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Various versions of the Riemann–Hilbert problem
for linear differential equations

R. R. Gontsov and V. A. Poberezhnyi

Abstract. A counterexample to Hilbert’s 21st problem was found by Boli-
brukh in 1988 (and published in 1989). In the further study of this problem
he substantially developed the approach using holomorphic vector bundles
and meromorphic connections. Here the best-known results of the past
that were obtained by using this approach (both for Hilbert’s 21st problem
and for certain generalizations) are presented.
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Introduction

This paper is devoted to Hilbert’s 21st problem (the Riemann–Hilbert problem),
which, in one form or another, was considered as far back as the middle of the 19th
century by Riemann, and to certain generalizations of it that appeared at the end
of the 20th century. This problem belongs to the analytic theory of differential
equations and consists in constructing a linear differential equation (or a system
of equations) of a certain class that has given singular points and given ramification
type of solutions at these singular points.

The most substantial achievements in solving the Riemann–Hilbert problem are
associated with the name of A.A. Bolibrukh. Before him the problem had long been
wrongly regarded as solved in the affirmative. However, Bolibrukh constructed the
first counterexample, which stimulated the development of the theory in the new
direction outlined in his survey “The Riemann–Hilbert problem” [1].
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In the present paper we focus on the main recent achievements in the study of the
Riemann–Hilbert problem and its generalizations, and we indicate some questions
that arise naturally in the consideration of these results.

The basic notions of the analytic theory of linear differential equations and the
general approach to studying the classical Riemann–Hilbert problem for Fuchsian
systems on the Riemann sphere, together with the best-known results, are presented
in the first two sections.

In § 3 we consider the Riemann–Hilbert problem for scalar Fuchsian equations
and its relation to non-linear differential equations (Painlevé VI equations, Garnier
systems).

Possible generalizations of the classical Riemann–Hilbert problem to the case
of Fuchsian systems defined on a compact Riemann surface of arbitrary genus are
presented in § 4.

The generalized Riemann–Hilbert problem for linear systems with irregular sin-
gular points is considered in § 5.

A brief description of some geometric notions and constructions related to the
Riemann–Hilbert problem is given in § 6.

The authors are deeply grateful to D. V. Anosov, V. P. Leksin, and I. V. V’yugin
for useful remarks and discussions which were helpful in the preparation of this
paper.

§ 1. Basic definitions and statement of the classical problem

We consider a system of p linear differential equations on the Riemann sphere C,
written in matrix form

dy

dz
= B(z) y, y(z) ∈ Cp, (1)

where B(z) is the coefficient matrix of the system and is meromorphic on the
Riemann sphere, with singularities at the points a1, . . . , an.

Definition 1. A singular point ai of the system (1) is said to be Fuchsian if
the matrix B(z) has a pole of the first order at this point.

A singular point ai of the system (1) is said to be regular if any solution of the
system has at most polynomial growth in a neighbourhood of this point. A singular
point that is not regular is said to be irregular.

From many viewpoints, Fuchsian singularities are the simplest type of singular
points of the system (1). According to Sauvage’s theorem [2], a Fuchsian singu-
lar point of a linear system is always regular (see also [3], Theorem 11.1).

Regular singularities of a linear system are next in complexity after Fuchsian
ones. Generally speaking, the coefficient matrix of the system can have a pole of
order higher than 1 at a regular singular point.1 In such a case it turns out to

1The notions of regular and Fuchsian singular points coincide only in the case where a system
consists of a single equation (p = 1). This fact can be verified by a straightforward integration of
the equation.



Riemann–Hilbert problem for linear differential equations 605

be difficult to find out whether the singularity is regular or not. (In the general
case, verification of all existing criteria for regularity of a singular point of a linear
system is fairly difficult; one of the first such criteria was obtained by Moser [4],
and subsequently other criteria also appeared [5], [6].) However, there is a simple
necessary condition for the regularity of a singular point obtained by Horn [7],
which consists in the following. We write the Laurent series for the coefficient
matrix B(z) of the system (1) in a neighbourhood of a singular point z = a in the
form

B(z) =
B−r−1

(z − a)r+1
+ · · ·+ B−1

z − a
+ B0 + · · · , B−r−1 ̸= 0.

(The number r is called the Poincaré rank of the system (1) at this point, or the
Poincaré rank of the singular point z = a. For example, the Poincaré rank of
a Fuchsian singularity is equal to zero.)

If z = a is a regular singular point of the system (1) and r > 0, then B−r−1 is
a nilpotent matrix.

We now give another simple necessary condition for the regularity of a singular
point of a linear system.

If z = a is a regular singular point of the system (1) and r > 0, then tr B−r−1 =
· · · = trB−2 = 0.

This condition follows from the fact that, by the well-known Liouville theorem,
the determinant of a fundamental matrix Y (z) of the system (1) (a matrix whose
columns form a basis in the solution space of the system) satisfies the equation
d

dz
det Y = tr B(z) detY . If a singular point z = a of the system (1) is regular,

then it is a regular (consequently, Fuchsian) singularity of the latter equation.
Therefore, the function trB(z) must have a simple pole at this point.

Irregular singular points form the most complicated type of singularities of a lin-
ear system.

A system (1) is said to be Fuchsian if all its singular points are Fuchsian. If
infinity is not among the singularities of a Fuchsian system, then the system can
be written in the form

dy

dz
=

( n∑
i=1

Bi

z − ai

)
y,

n∑
i=1

Bi = 0.

(If one of the singularities, say an, is situated at infinity, then the coefficient matrix
has the form B(z) =

∑n−1
i=1 Bi/(z− ai), but the sum of the residues Bi is no longer

equal to the zero matrix.)
One of the important characteristics of a linear system is its monodromy repre-

sentation (or monodromy), which is defined as follows.
In a neighbourhood of a non-singular point z0 we consider a fundamental matrix

Y (z) of the system (1). The result of the analytic continuation of the matrix Y (z)
along a loop γ starting at the point z0 and contained in C \ {a1, . . . , an} is, gen-
erally speaking, another fundamental matrix Ỹ (z). Two bases are connected by
a non-singular transition matrix Gγ corresponding to the loop γ:

Y (z) = Ỹ (z)Gγ .
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The map [γ] 7→ Gγ (which depends only on the homotopy class [γ] of the loop γ)
defines a representation

χ : π1

(
C \ {a1, . . . , an}, z0

)
→ GL(p, C)

of the fundamental group of the space C \ {a1, . . . , an} into the space of non-
singular complex p× p matrices. This representation is called the monodromy of
the system (1).

The monodromy matrix of the system (1) at a singular point ai (with respect to
a fundamental matrix Y (z)) is defined as the matrix Gi corresponding to a simple
loop γi around the point ai, that is, Gi = χ([γi]). The matrices G1, . . . , Gn are
generators of the monodromy group — the image of the map χ. By the condition
γ1 · · · γn = e in the fundamental group, these matrices are connected by the relation
G1 · · ·Gn = I (henceforth, I denotes the identity matrix).

If initially another fundamental matrix Y ′(z) = Y (z)C, C ∈ GL(p, C), is consid-
ered instead of the fundamental matrix Y (z), then the corresponding monodromy
matrices have the form G′i = C−1GiC. The dependence of the matrices Gi on the
choice of the initial point z0 is of similar nature. Thus, the monodromy of a linear
system is determined up to conjugation by a constant non-singular matrix and,
more precisely, is an element of the space

Ma = Hom
(
π1

(
C \ {a1, . . . , an}

)
, GL(p, C)

)
/GL(p, C)

of conjugacy classes of representations of the group π1

(
C \ {a1, . . . , an}

)
.

The number of parameters on which the monodromy depends can be calculated
by considering only irreducible representations (since for n > 2 the reducible ones
form a subspace of some positive codimension). In such a case, the dimension of
the conjugacy class

{(S−1G1S, . . . , S−1GnS) | S ∈ GL(p, C)} ∼= GL(p, C)/st(G1, . . . , Gn)

of the element (G1, . . . , Gn) is equal to dim GL(p, C)−dim st(G1, . . . , Gn) = p2−1.
(According to Schur’s lemma, if a matrix S commutes with all the matrices Gi,
then it is a scalar matrix; therefore, dim st(G1, . . . , Gn) = 1.) Consequently, the
dimension of the space

Ma
∼= {(G1, . . . , Gn) | G1 · · ·Gn = I}/GL(p, C)

is equal to (n− 1)p2 − (p2 − 1) = (n− 2)p2 + 1.
The classical Riemann–Hilbert problem is stated as follows.
Is it possible to realize a given set of singular points a1, . . . , an and a given

representation
χ : π1

(
C \ {a1, . . . , an}, z0

)
→ GL(p, C) (2)

by a Fuchsian system? (that is, is it possible to construct a Fuchsian system with
given singularities and monodromy?)

Thus, the Riemann–Hilbert problem is a question about the surjectivity of the
monodromy map µa : M ∗

a → Ma from the space

M ∗
a
∼= {(B1, . . . , Bn) | Bi ∈ Mat(p, C), B1 + · · ·+ Bn = 0}/GL(p, C)
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of Fuchsian systems with fixed singularities a1, . . . , an (considered up to equivalence
Bi ∼ S−1BiS, i = 1, . . . , n) into the space Ma. Although the dimensions of these
spaces are the same, the map µa is not surjective, and the problem has a negative
solution in the general case. The first counterexample appears in dimension p = 3
for the number of singular points n = 4 (Bolibrukh [8]; see also [9], Ch. 2). We
shall discuss the monodromy map in more detail in § 6.

There exist numerous sufficient conditions for a positive solution of the classical
Riemann–Hilbert problem. We present the best-known of them and also focus on
some analogues of them in the analysis of various generalizations of the classical
problem (the simplest proofs of most of these sufficient conditions are presented
in [10]).

1) If one of the generators G1, . . . , Gn of the representation (2) is diagonalizable,
then the Riemann–Hilbert problem has a positive solution2 (Plemelj [12]).

2) If the representation (2) is two-dimensional (p = 2), then the Riemann–Hilbert
problem has a positive solution (Dekkers [13]).

3) If the representation (2) is irreducible, then the Riemann–Hilbert problem has
a positive solution (Bolibrukh [14], Kostov [15]).

4) If the representation (2) is the monodromy of some scalar linear differential
equation of order p with regular singularities a1, . . . , an, then the Riemann–Hilbert
problem has a positive solution (Bolibrukh [16]).

We make several remarks about the last sufficient condition. The monodromy
of a linear differential equation

dpy

dzp
+ b1(z)

dp−1y

dzp−1
+ · · ·+ bp(z)y = 0 (3)

of order p with singular points a1, . . . , an (poles of the coefficients) is defined in the
same way as for the system (1), only instead of a fundamental matrix Y (z) one
must consider a row (y1, . . . , yp) whose elements form a basis in the solution space
of the equation.

In contrast to a system, for a scalar equation there exists a simple criterion
for the regularity of a singular point of this equation, obtained by Fuchs [17] (see
also [3], Theorem 12.1): a singularity ai of equation (3) is regular if and only if the
coefficient bj(z) has at this point a pole of order at most j (j = 1, . . . , p). Scalar
differential equations with regular singular points are said to be Fuchsian.

Initially, Riemann [18] stated the problem about constructing precisely a Fuch-
sian differential equation with given singular points and monodromy. However,
Poincaré [19] showed that, unlike a Fuchsian system, the number of parameters
on which a Fuchsian equation depends is less than the dimension of the space
Ma of monodromy representations.3 After that, Hilbert [20] included in his list of
“Mathematical problems” the problem of constructing a Fuchsian system with given

2This condition was improved by Kostov [11]: If one of the matrices G1, . . . , Gn in its Jordan
form has at most one block of size 2, while the other blocks are of size 1, then the Riemann–Hilbert
problem has a positive solution. Further improvement of this condition in terms of the Jordan
form of one of the monodromy matrices is impossible, since there exist counterexamples to the
Riemann–Hilbert problem in which the Jordan forms of the monodromy matrices contain one
block of size 3 or two blocks of size 2.

3Therefore, in the construction of a Fuchsian equation with a given monodromy in the gen-
eral case there necessarily emerge additional (apart from a1, . . . , an) apparent singular points at
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singularities and monodromy, which is what became known as the Riemann–Hilbert
problem (details of the history of studies of the Riemann–Hilbert problem and its
definitive solution can be found in [21], [22]).

§ 2. Method of solution

In the study of problems related to the Riemann–Hilbert problem, a very useful
tool is provided by linear gauge transformations of the form

y′ = Γ(z) y (4)

of the unknown function y(z). The transformation (4) is said to be holomorphically
(meromorphically) invertible at some point z0 if the matrix Γ(z) is holomorphic
(meromorphic) at this point and det Γ(z0) ̸= 0 (det Γ(z) ̸≡ 0). This transformation
transforms the system (1) into the system

dy′

dz
= B′(z) y′, B′(z) =

dΓ
dz

Γ−1 + ΓB(z)Γ−1, (5)

which is said to be, respectively, holomorphically or meromorphically equivalent to
the original system in a neighbourhood of the point z0.

An important property of meromorphic gauge transformations is the fact that
they preserve the monodromy (being meromorphic, the matrix Γ(z) is single-valued
on the punctured Riemann sphere; therefore the ramification of the fundamen-
tal matrix Γ(z)Y (z) of the new system coincides with the ramification of the
matrix Y (z)).

A transformation that is holomorphically invertible in a neighbourhood of a sin-
gular point ai of the system (1) does not change the Poincaré rank of this singularity,
whereas a meromorphically invertible transformation may increase or decrease this
rank.

Locally, in a neighbourhood of each point ak, it is easy to produce a system
for which ak is a Fuchsian singularity and the monodromy matrix at this point
coincides with the corresponding generator Gk = χ([γk]) of the representation (2).
This system is

dy

dz
=

Ek

z − ak
y, Ek =

1
2πi

log Gk, (6)

with fundamental matrix (z − ak)Ek := eEk log(z−ak) (the branch of the logarithm
of the matrix Gk is chosen so that the eigenvalues ρj

k of the matrix Ek satisfy the
condition 0 6 Re ρj

k < 1). Indeed,

d

dz
(z − ak)Ek =

Ek

z − ak
(z − ak)Ek ,

and a single circuit around the point ak counterclockwise transforms the matrix
(z − ak)Ek into the matrix

eEk(log(z−ak)+2πi) = eEk log(z−ak)e2πiEk = (z − ak)EkGk.

which the coefficients of the equation have singularities but the solutions are single-valued mero-
morphic functions, and hence the monodromy matrices at these points are identity matrices. In
what follows, by additional singular points of an equation or a system we mean precisely such
singularities.
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We note that in the case when the representation (2) is commutative (that is,
when the matrices G1, . . . , Gn commute pairwise) the Riemann–Hilbert problem
has a positive solution. The above arguments must be applied to the fundamental
matrix Y (z) = (z − a1)E1 · · · (z − an−1)En−1(z − an)En−D, D =

∑n
i=1 Ei, of the

global Fuchsian system

dy

dz
=

( n−1∑
i=1

Ei

z − ai
+

En −D

z − an

)
y

with singularities a1, . . . , an ∈ C. (Here one makes essential use of the relations
[Gi, Gj ] = 0 and the consequent relations [Gi, (z−aj)Ej ] = [Gi, (z−an)En−D] = 0;
the commutativity also implies that log G1 · · ·Gn = log G1 + · · · + log Gn and, in
view of the condition G1 · · ·Gn = I, ensures that D is a diagonal integer-valued
matrix that does not affect the monodromy at the point an.)

It is interesting that a positive solution of the Riemann–Hilbert problem when
the representation (2) is commutative was first obtained by Lappo-Danilevskii [23].
This sufficient condition had not been noted before him (he mentioned this fact at
his dissertation defense in 1929).

Of course, not every system with the Fuchsian singularity ak and the local mon-
odromy matrix Gk is holomorphically equivalent to the system (6) in a neighbour-
hood of this point.

Let Λk = diag(λ1
k, . . . , λp

k) be a diagonal integer-valued matrix whose elements
λj

k form a non-increasing sequence, and Sk a non-singular matrix reducing the
matrix Ek to an upper-triangular form E′k = SkEkS−1

k . Then according to (5)
the transformation

y′ = Γ(z) y, Γ(z) = (z − ak)ΛkSk,

transforms the system (6) into the system

dy′

dz
=

(
Λk

z − ak
+ (z − ak)Λk

E′k
z − ak

(z − ak)−Λk

)
y′, (7)

for which the point ak is also a Fuchsian singularity (it follows from the form of the
matrices Λk and E′k that the matrix (z − ak)ΛkE′k(z − ak)−Λk is holomorphic) and
the matrix Gk is the monodromy matrix.

According to Levelt’s theorem [24], in a neighbourhood of a singular point ak

any Fuchsian system is holomorphically equivalent to a system of the form (7). At
the same time, in a neighbourhood of a regular (in particular, Fuchsian) singular
point ak the meromorphic equivalence class of the system is uniquely determined by
its local monodromy matrix Gk, since such a system is meromorphically equivalent
to a system of the form (6).

We call a set {Λ1, . . . ,Λn, S1, . . . , Sn} of matrices having the properties described
above, a set of admissible matrices.

The Riemann–Hilbert problem has a positive solution if it is possible to pass from
the local systems (7) to a global Fuchsian system defined on the whole Riemann
sphere. The use of holomorphic vector bundles and meromorphic connections proves
to be effective in the study of this question.
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We briefly recall the basic notions of the theory of holomorphic vector bundles
(a detailed exposition of scope quite sufficient for applications to linear differential
equations in the complex domain is contained in [10], as well as in [25], Ch. 3).

A holomorphic vector bundle π : E → B of rank p over a (one-dimensional)
complex manifold B has the following properties:

a) for any point z ∈ B the fibre π−1(z) is a p-dimensional vector space and there
exists a neighbourhood U of z such that the inverse image π−1(U) is biholomor-
phically equivalent to U × Cp (furthermore, the biholomorphic equivalence maps
π−1(z) onto {z} × Cp isomorphically as vector spaces);

b) for any neighbourhoods Uα, Uβ with non-empty intersection, the local charts
Uα × Cp, Uβ × Cp are compatible:

ϕα : π−1(Uα) → Uα × Cp, ϕβ : π−1(Uβ) → Uβ × Cp;

ϕα ◦ ϕ−1
β : (Uα ∩ Uβ)× Cp → (Uα ∩ Uβ)× Cp,

(z, y) 7→
(
z, gαβ(z)y

)
,

where gαβ : Uα ∩ Uβ → GL(p, C) is a holomorphic map.
A set {gαβ(z)} of holomorphically invertible matrix functions satisfying the con-

ditions
gαβ = g−1

βα , gαβgβγgγα = I (for Uα ∩ Uβ ∩ Uγ ̸= ∅),

is called a gluing cocycle corresponding to a covering {Uα} of the manifold B.
Bundles E and F over B are (holomorphically) equivalent if there exists a set

{hα(z)} of holomorphic maps hα : Uα → GL(p, C) such that

hαgαβ = fαβhβ (8)

for gluing cocycles {gαβ(z)}, {fαβ(z)} of these bundles.
A bundle E is holomorphically trivial if it is equivalent to the direct product

B ×Cp, that is, if the relations (8) hold for a cocycle {gαβ(z)} with fαβ(z) ≡ I for
all α, β.

A subbundle E′ ⊂ E of rank q is characterized by the condition that for any
point z ∈ B the set π−1(z)∩E′ is a q-dimensional vector subspace of π−1(z). Then
the cocycle {gαβ(z)} can be chosen to be block-upper-triangular:

gαβ =
(

g1
αβ ∗
0 g2

αβ

)
,

where the g1
αβ are q × q matrices forming a cocycle of the bundle E′.

A section of a bundle E is defined to be a map s : B → E such that
π ◦ s ≡ id. In local charts Uα × Cp a holomorphic (meromorphic) section is given
by a set {sα(z)} of holomorphic (meromorphic) functions sα : Uα → Cp such that
ϕα(s(z)) = (z, sα(z)) and satisfying the conditions sα(z) = gαβ(z)sβ(z) on the
intersections Uα ∩ Uβ ̸= ∅.

A holomorphic connection ∇ : Γ(E) → Γ(τ∗B ⊗ E) is a linear map of the space
Γ(E) of holomorphic sections of the bundle E into the space of holomorphic sections
of the bundle τ∗B ⊗ E, where τ∗B is the cotangent bundle over B. Sections of the
bundle τ∗B ⊗ E are E-valued differential 1-forms on B. Such sections are given by
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a set {Ωα} of (vector) differential 1-forms defined in corresponding neighbourhoods
Uα and satisfying the conditions Ωα = gαβ(z)Ωβ on the intersections Uα ∩Uβ ̸= ∅.

In local coordinates of the sets Uα × Cp, a connection ∇ is given by a set {ωα}
of matrix holomorphic differential 1-forms defined in the corresponding neighbour-
hoods Uα. The coordinate action of the connection ∇ on the functions sα(z) defin-
ing a section s has the form

sα 7→ Ωα = dsα − ωαsα.

Then the compatibility conditions for {sα} and {Ωα} are rewritten for {ωα} as

ωα = (dgαβ)g−1
αβ + gαβωβg−1

αβ (for Uα ∩ Uβ ̸= ∅). (9)

Similarly, a meromorphic connection ∇ : M(E) → M(τ∗B ⊗E) is a linear map of
the corresponding spaces of meromorphic sections and is given by a set of matrix
meromorphic differential 1-forms. A meromorphic connection is said to be loga-
rithmic (Fuchsian) if all the singular points of these 1-forms are poles of the first
order.

A section s is said to be horizontal (with respect to a connection ∇) if ∇(s) = 0
or, in coordinates, dsα = ωαsα. Thus, horizontal sections of a holomorphic vector
bundle with a meromorphic connection are determined by solutions of a system of
linear differential equations. At the same time, every set of p linearly independent
sections can be regarded as a basis in the space of horizontal sections with respect
to some meromorphic connection.

The monodromy of a connection characterizes the ramification of horizontal sec-
tions under analytic continuation along closed paths in B avoiding singular points
of the connection, and its definition is similar to that of the monodromy of the
system (1).

The approach to solving the Riemann–Hilbert problem based on using holomor-
phic vector bundles emerged in the papers of Röhrl [26], Levelt [24], Deligne [27].
It was developed by Bolibrukh and enabled him to obtain various sufficient condi-
tions for a positive solution of the problem (some of them were given above, and
one more will be given in what follows). We now briefly present this approach (see
details in [9], [10]).

1. First, from the representation (2) over the punctured Riemann sphere B =
C \ {a1, . . . , an}, we construct a holomorphic vector bundle F of rank p with
a holomorphic connection ∇ that has the given monodromy (2). The bundle F

over B is obtained from the holomorphically trivial bundle B̃×Cp over the univer-
sal covering B̃ of the punctured Riemann sphere after identifications of the form
(z̃, y) ∼ (σz̃, χ(σ)y), where z̃ ∈ B̃, y ∈ Cp, and σ is an element of the group of cov-
ering transformations of B̃ which is identified with the fundamental group π1(B).
Thus, F = B̃ × Cp/∼ and π : F → B is the natural projection.

We show that a gluing cocycle {gαβ} of the bundle F is constant. Consider
a set {Uα} of small neighbourhoods covering B, and a set z̃α : Uα → ν−1(Uα) of
local holomorphic sections of the universal covering ν: B̃ → B. On the non-empty
intersections Uα ∩ Uβ the functions z̃α(z), z̃β(z) are connected by the relation

z̃α(z) = δαβ z̃β(z), δαβ ∈ π1(B)
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(the maps δαβ : Uα ∩ Uβ → π1(B) are locally constant; therefore, we can even
consider them to be constant, for example, when all the Uα ∩ Uβ are connected).
Local maps ϕα : π−1(Uα) → Uα × Cp are given by the relations

ϕα : [z̃α(z), y] 7→ (z, y),

where [z̃α(z), y] is the equivalence class of an element (z̃α(z), y) ∈ B̃×Cp. Therefore,
for z ∈ Uα ∩ Uβ we have

ϕα ◦ ϕ−1
β (z, y) = ϕα

(
[z̃β(z), y]

)
= ϕα

(
[δ−1

αβ z̃α(z), y]
)

= ϕα

(
[z̃α(z), χ(δαβ)y]

)
=

(
z, χ(δαβ)y

)
,

that is, gαβ(z) = χ(δαβ) = const.
The connection ∇ can now be given by the set {ωα} of matrix differential 1-forms

ωα ≡ 0, which obviously satisfy the gluing conditions (9) on the intersections
Uα ∩ Uβ ̸= ∅. Furthermore, it follows from the construction of the bundle F
that the monodromy of the connection ∇ coincides with χ.

2. Next, the pair (F,∇) is extended to a bundle F 0 with a logarithmic con-
nection ∇0 over the whole Riemann sphere. For this, the set {Uα} should be
supplemented by small neighbourhoods O1, . . . , On of the points a1, . . . , an, respec-
tively. An extension of the bundle F to each point ai looks as follows. For some
non-empty intersection Oi ∩ Uα we set giα(z) = (z − ai)Ei in this intersection. For
any other neighbourhood Uβ that intersects Oi we define giβ(z) as the analytic
continuation of the matrix function giα(z) into Oi ∩ Uβ along a suitable path (so
that the set {gαβ , giα(z)} defines a cocycle for the covering {Uα, Oi} of the Riemann
sphere). An extension of the connection ∇ to each point ai is given by the matrix

differential 1-form ωi =
Ei

z − ai
dz, which has a simple pole at this point. Then the

set {ωα, ωi} defines a logarithmic connection ∇0 in the bundle F 0, since along with
conditions (9) for non-empty Uα ∩ Uβ the conditions

(dgiα)g−1
iα + giαωαg−1

iα =
Ei

z − ai
dz = ωi, Oi ∩ Uα ̸= ∅,

also hold (see (6)). The pair (F 0,∇0) is called the canonical extension of the
pair (F,∇).

3. In a way similar to that for the construction of the pair (F 0,∇0), we can
construct the family F of bundles FΛ with logarithmic connections ∇Λ having
given singularities and monodromy. For this the matrices giα(z) in the construction
of the pair (F 0,∇0) must be replaced by the matrices

gΛ
iα(z) = (z − ai)ΛiSi(z − ai)Ei ,

and the forms ωi by the forms

ωΛ
i =

(
Λi + (z − ai)ΛiE′i(z − ai)−Λi

) dz

z − ai
,

where {Λ1, . . . ,Λn, S1, . . . , Sn} are all possible sets of admissible matrices. Then
the conditions (

dgΛ
iα

)(
gΛ

iα

)−1 + gΛ
iαωα

(
gΛ

iα

)−1 = ωΛ
i (10)

again hold on the non-empty intersections Oi ∩ Uα (see (7)).
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Strictly speaking, the bundle FΛ also depends on the set S = {S1, . . . , Sn} of
matrices Si reducing the monodromy matrices Gi to upper-triangular form. In view
of this dependence the bundles in the family F should therefore be denoted by FΛ,S ,
but in what follows we shall only need the dependence on the set Λ = {Λ1, . . . ,Λn},
and by FΛ we shall mean the bundle constructed with respect to a given set Λ and
some set S. (This does not apply to the canonical extension F 0 of the bundle F ,
which is independent of the choice of the matrices Si.)

Definition 2. The eigenvalues βj
i = λj

i + ρj
i of the matrix Λi + E′i are called

exponents of the logarithmic connection ∇Λ at the point z = ai. (It follows from
the structure of the forms ωΛ

i that the exponents at the point z = ai are the
eigenvalues of the residue matrix resai

ωΛ
i .)

The above-mentioned dependence of the bundle FΛ on the sets S = {S1, . . . , Sn}
is essential only in the case where at least one of the singular points ai of the con-
nection ∇Λ is a resonant singularity (that is, where among the exponents of the
connection at this point there exist two that differ by a positive integer). This
observation follows from the fact that the holomorphic equivalence class of a Fuch-
sian system of the form (7) in a neighbourhood of a non-resonant singular point ai

is uniquely determined by the local monodromy of the system at this point and an
admissible matrix Λi (see, for example, [10], Exercise 14.5).

If some bundle FΛ in F is holomorphically trivial, then the corresponding con-
nection ∇Λ determines a global system (1) that solves the Riemann–Hilbert prob-
lem. Indeed, the triviality of the bundle FΛ means that for the covering {Uα, Oi}
of the Riemann sphere there exists a corresponding set {hα(z), hi(z)} of holomor-
phically invertible matrices such that

hα(z)gαβ = hβ(z) and hi(z)gΛ
iα(z) = hα(z) (11)

in Uα ∩ Uβ ̸= ∅ and Oi ∩ Uα ̸= ∅, respectively. These relations, along with
conditions (10), imply that the forms

ω′i = (dhi)h−1
i + hiω

Λ
i h−1

i , ω′α = (dhα)h−1
α + hαωαh−1

α (12)

coincide on the corresponding non-empty intersections, which fact defines a global
form ω = B(z) dz on the whole Riemann sphere. By construction, the global system
dy = ωy has Fuchsian singularities a1, . . . , an and the given monodromy (2).

On the other hand, in view of Levelt’s theorem mentioned above, the existence
of a global Fuchsian system with the given singular points a1, . . . , an and mon-
odromy (2) implies the triviality of some bundle of the family F .

Thus, the Riemann–Hilbert problem is soluble if and only if at least one of the
bundles of the family F is holomorphically trivial.

According to the Birkhoff–Grothendieck theorem, every holomorphic vector bun-
dle E of rank p over the Riemann sphere is equivalent to a direct sum

E ∼= O(k1)⊕ · · · ⊕ O(kp)

of line bundles that has a coordinate description of the form(
U1 = C, U∞ = C \ {a1}, g1∞ = (z − a1)K

)
, K = diag(k1, . . . , kp),
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where k1 > · · · > kp is a tuple of integers, which is called the splitting type of the
bundle E.

This implies that for a cocycle {gαβ , gΛ
iα(z)} defining the bundle FΛ in the family

F there exists a set {hα(z), h′i(z)} of holomorphically invertible matrices such that

hα(z)gαβ = hβ(z), h′1(z)gΛ
1α(z) = (z − a1)Khα(z),

h′i(z)gΛ
iα(z) = hα(z), i ̸= 1,

in the corresponding non-empty intersections (where the matrix K defines the split-
ting type of the bundle FΛ). These relations can be written in the form (11), where
all the matrices hi(z), except h1(z), are holomorphically invertible in corresponding
neighbourhoods Oi and the matrix h1(z) has the form h1(z) = (z − a1)−Kh′1(z).

Consequently, there always exists a global system dy = ωy with the given sin-
gularities a1, . . . , an and monodromy (2), except that its singular point a1 may be
non-Fuchsian, since

ω = − K

z − a1
dz + (z − a1)−Kω′1(z − a1)K (13)

in O1, where orda1 ω′1 = −1. This result is called Plemelj’s theorem.

Theorem 1 (Plemelj [12]). A given set of points a1, . . . , an and a representa-
tion (2) can always be realized by a system (1) that is Fuchsian at all but possibly
one point, at which the system is regular.

We note that the system in Plemelj’s theorem can always be chosen so that its
Poincaré rank at the regular singular point is at most (n− 1)(p− 1) (see [28]).

The notion of stability (introduced by Mumford) turns out to be useful in dealing
with vector bundles. Recently this notion made it possible to obtain a number of
important results, in particular, in the study of the Riemann–Hilbert problem. We
now give the requisite preliminary definitions.

Every holomorphic vector bundle over a Riemann surface X has a global mero-
morphic section that is not identically equal to zero (see [29], Corollary 29.17 and
Proposition 30.4). The degree of a holomorphic linear bundle E1 (that is, a bundle
of rank 1) is defined as the sum of the orders of the zeros minus the sum of the
orders of the poles of a global meromorphic section of this bundle. (It is easy to
show that this number is independent of the choice of the section if X is compact,
which is assumed in what follows.)

If a global meromorphic section of the bundle E1 is given by a set of meromor-
phic functions sα : Uα → C corresponding to a covering {Uα} of the surface X,
then the set {dsα/sα} of differential 1-forms determines a meromorphic connection
in the bundle E1. Thus, the degree of the bundle E1 coincides with the sum of
residues of this connection. It is also easy to show that this sum is the same for
any meromorphic connection in E1.

Definition 3. The degree deg E of a bundle E (over a compact Riemann surface X)
given by a cocycle {gαβ(z)} is the degree of the determinant bundle detE given by
the cocycle {det gαβ(z)}.

If in a bundle E a connection ∇ is determined by a set {ωα} of matrix differential
1-forms, then in the bundle det E one can define the connection tr∇ by the set of
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differential 1-forms trωα. In this case the degree of the bundle E also coincides
with the sum of residues of the connection tr∇.

The number κ(E) = deg E/p is called the slope of a bundle E of rank p.

For the bundle FΛ (according to Definition 2) we have

deg FΛ =
n∑

i=1

resai
tr ωΛ

i =
n∑

i=1

p∑
j=1

βj
i .

The degree of a holomorphic vector bundle E over the Riemann sphere coincides
with the sum of the coefficients ki of the splitting type of this bundle. Indeed, if
E ∼= O(k1)⊕· · ·⊕O(kp), then the bundle det E has a coordinate description of the
form (

U0 = C, U∞ = C \ {0}, g0∞ = ztr K
)
, K = diag (k1, . . . , kp).

A global meromorphic section of this bundle can be given by the functions
s0(z) = ztr K , s∞(z) = 1.

Definition 4. A vector bundle E is said to be stable (semistable) if the slope κ(E′)
of any proper subbundle E′ of it is less than (respectively, less than or equal to)
the slope κ(E).

It is easy to verify that over the Riemann sphere there are no stable vector
bundles (the slope k1 of the subbundle O(k1) of a bundle E ∼= O(k1)⊕ · · · ⊕O(kp)
is not less than the slope (k1 + · · ·+ kp)/p of the bundle E), and only bundles with
splitting type (k, . . . , k) are semistable. Thus, holomorphically trivial bundles over
the Riemann sphere are the semistable bundles of degree zero, and only they.

As is evident, the notions of stability and semistability of a vector bundle over the
Riemann sphere are not very deep in meaning, but they will prove to be meaningful
and useful for generalizing the problem to the case of a compact Riemann surface
of positive genus. For the present, we recall that in solving the Riemann–Hilbert
problem it is not just bundles that are investigated, but bundles together with
logarithmic connections on them. The introduction of the notion of a stable pair
(E,∇) consisting of a vector bundle and a connection has proved effective.

Definition 5. We say that a subbundle F ′ of the bundle FΛ is stabilized by the
connection ∇Λ if ∇Λ(M(F ′)) ⊂ M(τ∗C ⊗ F ′). (Generally speaking, the action of
the map ∇Λ takes a section of the subbundle F ′ to a section of the bundle τ∗C⊗FΛ.)

This definition is equivalent to the condition that every horizontal section of FΛ

passing through a point s0 ∈ F ′ remains in F ′ under analytic continuations.
Practically, the existence of a subbundle F ′ ⊂ FΛ that is stabilized by the con-

nection means that the pair (FΛ,∇Λ) admits a coordinate description {gαβ , gΛ
iα},

{ωα, ωΛ
i } of the following block-upper-triangular form:

gαβ (gΛ
iα) =

(
g1

αβ (g1
iα) ∗

0 g2
αβ (g2

iα)

)
, ωα (ωΛ

i ) =
(

ω1
α (ω1

i ) ∗
0 ω2

α (ω2
i )

)
,

where the sizes of all the blocks g1
αβ , g1

iα and ω1
α, ω1

i are the same (the cocycles
{g1

αβ , g1
iα} determine a coordinate description of the subbundle F ′, and the forms

ω1
α, ω1

i determine the restriction ∇′ to F ′ of the connection ∇Λ).
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Definition 6. A pair (FΛ,∇Λ) ∈ F is said to be stable (respectively, semistable)
if the inequality κ(F ′) < κ(FΛ) (respectively, κ(F ′) 6 κ(FΛ)) holds for any proper
subbundle F ′ ⊂ FΛ that is stabilized by the connection ∇Λ.

We now give another sufficient condition for a positive solution of the
Riemann–Hilbert problem.

5) If among the elements of the family F of bundles with logarithmic connections
having given singularities a1, . . . , an and monodromy (2) there exists at least one
stable pair (FΛ,∇Λ), then the Riemann–Hilbert problem has a positive solution
(Bolibrukh [30]).

Thus, for studying the Riemann–Hilbert problem by using the notions of stability
and semistability of pairs of the family F , one can consider the subset F 0 ⊂ F
consisting of semistable pairs.

If F 0 is empty, then the Riemann–Hilbert problem has a negative solution (no
semistable pairs =⇒ no semistable bundles =⇒ no trivial bundles).

If F 0 is not empty but contains no stable pairs, then the question of solubility
of the Riemann–Hilbert problem remains open.

If F 0 contains at least one stable pair, then the Riemann–Hilbert problem has
a positive solution.

It should be noted that for finding stable or semistable pairs one does not have
to go through all the elements of the family F but can confine oneself to the pairs
(FΛ,∇Λ) constructed with respect to sets Λ = {Λ1, . . . ,Λn} of matrices whose ele-
ments do not exceed a certain constant N(n, p) depending only on the dimension p
of the representation (2) and the number n of singular points. In some special
cases this enables one to produce an effective algorithm for verifying the existence
of a stable or semistable pair among elements of the family F (see [31]).

Bolibrukh’s first counterexample to the Riemann–Hilbert problem (p = 3, n = 4)
is fairly complicated technically. Subsequently he obtained simpler counterexamples
for representations of special type —B-representations. These are reducible repre-
sentations whose generators Gi have Jordan form consisting of exactly one block.
The counterexamples are based on the following theorem (see [10], Theorem 11.2
and Corollary 11.2).

Theorem 2 (Bolibrukh). If a B-representation can be realized as the monodromy
representation of some Fuchsian system, then the slope of the canonical extension
F 0 of the bundle F constructed from this representation is an integer.

Example 1 (Bolibrukh). Consider the matrices

G1 =


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 , G2 =


3 1 1 −1

−4 −1 1 2
0 0 3 1
0 0 −4 −1

 ,

G3 =


−1 0 2 −1

4 −1 0 1
0 0 −1 0
0 0 4 −1

 .
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and an arbitrary set of points a1, a2, a3. The reducible representation χ with
singular points a1, a2, a3 and generators G1, G2, G3 corresponding to loops around
these points cannot be realized as the monodromy representation of any Fuchsian
system.

We note that G1G2G3 = I, the matrix G2 can be transformed into the matrix G1,
and the matrix G3 can be transformed into a Jordan block with eigenvalue −1:

S−1
2 G2S2 =


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 , S2 =
1
3


3 0 0 0

−6 3 −3 4
0 0 1 −1
0 0 −2 3

 ,

S−1
3 G3S3 =


−1 1 0 0

0 −1 1 0
0 0 −1 1
0 0 0 −1

 , S3 =
1
64


0 16 4 3

64 0 0 0
0 0 0 −4
0 0 −16 −12

 .

The eigenvalues ρk of the matrix Ek = (2πi)−1 log Gk are

ρ1 = ρ2 = 0, ρ3 =
1
2

.

According to Definition 2, they coincide with the exponents βk of the logarith-
mic connection ∇0 at the points ak. According to Definition 3, the degree of the
canonical extension F 0 is equal to

deg F 0 = 4β1 + 4β2 + 4β3 = 2,

and consequently κ(F 0) = 1/2 ̸∈ Z. Therefore, the B-representation χ cannot be
realized as the monodromy representation of any Fuchsian system (by Theorem 2).

§ 3. The Riemann–Hilbert problem for scalar Fuchsian equations

As mentioned earlier, the problem of constructing a Fuchsian differential equa-
tion (3) with given singularities a1, . . . , an and the monodromy (2) has a negative
solution in the general case, since the number of parameters on which such an
equation depends is less than the number of parameters on which the set of conju-
gacy classes of representations (2) depends. (We recall that the latter is equal to
(n−2)p2+1, while the former does not exceed p+(n−2)p(p+1)/2; see [10], Propo-
sition 7.1.) Therefore, questions arise about estimating the number of additional
singular points of a Fuchsian equation with a given monodromy, as well as about
finding conditions under which the construction of an equation without additional
singularities is nevertheless possible.

We consider the family F of holomorphic vector bundles FΛ with the logarithmic
connections ∇Λ constructed from the representation (2). The Fuchsian weight of
the bundle FΛ is defined as the quantity

γ(FΛ) =
p∑

i=1

(k1 − ki),

where (k1, . . . , kp) is the splitting type of FΛ.
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If the pair (FΛ,∇Λ) ∈ F is stable, then the splitting type of the bundle FΛ

satisfies the inequalities

ki − ki+1 6 n− 2, i = 1, . . . , p− 1 (14)

(see [10], Theorem 11.1). Since in the case of an irreducible representation (2) the
family F consists only of stable pairs (the bundle FΛ has no subbundles stabilized
by the connection ∇Λ if the representation is irreducible), the quantity

γmax(χ) = max
FΛ∈F

γ(FΛ) 6
(n− 2)p(p− 1)

2

is defined for such a representation, and is called the maximal Fuchsian weight of
the irreducible representation χ.

Bolibrukh obtained an expression for the minimal possible number m0 of addi-
tional singular points emerging in the construction of a Fuchsian equation (3) from
an irreducible representation (2) [32]:

m0 =
(n− 2)p(p− 1)

2
− γmax(χ). (15)

In the case of an arbitrary representation there is the following estimate for the
number m0 of additional singularities (see [28]):

m0 6
(n + 1)p(p− 1)

2
+ 1.

In particular, it follows from formula (15) that a set of singular points a1, a2,
a3 (n = 3) and an irreducible two-dimensional representation (p = 2) can always
be realized by a Fuchsian differential equation of second order, since in this case
γ(FΛ) = 1 for any bundle FΛ of odd degree. As shown in [33] (see also [34]),
among reducible two-dimensional representations (with three generators G1, G2,
G3 and the relation G1G2G3 = I) there are two types that cannot be realized by
a Fuchsian differential equation of second order with three singular points:

G1 =
(

c1 d1

0 c1

)
, G2=

(
c2 d2

0 c2

)
, G3 =

(
c3 d3

0 c3

)
, di ̸= 0; (16)

G1 =
(

c1 0
0 d1

)
, G2=

(
c2 0
0 d2

)
, G3 =

(
c3 0
0 d3

)
, ci ̸= di. (17)

It also follows from formula (15) that a set of singular points a1, . . . , an and an
irreducible representation (2) can be realized by a Fuchsian differential equation (3)
if and only if among the elements of the family F there exists a bundle with splitting
type ((p− 1)(n− 2), (p− 2)(n− 2), . . . , n− 2, 0).

Since in the case of an irreducible representation (2) the family F coincides with
the family F st ⊂ F whose elements are only stable pairs, the following theorem is
a generalization of the last assertion to the case of an arbitrary representation.

Theorem 3 (V’yugin [35]). A set of singular points a1, . . . , an and a representa-
tion (2) can be realized by a Fuchsian differential equation (3) if and only if among
the elements of the family F there exists a stable pair (FΛ,∇Λ) such that the split-
ting type of the bundle FΛ is equal to

(
(p− 1)(n− 2), (p− 2)(n− 2), . . . , n− 2, 0

)
.
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The following question now becomes natural: 1 Is it possible to generalize
formula (15) to the case of an arbitrary representation and assert that

m0 =
(n− 2)p(p− 1)

2
− max

FΛ∈F st
γ(FΛ) ?

Example 2 (V’yugin). Using Theorem 3 one can easily show that two-dimensional
representations with three generators of the form (16) or (17) indeed cannot be
realized by a Fuchsian differential equation of second order with three singular
points. This follows from the fact that the family F constructed from each of these
representations does not contain stable pairs.

Indeed, a representation with generators of the form (16) is a B-representation,
and a stable pair cannot be constructed from such a representation (this follows
from the proof of Theorem 11.2 in [10]).

As for a representation with generators of the form (17), it is the direct sum
χ = χ1⊕χ2 of two (one-dimensional) representations with generators G1

i , G2
i . Since

the spectra of the matrices G1
i and G2

i are disjoint (ci ̸= di) for each i = 1, 2, 3, the
degree of any bundle FΛ in the family F satisfies the relation

deg FΛ = deg F1 + deg F2,

where F1 and F2 are the (one-dimensional) subbundles corresponding to the sub-
representations χ1 and χ2, respectively, that is, are stabilized by the connection
∇Λ (this equality follows from the fact that in this case the set of exponents of the
connection ∇Λ is the union of the sets of exponents of its restrictions to F1 and F2).
Consequently, the inequalities deg F1 < deg FΛ/2 and deg F2 < deg FΛ/2, which
are necessary for the stability of the pair (FΛ,∇Λ), cannot both hold.

By using Theorem 3 one can also prove (we do not do this here) that the remain-
ing types of reducible two-dimensional representations with three generators can
be realized by a Fuchsian differential equation of second order with three singular
points.

We mention the interesting connection between the Riemann–Hilbert problem
for scalar Fuchsian equations and the Painlevé VI equation (PVI) — the non-linear
differential equation of second order

d2u

dt2
=

1
2

(
1
u

+
1

u− 1
+

1
u− t

)(
du

dt

)2

−
(

1
t

+
1

t− 1
+

1
u− t

)
du

dt

+
u(u− 1)(u− t)

t2(t− 1)2

(
α + β

t

u2
+ γ

t− 1
(u− 1)2

+ δ
t(t− 1)
(u− t)2

)
(18)

with respect to the unknown function u(t). Only poles can be movable singularities
of solutions of this equation (whose locations depend on the initial conditions). In
such a case the equation is said to have the Painlevé property.4 Painlevé himself [37]
initially studied the special case of equation (18) corresponding to the parameter

4Apparently, the idea of using this type of restriction on solutions first appeared in
Kovalevskaya’s paper [36] in a study of the problem of integration of a spinning top.
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values α = β = γ = 0, δ = 1/2. In the general form (18), the equation PVI was
first written by R. Fuchs [38] (a son of L. Fuchs) and was added by Gambier [39],
a student of Painlevé, to the list of equations now known as the Painlevé I–VI
equations. Among the non-linear differential equations of second order that have
the Painlevé property, the equations of this list are distinguished by the fact that
in the general case their solutions cannot be expressed in terms of elementary or
classical special functions (it is assumed that the right-hand sides of the equations

are rational in
du

dt
and meromorphic in u, t). R. Fuchs proposed two methods for

obtaining the equation PVI. The first method, on which we focus here, is related
to isomonodromic deformations of linear differential equations. The second, more
geometric, approach uses elliptic integrals.

Let us consider the four points t, 0, 1, ∞ (here t ∈ D(t∗), where D(t∗) ⊂
C \ {0, 1} is a disc of a small radius with centre at a point t∗) and the irreducible
SL(2, C)-representation

χ∗ : π1(C \ {t, 0, 1}) → SL(2, C)

generated by matrices G1, G2, G3 corresponding to the points t, 0, 1.
Depending on the location of the point t, there are two possible cases.
1) Every vector bundle FΛ in the family F constructed with respect to the given

four points and the representation χ∗ such that deg FΛ = 0 is holomorphically
trivial (this is the case for almost all values t ∈ D(t∗); see [10], Exercise 16.4).

2) Among the elements of the family F there exists a holomorphically non-trivial
bundle FΛ of degree zero.

It follows from the inequality (14) that γmax(χ∗) 6 2; therefore in the first case
the splitting types of holomorphically non-trivial bundles FΛ (of non-zero degree)
can only be (k, k− 1) or (k, k). The case (k + 1, k− 1) is impossible, since then the
bundle constructed with respect to the set of matrices Λ1 − kI, Λ2, Λ3, Λ4 has
degree zero, that is, is holomorphically trivial, but at the same time its splitting
type is equal to (1,−1). Consequently, γmax(χ∗) = 1 in the first case.

In the second case the splitting type of the holomorphically non-trivial bundle
of degree zero is equal to (1,−1), and γmax(χ∗) = 2 in this case.

Thus, in view of formula (15), for almost all values t ∈ D(t∗) the set of points
t, 0, 1, ∞ and the irreducible two-dimensional representation χ∗ are realized by
a Fuchsian differential equation of second order with one additional singularity.
We denote this singularity by u(t) (regarding it as a function of the parameter t).
It turns out that the function u(t) satisfies equation (18) for some values of the
constants α, β, γ, δ. (The equation PVI was obtained by R. Fuchs precisely as
a differential equation that is satisfied by the additional (fifth) singularity λ(t) of
some Fuchsian equation of second order with singular points 0, 1, t, ∞ and with
monodromy independent of the parameter t.) This interesting fact can be explained
by using isomonodromic deformations of Fuchsian systems.

We choose a value t = t0 for which there exists a Fuchsian system

dy

dz
=

(
B1

z − t0
+

B2

z
+

B3

z − 1

)
y
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with singular points t0, 0, 1, ∞ and with monodromy representation χ∗ such that
tr Bi = 0 and the matrix B∞ = −B1 − B2 − B3 is diagonal. We denote by ±θi/2
the eigenvalues of the matrices Bi.

It is not difficult to show that such a system exists. It suffices to produce
a set Λ = {Λ1, Λ2, Λ3, Λ∞} of admissible matrices such that tr(Λi + Ei) = 0,
i = 1, 2, 3,∞, and the eigenvalues of the matrix Λ∞ + E∞ are non-zero (then for
almost all values of t0 the corresponding bundle FΛ is holomorphically trivial, and
the logarithmic connection ∇Λ determines a Fuchsian system that has the required
properties). Since det Gi = 1, the sum ρ1

i + ρ2
i of eigenvalues of the matrix Ei is an

integer, equal to 0 or 1 in view of the condition 0 6 Re ρj
i < 1. In the first case it

remains to set Λi = diag(1,−1), and in the second Λi = diag(0,−1).
This system can be embedded in Schlesinger’s [40] isomonodromic family5

dy

dz
=

(
B1(t)
z − t

+
B2(t)

z
+

B3(t)
z − 1

)
y, Bi(t0) = Bi, (19)

of Fuchsian systems with singularities t, 0, 1,∞ which depends holomorphically on
the parameter t ∈ D(t0), where D(t0) is a disc of small radius with centre at the
point t0. Here B1(t)+B2(t)+B3(t) = −B∞ = diag(−θ∞/2, θ∞/2). Malgrange [41]
showed that the matrix functions Bi(t) can be extended as meromorphic functions
to the universal covering T of the space C \ {0, 1}. The set Θ ⊂ T of their poles is
called the Malgrange Θ-divisor.

We denote by B(z, t) = (bij(z, t)) the coefficient matrix of the family (19). Since
the upper-right element of the matrix B1(t)+B2(t)+B3(t) = −B∞ is equal to zero,
for each fixed t the same element of the matrix z(z−1)(z−t)B(z, t) is a first-degree
polynomial in z. We define ũ(t) as the unique root of this polynomial. Next we use
the following theorem in [42] (see also [10], Theorem 18.1).

Theorem 4. The function ũ(t) satisfies the equation PVI (18), where the constants
α, β, γ, δ are connected with the parameters θ1, θ2, θ3, θ∞ by the relations

α =
(θ∞ − 1)2

2
, β = −θ2

2

2
, γ =

θ2
3

2
, δ =

1− θ2
1

2
.

Let us consider the row vectors

q0 = (1, 0), q1(z, t) =
dq0

dz
+ q0B(z, t) = (b11, b12)

and the matrix composed from them,

Γ(z, t) =
(

q0

q1

)
=

(
1 0

b11 b12

)
,

which is meromorphically invertible on C×D(t∗), since det Γ(z, t) = b12 ̸≡ 0 by the
irreducibility of the representation χ∗. We define meromorphic functions b1(z, t)

5Isomonodromic means that the monodromy of systems of this family is independent of the
value of the parameter t. Moreover, the eigenvalues of the matrices Bi(t) are also independent
of t and coincide with the eigenvalues ±θi/2 of the matrices Bi(t

0) = Bi (see details in [10],
Lectures 13, 14).
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and b2(z, t) on C×D(t∗) so that the relation

q2 :=
dq1

dz
+ q1B(z, t) = (−b2,−b1)Γ(z, t)

holds. Then

dΓ
dz

=
d

dz

(
q0

q1

)
=

(
q1

q2

)
−

(
q0

q1

)
B(z, t) =

(
0 1
−b2 −b1

)
Γ− ΓB(z, t),

whence, (
0 1
−b2 −b1

)
=

dΓ
dz

Γ−1 + ΓBΓ−1.

The latter means that for each fixed t ∈ D(t0) the gauge transformation y′ =
Γ(z, t)y transforms the corresponding system of the family (19) into the system

dy′

dz
=

(
0 1
−b2 −b1

)
y′,

the first coordinate of whose solution is, as usual, a solution of the scalar equation

d2w

dz2
+ b1(z, t)

dw

dz
+ b2(z, t)w = 0.

This (Fuchsian) equation has singular points t, 0, 1, ∞ and monodromy χ∗, but it
also has an additional singularity u(t) — this is a zero of the function det Γ(z, t) =
b12(z, t), as follows from the construction of the functions b1(z, t), b2(z, t). By
Theorem 4 the function u(t) satisfies the equation PVI. (We remark that u(t) ̸=
t, 0, 1,∞ if t ∈ D(t∗) \ Θ̃, where Θ̃ is the countable set consisting of the values of t
such that the corresponding family F constructed with respect to the singularities
t, 0, 1,∞ and the representation χ∗ contains a non-trivial bundle of degree zero.)

Thus, the set of points t, 0, 1,∞ and the irreducible SL(2, C)-representation χ∗

are realized by a scalar Fuchsian equation with additional singularity u(t) which
(as a function of the parameter t ∈ D(t∗)) satisfies the equation PVI. The sin-
gular points of the function u(t) extended to T are poles, and the set Θ̃ ⊃ {t ∈
D(t∗) | u(t) = t, 0, 1, or ∞} is a countable set of parameter values for which the
Riemann–Hilbert problem under consideration is soluble without additional singu-
larities.

Without dwelling on this here, we point out that the arguments given above
can be extended to the general case of n + 3 singular points a1, . . . , an, an+1 = 0,
an+2 = 1, an+3 = ∞ and an irreducible SL(2, C)-representation. Then the addi-
tional singularities u1(a), . . . , un(a) of the scalar Fuchsian equation realizing them
(as functions of the parameter a = (a1, . . . , an)) satisfy a Garnier system [43]: a sys-
tem of non-linear partial differential equations of second order (coinciding for n = 1
with the equation PVI).
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Both the equations PVI and their multi-dimensional generalizations — Garnier
systems — can be written in Hamiltonian form. For example, using the second of
the aforementioned approaches of R. Fuchs, Painlevé [44] derived an equivalent
form of the equation PVI using the Weierstrass ℘-function

℘(z) =
1
z2

+
∑

(l,m)∈Z2\{0}

(
1

(z + l + mτ)2
− 1

(l + mτ)2

)

with periods 1 and τ (Im τ > 0).
After the change of coordinates

u =
℘(q)− e1

e2 − e1
, t =

e3 − e1

e2 − e1
,

where the ej = ℘(ωj) are the values of the ℘-function at the corresponding half-
periods ωj , (ω0, ω1, ω2, ω3) = (0, 1/2, (1+τ)/2, τ/2), equation (18) takes the form

d2q

dτ2
=

1
(2πi)2

3∑
j=0

αj℘
′(q + ωj)

in view of some classical formulae in the theory of elliptic functions. Here, α0 = α,
α1 = −β, α2 = γ, α3 = −δ + 1/2, and ℘′ is the derivative of the ℘-function.

It is easy to see that in this form the equation looks much more simple and
symmetric than in the classical form. This form is especially convenient for working
with the Hamiltonian form of the equation. In these variables the Hamiltonian of
the corresponding Hamiltonian system

2πi
dq

dτ
=

∂H

∂p
, 2πi

dp

dτ
= −∂H

∂q

has a simple and short form:

H(p, q, τ) =
p2

2
−

3∑
j=0

αj℘(q + ωj).

The system is non-autonomous in view of the dependence of the ℘-function in the
potential on the ‘time’ τ .

There also exist other Hamiltonian forms of the equation PVI. In general,
the Hamiltonian approach is widely used for studying the Painlevé equations, Gar-
nier systems, and isomonodromic deformations of Fuchsian systems (see, for exam-
ple, [45]). There are also interesting geometric interpretations of the equations PVI

(in particular, see [46]–[49]) which enable one to find explicitly their algebraic solu-
tions. An important consequence of this fact is the possibility of an effective solution
of the Riemann–Hilbert problem for certain two-dimensional representations with
four singular points (see [50]).
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§ 4. The Riemann–Hilbert problem on a compact Riemann surface

We pass to considering Pfaffian systems

dy = ωy, y ∈ Cp, (20)

of Fuchsian type on a compact Riemann surface X of genus g, where ω is a matrix
differential 1-form meromorphic on X whose singular points a1, . . . , an are poles of
first order. If we formulate the Riemann–Hilbert problem in a way analogous to
the case of the Riemann sphere, that is, pose the question of realization of a given
set of points a1, . . . , an ∈ X and a representation

χ : π1(X \ {a1, . . . , an}) → GL(p, C) (21)

by a Fuchsian system (20), then the answer proves to be negative in the general
case, as follows from the calculation of dimensions given below.

The fundamental group of the space X \ {a1, . . . , an} is a group with n + 2g
generators and one relation. (We recall that the group π1(X \ {a1, . . . , an}) is
generated by simple loops γ1, . . . , γn around the points a1, . . . , an, respectively,
together with loops α1, β1, . . . , αg, βg generating the group π1(X) and satisfying the
relation γ1 · · · γn = α1β1α

−1
1 β−1

1 · · ·αgβgα
−1
g β−1

g .) Consequently, the dimension of
the space

Ma = Hom
(
π1(X \ {a1, . . . , an}), GL(p, C)

)
/GL(p, C)

of conjugacy classes of representations (21) is equal to (n− 1 + 2g)p2 − (p2 − 1) =
(n− 2 + 2g)p2 + 1 (see § 1).

At the same time, according to one of the statements of the Riemann–Roch
theorem (see [29], Theorem 16.9, Remark 17.10), we have

dim H0(X,O−D)− dim H0(X, ΩD) = 1− g − deg D,

where
a) D : X → Z is a divisor on X of degree deg D =

∑
x∈X D(x) (we recall that

by definition, D(x) ̸= 0 for only finitely many points x on a compact Riemann
surface),

b) H0(X, O−D) is the space of functions f meromorphic on X such that ordx f >
D(x),

c) H0(X, ΩD) is the space of differential 1-forms ω meromorphic on X such that
ordx ω > −D(x).

In our case D(ai) = 1 for i = 1, . . . , n. Hence, deg D = n and dim H0(X, ΩD) =
n − 1 + g (we note that H0(X, O−D) = 0, since f ≡ 0 is the only function that
is holomorphic on the compact Riemann surface and vanishes at the points ai).
Therefore the dimension of the space M ∗

a of Fuchsian systems (20) with singular
points a1, . . . , an, considered up to the equivalence ω ∼ S−1ωS, S ∈ GL(p, C), is
equal to (n− 1 + g)p2 − (p2 − 1) = (n− 2 + g)p2 + 1.

Thus, the difference of the dimensions of the spaces Ma and M ∗
a is equal

to gp2. In the case g > 0 this difference turns out to be positive, and therefore for
constructing a system (20) with given singularities and monodromy it is necessary
to introduce additional singular points (at which the solutions do not ramify,
but the coefficient matrix has poles). More precisely, the problem of realization
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of the representation (21) is soluble in the class of Pfaffian systems with regular
singularities if additional singular points are allowed (Röhrl [26]).

A more detailed study of the orders of the poles of the coefficient form of
the system and of the number of additional singularities is the subject of one
of the possible generalizations of the classical Riemann–Hilbert problem to the
case of a compact Riemann surface of positive genus. It is known that every
two-dimensional irreducible representation can be realized by a system of the
form (20) with at most 3g − 1 additional singularities, and all the singular points
of this system are Fuchsian except for one (regular) singular point, which can
be chosen among the additional ones, and its Poincaré rank is at most 2g − 1
(Bolibrukh [30]).

An interesting problem is 2 to obtain estimates of the number of additional
singular points (and the Poincaré ranks of the system) in the case of representations
of arbitrary dimension.

We consider in more detail a different way of generalizing the classical Riemann–
Hilbert problem, proposed by Esnault and Viehweg [51]. We construct the family
F of holomorphic vector bundles FΛ over X with logarithmic connections ∇Λ hav-
ing given singularities and monodromy. (The construction is similar to that for the
Riemann sphere in § 2: first, a holomorphic vector bundle with a holomorphic con-
nection is constructed from the representation (21) over X \ {a1, . . . , an}, and then
this bundle is extended to the singular points a1, . . . , an; the extensions are of a local
nature, so they are realized in coordinate neighbourhoods of each point ai just as in
the case of the Riemann sphere.) As mentioned earlier (see § 2), a holomorphically
trivial bundle over the Riemann sphere is the same thing as a semistable bundle of
degree zero. Therefore, in the case of a compact Riemann surface of positive genus
it is natural to consider the following problem.

Is it possible to construct a semistable holomorphic vector bundle of degree zero
with a logarithmic connection that has given singularities and monodromy (that
is, does there exist a semistable bundle of degree zero among the elements of the
family F )?

The problem thus stated (like its classical analogue) has a negative solution in the
general case. A counterexample can again be obtained by using B-representations.
(In the case of a compact Riemann surface, a representation (21) is called
a B-representation if it is reducible and the Jordan forms of the monodromy
matrices Gi corresponding to circuits around the singularities ai consist of exactly
one block.) In a way similar to that for Theorem 2 it is proved that if
a B-representation (21) is realized by a pair (FΛ,∇Λ), where FΛ is a semistable
holomorphic vector bundle of degree zero, then the slope of the canonical extension
F 0 is an integer.

The representation (21) with three arbitrary singular points that is given by
the local monodromy matrices G1, G2, G3 in Example 1 and the identity matri-
ces H1, . . . ,H2g corresponding to generators of the fundamental group π1(X) is
a B-representation but does not have the property mentioned above; therefore, it
cannot be realized as the monodromy representation of a logarithmic connection in
a semistable vector bundle of degree zero.
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Esnault and Hertling [52] showed that in the case of a surface of positive genus it
is possible to construct counterexamples with only one singular point if the dimen-
sion p is greater than 4.

First of all it would be interesting to find out the following: 3 Is the commuta-
tivity of the representation (21) a sufficient condition for a positive solution of the
Riemann–Hilbert problem on a compact Riemann surface?

We now consider analogues of the sufficient conditions for a positive solution of
the classical Riemann–Hilbert problem.

1) If one of the generators G1, . . . , Gn of the representation (21) corresponding to
loops around the singularities a1, . . . , an is diagonalizable, then the Riemann–Hilbert
problem has a positive solution6 (Bolibrukh [30]).

2) If the representation (21) is two-dimensional (p = 2), then the Riemann–
Hilbert problem has a positive solution (Bolibrukh [30]).

3) If the representation (21) is irreducible, then the Riemann–Hilbert problem
has a positive solution (Esnault and Viehweg [51]).

4) 4 Suppose that the representation (21) is the monodromy of some scalar
Fuchsian differential equation of order p on X with singularities a1, . . . , an. Does
the Riemann–Hilbert problem have a positive solution in this case?

5) If among the elements of the family F of bundles with logarithmic connections
having given singularities a1, . . . , an and monodromy (21) there exists at least one
stable pair (FΛ,∇Λ), then the Riemann–Hilbert problem has a positive solution
(Bolibrukh [30]).

The fourth sufficient condition in the case of a compact Riemann surface X of
positive genus is stated as a question, the answer to which is so far not known. By
a Fuchsian differential equation of order p on X with singularities a1, . . . , an we
mean a set of local Fuchsian differential equations

dpy

dzp
+ b1(z)

dp−1y

dzp−1
+ · · ·+ bp(z)y = 0

(where z is a local coordinate on X) that are compatible with each other, that is,
the solutions of the equations coincide on intersections of charts.

As in the case of the Riemann sphere, in solving the problem of constructing
a Fuchsian differential equation on X with given singular points and monodromy,
there necessarily emerge additional singularities. Yoshida [53] showed that from
an irreducible representation (21) one can construct a Fuchsian equation with at
most

p(p− 1)
2

(n + 2g − 2) + (p− 1)(g − 1)

additional singularities. This estimate improves by g the estimate obtained earlier
by Ohtsuki [54]. (In the theorems of Ohtsuki and Yoshida one more condition is
imposed: that one of the monodromy matrices G1, . . . , Gn is diagonalizable. This
condition can be avoided by using the construction of the family F based on the
results of Levelt; see § 2.)

6We remark that here we have in mind the matrices corresponding to circuits around the
singularities rather than to traverses along generators of the group π1(X).
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The following natural question arises: 5 Is it possible to obtain a generalization
of the known estimates of the number of additional singularities of a Fuchsian
equation to the case of an arbitrary representation (21)?

§ 5. The Riemann–Hilbert problem
for systems with irregular singularities

In this section we present a generalization of the Riemann–Hilbert problem to
the case of a system (1) with irregular singular points a1, . . . , an ∈ C. This gener-
alization was proposed in [55].

Definition 7. The minimal Poincaré rank of the system (1) at a singular point ai

is the smallest of the Poincaré ranks of systems

dy′

dz
= B′(z)y′, B′(z) =

dΓ
dz

Γ−1 + ΓB(z)Γ−1,

that are meromorphically equivalent to the system (1) in a neighbourhood Oi of
the point ai.

For example, the minimal Poincaré rank of a regular singular point is equal to
zero, and the minimal Poincaré rank of an irregular singularity is positive.

In contrast to systems with regular singular points, the meromorphic equivalence
class of a system in a neighbourhood of an irregular singularity ai is not uniquely
determined by the local monodromy matrix Gi. Taking this into account, we can
state the generalized Riemann–Hilbert problem for systems with irregular singular
points as follows.

For each i = 1, . . . , n consider a local system

dy

dz
= Bi(z)y, Bi(z) =

Bi
−ri−1

(z − ai)ri+1
+ · · ·+

Bi
−1

z − ai
+ Bi

0 + · · · , (22)

in a neighbourhood Oi of the (irregular) singular point ai of minimal Poincaré rank
ri such that the monodromy matrix of this system coincides with the generator Gi

of the representation (2). Does there exist a global system (1) with singularities
a1, . . . , an of Poincaré ranks r1, . . . , rn and with given monodromy (2), that is mero-
morphically equivalent to the systems (22) in the corresponding neighbourhoods Oi?

We note that the classical Riemann–Hilbert problem can be stated in the same
form. In the Fuchsian case the additional (compared with the classical statement)
requirements of meromorphic equivalence of the desired system to the fixed set
of local systems are satisfied automatically. Indeed, in the neighbourhood Ok every
local Fuchsian system with monodromy Gk is meromorphically equivalent to the
system

dy

dz
=

Ek

z − ak
y, Ek =

1
2πi

log Gk.

Thus, in this case the systems (22) are uniquely determined by the monodromy
representation (2) and can be omitted.

We call the representation (2) together with the local systems (22) the generalized
monodromy data.
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The generalized monodromy data are said to be reducible if the representation (2)
and the local systems (22) are reducible. The reducibility of the latter means that
they can be reduced by meromorphic transformations to systems with coefficient
matrices of the same block-upper-triangular form. In the opposite case the gener-
alized monodromy data are said to be irreducible.

It is known (see, for example, [56]) that in a neighbourhood of an irregular
singularity a = ai of Poincaré rank r = ri the system (22) has a formal fundamental
matrix Ŷ (z) of the form

Ŷ (z) = F̂ (z)(z − a)ÊeQ(z), (23)

where:
a) F̂ (z) is a formal (matrix) Laurent series in powers of z−a with finite principal

part and with det F̂ (z) ̸≡ 0;
b) Q(z) = diag(Q1, . . . , QN ), where the diagonal matrices Qj(z) are polynomials

P j in (z−a)−1/s of degree at most rs without constant terms, and each block Qj(z)
is closed with respect to analytic continuation around the singular point z = a
(that is, the matrices Qj(a + ze2πi) and Qj(a + z) differ only by some permutation
of the diagonal elements);

c) Ê = (2πi)−1 log Ĝ, where Ĝ = diag(Ĝ1, . . . , ĜN ) is the formal monodromy
matrix (of block-diagonal form corresponding to the form of the matrix Q) deter-
mined by the relation

Ŷ (a + ze2πi) = Ŷ (a + z)Ĝ,

and the eigenvalues ρ of the matrix Ê satisfy the condition 0 6 Re ρ < 1.
It is also known that each diagonal element q(z) of the matrix Q(z) has the form

q(z) = −λ

r
(z − a)−r + o(|z − a|−r), z → a,

where λ is some eigenvalue of the matrix Bi
−ri−1 (here, to different q(z) there

correspond different eigenvalues of Bi
−ri−1).

Definition 8. The Katz index of a singular point z = a is the number (deg P )/s,
where P = diag(P 1, . . . , PN ). (We recall that Q(z) = P ((z − a)−1/s).)

Since the matrix Q(z) is a meromorphic invariant of the system (1), it follows
from the properties of this matrix that the Katz index does not exceed the mini-
mal Poincaré rank of the singularity. Moreover, the minimal Poincaré rank is the
smallest integer that is greater than or equal to the Katz index of the singularity.

Definition 9. An irregular singularity of the system (22) is said to be formally
unramified if the diagonal elements of the matrix Q(z) in the expansion (23) are
linear combinations of integer powers of z − a, that is, if s = 1. In the opposite
case, the singularity is said to be formally ramified. (It is also natural to say that
a Fuchsian singularity is unramified.)

In the case of a formally unramified singularity, each block Qj(z) of the matrix
Q(z) in the expansion (23) is a scalar matrix, and the matrix Ê is in Jordan form.
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For systems with irregular singular points, the method for solving the generalized
Riemann–Hilbert problem is similar to the method for solving the classical prob-
lem. After the construction, over the punctured Riemann sphere C \ {a1, . . . , an},
of a holomorphic vector bundle F of rank p with a holomorphic connection ∇
having a given monodromy (2), the pair (F,∇) is extended to a bundle F 0 with
a meromorphic connection ∇0, both defined on the whole Riemann sphere (and
called the canonical extension of the pair (F,∇)). To this end, in contrast to the
classical case (see § 2), instead of the gluing functions giα(z) = (z−ai)Ei which are
fundamental matrices of systems of the form (6), we must consider the functions
giα(z) = Yi(z) which are fundamental matrices of the corresponding systems (22),
and instead of the matrix differential 1-forms ωi = Ei dz/(z − ai) determining the
logarithmic connection ∇0 in neighbourhoods Oi we must consider the coefficient
forms ωi = Bi(z) dz = (dYi)Y −1

i of the systems (22).
Next we can construct the family F of extensions of the pair (F,∇) by replacing

the matrices giα(z) in the construction of the pair (F 0,∇0) by the matrices

g′iα(z) = Γi(z)giα(z), (24)

and the forms ωi by the forms

ω′i = (dΓi)Γ−1
i + ΓiωiΓ−1

i , (25)

where the y′ = Γi(z)y are all possible meromorphic transformations of the sys-
tem (22) that do not increase its Poincaré rank ri, i = 1, . . . , n.

As in the classical case, the generalized Riemann–Hilbert problem for systems
with irregular singular points is soluble if and only if at least one of the bundles of
the family F constructed from the generalized monodromy data (2), (22) is holo-
morphically trivial.

We now consider the subset E ⊂ F of F constructed by using meromorphic
transformations with the matrices Γi(z) in (24), (25) of a special form. For this we
shall need the following definition of an admissible matrix.

Definition 10. Consider a system (22) with an (irregular) singular point a = ai

and a formal fundamental matrix Ŷ (z) of the form (23). An admissible matrix for
this system is a diagonal integer-valued matrix Λi = diag(Λ1

i , . . . ,Λ
N
i ) divided into

blocks in the same way as the matrix Q(z) and such that:
a) the diagonal elements of the block Λj

i form a non-increasing sequence if the
block Qj(z) is not ramified;

b) Λj
i is a scalar matrix if the block Qj(z) is ramified.

We represent the matrix Ŷ (z) in the following form:

Ŷ (z) = F̂ (z)(z − a)−Λi(z − a)Λi(z − a)ÊeQ(z). (26)

An analogue of Sauvage’s lemma (see [3], Lemma 11.2) for formal matrix series
implies the existence of a matrix Γ′i(z) holomorphically invertible in Oi and such
that

Γ′i(z)F̂ (z)(z − a)−Λi = (z − a)DF̂0(z), (27)
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where D is a diagonal integer-valued matrix and F̂0(z) is an invertible formal
(matrix) Taylor series in z − a.

We now define the requisite meromorphic transformation for each irregular sin-
gular point a = ai by the matrix ΓΛi(z) = (z − a)−DΓ′i(z), which depends on the
admissible matrix Λi (since Γ′i(z) depends on Λi). It follows from (26), (27) that
the transformation y′ = ΓΛi(z)y transforms the system (22) into a system with the
formal fundamental matrix

Ŷ ′(z) = F̂0(z)(z − a)Λi(z − a)ÊeQ(z).

As shown in [55], such a transformation does not increase the Poincaré rank ri

of the system (22). Thus, the family E of extensions (FΛ,∇Λ) of the pair (F,∇)
to the whole Riemann sphere obtained by using all possible sets Λ = {Λ1, . . . ,Λn}
of admissible matrices for the singularities a1, . . . , an is a subset of the family F .

We note that the holomorphic triviality of one of the bundles of the family E
implies a positive solution of the Riemann–Hilbert problem (since E ⊂ F ), but
the absence of holomorphically trivial bundles in the family E does not yet imply
a negative solution of the problem.

If the Poincaré rank of one of the singularities of a global system (1) that is
required to be constructed from the generalized monodromy data (2), (22) is allowed
not to be minimal, then the problem has a positive solution. Namely, the following
analogue of Plemelj’s theorem holds (see [57]).

Theorem 5. The generalized monodromy data (2), (22) can be realized by a sys-
tem (1) that has minimal Poincaré ranks at all the singular points except possibly
for one of them, say a1, at which the Poincaré rank of the system does not exceed
the number r1 + (p− 1)(n + R− 1), where R =

∑n
i=1 ri.

Analogues of the sufficient conditions for a positive solution of the classical
Riemann–Hilbert problem are also known for the problem under consideration.
They are stated under the assumption that for at least one local system (22), its
singular point ai is formally unramified.

1) If the formal monodromy matrix Ĝi (corresponding to the formally unramified
singularity ai) is diagonalizable, then the Riemann–Hilbert problem has a positive
solution7 (see Theorem 6 below).

2) If the generalized monodromy data (2), (22) are two-dimensional (p = 2),
then the Riemann–Hilbert problem has a positive solution (Malek [55]).

3) If the generalized monodromy data (2), (22) are irreducible, then the Riemann–
Hilbert problem has a positive solution (Bolibrukh [55]).

4) 6 Let (2), (22) be the generalized monodromy data of some scalar linear dif-
ferential equation of order p with singularities a1, . . . , an. Does the Riemann–Hilbert
problem have a positive solution in this case?

5) If among the elements of the subfamily E ⊂ F there exists at least one
stable pair (FΛ,∇Λ), then the Riemann–Hilbert problem has a positive solution
(Bolibrukh [55]).

7If the singular point ai is Fuchsian, then we should require that the corresponding monodromy
matrix Gi be diagonalizable.
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We explain the fourth sufficient condition, stated in the form of a question. By
the generalized monodromy data of a scalar differential equation

dpy

dzp
+ b1(z)

dp−1y

dzp−1
+ · · ·+ bp(z)y = 0

of order p with singularities a1, . . . , an we mean its monodromy representation and
the set of local systems (22) whose Poincaré ranks are minimal and which are
meromorphically equivalent in neighbourhoods of the singular points to systems
with coefficient matrix of the form

0 1 0
. . . . . .

0 0 1
−bp . . . . . . −b1

 . (28)

The Katz index Ki of the scalar equation at a singular point ai can be defined as the
corresponding index of a system with coefficient matrix of the form (28). Thus,
the problem of realization of the generalized monodromy data of a scalar linear
differential equation stipulates the construction of a global system with singularities
ai of Poincaré ranks ri = −[−Ki], where [x] denotes the integer part of a number x.

Theorem 6. If for one of the local systems (22) its singular point ai is formally un-
ramified and the formal monodromy matrix Ĝi is diagonalizable, then the Riemann–
Hilbert problem for the generalized monodromy data (2), (22) has a positive solution.

Proof. Consider an arbitrary pair (FΛ,∇Λ) in the subfamily E of holomorphic
vector bundles with connections constructed from the generalized monodromy data
(2), (22) satisfying the hypothesis of the theorem. We can assume without loss of
generality that ai = a1.

As follows from the Birkhoff–Grothendieck theorem (see the explanations before
Theorem 1), the connection ∇Λ determines a global system (1) with singularities
a1, . . . , an and generalized monodromy data (2), (22). Furthermore, the Poincaré
ranks of the singular points a2, . . . , an of this system are equal to r2, . . . , rn, respec-
tively (that is, are minimal), and in a neighbourhood of the (formally unramified)
singular point a1 the system has a formal fundamental matrix Ŷ (z) of the form

Ŷ (z) = (z − a1)−K F̂0(z)(z − a1)Λ1(z − a1)Ê1eQ(z),

where K = diag(k1, . . . , kp), k1 > · · · > kp, is the splitting type of the bundle FΛ,
F̂0(z) is an invertible formal (matrix) Taylor series in z−a1, and Q(z) is a (diagonal)
matrix polynomial in 1/(z − a1) of degree r1.

Since the singular point a1 is formally unramified, the matrix Ê1 = (2πi)−1 log Ĝ1

is in Jordan form, that is, is diagonal (by the hypothesis of the theorem).
An analogue of Bolibrukh’s permutation lemma (see [10], Lemma 10.2) for formal

matrix series implies the existence of a holomorphic matrix Γ(z) invertible away
from a1 and such that

Γ(z)(z − a1)−K F̂0(z) = Ĥ0(z)(z − a1)K′ ,
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where Ĥ0(z) is an invertible formal (matrix) Taylor series in z − a1, and K ′ is the
diagonal matrix obtained from the matrix −K by some permutation of its diagonal
elements.

Thus, the global meromorphic transformation y′ = Γ(z)y transforms the sys-
tem under consideration into a system with the same singularities and generalized
monodromy data and does not change the Poincaré ranks of the singular points
a2, . . . , an (since the matrix Γ(z) is holomorphically invertible at these points). It
remains to show that the Poincaré rank of the transformed system at the singular
point a1 is equal to r1. This follows from the form of the formal fundamental matrix
Ŷ ′(z) of this system:

Ŷ ′(z) = Γ(z)Ŷ (z) = Ĥ0(z)(z − a1)DeQ(z),

where D = K ′ + Λ1 + Ê1 is a diagonal matrix; therefore, the coefficient matrix

B′(z) =
dŶ ′

dz
Ŷ ′−1 =

dĤ0

dz
Ĥ−1

0 + Ĥ0

(
D

z − a1
+

dQ

dz

)
Ĥ−1

0

of the transformed system has a pole of order r1 + 1 at a1 (recall that Q(z) is
a matrix polynomial in 1/(z − a1) of degree r1). The theorem is proved.

Apart from the classical Riemann–Hilbert problem, another special case of the
problem under consideration is the problem of the Birkhoff standard form, which
corresponds to two singular points (a1 = 0, a2 = ∞) —an irregular one and
a Fuchsian one. In this case the generalized monodromy data consist of the local
system

dy

dz
= B(z) y, B(z) =

B−r−1

zr+1
+ · · ·+ B−1

z
+ B0 + · · · , (29)

in a neighbourhood of the irregular singular point z = 0 of minimal Poincaré rank r
and the local Fuchsian system

dy

dz
=

E

z
y, E =

1
2πi

log G,

in a neighbourhood of infinity, where G is the monodromy matrix of the system (29).
The problem reduces to constructing a global system of the form

dy

dz
=

(
B′
−r−1

zr+1
+ · · ·+

B′
−1

z

)
y (30)

that is meromorphically equivalent to the system (29) in a neighbourhood of zero.
The system (30) is called a Birkhoff standard form of the system (29). The

question of whether every system can be transformed (by a meromorphic transfor-
mation) to a Birkhoff standard form remains open. It is known that the answer
to this question is affirmative in dimensions p 6 3, as well as in the case when the
system (29) is irreducible or its monodromy matrix is diagonalizable. Historically,
the latter two sufficient conditions had been obtained earlier (by Bolibrukh and
Birkhoff, respectively; see [10], Lecture 12, and Balser’s survey [58]), but in essence
they are special cases of the sufficient conditions 3), 1) for a positive solution of
the Riemann–Hilbert problem for systems with irregular singular points.
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Turrittin [59] showed that if all the eigenvalues of the matrix B−r−1 in (29) are
distinct, then the system can be transformed to a Birkhoff standard form. The
following generalization of Turrittin’s theorem is a consequence of Theorem 6.

Corollary 1. If for one of the local systems (22) all the eigenvalues of the matrix
Bi
−ri−1 are distinct, then the Riemann–Hilbert problem for the generalized mon-

odromy data (2), (22) has a positive solution.

Proof. By Theorem 6 it is sufficient to show that the singular point ai is formally
unramified and the formal monodromy matrix Ĝi is diagonalizable.

Consider the expansion of the form (23) for a formal fundamental matrix of
the corresponding system (22) in a neighbourhood of the singular point ai. If this
singularity were formally ramified, then the analytic continuation around it of some
diagonal element qj(z) of the matrix Q(z) would coincide with another diagonal
element qk(z) of this matrix, which is impossible, since

qj(z) = −λj

ri
(z − ai)−ri + o(|z − ai|−ri),

qk(z) = −λk

ri
(z − ai)−ri + o(|z − ai|−ri),

where λj ̸= λk are eigenvalues of the matrix Bi
−ri−1.

The diagonalizability of the matrix Ĝi = diag(Ĝ 1
i , . . . , ĜN

i ) follows from the fact
that the singular point z = ai is formally unramified and all the diagonal elements
of the matrix Q(z) = diag(Q1, . . . , QN ) are distinct (therefore each block Qj(z),
being a scalar matrix, consists of a single element, as does each block Ĝj

i ). The
corollary is proved.

We can also consider the generalized Riemann–Hilbert problem for scalar differ-
ential equations with irregular singular points. In this case the generalized mon-
odromy data are defined to be the representation (2) with generators G1, . . . , Gn

and the set of local equations

dpy

dzp
+ bi

1(z)
dp−1y

dzp−1
+ · · ·+ bi

p(z)y = 0 (31)

defined in neighbourhoods of the corresponding singularities ai, i = 1, . . . , n (the
local monodromy matrix of equation (31) coincides with Gi).

The construction of a global equation with given monodromy that is meromor-
phically equivalent in a neighbourhood of each singular point ai to the correspond-
ing local equation (31) is accompanied in the general case by the appearance of
additional singularities. (Two linear differential equations are said to be meromor-
phically equivalent in a neighbourhood of a singular point if the corresponding linear
systems with coefficient matrices of the form (28) are meromorphically equivalent.)
The number m of additional singularities satisfies the inequality

m 6
(K + n + 1)p(p− 1)

2
+ 1,

where K = −
∑n

i=1[−Ki] with Ki being the Katz index of the local equation (31)
(see [57]). Note that in the case when all the local equations (31) are Fuchsian,
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the problem becomes the classical Riemann–Hilbert problem for scalar Fuchsian
equations.

In conclusion of this section we mention a possible simultaneous generalization of
the classical Riemann–Hilbert problem to the case of Pfaffian systems with irregular
singularities on a compact Riemann surface X of genus g. For the generalized
monodromy data we consider the representation (21) with generators G1, . . . , Gn,
H1, . . . ,H2g and the local systems

dy = ωi y, y ∈ Cp, (32)

in neighbourhoods Oi of the (irregular) singular points ai of minimal Poincaré ranks
ri (here the local monodromy matrix of each system (32) coincides with the corre-
sponding Gi). From the generalized monodromy data (21), (32) we construct the
family F of holomorphic vector bundles with meromorphic connections having
the given singularities a1, . . . , an of Poincaré ranks r1, . . . , rn, respectively, and the
given generalized monodromy data (the construction of the family F is analogous
to the case of the Riemann sphere considered in this section). The problem can
now be stated as follows.

7 Is it possible to construct a semistable holomorphic vector bundle of degree
zero with a connection that has given singularities a1, . . . , an of Poincaré ranks
r1, . . . , rn and the generalized monodromy data (21), (32) (that is, does there exist
a semistable bundle of degree zero among the elements of the family F )?

§ 6. Some geometric properties of the monodromy map

In this section we give a geometric description of certain important notions and
constructions related to the Riemann–Hilbert problem. We remark that, although
we consider the most ‘classical’ case — Fuchsian systems and the classical Riemann–
Hilbert problem— all the constructions given below also have analogues for various
generalizations of the classical problem.

Recall that the monodromy map

µa : M ∗
a → Ma

introduced in § 1 is a map from the space M ∗
a of Fuchsian systems with singular

points a1, . . . , an into the space Ma of representations

χ : π1(C \ {a1, . . . , an}) → GL(p, C)

of a group with n generators and one relation. In the coordinate description:

M ∗
a

∼= O =
{

(B1, . . . , Bn)
∣∣ Bi ∈ Mat(p, C),

n∑
i=1

Bi = 0
}/

GL(p, C)yµa

yµa

Ma
∼=

{
(G1, . . . , Gn)

∣∣ Gi ∈ GL(p, C),
n∏

i=1

Gi = I
}/

GL(p, C) .

The question naturally arises of the existence, well-definedness, and properties
of the inverse map

RHa : Ma → M ∗
a .
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Such a map is called the Riemann–Hilbert map. It should be noted that in the
definition of the inverse map of µa there arises the difficulty that substantially
different systems may have the same monodromy. Nevertheless, it can be shown
that the space M ∗

a foliates naturally into leaves for each of which the map RHa is
well defined (although not on the entire space Ma; see details in [60]).

The next step is to pass from Fuchsian systems with n fixed singular points to
all possible Fuchsian systems with n arbitrary singularities. We extend the maps
considered above to the space of all Fuchsian systems. Let

P = Cn
∖ ⋃

i ̸=j

{ai = aj}

denote the space of all possible n-tuples of pairwise distinct points of C. Then

M ∗ = P × O

is the moduli space of Fuchsian systems. A point (a,B) ∈ M ∗ with a = (a1, . . . , an)
and B = (B1, . . . , Bn) represents the Fuchsian system

dy

dz
=

( n∑
i=1

Bi

z − ai

)
y,

n∑
i=1

Bi = 0.

It is also necessary to extend the representation space:

M = {(a, χ) | a ∈ P, χ ∈ Ma}.

We can now naturally define maps

µ : M ∗ → M , RH: M → M ∗

(a point of the base space P — a tuple a = (a1, . . . , an) of poles— goes to itself
under both maps, and the maps between fibres are realized by using µa and RHa).

In terms of the notions defined above, the classical Riemann–Hilbert problem is
stated as follows: given a point in the space M , find out whether there exists an
inverse image of it with respect to the map µ.

The maps µ and RH have a number of important and useful properties. Without
going into details, we mention some of them.

1. It is natural to regard the map µ, with respect to a number of its properties,
as a non-commutative generalization of the exponential map. For example, a set
of matrices with zero sum is taken to a set of matrices with product equal to
the identity matrix. Furthermore, the spectrum of each monodromy matrix Gk is
exactly equal to the spectrum of the exponent exp(2πiBk) of the corresponding
residue matrix Bk, and in the non-resonance case (when no two eigenvalues of the
matrix Bk differ by a positive integer) not only do the spectra of the matrices Gk

and exp(2πiBk) coincide, but so do the conjugacy classes of these matrices (see [10],
Corollary 6.1, Proposition 6.1).

2. The map µ is extremely transcendental. In the general case the set of residues
of the system and its monodromy can be expressed in terms of each other by ‘new’
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special functions. (We remark that this is also true for such a special case as the
equation PVI.)

3. The map µ is locally almost everywhere injective (in the sense of the afore-
mentioned foliation of the space M ∗

a into leaves).
4. Regarding the spaces M and M ∗ as bundles over the base space P , one can see

that the maps µ and RH are compatible with the natural connections in these bun-
dles: horizontal sections of one bundle are taken to horizontal sections of the other.
Whereas the local horizontal sections of the bundle M have trivial structure (over
each point they pass through one and the same representation), the structure of the
local horizontal sections of the bundle M ∗ is much more interesting: all the Fuch-
sian systems corresponding to a local horizontal section B(a) : D(a0) → M ∗, where
D(a0) ⊂ P is a ball of small radius with centre at a point a0, have one and the same
monodromy; one can verify that the exponents of these systems (the eigenvalues of
the matrices Bi(a)) also coincide. Thus, every horizontal section of the bundle M ∗

is none other than the set of solutions of some extended Riemann–Hilbert problem,8

parametrized by the location of the poles of the Fuchsian system. This object is
also known as an isomonodromic family. The set of all local horizontal sections
of the bundle M ∗ that are taken under the action of µ to some fixed horizontal
section of the bundle M , restricted to any fibre M ∗

a , gives the set of all solutions
of a classical Riemann–Hilbert problem.
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[40] L. Schlesinger, “Über die Lösungen gewisser Differentialgleichungen als Funktionen der
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