possible sets of admissible matrices. Then
the conditions . .
(dgin) (95) " + ghawa (i) =i (10)

again hold on the non-empty intersections O; N U, (see (7)).
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Strictly speaking, the bundle F* also depends on the set S = {S1,...,S,} of
matrices S; reducing the monodromy matrices G; to upper-triangular form. In view
of this dependence the bundles in the family .% should therefore be denoted by F+,
but in what follows we shall only need the dependence on the set A = {Aq1,..., A, },
and by F* we shall mean the bundle constructed with respect to a given set A and
some set S. (This does not apply to the canonical extension F° of the bundle F,
which is independent of the choice of the matrices S;.)

Definition 2. The eigenvalues ﬁf =N+ p{ of the matrix A; + E; are called
exponents of the logarithmic connection V* at the point z = a;. (It follows from
the structure of the forms w? that the exponents at the point z = a; are the
eigenvalues of the residue matrix res,, w?.)

The above-mentioned dependence of the bundle F* on the sets S = {S1,...,S5,}
is essential only in the case where at least one of the singular points a; of the con-
nection V* is a resonant singularity (that is, where among the exponents of the
connection at this point there exist two that differ by a positive integer). This
observation follows from the fact that the holomorphic equivalence class of a Fuch-
sian system of the form (7) in a neighbourhood of a non-resonant singular point a;
is uniquely determined by the local monodromy of the system at this point and an
admissible matrix A; (see, for example, [10], Exercise 14.5).

If some bundle F* in .Z is holomorphically trivial, then the corresponding con-
nection VA determines a global system (1) that solves the Riemann-Hilbert prob-
lem. Indeed, the triviality of the bundle F» means that for the covering {U,, O;}
of the Riemann sphere there exists a corresponding set {hq(2), hi(z)} of holomor-
phically invertible matrices such that

ha(2)gap = hp(z)  and  hi(2)gie(2) = ha(2) (11)

in Uy, NUg # @ and O; N U, # O, respectively. These relations, along with
conditions (10), imply that the forms

Wl = (dhi)h;t 4+ hiwlhit, Wl = (dha)hyt + hawahyt (12)

coincide on the corresponding non-empty intersections, which fact defines a global
form w = B(z) dz on the whole Riemann sphere. By construction, the global system
dy = wy has Fuchsian singularities a1, ..., a, and the given monodromy (2).

On the other hand, in view of Levelt’s theorem mentioned above, the existence
of a global Fuchsian system with the given singular points aq,...,a, and mon-
odromy (2) implies the triviality of some bundle of the family .%.

Thus, the Riemann—Hilbert problem is soluble if and only if at least one of the
bundles of the family F is holomorphically trivial.

According to the Birkhoff-Grothendieck theorem, every holomorphic vector bun-
dle F of rank p over the Riemann sphere is equivalent to a direct sum

E=6(k)® o 0k,
of line bundles that has a coordinate description of the form

(U1 =C, Us =C\ {a1}, 100 = (z — a1)™), K = diag(ky, ..., k),
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where ki > --- > k, is a tuple of integers, which is called the splitting type of the
bundle E.

This implies that for a cocycle {gag, g2, (2)} defining the bundle F'* in the family
F there exists a set {hq(2), h}(2)} of holomorphically invertible matrices such that

ha(2)gas = ha(2),  hi(2)gin(2) = (2 — a1) X ha(2),
hi(2)gi(2) = ha(2), i #1,

in the corresponding non-empty intersections (where the matrix K defines the split-
ting type of the bundle F*). These relations can be written in the form (11), where
all the matrices h;(z), except hy(z), are holomorphically invertible in corresponding
neighbourhoods O; and the matrix hi(z) has the form hy(z) = (z — a1) "5} (2).

Consequently, there always exists a global system dy = wy with the given sin-
gularities ay,...,a, and monodromy (2), except that its singular point a; may be
non-Fuchsian, since

w=— dz+ (z —a1) Kuwl(z —a)¥ (13)
Z — a1
in Op, where ord,, wj = —1. This result is called Plemelj’s theorem.
Theorem 1 (Plemelj [12]). A given set of points ai,...,a, and a representa-

tion (2) can always be realized by a system (1) that is Fuchsian at all but possibly
one point, at which the system is regular.

We note that the system in Plemelj’s theorem can always be chosen so that its
Poincaré rank at the regular singular point is at most (n — 1)(p — 1) (see [28]).

The notion of stability (introduced by Mumford) turns out to be useful in dealing
with vector bundles. Recently this notion made it possible to obtain a number of
important results, in particular, in the study of the Riemann—Hilbert problem. We
now give the requisite preliminary definitions.

Every holomorphic vector bundle over a Riemann surface X has a global mero-
morphic section that is not identically equal to zero (see [29], Corollary 29.17 and
Proposition 30.4). The degree of a holomorphic linear bundle F; (that is, a bundle
of rank 1) is defined as the sum of the orders of the zeros minus the sum of the
orders of the poles of a global meromorphic section of this bundle. (It is easy to
show that this number is independent of the choice of the section if X is compact,
which is assumed in what follows.)

If a global meromorphic section of the bundle F; is given by a set of meromor-
phic functions s,: U, — C corresponding to a covering {U,} of the surface X,
then the set {ds,/sq} of differential 1-forms determines a meromorphic connection
in the bundle F;. Thus, the degree of the bundle E; coincides with the sum of
residues of this connection. It is also easy to show that this sum is the same for
any meromorphic connection in Fj.

Definition 3. The degree deg F of a bundle E (over a compact Riemann surface X)
given by a cocycle {gns(2)} is the degree of the determinant bundle det E given by
the cocycle {det gag(#)}.

If in a bundle F a connection V is determined by a set {w, } of matrix differential
1-forms, then in the bundle det E one can define the connection tr V by the set of
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differential 1-forms trw,. In this case the degree of the bundle F also coincides
with the sum of residues of the connection tr V.
The number »(F) = deg E/p is called the slope of a bundle E of rank p.

For the bundle F* (according to Definition 2) we have

P
deg FA = iresai trwl = iZﬂf
i=1

i=1 j=1
The degree of a holomorphic vector bundle E over the Riemann sphere coincides
with the sum of the coefficients k; of the splitting type of this bundle. Indeed, if
E=0(ki)&-- & 0(kp), then the bundle det E has a coordinate description of the
form

(Up = C, U = C\ {0}, gooe = 2"5), K = diag (ki,...,kp).

A global meromorphic section of this bundle can be given by the functions
so(2) = 2K so(2) = 1.

Definition 4. A vector bundle E is said to be stable (semistable) if the slope »(E")
of any proper subbundle E’ of it is less than (respectively, less than or equal to)
the slope »(FE).

It is easy to verify that over the Riemann sphere there are no stable vector
bundles (the slope k; of the subbundle € (k;) of a bundle E = O (k1) & --- & O(kp)
is not less than the slope (k1 + - - -+ k,)/p of the bundle E), and only bundles with
splitting type (k, ..., k) are semistable. Thus, holomorphically trivial bundles over
the Riemann sphere are the semistable bundles of degree zero, and only they.

As is evident, the notions of stability and semistability of a vector bundle over the
Riemann sphere are not very deep in meaning, but they will prove to be meaningful
and useful for generalizing the problem to the case of a compact Riemann surface
of positive genus. For the present, we recall that in solving the Riemann—Hilbert
problem it is not just bundles that are investigated, but bundles together with
logarithmic connections on them. The introduction of the notion of a stable pair
(E, V) consisting of a vector bundle and a connection has proved effective.

Definition 5. We say that a subbundle F’ of the bundle F* is stabilized by the
connection VA if VA(M(F")) C M(r% ® F'). (Generally speaking, the action of
the map V4 takes a section of the subbundle F” to a section of the bundle T%@FA.)

This definition is equivalent to the condition that every horizontal section of F*
passing through a point sg € F’ remains in F’ under analytic continuations.

Practically, the existence of a subbundle F’ C F? that is stabilized by the con-
nection means that the pair (F*, V*) admits a coordinate description {gazs, g2},
{wea,wl} of the following block-upper-triangular form:

o ) = ("0 )L ) = (8 ).

gi,@’ (gia W (w’

« k3

1 1

where the sizes of all the blocks géﬁ, gk, and wl, w! are the same (the cocycles

{93167 gt} determine a coordinate description of the subbundle F”, and the forms

1

Weyy

w} determine the restriction V' to F’ of the connection V*).



616 R.R. Gontsov and V. A. Poberezhnyi

Definition 6. A pair (F, V") € .Z is said to be stable (respectively, semistable)
if the inequality s¢(F”) < s(F™) (respectively, s(F') < »(F*)) holds for any proper
subbundle F’ ¢ F that is stabilized by the connection V2.

We now give another sufficient condition for a positive solution of the
Riemann—Hilbert problem.

5) If among the elements of the family F of bundles with logarithmic connections
having given singularities ai,...,a, and monodromy (2) there exists at least one
stable pair (FA,VA)7 then the Riemann—Hilbert problem has a positive solution
(Bolibrukh [30]).

Thus, for studying the Riemann—Hilbert problem by using the notions of stability
and semistability of pairs of the family .%, one can consider the subset #° C &
consisting of semistable pairs.

If Z° is empty, then the Riemann—Hilbert problem has a negative solution (no
semistable pairs = no semistable bundles = no trivial bundles).

If Z° is not empty but contains no stable pairs, then the question of solubility
of the Riemann—Hilbert problem remains open.

If Z° contains at least one stable pair, then the Riemann—Hilbert problem has
a positive solution.

It should be noted that for finding stable or semistable pairs one does not have
to go through all the elements of the family .% but can confine oneself to the pairs
(FA,V2) constructed with respect to sets A = {Aq,...,A,} of matrices whose ele-
ments do not exceed a certain constant N(n,p) depending only on the dimension p
of the representation (2) and the number n of singular points. In some special
cases this enables one to produce an effective algorithm for verifying the existence
of a stable or semistable pair among elements of the family .7 (see [31]).

Bolibrukh’s first counterexample to the Riemann—Hilbert problem (p = 3, n = 4)
is fairly complicated technically. Subsequently he obtained simpler counterexamples
for representations of special type — B-representations. These are reducible repre-
sentations whose generators G; have Jordan form consisting of exactly one block.
The counterexamples are based on the following theorem (see [10], Theorem 11.2
and Corollary 11.2).

Theorem 2 (Bolibrukh). If a B-representation can be realized as the monodromy
representation of some Fuchsian system, then the slope of the canonical extension
FO of the bundle F constructed from this representation is an integer.

Example 1 (Bolibrukh). Consider the matrices

110 0 3 1 1 -1
0110 -4 -1 1 2
Gi=loo011 | “=| o o 3 1]
00 0 1 0 0 —4 -1
-1 0 2 -1
G3:4—101

0 0 -1 0
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and an arbitrary set of points a1, as, az. The reducible representation x with
singular points a1, as, ag and generators G, G, G3 corresponding to loops around
these points cannot be realized as the monodromy representation of any Fuchsian
system.

We note that G1G2G3 = I, the matrix G5 can be transformed into the matrix G,
and the matrix GG3 can be transformed into a Jordan block with eigenvalue —1:

1 10 0 30 0 0
. o110 1|1 -6 3 -3 4
S G= 1 g g | 2=31 00 1 -1 |
00 0 1 00 -2 3
-1 1 0 0 0 16 4 3
. B 0 -1 1 0 164 0 0 0
Sy GsSs = 0o 0 -1 11 53_62 0 0 0 —4
0 0 0 -1 0 0 —16 -—12

The eigenvalues py of the matrix Ey = (27i) ! log Gy are

1

p1=p2 =0, ps =75

According to Definition 2, they coincide with the exponents (i of the logarith-
mic connection V% at the points ay. According to Definition 3, the degree of the
canonical extension F° is equal to

deg F = 403 + 4835 + 4835 = 2,

and consequently s(FY) = 1/2 ¢ Z. Therefore, the B-representation y cannot be
realized as the monodromy representation of any Fuchsian system (by Theorem 2).

§ 3. The Riemann—Hilbert problem for scalar Fuchsian equations

As mentioned earlier, the problem of constructing a Fuchsian differential equa-
tion (3) with given singularities a4, ..., a, and the monodromy (2) has a negative
solution in the general case, since the number of parameters on which such an
equation depends is less than the number of parameters on which the set of conju-
gacy classes of representations (2) depends. (We recall that the latter is equal to
(n—2)p?+1, while the former does not exceed p+ (n—2)p(p+1)/2; see [10], Propo-
sition 7.1.) Therefore, questions arise about estimating the number of additional
singular points of a Fuchsian equation with a given monodromy, as well as about
finding conditions under which the construction of an equation without additional
singularities is nevertheless possible.

We consider the family .% of holomorphic vector bundles F* with the logarithmic
connections V* constructed from the representation (2). The Fuchsian weight of
the bundle F is defined as the quantity

P

AEN) = Sk — k),

i=1

where (ky,...,k,) is the splitting type of F.
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If the pair (FA,V*) € .Z is stable, then the splitting type of the bundle F*
satisfies the inequalities

k'ifkl'+1<n72, ’L:L,p*l (14)

(see [10], Theorem 11.1). Since in the case of an irreducible representation (2) the
family .% consists only of stable pairs (the bundle F'* has no subbundles stabilized
by the connection V* if the representation is irreducible), the quantity

Ay o (n=2)p(p—1)
T (x) = max y(F7) < 5
is defined for such a representation, and is called the mazimal Fuchsian weight of
the irreducible representation .
Bolibrukh obtained an expression for the minimal possible number mq of addi-
tional singular points emerging in the construction of a Fuchsian equation (3) from
an irreducible representation (2) [32]:

(n—2)p(p—1)
2

In the case of an arbitrary representation there is the following estimate for the
number mg of additional singularities (see [28]):

1 —1
mo < EFXLPE=D) )

mo = - ’Ymax(X)' (15)

In particular, it follows from formula (15) that a set of singular points a1, as,
az (n = 3) and an irreducible two-dimensional representation (p = 2) can always
be realized by a Fuchsian differential equation of second order, since in this case
Y(F*) = 1 for any bundle F* of odd degree. As shown in [33] (see also [34]),
among reducible two-dimensional representations (with three generators Gy, Gs,
G3 and the relation G1G2G3 = I) there are two types that cannot be realized by
a Fuchsian differential equation of second order with three singular points:

(e dy (e do _(c3 d3 ) .

Gl - <0 Cl> ) GQ* ( 02) ) G3 - (0 CS) ; dl 7& Oa (16)
_(a 0 ) 0 _[c3 0 ) )

G1 = (0 d1> 5 Gg— ( dg) y G3 = <0 ds) y C; 7é d,. (17)

It also follows from formula (15) that a set of singular points a1, ..., a, and an
irreducible representation (2) can be realized by a Fuchsian differential equation (3)
if and only if among the elements of the family & there exists a bundle with splitting
type ((p—1)(n —2), (p — 2)(n — 2),....,n - 2, 0).

Since in the case of an irreducible representation (2) the family .# coincides with
the family .#5" C .% whose elements are only stable pairs, the following theorem is
a generalization of the last assertion to the case of an arbitrary representation.

o

o

Theorem 3 (V’yugin [35]). A set of singular points ay,...,a, and a representa-
tion (2) can be realized by a Fuchsian differential equation (3) if and only if among
the elements of the family .F there exists a stable pair (F*, V™) such that the split-
ting type of the bundle F» is equal to ((p —H(n—-2),p—-2)(n—2),...,n— 2,0).
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The following question now becomes natural: Is it possible to generalize
formula (15) to the case of an arbitrary representation and assert that
(n—2)p(p—1)

S S " A A2
mo 5 anegsﬂ( )

Example 2 (V’yugin). Using Theorem 3 one can easily show that two-dimensional
representations with three generators of the form (16) or (17) indeed cannot be
realized by a Fuchsian differential equation of second order with three singular
points. This follows from the fact that the family .# constructed from each of these
representations does not contain stable pairs.

Indeed, a representation with generators of the form (16) is a B-representation,
and a stable pair cannot be constructed from such a representation (this follows
from the proof of Theorem 11.2 in [10]).

As for a representation with generators of the form (17), it is the direct sum
X = X1 D X2 of two (one-dimensional) representations with generators G}, G?. Since
the spectra of the matrices G} and G? are disjoint (¢; # d;) for each i = 1,2, 3, the
degree of any bundle F* in the family .# satisfies the relation

deg F* = deg Fy + deg Fy,

where F; and Fy are the (one-dimensional) subbundles corresponding to the sub-
representations x; and s, respectively, that is, are stabilized by the connection
VA (this equality follows from the fact that in this case the set of exponents of the
connection VA is the union of the sets of exponents of its restrictions to F; and ).
Consequently, the inequalities deg Fy < deg F*/2 and deg F» < deg FA/2, which
are necessary for the stability of the pair (F*, V"), cannot both hold.

By using Theorem 3 one can also prove (we do not do this here) that the remain-
ing types of reducible two-dimensional representations with three generators can
be realized by a Fuchsian differential equation of second order with three singular
points.

We mention the interesting connection between the Riemann—Hilbert problem
for scalar Fuchsian equations and the Painlevé VI equation (Pyi)— the non-linear
differential equation of second order

du 1111 N\ du)' 1 11 \du
A2 2\u u—-1 wu—t/)\ dt t t—1 wu—t)dt
u(u—1)(u—1t) t—1

t t(t — 1)
2t 1)2 <a+ﬁu2+’y(u1)2 +5(ut)2) (18)

+

with respect to the unknown function u(¢). Only poles can be movable singularities
of solutions of this equation (whose locations depend on the initial conditions). In
such a case the equation is said to have the Painlevé property.* Painlevé himself [37]
initially studied the special case of equation (18) corresponding to the parameter

4 Apparently, the idea of using this type of restriction on solutions first appeared in
Kovalevskaya’s paper [36] in a study of the problem of integration of a spinning top.
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values « = 8 =~ =0, 6 = 1/2. In the general form (18), the equation Pyy was
first written by R. Fuchs [38] (a son of L. Fuchs) and was added by Gambier [39],
a student of Painlevé, to the list of equations now known as the Painlevé I-VI
equations. Among the non-linear differential equations of second order that have
the Painlevé property, the equations of this list are distinguished by the fact that
in the general case their solutions cannot be expressed in terms of elementary or
classical special functions (it is assumed that the right-hand sides of the equations

U
are rational in — and meromorphic in u, t). R. Fuchs proposed two methods for

obtaining the equation Pvy;. The first method, on which we focus here, is related
to isomonodromic deformations of linear differential equations. The second, more
geometric, approach uses elliptic integrals.

Let us consider the four points ¢, 0, 1, co (here ¢ € D(t*), where D(t*) C
C\ {0,1} is a disc of a small radius with centre at a point t*) and the irreducible
SL(2, C)-representation

x": m(C\{t0,1}) — SL(2,C)

generated by matrices G, G2, (3 corresponding to the points ¢, 0, 1.

Depending on the location of the point ¢, there are two possible cases.

1) Every vector bundle F™ in the family F constructed with respect to the given
four points and the representation x* such that deg F* = 0 is holomorphically
trivial (this is the case for almost all values t € D(t*); see [10], Exercise 16.4).

2) Among the elements of the family F there exists a holomorphically non-trivial
bundle F of degree zero.

It follows from the inequality (14) that Ymax(Xx*) < 2; therefore in the first case
the splitting types of holomorphically non-trivial bundles F* (of non-zero degree)
can only be (k,k —1) or (k, k). The case (k+ 1,k —1) is impossible, since then the
bundle constructed with respect to the set of matrices Ay — kI, Ay, Az, A4 has
degree zero, that is, is holomorphically trivial, but at the same time its splitting
type is equal to (1,—1). Consequently, Ymax(X*) = 1 in the first case.

In the second case the splitting type of the holomorphically non-trivial bundle
of degree zero is equal to (1, —1), and Ymax(x*) = 2 in this case.

Thus, in view of formula (15), for almost all values t € D(t*) the set of points
t, 0, 1, oo and the irreducible two-dimensional representation x* are realized by
a Fuchsian differential equation of second order with one additional singularity.
We denote this singularity by u(t) (regarding it as a function of the parameter t).
It turns out that the function wu(t) satisfies equation (18) for some values of the
constants «, (3, 7, 0. (The equation Py; was obtained by R. Fuchs precisely as
a differential equation that is satisfied by the additional (fifth) singularity A(¢) of
some Fuchsian equation of second order with singular points 0, 1, ¢, co and with
monodromy independent of the parameter ¢.) This interesting fact can be explained
by using isomonodromic deformations of Fuchsian systems.

We choose a value t = t° for which there exists a Fuchsian system

dy ([ B By Bs
dz_<zt0+ - o)V
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with singular points ¢°, 0, 1, co and with monodromy representation x* such that
tr B; = 0 and the matrix Bo, = —B; — By — Bjs is diagonal. We denote by +6;/2
the eigenvalues of the matrices B;.

It is not difficult to show that such a system exists. It suffices to produce
a set A = {A1, A2, A3, Ao} of admissible matrices such that tr(A; + E;) = 0,
1 =1,2,3,00, and the eigenvalues of the matrix Ao, + Fo are non-zero (then for
almost all values of t° the corresponding bundle F* is holomorphically trivial, and
the logarithmic connection V# determines a Fuchsian system that has the required
properties). Since det G; = 1, the sum p} + p? of eigenvalues of the matrix E; is an
integer, equal to 0 or 1 in view of the condition 0 < Re pg < 1. In the first case it
remains to set A; = diag(1,—1), and in the second A; = diag(0, —1).

This system can be embedded in Schlesinger’s [40] isomonodromic family®

d Bi(t) | Ba(t) | Bs(t)
diz(zt—i_ z +zfl

)y, B.(t) = B, (19)

of Fuchsian systems with singularities ¢, 0, 1, 0o which depends holomorphically on
the parameter t € D(t°), where D(t") is a disc of small radius with centre at the
point t°. Here By (t)+ Ba(t) + B3(t) = —Boo = diag(—0s/2,04/2). Malgrange [41]
showed that the matrix functions B;(t) can be extended as meromorphic functions
to the universal covering T of the space C\ {0,1}. The set © C T of their poles is
called the Malgrange ©-divisor.

We denote by B(z,t) = (b;j(2,t)) the coefficient matrix of the family (19). Since
the upper-right element of the matrix By (t)+ Ba(t) + Bs(t) = — B is equal to zero,
for each fixed t the same element of the matrix z(z—1)(z—t)B(z,t) is a first-degree
polynomial in z. We define @(t) as the unique root of this polynomial. Next we use
the following theorem in [42] (see also [10], Theorem 18.1).

Theorem 4. The function u(t) satisfies the equation Py (18), where the constants
a, 3, v, & are connected with the parameters 01, 0z, 03, 0, by the relations

(900 B 1)2

o= P=

I T STy
2 2 2
Let us consider the row vectors

d
o, qoB(z,t) = (b11,b12)

do = (170)3 (JI(Z7t) = dz

and the matrix composed from them,

- (2)-( )

which is meromorphically invertible on C x D(t*), since det I'(z,t) = byo # 0 by the
irreducibility of the representation x*. We define meromorphic functions by(z,t)

5Isomonodromic means that the monodromy of systems of this family is independent of the
value of the parameter t. Moreover, the eigenvalues of the matrices B;(t) are also independent
of t and coincide with the eigenvalues 46;/2 of the matrices B;(t°) = B; (see details in [10],
Lectures 13, 14).



622 R.R. Gontsov and V. A. Poberezhnyi
and by(z,t) on C x D(t*) so that the relation

d
qo 1= % + qlB(Z,t) = (_b2a _bl)r(z7t)

holds. Then

dar _d (qo @ 9o 0 1
- = — B(z,t) = I' -T'B(z,t
dz dz (Q1) <(J2 ¢ (1) —by —b1 (2:1),

whence,

0 1 ar __; 1
=—7T 'Br—.
(bz b1> dz +

The latter means that for each fixed ¢t € D(t°) the gauge transformation 3’ =
I'(z,t)y transforms the corresponding system of the family (19) into the system

& (0 1,
dz  \—by —b )7

the first coordinate of whose solution is, as usual, a solution of the scalar equation

d*w dw
E + bl(Z, t) E

+ ba(z,t)w = 0.

This (Fuchsian) equation has singular points ¢, 0, 1, co and monodromy x*, but it
also has an additional singularity u(¢) —this is a zero of the function det I'(z,t) =
b12(z,t), as follows from the construction of the functions by(z,t), ba(z,t). By
Theorem 4 the function wu(t) satisfies the equation Pyy. (We remark that w(t) #
t,0,1,00 if t € D(t*) \ O, where O is the countable set consisting of the values of ¢
such that the corresponding family .# constructed with respect to the singularities
t,0,1,00 and the representation x* contains a non-trivial bundle of degree zero.)

Thus, the set of points t,0,1,00 and the irreducible SL(2, C)-representation x*
are realized by a scalar Fuchsian equation with additional singularity u(t) which
(as a function of the parameter t € D(t*)) satisfies the equation Pvi. The sin-
gular points of the function u(t) extended to T are poles, and the set 0o {t €
D(t*) | u(t) =t, 0,1, or oo} is a countable set of parameter values for which the
Riemann—Hilbert problem under consideration is soluble without additional singu-
larities.

Without dwelling on this here, we point out that the arguments given above
can be extended to the general case of n + 3 singular points aq,...,a,, ay,+1 = 0,
apto = 1, apts = oo and an irreducible SL(2, C)-representation. Then the addi-
tional singularities u;(a), ..., u,(a) of the scalar Fuchsian equation realizing them
(as functions of the parameter a = (aq, ..., a,)) satisfy a Garnier system [43]: a sys-
tem of non-linear partial differential equations of second order (coinciding for n = 1
with the equation Pyr).
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Both the equations Pyy and their multi-dimensional generalizations— Garnier
systems — can be written in Hamiltonian form. For example, using the second of
the aforementioned approaches of R. Fuchs, Painlevé [44] derived an equivalent
form of the equation Py using the Weierstrass p-function

@(Z):%"F Z ((z—l—l—ll—mT)Q_(l—i-i?lT)Q)

(I,m)ez?\{0}

with periods 1 and 7 (Im7 > 0).
After the change of coordinates
pla) — e es — el

Y = ——, t= ,
€2 — €1 €2 — €1

where the e; = p(w;) are the values of the p-function at the corresponding half-
periods wj, (wo,wr,w2,ws) = (0, 1/2, (1+7)/2, 7/2), equation (18) takes the form

d 3

d7'2 -

Q"‘Wj

in view of some classical formulae in the theory of elliptic functions. Here, oy = «,
1=—0, aa =7, ag=—-30+1/2, and ¢’ is the derivative of the p-function.

It is easy to see that in this form the equation looks much more simple and
symmetric than in the classical form. This form is especially convenient for working
with the Hamiltonian form of the equation. In these variables the Hamiltonian of
the corresponding Hamiltonian system

d oOH d oH
21 e 21 o _

dr  9Op’ dr ~ dq

has a simple and short form:

3
p 2:
H(pyqa _5 Qi Q+w]
Jj=

The system is non-autonomous in view of the dependence of the p-function in the
potential on the ‘time’ 7.

There also exist other Hamiltonian forms of the equation Pvy;. In general,
the Hamiltonian approach is widely used for studying the Painlevé equations, Gar-
nier systems, and isomonodromic deformations of Fuchsian systems (see, for exam-
ple, [45]). There are also interesting geometric interpretations of the equations Py
(in particular, see [46]-[49]) which enable one to find explicitly their algebraic solu-
tions. An important consequence of this fact is the possibility of an effective solution
of the Riemann—Hilbert problem for certain two-dimensional representations with
four singular points (see [50]).
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8§ 4. The Riemann—Hilbert problem on a compact Riemann surface

We pass to considering Pfaffian systems
dy=wy, yeC (20)

of Fuchsian type on a compact Riemann surface X of genus g, where w is a matrix
differential 1-form meromorphic on X whose singular points aq, ..., a, are poles of
first order. If we formulate the Riemann—Hilbert problem in a way analogous to
the case of the Riemann sphere, that is, pose the question of realization of a given
set of points ay,...,a, € X and a representation

x: m (X \{a1,...,a,}) — GL(p,C) (21)

by a Fuchsian system (20), then the answer proves to be negative in the general
case, as follows from the calculation of dimensions given below.

The fundamental group of the space X \ {a1,...,a,} is a group with n + 2g
generators and one relation. (We recall that the group 71(X \ {a1,...,a,}) is
generated by simple loops 71,...,7, around the points aq,...,a,, respectively,
together with loops a1, f1, . . ., oy, By generating the group 1 (X) and satisfying the
relation vy -+ -y, = a1ﬁ1aflﬂfl e agﬁgoglﬁg_l.) Consequently, the dimension of
the space

My = Hom(m(X \ {a1,...,a,}), GL(p, (C))/GL(p7 C)

of conjugacy classes of representations (21) is equal to (n — 1 +2g)p® — (p* — 1) =
(n—2+2g)p? +1 (see §1).

At the same time, according to one of the statements of the Riemann-Roch
theorem (see [29], Theorem 16.9, Remark 17.10), we have

dim H°(X,0_p) —dim H*(X,Qp) =1 — g — deg D,

where

a) D: X — Zis a divisor on X of degree degD = > _ D(x) (we recall that
by definition, D(z) # 0 for only finitely many points  on a compact Riemann
surface),

b) H°(X, 0_p) is the space of functions f meromorphic on X such that ord, f >
D(a).

c) H°(X,Qp) is the space of differential 1-forms w meromorphic on X such that
ord, w > —D(x).

In our case D(a;) =1 for i =1,...,n. Hence, deg D = n and dim H°(X,Qp) =
n—1+g (we note that H°(X,0_p) = 0, since f = 0 is the only function that
is holomorphic on the compact Riemann surface and vanishes at the points a;).
Therefore the dimension of the space .#; of Fuchsian systems (20) with singular
points ay,...,a,, considered up to the equivalence w ~ S~1wS, S € GL(p,C), is
equal to (n —1+g)p> —(p* —1)=(n—2+g)p? + 1.

Thus, the difference of the dimensions of the spaces .#, and Z, is equal
to gp?. In the case g > 0 this difference turns out to be positive, and therefore for
constructing a system (20) with given singularities and monodromy it is necessary
to introduce additional singular points (at which the solutions do not ramify,
but the coefficient matrix has poles). More precisely, the problem of realization
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of the representation (21) is soluble in the class of Pfaffian systems with reqular
singularities if additional singular points are allowed (Rohrl [26]).

A more detailed study of the orders of the poles of the coefficient form of
the system and of the number of additional singularities is the subject of one
of the possible generalizations of the classical Riemann—Hilbert problem to the
case of a compact Riemann surface of positive genus. It is known that every
two-dimensional irreducible representation can be realized by a system of the
form (20) with at most 3g — 1 additional singularities, and all the singular points
of this system are Fuchsian except for one (regular) singular point, which can
be chosen among the additional ones, and its Poincaré rank is at most 2g — 1
(Bolibrukh [30]).

An interesting problem is to obtain estimates of the number of additional
singular points (and the Poincaré ranks of the system) in the case of representations
of arbitrary dimension.

We consider in more detail a different way of generalizing the classical Riemann—
Hilbert problem, proposed by Esnault and Viehweg [51]. We construct the family
Z of holomorphic vector bundles F* over X with logarithmic connections V* hav-
ing given singularities and monodromy. (The construction is similar to that for the
Riemann sphere in §2: first, a holomorphic vector bundle with a holomorphic con-
nection is constructed from the representation (21) over X \ {a1,...,a,}, and then
this bundle is extended to the singular points a1, .. ., a,; the extensions are of a local
nature, so they are realized in coordinate neighbourhoods of each point a; just as in
the case of the Riemann sphere.) As mentioned earlier (see §2), a holomorphically
trivial bundle over the Riemann sphere is the same thing as a semistable bundle of
degree zero. Therefore, in the case of a compact Riemann surface of positive genus
it is natural to consider the following problem.

Is it possible to construct a semistable holomorphic vector bundle of degree zero
with a logarithmic connection that has given singularities and monodromy (that
is, does there exist a semistable bundle of degree zero among the elements of the

family F)?

The problem thus stated (like its classical analogue) has a negative solution in the
general case. A counterexample can again be obtained by using B-representations.
(In the case of a compact Riemann surface, a representation (21) is called
a B-representation if it is reducible and the Jordan forms of the monodromy
matrices G; corresponding to circuits around the singularities a; consist of exactly
one block.) In a way similar to that for Theorem 2 it is proved that if
a B-representation (21) is realized by a pair (F» V™), where F» is a semistable
holomorphic vector bundle of degree zero, then the slope of the canonical extension
FO is an integer.

The representation (21) with three arbitrary singular points that is given by
the local monodromy matrices G1, G3, G3 in Example 1 and the identity matri-
ces Hy,...,Hy, corresponding to generators of the fundamental group m(X) is
a B-representation but does not have the property mentioned above; therefore, it
cannot be realized as the monodromy representation of a logarithmic connection in
a semistable vector bundle of degree zero.
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Esnault and Hertling [52] showed that in the case of a surface of positive genus it
is possible to construct counterexamples with only one singular point if the dimen-
sion p is greater than 4.

First of all it would be interesting to find out the following: Is the commuta-
tivity of the representation (21) a sufficient condition for a positive solution of the
Riemann—Hilbert problem on a compact Riemann surface?

We now consider analogues of the sufficient conditions for a positive solution of
the classical Riemann-Hilbert problem.

1) If one of the generators Gy, . .., Gy, of the representation (21) corresponding to
loops around the singularities ay, . .., a, s diagonalizable, then the Riemann—Hilbert
problem has a positive solution® (Bolibrukh [30]).

2) If the representation (21) is two-dimensional (p = 2), then the Riemann—
Hilbert problem has a positive solution (Bolibrukh [30]).

3) If the representation (21) is irreducible, then the Riemann—Hilbert problem
has a positive solution (Esnault and Viehweg [51]).

4) Suppose that the representation (21) is the monodromy of some scalar
Fuchsian differential equation of order p on X with singularities aq,...,a,. Does
the Riemann—Hilbert problem have a positive solution in this case?

5) If among the elements of the family F of bundles with logarithmic connections
having given singularities a1, ..., a, and monodromy (21) there exists at least one
stable pair (F™,V?), then the Riemann-Hilbert problem has a positive solution
(Bolibrukh [30]).

The fourth sufficient condition in the case of a compact Riemann surface X of
positive genus is stated as a question, the answer to which is so far not known. By
a Fuchsian differential equation of order p on X with singularities aq,...,a, we
mean a set of local Fuchsian differential equations

dPy ar—ly

2o 03

_|_..._|_bp(z)y:0

(where z is a local coordinate on X)) that are compatible with each other, that is,
the solutions of the equations coincide on intersections of charts.

As in the case of the Riemann sphere, in solving the problem of constructing
a Fuchsian differential equation on X with given singular points and monodromy,
there necessarily emerge additional singularities. Yoshida [53] showed that from
an irreducible representation (21) one can construct a Fuchsian equation with at
most

p(p—1)
2

additional singularities. This estimate improves by ¢ the estimate obtained earlier
by Ohtsuki [54]. (In the theorems of Ohtsuki and Yoshida one more condition is
imposed: that one of the monodromy matrices G, ..., G, is diagonalizable. This
condition can be avoided by using the construction of the family .% based on the
results of Levelt; see §2.)

(n+29-2)+@-1(g-1)

6We remark that here we have in mind the matrices corresponding to circuits around the
singularities rather than to traverses along generators of the group 71 (X).
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The following natural question arises: Is it possible to obtain a generalization
of the known estimates of the number of additional singularities of a Fuchsian
equation to the case of an arbitrary representation (21)7?

§ 5. The Riemann—Hilbert problem
for systems with irregular singularities

In this section we present a generalization of the Riemann-Hilbert problem to
the case of a system (1) with érreqular singular points a1, ...,a, € C. This gener-
alization was proposed in [55].

Definition 7. The minimal Poincaré rank of the system (1) at a singular point a;
is the smallest of the Poincaré ranks of systems
_dr

By,  B()= T 4+TBE

dy
dz

that are meromorphically equivalent to the system (1) in a neighbourhood O; of
the point a;.

For example, the minimal Poincaré rank of a regular singular point is equal to
zero, and the minimal Poincaré rank of an irregular singularity is positive.

In contrast to systems with regular singular points, the meromorphic equivalence
class of a system in a neighbourhood of an irregular singularity a; is not uniquely
determined by the local monodromy matrix G;. Taking this into account, we can
state the generalized Riemann—Hilbert problem for systems with irregular singular
points as follows.

For each i =1,...,n consider a local system
dy BL,, B, '
—~ =05, , Bi(z) = ———— + .- By + -, 22
e (2)y (2) a ok ST Byt (22)

in a neighbourhood O; of the (irreqular) singular point a; of minimal Poincaré rank
r; such that the monodromy matriz of this system coincides with the generator G;
of the representation (2). Does there exist a global system (1) with singularities
ai,...,a, of Poincaré ranksr,...,r, and with given monodromy (2), that is mero-
morphically equivalent to the systems (22) in the corresponding neighbourhoods O;?

We note that the classical Riemann—Hilbert problem can be stated in the same
form. In the Fuchsian case the additional (compared with the classical statement)
requirements of meromorphic equivalence of the desired system to the fixed set
of local systems are satisfied automatically. Indeed, in the neighbourhood Oy, every
local Fuchsian system with monodromy G} is meromorphically equivalent to the

system
d E 1
9w_ Tk Y, Er = — log Gg.
dz  z—ay 271
Thus, in this case the systems (22) are uniquely determined by the monodromy
representation (2) and can be omitted.
We call the representation (2) together with the local systems (22) the generalized
monodromy data.
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The generalized monodromy data are said to be reducible if the representation (2)
and the local systems (22) are reducible. The reducibility of the latter means that
they can be reduced by meromorphic transformations to systems with coefficient
matrices of the same block-upper-triangular form. In the opposite case the gener-
alized monodromy data are said to be irreducible.

It is known (see, for example, [56]) that in a neighbourhood of an irregular
singularity @ = a; of Poincaré rank r = r; the system (22) has a formal fundamental
matrix ?(z) of the form

V(z) = F(2)(z — a)Ee@®), (23)

where:

a) F(z) is a formal (matrix) Laurent series in powers of z —a with finite principal
part and with det F\(z) # 0;

b) Q(z) = diag(Q",...,Q"), where the diagonal matrices Q7 (z) are polynomials
PJin (z—a)~'/* of degree at most s without constant terms, and each block Q7 (2)
is closed with respect to analytic continuation around the singular point z = a
(that is, the matrices Q7 (a + ze?™) and Q7 (a + 2) differ only by some permutation
of the diagonal elements);

¢) E = (2mi)~log G, where G = diag(él,...,@N) is the formal monodromy
matrix (of block-diagonal form corresponding to the form of the matrix @) deter-
mined by the relation

~ ~

Y(a+ 2e™) = Y(a+ 2)G,

and the eigenvalues p of the matrix E satisfy the condition 0 < Rep < 1.
It is also known that each diagonal element ¢(z) of the matrix Q(z) has the form

(2 =—2G—a T +ol =), z—a

where A is some eigenvalue of the matrix B, _, (here, to different ¢(z) there

correspond different eigenvalues of Bi_m_l).

Definition 8. The Katz index of a singular point z = a is the number (deg P)/s,
where P = diag(P',..., PV). (We recall that Q(z) = P((z —a)~'/*).)

Since the matrix @(z) is a meromorphic invariant of the system (1), it follows
from the properties of this matrix that the Katz index does not exceed the mini-
mal Poincaré rank of the singularity. Moreover, the minimal Poincaré rank is the
smallest integer that is greater than or equal to the Katz index of the singularity.

Definition 9. An irregular singularity of the system (22) is said to be formally
unramified if the diagonal elements of the matrix Q(z) in the expansion (23) are
linear combinations of integer powers of z — a, that is, if s = 1. In the opposite
case, the singularity is said to be formally ramified. (It is also natural to say that
a Fuchsian singularity is unramified.)

In the case of a formally unramified singularity, each block Q7(z) of the matrix
Q(z) in the expansion (23) is a scalar matrix, and the matrix F is in Jordan form.
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For systems with irregular singular points, the method for solving the generalized
Riemann—Hilbert problem is similar to the method for solving the classical prob-
lem. After the construction, over the punctured Riemann sphere C \ {a1,...,a,},
of a holomorphic vector bundle F' of rank p with a holomorphic connection V
having a given monodromy (2), the pair (F,V) is extended to a bundle F° with
a meromorphic connection V°, both defined on the whole Riemann sphere (and
called the canonical extension of the pair (F,V)). To this end, in contrast to the
classical case (see §2), instead of the gluing functions g;o(2) = (2 — a;)®* which are
fundamental matrices of systems of the form (6), we must consider the functions
Jia(2) = Yi(2) which are fundamental matrices of the corresponding systems (22),
and instead of the matrix differential 1-forms w; = E; dz/(z — a;) determining the
logarithmic connection V° in neighbourhoods O; we must consider the coefficient
forms w; = B;(2) dz = (dY;)Y;"* of the systems (22).

Next we can construct the family .# of extensions of the pair (F, V) by replacing
the matrices gio(2) in the construction of the pair (F°, V") by the matrices

gia(2) =Ti(2)gia(2), (24)
and the forms w; by the forms
wi = (dL)T; " + Tawi Ly, (25)

where the y' = I';(2)y are all possible meromorphic transformations of the sys-
tem (22) that do not increase its Poincaré rank r;, i =1,...,n.

As in the classical case, the generalized Riemann—Hilbert problem for systems
with irreqular singular points is soluble if and only if at least one of the bundles of
the family F constructed from the generalized monodromy data (2), (22) is holo-
morphically trivial.

We now consider the subset & C % of . constructed by using meromorphic
transformations with the matrices I';(z) in (24), (25) of a special form. For this we
shall need the following definition of an admissible matrix.

Definition 10. Consider a system (22) with an (irregular) singular point a = a;
and a formal fundamental matrix Y (z) of the form (23). An admissible matriz for
this system is a diagonal integer-valued matrix A; = diag(A}, ..., AN) divided into
blocks in the same way as the matrix @(z) and such that:

a) the diagonal elements of the block Ag form a non-increasing sequence if the
block @7(z) is not ramified;

b) A is a scalar matrix if the block Q7(z) is ramified.

We represent the matrix ?(z) in the following form:
V(2) = F(2)(z — a) ™ (2 — ) (2 — a)PeQ). (26)

An analogue of Sauvage’s lemma (see [3], Lemma 11.2) for formal matrix series
implies the existence of a matrix I';(z) holomorphically invertible in O; and such
that

Ti(2)F(2)(z = a) ™% = (2 — a) P Fy(2), (27)
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where D is a diagonal integer-valued matrix and ﬁo(z) is an invertible formal
(matrix) Taylor series in z — a.

We now define the requisite meromorphic transformation for each irregular sin-
gular point a = a; by the matrix T/ (2) = (2 — a)~PT"(z), which depends on the
admissible matrix A; (since I'}(z) depends on A;). It follows from (26), (27) that
the transformation ¢’ = I'*(2)y transforms the system (22) into a system with the
formal fundamental matrix

V'(2) = Fo(2)(z — a) (2 — a)PeQ).

As shown in [55], such a transformation does not increase the Poincaré rank r;
of the system (22). Thus, the family & of extensions (F*, V") of the pair (F, V)
to the whole Riemann sphere obtained by using all possible sets A = {A1,...,A,}
of admissible matrices for the singularities ay, ..., a, is a subset of the family .%.

We note that the holomorphic triviality of one of the bundles of the family &
implies a positive solution of the Riemann-Hilbert problem (since & C %), but
the absence of holomorphically trivial bundles in the family & does not yet imply
a negative solution of the problem.

If the Poincaré rank of one of the singularities of a global system (1) that is
required to be constructed from the generalized monodromy data (2), (22) is allowed
not to be minimal, then the problem has a positive solution. Namely, the following
analogue of Plemelj’s theorem holds (see [57]).

Theorem 5. The generalized monodromy data (2), (22) can be realized by a sys-
tem (1) that has minimal Poincaré ranks at all the singular points except possibly
for one of them, say a1, at which the Poincaré rank of the system does not exceed
the number r1 + (p —1)(n+ R — 1), where R =Y. | r;.

Analogues of the sufficient conditions for a positive solution of the classical
Riemann—Hilbert problem are also known for the problem under consideration.
They are stated under the assumption that for at least one local system (22), its
singular point a; is formally unramified.

1) If the formal monodromy matriz G; (corresponding to the formally unramified
singularity a;) is diagonalizable, then the Riemann—Hilbert problem has a positive
solution” (see Theorem 6 below).

2) If the generalized monodromy data (2), (22) are two-dimensional (p
then the Riemann—Hilbert problem has a positive solution (Malek [55]).

3) If the generalized monodromy data (2), (22) are irreducible, then the Riemann—
Hilbert problem has a positive solution (Bolibrukh [55]).

4) @ Let (2), (22) be the generalized monodromy data of some scalar linear dif-
ferential equation of order p with singularities ay, . .., a,. Does the Riemann—Hilbert
problem have a positive solution in this case?

5) If among the elements of the subfamily & C F there exists at least one

stable pair (F™, V"), then the Riemann-Hilbert problem has a positive solution
(Bolibrukh [55]).

2),

7If the singular point a; is Fuchsian, then we should require that the corresponding monodromy
matrix G; be diagonalizable.
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We explain the fourth sufficient condition, stated in the form of a question. By
the generalized monodromy data of a scalar differential equation

dPy ar—ly

2o T 0®)

+-+bp(2)y =0

of order p with singularities aq, ..., a, we mean its monodromy representation and
the set of local systems (22) whose Poincaré ranks are minimal and which are
meromorphically equivalent in neighbourhoods of the singular points to systems
with coefficient matrix of the form

0 1 0
0 0 1
-

The Katz index K; of the scalar equation at a singular point a; can be defined as the
corresponding index of a system with coefficient matrix of the form (28). Thus,
the problem of realization of the generalized monodromy data of a scalar linear
differential equation stipulates the construction of a global system with singularities
a; of Poincaré ranks r; = —[—K;], where [z] denotes the integer part of a number x.

Theorem 6. If for one of the local systems (22) its singular point a; is formally un-

ramified and the formal monodromy matriz G; is diagonalizable, then the Riemann—
Hilbert problem for the generalized monodromy data (2), (22) has a positive solution.

Proof. Consider an arbitrary pair (F*, V%) in the subfamily & of holomorphic
vector bundles with connections constructed from the generalized monodromy data
(2), (22) satistying the hypothesis of the theorem. We can assume without loss of
generality that a; = a;.

As follows from the Birkhoff-Grothendieck theorem (see the explanations before
Theorem 1), the connection VA determines a global system (1) with singularities
ai,...,a, and generalized monodromy data (2), (22). Furthermore, the Poincaré
ranks of the singular points as, ..., a, of this system are equal to ro, ..., r,, respec-
tively (that is, are minimal), and in a neighbourhood of the (formally unramified)
singular point a; the system has a formal fundamental matrix ?(z) of the form

~ ~

Y(2) = (2 —a1) KFo(2)(z — a1)™ (2 — al)EleQ(z),

where K = diag(k1,...,kp), k1 = -+ >k, is the splitting type of the bundle F*,
Fpy(2) is an invertible formal (matrix) Taylor series in z—ay, and Q(z) is a (diagonal)
matrix polynomial in 1/(z — a;) of degree r;.

Since the singular point a; is formally unramified, the matrix El = (2mi) "1 log @1
is in Jordan form, that is, is diagonal (by the hypothesis of the theorem).

An analogue of Bolibrukh’s permutation lemma (see [10], Lemma 10.2) for formal
matrix series implies the existence of a holomorphic matrix T'(z) invertible away
from aq and such that

~ ~

(2)(z = a1)” " Fy(z) = Ho(z)(z — an)",
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where Hy(z) is an invertible formal (matrix) Taylor series in z — a1, and K’ is the
diagonal matrix obtained from the matrix —K by some permutation of its diagonal
elements.

Thus, the global meromorphic transformation 3y’ = I'(z)y transforms the sys-
tem under consideration into a system with the same singularities and generalized
monodromy data and does not change the Poincaré ranks of the singular points
as,...,a, (since the matrix I'(z) is holomorphically invertible at these points). It
remains to show that the Poincaré rank of the transformed system at the singular
Roint ay is equal to r1. This follows from the form of the formal fundamental matrix
Y'(z) of this system:

Y'(2) =T(2)Y (2) = Ho(2)(z — a1)Pe®),
where D = K’ + A + El is a diagonal matrix; therefore, the coefficient matrix

+ d("g)ﬁo—l

Z—a dz

dy’ o dHy ~_y =
B'(z) = —Y''= 2 H;' + H,

() dz dz 0 o
of the transformed system has a pole of order 71 + 1 at a; (recall that Q(z) is
a matrix polynomial in 1/(z — a1) of degree r1). The theorem is proved.

Apart from the classical Riemann—Hilbert problem, another special case of the
problem under consideration is the problem of the Birkhoff standard form, which
corresponds to two singular points (a; = 0, ay = oo)—an irregular one and
a Fuchsian one. In this case the generalized monodromy data consist of the local
system

dy

dz

in a neighbourhood of the irregular singular point z = 0 of minimal Poincaré rank
and the local Fuchsian system

dy FE

1
= — EF=—logdG
dz 2 o B

B_,_ B_
B(Z)y, B(Z): ZT+11++?1+B0+7 (29)

in a neighbourhood of infinity, where G is the monodromy matrix of the system (29).
The problem reduces to constructing a global system of the form

dy BL, 4 B.,
dz:(zm A L (30)

that is meromorphically equivalent to the system (29) in a neighbourhood of zero.

The system (30) is called a Birkhoff standard form of the system (29). The
question of whether every system can be transformed (by a meromorphic transfor-
mation) to a Birkhoff standard form remains open. It is known that the answer
to this question is affirmative in dimensions p < 3, as well as in the case when the
system (29) is irreducible or its monodromy matrix is diagonalizable. Historically,
the latter two sufficient conditions had been obtained earlier (by Bolibrukh and
Birkhoff, respectively; see [10], Lecture 12, and Balser’s survey [58]), but in essence
they are special cases of the sufficient conditions 3), 1) for a positive solution of
the Riemann—-Hilbert problem for systems with irregular singular points.
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Turrittin [59] showed that if all the eigenvalues of the matrix B_,_; in (29) are
distinct, then the system can be transformed to a Birkhoff standard form. The
following generalization of Turrittin’s theorem is a consequence of Theorem 6.

Corollary 1. If for one of the local systems (22) all the eigenvalues of the matriz
Bi_”_1 are distinct, then the Riemann—Hilbert problem for the generalized mon-
odromy data (2), (22) has a positive solution.

Proof. By Theorem 6 it is sufficient to show that the singular point a; is formally
unramified and the formal monodromy matrix G; is diagonalizable.

Consider the expansion of the form (23) for a formal fundamental matrix of
the corresponding system (22) in a neighbourhood of the singular point a;. If this
singularity were formally ramified, then the analytic continuation around it of some
diagonal element ¢’(z) of the matrix Q(z) would coincide with another diagonal
element ¢ (z) of this matrix, which is impossible, since

7() =~ (2= ) +ollz — i ),
i

k >\k —r; —7r;

¢°(2) = == (z—ai) ™" +ollz —ai| ™),

where \; # A are eigenvalues of the matrix B’ ;.

The diagonalizability of the matrix G; = diag(@il, cee @f\/ ) follows from the fact
that the singular point z = q; is formally unramified and all the diagonal elements
of the matrix Q(z) = diag(Q",...,Q"Y) are distinct (therefore each block @Q7(z),
being a scalar matrix, consists of a single element, as does each block @f) The
corollary is proved.

We can also consider the generalized Riemann—Hilbert problem for scalar differ-
ential equations with irregular singular points. In this case the generalized mon-
odromy data are defined to be the representation (2) with generators Gy,...,G,
and the set of local equations

dPy i dr1y i
defined in neighbourhoods of the corresponding singularities a;, i = 1,...,n (the

local monodromy matrix of equation (31) coincides with G;).

The construction of a global equation with given monodromy that is meromor-
phically equivalent in a neighbourhood of each singular point a; to the correspond-
ing local equation (31) is accompanied in the general case by the appearance of
additional singularities. (Two linear differential equations are said to be meromor-
phically equivalent in a neighbourhood of a singular point if the corresponding linear
systems with coefficient matrices of the form (28) are meromorphically equivalent.)
The number m of additional singularities satisfies the inequality

o EA+n+Lpp—1)
h 2
where K = — " | [~ K;] with K; being the Katz index of the local equation (31)
(see [57]). Note that in the case when all the local equations (31) are Fuchsian,

+1,
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the problem becomes the classical Riemann—Hilbert problem for scalar Fuchsian
equations.

In conclusion of this section we mention a possible simultaneous generalization of
the classical Riemann—Hilbert problem to the case of Pfaffian systems with irregular
singularities on a compact Riemann surface X of genus g. For the generalized

monodromy data we consider the representation (21) with generators Gy, ..., G,
Hy, ..., Hy, and the local systems
dy=wiy, yeCr, (32)

in neighbourhoods O; of the (irregular) singular points a; of minimal Poincaré ranks
r; (here the local monodromy matrix of each system (32) coincides with the corre-
sponding G;). From the generalized monodromy data (21), (32) we construct the
family .# of holomorphic vector bundles with meromorphic connections having
the given singularities a1, ..., a, of Poincaré ranks ry,...,r,, respectively, and the
given generalized monodromy data (the construction of the family .%# is analogous
to the case of the Riemann sphere considered in this section). The problem can
now be stated as follows.

Is it possible to construct a semistable holomorphic vector bundle of degree
zero with a connection that has given singularities aq,...,a, of Poincaré ranks
r1,...,Tn and the generalized monodromy data (21), (32) (that is, does there exist
a semistable bundle of degree zero among the elements of the family F)?

8§ 6. Some geometric properties of the monodromy map

In this section we give a geometric description of certain important notions and
constructions related to the Riemann—Hilbert problem. We remark that, although
we consider the most ‘classical’ case — Fuchsian systems and the classical Riemann—
Hilbert problem — all the constructions given below also have analogues for various
generalizations of the classical problem.

Recall that the monodromy map

Wa: M, — My

introduced in §1 is a map from the space .Z, of Fuchsian systems with singular
points a1, ..., a, into the space .#, of representations

x: m1(C\ {ai,...,a,}) — GL(p,C)

of a group with n generators and one relation. In the coordinate description:

n

;= 0={(Bi,...,B.)| B ¢ Mat(p,C), Y Bi =0} /GL(p, )

i=1
I [

My = {(Gl,...,Gn)|Gi € GL(p,C), ﬁGz‘ :I}/GL(P’C) :

The question naturally arises of the existence, well-definedness, and properties
of the inverse map
RH,: Moy — .
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Such a map is called the Riemann—Hilbert map. It should be noted that in the
definition of the inverse map of p, there arises the difficulty that substantially
different systems may have the same monodromy. Nevertheless, it can be shown
that the space .#, foliates naturally into leaves for each of which the map RH, is
well defined (although not on the entire space .Z,; see details in [60]).

The next step is to pass from Fuchsian systems with n fixed singular points to
all possible Fuchsian systems with n arbitrary singularities. We extend the maps
considered above to the space of all Fuchsian systems. Let

P=c"\ (J{ai = a5}

i
denote the space of all possible n-tuples of pairwise distinct points of C. Then
M =P x O

is the moduli space of Fuchsian systems. A point (a,B) € #* with a = (a1,...,a,)
and B = (By,..., B;,) represents the Fuchsian system

dy [~ B - o
d_(z)y ;BZ_O.

It is also necessary to extend the representation space:

M ={(a,x) |a € P, x € M}
We can now naturally define maps
w: M — M RH: A — A~

(a point of the base space P—a tuple a = (ay,...,a,) of poles—goes to itself
under both maps, and the maps between fibres are realized by using p, and RH,).

In terms of the notions defined above, the classical Riemann—Hilbert problem is
stated as follows: given a point in the space A , find out whether there exists an
inverse image of it with respect to the map p.

The maps p and RH have a number of important and useful properties. Without
going into details, we mention some of them.

1. It is natural to regard the map p, with respect to a number of its properties,
as a non-commutative generalization of the exponential map. For example, a set
of matrices with zero sum is taken to a set of matrices with product equal to
the identity matrix. Furthermore, the spectrum of each monodromy matrix Gy, is
exactly equal to the spectrum of the exponent exp(2wiBy) of the corresponding
residue matrix By, and in the non-resonance case (when no two eigenvalues of the
matrix By differ by a positive integer) not only do the spectra of the matrices Gj,
and exp(27iBy;) coincide, but so do the conjugacy classes of these matrices (see [10],
Corollary 6.1, Proposition 6.1).

2. The map p is extremely transcendental. In the general case the set of residues
of the system and its monodromy can be expressed in terms of each other by ‘new’
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special functions. (We remark that this is also true for such a special case as the
equation Pyr.)

3. The map p is locally almost everywhere injective (in the sense of the afore-
mentioned foliation of the space .Z; into leaves).

4. Regarding the spaces .# and .#* as bundles over the base space P, one can see
that the maps p and RH are compatible with the natural connections in these bun-
dles: horizontal sections of one bundle are taken to horizontal sections of the other.
Whereas the local horizontal sections of the bundle .# have trivial structure (over
each point they pass through one and the same representation), the structure of the
local horizontal sections of the bundle .Z* is much more interesting: all the Fuch-
sian systems corresponding to a local horizontal section B(a): D(a’) — .#*, where
D(a®) C P is a ball of small radius with centre at a point a’, have one and the same
monodromy; one can verify that the exponents of these systems (the eigenvalues of
the matrices B;(a)) also coincide. Thus, every horizontal section of the bundle .#*
is none other than the set of solutions of some extended Riemann—Hilbert problem,®
parametrized by the location of the poles of the Fuchsian system. This object is
also known as an isomonodromic family. The set of all local horizontal sections
of the bundle .Z* that are taken under the action of u to some fixed horizontal
section of the bundle .Z, restricted to any fibre .Z, gives the set of all solutions
of a classical Riemann—Hilbert problem.
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