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Abstract—We study the Kolmogorov ε-entropy and the fractal dimension of global attractors
for autonomous and nonautonomous equations of mathematical physics. We prove upper esti-
mates for the ε-entropy and fractal dimension of the global attractors of nonlinear dissipative
wave equations.

Andrey Nikolaevich Kolmogorov discovered applications of notions of information theory in
the theory of dynamical systems. In particular, he introduced the notion of ε-entropy Hε(X) of a
compact set X in a Banach space E. The well-known paper of Kolmogorov and V.M. Tikhomirov [1]
contains many important estimates from above and from below for the ε-entropy Hε(X) of a number
of particular function sets X. For example, in the paper, the ε-entropy is studied for the set of real
functions {u(t), t ∈ R} that have bounded spectrum, and a variant of the Kotelnikov theorem is
proved (see also [2]).

In the last decades, global attractors A were intensively investigated for basic evolution equations
of mathematical physics, for which the initial Cauchy problem is studied deep enough. Recall that
a global attractor A is a compact set in the corresponding Banach or Hilbert space that obeys the
invariance property with respect to the corresponding dynamical system and that attracts bounded
sets of trajectories as time t→ +∞.

For certainty and brevity, in this paper we study the Kolmogorov ε-entropy and fractal dimension
of a global attractor A of the dissipative wave equation in a bounded domain Ω b Rn. We consider
in more detail the case of the sine-Gordon equation, where the global attractor admits a simple
structure.

For the case of an autonomous hyperbolic equation, where all coefficients and the exiting force
of the equation do not depend on time, we present in Section 2 an upper estimate for the ε-entropy
Hε(A) of its global attractor A and give an estimate from above for the fractal dimension dF (A)
of this attractor. Before this, we formulate the general theorem on the estimation of the ε-entropy
Hε(X) of an invariant set X of an abstract autonomous dynamical system.

Section 3 is devoted to the construction of the global attractor A for the nonautonomous wave
equation as well as for an abstract nonautonomous evolution equation. In Section 4, we prove
an upper estimate for the ε-entropy Hε(A) of the global attractor A of the nonautonomous wave
equation with, for example, exiting force g(x, t), x ∈ Ω, that depends on time t. We also present
in this section some general facts concerning abstract nonautonomous dynamical systems. In the
particular case where the exiting force g(x, t) of the wave equation is an almost periodic function of t,
the ε-entropy Hε(A) of the global attractor A for 0 < ε ≤ ε0 does not exceed the sum of three terms:
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first, Hβ(H(g)), where H(g) is the hull of the function g(x, t) in the space Cb(R;L2(Ω)), β > 0,
and we give an explicit expression for the value β = β(ε) (see Section 4); second, D log2 (1/ε), this
term is analogous to those encountered in the upper estimate of the ε-entropy of the attractor A
of an autonomous hyperbolic equation; third, Hε0(A), where ε0 is fixed. It should be noted
that the fractal dimension dF (A) of the global attractor A in the nonautonomous case can be
infinite. However, if the function g(x, t) is quasiperiodic in t, that is, g(x, t) = G(x, α1t, . . . , αkt),
where G(x, ω1, . . . , ωk) is a 2π-periodic function in each variable ωi, i = 1, . . . , k, then the fractal
dimension dF (A) is finite. In this case, dF (A) ≤ dF (H(g)) + D ≤ k + D and the ε-entropy

Hε(A) . k log2

(
1
ε

)
+ D log2

(
1
ε

)
. Here k is the number of rationally independent frequencies

{αi}, i = 1, . . . , k, of the quasiperiodic function g(x, t). In particular, for k = 0, we get an estimate
for the autonomous equation.

In conclusion, note that the Kolmogorov ε-entropy Hε(A) of the global attractor A is always
finite because the set A is compact in the corresponding function space. The behavior of the
quantity Hε(A) as a function of ε as ε→ 0+ describes the complexity of the global attractor A of
the dynamical system under consideration.

1. ε-ENTROPY AND FRACTAL DIMENSION OF COMPACT SETS

Let us formulate the definition of the Kolmogorov ε-entropy of a compact set X in a Banach
space E. Denote by Nε(X,E) = Nε(X) the minimum number of open balls in E of radius ε which
is necessary to cover X:

X ⊂
N⋃
i=1

B(xi, ε), Nε(X) = minN. (1)

Here B(xi, ε) = {x ∈ E | ‖x− xi‖E < ε} is the ball in E with center xi and radius ε. Since the
set X is compact, it is easy to see that Nε(X) < +∞ for any ε > 0.

Definition 1. The Kolmogorov ε-entropy of the set X in the space E is the number

Hε(X,E) := Hε(X) := log2Nε(X). (2)

For particular sets X, the problem is to study the asymptotic behavior of the function Hε(X)
with respect to ε as ε → 0+. This characteristic of a compact set was originally introduced by
Kolmogorov and was studied in the joint work with Tikhomirov (see [1]). In this paper, ε-entropy
of various classes of functions was investigated. Moreover, in the paper, an important notion of
the entropy dimension of a compact set was also defined. This dimension is now often called the
fractal dimension.

Definition 2. The (upper) fractal dimension of a compact set X in the space E is the number

dF (X,E) := dF (X) := lim
ε→0+

Hε(X)
log2 (1/ε)

. (3)

The fractal dimension of a compact set in an infinite-dimensional Banach space can be infinite.

However, if it is known that 0 < dF (X) < +∞, then Hε(X) ≈ dF (X) log2

(
1
ε

)
; therefore, in this

case, one needs Nε(X) ≈
(

1
ε

)dF (X)

points to approximate the set X with precision ε. In [1], sets

from various function spaces were considered for which Hε(X) ≈ D log2

(
1
ε

)a
, where a > 1, and

even Hε(X) ≈ D

(
1
ε

)a
. For such sets, evidently, their fractal dimension dF (X) = +∞; thus,

ε-entropy becomes an important characteristic of sets in infinite-dimensional spaces.
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There is another useful characteristic of a compact set, namely, the Hausdorff dimension

dH(X) = inf {d | µ(X, d) = 0} ,

where µ(X, d) = inf
∑
rdi and the infimum is taken over all the coverings of X by balls B(xi, ri) of

radii ri ≤ ε. It is easy to see that dH(X) ≤ dF (X). There exist many examples of sets such that
dH(X) = 0 but dF (X) = +∞. In the present paper, we shall only consider the fractal dimension
of a compact set, because this dimension is closely related to the ε-entropy of the set.

Note that the fractal dimension is very useful in the study of the structure of various “nons-
mooth” sets in finite-dimensional spaces, for example, self-similar sets or the fractals. The simplest
example of such a set is the Cantor set K on the segment [0, 1], for which dF (K) = log3 2 < 1. The
fractal dimension of a compact smooth manifold is equal to its usual dimension, i.e., is an integer.
However, the example of the Cantor set shows that the fractal dimension can be noninteger.

Another important application of the ε-entropy and the fractal dimension arises in the study of
global attractors of dynamical systems that describe the so-called deterministic chaos, which was
originally introduced in the works of Lorenz (see [3]). Global attractors will be discussed in more
detail in Section 3. Here we recall that the global attractor of the dynamical system is a compact
strictly invariant set A of the phase space E that attracts all the trajectories of this dynamical
system. For the Lorenz system, the phase space is R3. The Lorenz system is the three-mode
Galerkin approximation of the Boussinesq system describing the convection of heated fluid. The
system has the form 

dx

dt
= −σx+ σy,

dy

dt
= rx− y − xz,

dz

dt
= −bz + xy,

where σ, r, and b are positive parameters. The original Lorenz parameters are σ = 10, b = 8/3,
and r = 28. Recently, a new upper estimate for the fractal dimension of the Lorenz attractor was
proved:

dF (A) ≤ dL(A) = 2.401 . . . . (4)

Here, dL(A) denotes the Lyapunov dimension of the attractor A (this dimension will be discussed
below). The Lyapunov dimension is always less than the fractal dimension of a compact set. It is
interesting that there exists a simple explicit formula for the Lyapunov dimension of the Lorenz
attractor (see [4]). However, the question on nontrivial lower bounds for the fractal dimension of
the Lorenz attractor remains open. It is only known that dF (A) ≥ 2.

In the next section, we consider infinite-dimensional dynamical systems and their global attrac-
tors.

2. ε-ENTROPY AND FRACTAL DIMENSION OF GLOBAL ATTRACTORS OF
AUTONOMOUS EQUATIONS OF MATHEMATICAL PHYSICS

In this section, we study the ε-entropy and fractal dimension of global attractors of autonomous
dynamical systems in infinite-dimensional spaces. Such systems are generated by autonomous
evolution equations that can be written in the following abstract form:

∂ty = A(y), y|t=0 = y0(x) ∈ E, t ≥ 0. (5)

Here, y = y(x, t) is a solution of equation (5), x is the spatial variable, and t is time. The right-hand
side A(y) of equation (5) is a (nonlinear) operator, which depends on the function y and its partial
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derivatives in x. The function y0(x) in (5) determines the initial state of the dynamical system
described by this equation, that is, y(x, 0) = y0(x). The initial condition y0(x) belongs to some
infinite-dimensional Banach space E, called the phase space of problem (5). The phase space E
is chosen based on the physical sense of the problem. For instance, E can be a Sobolev space.
The value y0(x) can be taken from this space arbitrarily. We assume that, for any function y0(x)
from E, problem (5) has a unique solution y(x, t), t ≥ 0, in some function space, and y(· , t) ∈ E for
all t ≥ 0. Then problem (5) generates a family of nonlinear operators {S(t), t ≥ 0}, S(t) : E → E,
acting by the formula

y0(x) 7−→ S(t)y0(x) = y(x, t),

where y(x, t) is a solution of (5) with initial condition y0(x). The operators {S(t)} = {S(t), t ≥ 0}
form a semigroup; that is, S(0) = Id is the identity operator and S(t1 + t2) = S(t1) ◦ S(t2) for all
t1, t2 ≥ 0.

A vast variety of partial differential equations of mathematical physics of the form (5) and the
corresponding semigroups {S(t)} can be found in [5–7]. As an example of problem (5), we consider
the following nonlinear wave equation with dissipation:

∂2
t u+ γ∂tu = ∆u− f(u) + g(x), (6)
u|∂Ω = 0, x ∈ Ω b Rn. (7)

Here u = u(x, t) is an unknown scalar function of variables x and t. The equation is considered
in a bounded domain Ω of the space Rn. For simplicity, we assume that the boundary ∂Ω of the
domain Ω belongs to the class C1. The boundary condition (7) means that u(x, t) = 0 for all x ∈ ∂Ω

and t ≥ 0. In equation (6), the symbol ∆ denotes the Laplas operator in x: ∆u(x) =
n∑
i=1

∂2u

∂x2
i

(x).

Also, we use the notations ∂tu =
∂u

∂t
and ∂2

t u =
∂2u

∂t2
. The equation contains the dissipation term

γ∂tu, where γ is a positive number. The nonlinear function f(u) belongs to the class C1 and
satisfies the following inequalities:

F (u) ≥ −mu2 − Cm, F (u) =
u∫

0

f(v)dv, (8)

f(u)u ≥ γ1F (u)−mu2 − Cm, ∀u ∈ R, (9)

where m > 0, γ1 > 0, and the number m is sufficiently small (m < λ1, where λ1 is the first
eigenvalue of the operator −∆ with zero boundary conditions). We also assume that

|f ′(u)| ≤ C0(1 + |u|ρ), ∀u ∈ R, (10)

where ρ is an arbitrary positive number for n = 1, 2, and ρ < 2/(n−2) for n ≥ 3. Equation (6) with
boundary conditions (7) was considered in many works (see [5,7–11]). The limit case ρ = 2/(n−2)
was also studied under some extra conditions on the function f(u). Here we restrict ourselves to
the case ρ < 2/(n − 2).

Remark 1. Wave equations of the form (6) appears in many problems of mathematical physics.
For example, the model sine-Gordon equation is used in the study of the Josephson junction with
nonlinear function

f(u) = β sin(u). (11)

It easily follows that in this case conditions (8)–(10) are valid and ρ = 0.
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Another model equations of the form (6), encountered in relativistic quantum mechanics, has
the nonlinear term

f(u) = |u|ρu. (12)

In this case, F (u) = |u|ρ+2/(ρ + 2) and inequalities (8)–(10) take place with γ1 = 1/(ρ + 2)
(see [7, 8, 10]).

Inequality (10) implies that

|f(u)| ≤ C1(1 + |u|ρ+1), ∀u ∈ R. (13)

Note that, owing to the Sobolev embedding theorem, we have

H1
0 (Ω) ⊂ L2(ρ+1)(Ω). (14)

Indeed, for n = 1, 2, this embedding holds for any ρ ≥ 0; for n ≥ 3, we have 2(ρ+ 1) < 2n/(n− 2)
due to the assumptions imposed on ρ, while the number 2n/(n − 2) is the critical exponent in
the Sobolev theorem. Thus, if u(x) ∈ H1

0 (Ω), then by (13) and (14) we observe that f(u(x)) ∈
L2(Ω). If a function u(x, t) ∈ L∞(R+;H1

0 (Ω)) is given such that ∂tu(x, t) ∈ L∞(R+;L2(Ω)), then
∆u(x, t) ∈ L∞(R+;H−1(Ω)), where H−1(Ω) is the dual space for H1

0 (Ω). Furthermore, f(u(x, t)) ∈
L∞(R+;L2(Ω)). Consequently, −γ∂tu + ∆u − f(u) + g(x) ∈ L∞(R+;H−1(Ω)), and equation (6)
can be considered in the space D′(R+;H−1(Ω)) of distributions with values in H−1(Ω) (see [8]).
In particular, if a function u(x, t) is a solution of equation (6), then ∂2

t u(x, t) ∈ L∞(R+;H−1(Ω)).
Equation (6) and boundary conditions (7) are supplemented with the initial conditions

u|t=0 = u0(x), ∂tu|t=0 = p0(x). (15)

Proposition 1. If u0(x) ∈ H1
0 (Ω) and p0(x) ∈ L2(Ω), then, under conditions (8)–(10), problem

(6), (7), (15) has a unique solution u(x, t) ∈ Cb(R+;H1
0 (Ω)), ∂tu(x, t) ∈ Cb(R+;L2(Ω)) in the space

D′(R+;H−1(Ω)). Moreover, ∂2
t u(x, t) ∈ L∞(R+;H−1(Ω)).

The proof of this assertion can be found in [5–8].
Denote for brevity y(x, t) = (u(x, t), ∂tu(x, t)) = (u(t), p(t)) and y0(x) = (u0(x), p0(x)) = y(x, 0).

By E, we denote the space of vector functions y(x) = (u(x), p(x)), where u(x) ∈ H1
0 (Ω) and

p ∈ L2(Ω). The norm in this space is

‖y‖E =
(
‖∇u‖2L2(Ω) + ‖p‖2L2(Ω)

)1/2
.

Note that y(x, t) ∈ E for all t ≥ 0. Problem (6), (7), (15) is equivalent to the following system:{
∂tu = p,
∂tp = −γp+ ∆u− f(u) + g,

{
u|t=0 = u0,
p|t=0 = p0,

(16)

which is of the form (5) with A(y) = A(u, p) = (p,−γp+ ∆u− f(u) + g(x)).
If y0 ∈ E, then problem (16) has a unique solution y(t) ∈ Cb(R+;E). Thus, problem (16)

generates a semigroup {S(t)} acting in the space E.
Let us define the global attractor of a semigroup {S(t)} acting in a Banach space E.

Definition 3. A compact set A from E is said to be the global attractor of the semigroup
{S(t)} if

(1) the set A is strictly invariant with respect to {S(t)}, that is,

S(t)A = A for all t ≥ 0,
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KOLMOGOROV ε-ENTROPY OF GLOBAL ATTRACTORS 7

(2) the set A attracts the set S(t)B as t → +∞, where B is an arbitrary bounded (in the
space E) set of initial conditions {y0(x)} = B:

distE(S(t)B,A)→ 0, t→ +∞.

Here, distE(A1, A2) = sup
a1∈A1

inf
a2∈A2

‖a1 − a2‖E is the Hausdorff distance between the sets A1

and A2 in the space E.

Condition (2) can be reformulated as follows: for any ε > 0, there is a number T = T (ε,B) such
that S(t)B ⊆ Oε(A) for all t ≥ T , where Oε(A) denotes the ε-neighborhood of the set A in E.
It follows from Definition 3 that the global attractor A attracts all the solutions y(x, t) = S(t)y0(x)
as t → +∞ uniformly with respect to any bounded set B = {y0(x)} of initial data. It is easy to
see that the global attractor is unique, if it exists.

Consider the semigroup {S(t)} of equation (6), acting in the space E = H1
0 (Ω) × L2(Ω). The

theorem on the existence of the global attractor for a dissipative hyperbolic equation was originally
proved in the works of Babin and Vishik (see [5, 9]).

Proposition 2. The semigroup {S(t)} of the problem (6), (7), (15) has a global attractor
A b E.

For the proof, see [5, 7, 9].
Consider the dissipative sine-Gordon equation (β > 0)

∂2
t u+ γ∂tu = ∆u− β sin(u) + g(x), u|∂Ω = 0. (17)

The corresponding semigroup {S(t)} has a global attractor A. Let us formulate the conditions that
provide the trivial global attractor consisting of the unique stationary solution of equation (17).
We denote by λ1 the first eigenvalue of the operator −∆ with zero boundary conditions.

Proposition 3. Assume that the inequalities

β < λ1, γ2 > γ2
0 := 2

(
λ1 −

√
λ2

1 − β2

)
(18)

hold. Then equation (17) has a unique stationary solution ū(x) ∈ H1
0 (Ω); that is,

∆ū− β sin(ū) + g(x) = 0, ū|∂Ω = 0. (19)

Moreover, this solution is asymptotically stable; i.e., for any solution y(x, t) = (u(x, t), ∂tu(x, t)) =
S(t)y0 = S(t)(u0(x), p0(x)) of the wave equation, we have the inequality

‖y(· , t) − z(·)‖E ≤ C‖y0(·)− z(·)‖Ee−δt, (20)

where z(x) = (ū(x), 0), C > 0, δ > 0, and C and δ are independent of y0.

Proposition 3 is proved in [12]. Thus, in this case, the global attractor coincides with the
stationary point: A = {z}. For β > λ1, the stationary point becomes unstable. This leads to the
appearance of new stable and unstable stationary points connected by different heteroclinic orbits.
Then the global attractor is the union of all finite-dimensional unstable manifolds issuing from
all the stationary points of the equation. Such attractors are called regular attractors. Detailed
investigation of the general equation (6) is given in [5, 6]. This theory uses the method of the
Lyapunov function that can be explicitly constructed for equations (6) and (17).

Let us study the ε-entropy and fractal dimension of the global attractor of equation (6). We need
the general theorem from the theory of global attractors of evolution equations. Let a semigroup
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{S(t)} be given acting in a Hilbert space E. Consider a compact set X in E, X b E. Let the
set X be strictly invariant with respect to {S(t)}, that is, S(t)X = X for all t ≥ 0. (For example,
X = A, where A is the global attractor of the semigroup.) We assume that the semigroup {S(t)}
is uniformly quasidifferentiable on X in the following sense: for any t ≥ 0 and for every y ∈ X,
there is a linear bounded operator L(t, y) : E → E (quasidifferential) such that

‖S(t)y1 − S(t)y − L(t, y)(y1 − y)‖E ≤ γ(‖y1 − y‖E , t)‖y1 − y‖E (21)

for all y, y1 ∈ X and the function γ = γ(ξ, t) → 0+ as ξ → 0+ for every fixed t ≥ 0. We assume
that the linear operators L(t, y) are generated by the variational equation

∂tz = Ay(y(t))z, z|t=0 = z0 ∈ E, (22)

where y(t) = S(t)y0, y0 ∈ X, Ay(·) is the formal derivative of the operator A(·) with respect
to y, and the domain E1 of the operator Ay(y(t)) is dense in E. It is necessary that the linear
problem (22) is uniquely solvable for any z0 ∈ E for all y0 ∈ X. By our assumption, in (21), the
quasidifferentials L(t, y0)z0 = z(t), where z(t) is the solution of equation (22).

Let m ∈ N and let L : E1 → E be a linear (unbounded) operator. The following number is called
the m-trace of the operator L:

TrmL = sup
{ϕi}i=1,...,m

m∑
i=1

(Lϕi, ϕi), (23)

where the infimum is taken over all orthonormal (in E) families of vectors {ϕi}i=1,...,m belonging
to E1.

Definition 4. We set

q̃j = lim
t→+∞

sup
y0∈X

1
t

t∫
0

Trj(Ay(y(s)) ds, j = 1, 2, . . . , (24)

where y(t) = S(t)y0.

Theorem 1. Assume that the semigroup {S(t)} acting in E has a compact strictly invariant
set X and is uniformly quasidifferentiable on X. Let the inequalities

q̃j ≤ qj, j = 1, 2, 3, . . . ,

hold, where the numbers q̃j are defined in (24). Assume that the function qj is ∩-concave in j.
Let m be the smallest integer such that qm+1 < 0 (i.e., qm ≥ 0). Set

d = m+
qm

qm − qm+1
.

Then, for every δ > 0, there exist α ∈ (0, 1) and ε0 > 0 such that the inequality

Hε(X) ≤ (d+ δ) log2

(
ε0

αε

)
+ Hε0(X), ∀ε < ε0, (25)

holds for the ε-entropy Hε(X) of the set X. Furthermore, the set X has finite fractal dimension
and

dF (X) ≤ d. (26)
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The proof of this theorem is given in [13]. It is bases on the study of volume contraction
properties under the action of the quasidifferentials of the semigroup operators. Estimates for the
Hausdorff dimension of invariant sets, which are similar to (25), were proved in [5, 7, 14–16].

Remark 2. In the recent work [17], estimate (25) was proved for qj = q̃j without the assumption

that the function q̃j is concave in j. The number dL = m+
q̃m

q̃m − q̃m+1
is conventionally called the

Lyapunov dimension of the set X. In [7, 14], it was proved that dH(X) ≤ dL(X). In [17], it was
shown that dF (X) ≤ dL(X). A similar result was obtained in [18].

The books [5–7] contain many evolution equations of mathematical physics and mechanics, for
which the global attractors were constructed, and upper estimates were proved for the Hausdorff
and fractal dimension of these attractors.

In this paper, we apply Theorem 1 to study the ε-entropy of the global attractor of the dissipative
wave equation (6). For brevity, we only consider the case n = 3. We assume that the function
f(v) ∈ C2(R) and satisfies the conditions (8)–(10), where ρ < 2. Furthermore, we assume that

|f ′u(u1)− f ′u(u2)| ≤ C(|u1|2−κ + |u2|2−κ + 1)|u1 − u2|κ, 0 < κ ≤ 1. (27)

The Hilbert space E = H1
0 (Ω)× L2(Ω) is the phase space for this equation. We also denote by E1

the space E1 = H2(Ω)×H1
0 (Ω) with norm ‖y‖E1 =

(
‖u‖22 + ‖p‖21

)1/2.
We consider the semigroup {S(t)} in E generated by problem (16). By Proposition 2, this

semigroup has a global attractor A b E. In [5, 7], it was proved that the set A is bounded in E1:

‖w‖E1 ≤M, ∀w ∈ A,

where the constant M is independent of w. Then, by the Sobolev embedding theorem,

‖u(·)‖C(Ω) ≤M1, ∀w = (u(·), p(·)) = w(·) ∈ A. (28)

Theorem 2. For the ε-entropy of the global attractor A of problem (16), we have the estimate

Hε(A) ≤ C(M1)
η3

log2

(
ε0

αε

)
+ Hε0(A), ∀ε < ε0, (29)

where α and ε0 are some positive numbers and η = min {γ/4, λ1/(2γ)}. For the fractal dimension
of A, we have the estimate

dFA ≤
C(M1)
η3

. (30)

Proof. Following [7, 10], it is convenient to introduce the new variables

w = (u, v) = (u, p+ ηu), η = min {γ/4, λ1/(2γ)} .

Then (16) is equivalent to the system

∂tw = A(w) = Lw −G(w), w|t=0 = w0, (31)

where w0 ∈ E, G(w) = (0, f(u)− g(x)), and

L =

(
−ηI I

∆ + η(γ − η) −(γ − η)I

)
. (32)

Using condition (27), one can prove that the semigroup {S(t)} is uniformly quasidifferentiable on A,
and its quasidifferential L(t;w0)z0 = z(t) satisfies the variational equation of problem (31)

∂tz = Lz −Gw(w)z = Aw(w(t))z, z|t=0 = z0, z = (r, q), (33)

PROBLEMS OF INFORMATION TRANSMISSION Vol. 39 No. 1 2003
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where Gw(w)z = (0, f ′(u)r) (see, for example, [7]).
We estimate the trace of the operator Aw(w(t)). Consider the sum

j∑
i=1

(Aw(w(t))ζi, ζi)E . (34)

Here, ζi = (ri, qi) is the orthonormal family in E. Let us estimate the summands in (34):

(Aw(w(t))ζi, ζi)E = (Lζi, ζi)− (f ′(u)ri, qi)

≤ −(η/2)‖ζi‖2E + C0(M1)‖ri‖0‖qi‖0
≤ −η/4

(
‖ri‖21 + ‖qi‖20

)
+ (C2

0 (M1)/η)‖ri‖20. (35)

The parameter η is chosen so that the operator L is negative:

(Lζi, ζi) ≤ −η/2‖ζi‖2E .

We have also used the inequality

sup
{
‖f ′(u(·))‖Cb(Ω) : (u(·), p(·)) = w(·) ∈ A

}
≤ C0(M1) (36)

(see (28)). The system ζi is orthonormal in E; from (35), we get

j∑
i=1

(Aw(w(t), t)ζi, ζi)E ≤ −(η/4)j + (C2
0 (M1)/η)

j∑
i=1

‖ri‖20

≤ −(η/4)j + (C2
0 (M1)/η)

j∑
i=1

λ−1
i

≤ −(η/4)j + (C1(M1)/η)j1/3, (37)

where C1(M1) = c1C
2
0 (M1), and λi, i = 1, . . . , j, are the first j eigenvalues of the operator −∆u,

u|∂Ω = 0, written in nondecreasing order with their multiplicities. It is known that λi ≥ c0i
2/3;

therefore,
j∑
i=1

λ−1
i ≤ c1j1/3. In the second inequality of (37), we used the estimate

j∑
i=1

‖ri‖20 ≤
j∑
i=1

λ−1
i ,

proved in [7]. Hence,

TrjAw(w(t)) ≤ ϕ(j) = −(η/4)j + (C1(M1)/η)j1/3,

where the function qj = ϕ(j) is concave in j. Chose the minimal m such that qm+1 < 0. We set
d = m +

qm
qm − qm+1

. Since the function qj is concave, we have the inequality d < d∗, where d∗ is

the root of the equation

ϕ(d∗) = 0, d∗ =
8C1(M1)3/2

η3
=
C(M1)
η3

, where C(M1) = 8C1(M1)3/2.

Now it remains to take in (25) the number δ = d∗ − d and use Theorem 1. 4
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Consider the sine-Gordon equation with f(u) = β sin(u). It is clear that the constant C0(M1)
equals β in inequality (36), and therefore C1(M1) = c1β

2; that is, C(M1) = 8c3/21 β3 = cβ3. Thus,
estimates (29) and (30) for the sine-Gordon equation have the form

Hε(A) ≤ cβ
3

η3
log2

(
ε0

αε

)
+ Hε0(A), ∀ε < ε0,

dF (A) ≤ cβ
3

η3
,

where the constant c depends on Ω.

Remark 3. Using Theorem 1, estimates for the ε-entropy and fractal dimension of global attrac-
tors of various equations and systems of mathematical physics are obtained (see [5, 7, 13]).

3. GLOBAL ATTRACTORS OF NONAUTONOMOUS EQUATIONS

In this section, we study the global attractors of nonautonomous evolution equations of the form

∂ty = A(y, t), y|t=τ = yτ ∈ E, t ≥ τ. (38)

The nonlinear operator A(y, t) depends on the function y, its partial derivatives in x and also on
time t ∈ R. The initial condition yτ belonging to the Banach space E is posed at t = τ , where τ
is an arbitrary fixed number. We assume that, for any τ ∈ R and any yτ ∈ E, problem (38) has
a unique solution y(t) such that u(t) ∈ E for all t ≥ τ . We consider the two-parameter family of
nonlinear operators {U(t, τ)}, t ≥ τ , τ ∈ R, in E, constructed by the formula

U(t, τ)yτ = y(t), t ≥ τ, τ ∈ R, yτ ∈ E, (39)

where y(t) is a solution of (38) with initial data yτ ∈ E. The family of operators {U(t, τ)} is called
the process generated by problem (38). It has the following properties: (1) U(τ, τ) = Id for all
τ ∈ R; (2) U(t, s) ◦U(s, τ) = U(t, τ) for all t ≥ s ≥ τ , τ ∈ R. If the operators A(y, t) in (38) do not
depend on time, then the process {U(t, τ)} is the semigroup U(t, τ) = S(t − τ), whose properties
were considered in Section 2.

As the main example, we consider the nonautonomous wave equation with dissipation

∂2
t u+ γ∂tu = ∆u− f(u) + g0(x, t), u|∂Ω = 0, (40)

u|t=τ = uτ (x) ∈ H1
0 (Ω), ∂tu|t=τ = pτ (x) ∈ L2(Ω), (41)

which differs from equation (6) in the external force g0(x, t), which depends on time. We assume
that g0(x, t) ∈ Cb(R;L2(Ω)), i.e.,

sup
t∈R
‖g0(· , t)‖L2(Ω) ≤ C. (42)

All other terms in equations (40), (41) satisfy the conditions given for the autonomous equations
(6), (7). In particular, the nonlinear function f(u) satisfies inequalities (8)–(10). An analog of
Proposition 1 takes place.

Proposition 4. If uτ ∈ H1
0 (Ω) and pτ ∈ L2(Ω), then, under assumptions (8)–(10) and (42),

problem (40), (41) has a unique solution u(x, t) ∈ Cb(Rτ ;H1
0 (Ω)), ∂tu(x, t) ∈ Cb(Rτ ;L2(Ω)) in

the space D′(Rτ ;H−1(Ω)). Moreover, the second derivative ∂2
t u(x, t) ∈ L∞(Rτ ;H−1(Ω)). Here we

denote Rτ = [τ,+∞).
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The proof is given in [13] (see also [5–8]).
Similarly to the autonomous case, problem (40) can be written in the form (38), where y =

(u, p) = (u, ∂tu) and A(y, t) = A(u, p, t) = (p,−γp+ ∆u− f(u) + g0(x, t)). If yτ = (uτ , pτ ) ∈ E =
H1

0 (Ω) × L2(Ω), then the solution y(t) = (u(t), p(t)) = (u(t), ∂tu(t)) ∈ E for all t ≥ τ . Therefore,
problem (40) generates the process {U(t, τ)} acting in E by formula (39).

Let us define the global attractor A of the process {U(t, τ)}. We denote by B(E) the family of
all bounded sets in E. A set B0 ⊂ E is said to be absorbing for the process {U(t, τ)} if, for any
set B ∈ B(E), there is a number h = h(B) such that

U(t, τ)B ⊆ B0 for all t, τ ; t− τ ≥ h. (43)

A set P ⊂ E is said to be attracting for the process {U(t, τ)} if, for every ε > 0, the set Oε(P )
is absorbing for this process (here and below, Oε(M) denotes the ε-neighborhood of a set M in the
space E). The attracting property can be reformulated as follows: for any set B ∈ B(E),

sup
τ∈R

distE (U (τ + h, τ)B,P )→ 0, h→ +∞. (44)

The process {U(t, τ)} is called asymptotically compact if it has a compact attracting set.

Definition 5. A closed set A ⊂ E is said to be the global attractor of the process {U(t, τ)} if
it is attracting for the process {U(t, τ)} and satisfies the property of minimality: the set A belongs
to any closed attracting set of this process.

It is clear that a process has at most one global attractor. This notion was introduced in [19]
(see also [13,20–22]).

Proposition 5. If a process {U(t, τ)} is asymptotically compact, then it has the global attractor,
which is compact in E: A b E.

This proposition is proved in [13], where it is also established that

A = ω(P ) :=
⋂
h≥0

 ⋃
t−τ≥h

U(t, τ)P


E

, (45)

where P is an arbitrary compact attracting set of the process. In formula (45), the square brackets
[ · ]E mean the closure in the space E.

Consider the process {U(t, τ)} corresponding to the nonautonomous wave equation (40). In [13],
it is proved that, under condition (42), this process has a bounded in E absorbing set. The proof
uses the main energy a priori estimates of this problem. However, condition (42) is not sufficient for
constructing a compact in E attracting set. Therefore, supplementary conditions for the function
g0(x, t) are needed to construct the global attractor of this equation, which will be given below.

To describe the general structure of the global attractor of a process we need some additional
notions. A function y(s), s ∈ R, with values in E is called a complete trajectory of the process
{U(t, τ)} if

U(t, τ)y(τ) = y(t) for all t ≥ τ, τ ∈ R. (46)

A complete trajectory y(s) is called bounded if the set {y(s), s ∈ R} is bounded in E.

Definition 6. The kernel K of a process {U(t, τ)} is the family of all bounded complete trajec-
tories of this process:

K = {y(·) | y satisfies (46) and ‖y(s)‖E ≤ Cy, ∀s ∈ R} .
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The set
K(t) = {y(t) | y(·) ∈ K} ⊂ E, t ∈ R,

is called the kernel section at time moment t.

It is easy to verify the following property.

Proposition 6. If a process {U(t, τ)} has the global attractor A, then all kernel sections belong
to A: ⋃

t∈R
K(t) ⊆ A. (47)

Note that, in the general case, inclusion (47) is strict, i.e., there are points of the global at-
tractor A that are not values of any bounded complete trajectory of the original equation (38).
However, below we will show that such points are values of bounded complete trajectories of equa-
tions that are “contiguous” to the initial equation. To describe this “contiguous” equations, we
introduce a notion of a time symbol of the considered equation. We assume that all terms of equa-
tion (38) that explicitly depend on time t can be written as a function σ(t), t ∈ R, with values in
a Banach space Ψ. We rewrite equation (38) in the following form:

∂tu = Aσ(t)(u), y|t=τ = yτ ∈ E, t ≥ τ. (48)

The function σ(t) is called the time symbol of the equation. For example, in the nonautonomous
wave equation (40), the symbol is the function g0(· , t), σ(t) = g0(· , t) with values in the space
L2(Ω) = Ψ. For simplicity, we assume that σ(t) ∈ C(R; Ψ).

The symbol of the initial equation (38) is denoted by σ0(t). Together with this equation,
which has symbol σ0(t), we also consider equations (48) with symbols σ(t) = σ0(t + h) for any
h ∈ R. Moreover, we consider also equations whose symbols σ(t) are limits of sequences of the form
σ0(t + hn) as n → ∞. The limit is taken in the space C(R; Ψ) in the topology C loc(R; Ψ) defined
as follows. By definition, a sequence of functions {ξn(t)} from C(R; Ψ) converges to the function
ξ(t) as n→∞ in the topology C loc(R; Ψ) if, for any fixed M > 0,

max
t∈[−M,M ]

‖ξn(t)− ξ(t)‖Ψ → 0, n→∞.

This local uniform convergence topology in the space C(R; Ψ) is metrizable, and the corresponding
metric space is complete (see [13]).

Definition 7. The set

H(σ0) = [{σ0(t+ h) | h ∈ R}]Cloc(R;Ψ) (49)

is called the hull of the function σ0(t) in C loc(R; Ψ). Here, as usual, [ · ]Cloc(R;Ψ) denotes the closure
in the space C loc(R; Ψ).

Consider the family of equations (48) with symbols σ(t) belonging to the hull H(σ0) of the
symbol σ0(t) of the original equation (38). We assume that σ0(t) is a translation-compact function
in C loc(R; Ψ).

Definition 8. A function σ0(t) ∈ C loc(R; Ψ) is said to be translation-compact in the space
C loc(R; Ψ) if its hull H(σ0) is compact in C loc(R; Ψ).

Consider some examples of translation-compact functions.

Example 1. Let the function σ0(t) be almost periodic with values in the Banach space Ψ. By the
definition, this means that its hullH(σ0) is compact in the space Cb(R; Ψ) with uniform convergence
topology on the entire time axis R (see [23]). Clearly, the topology Cb(R; Ψ) is stronger than the
topology C loc(R; Ψ). Thus, if a set H(σ0) is compact in Cb(R; Ψ), then it is also compact in
C loc(R; Ψ); i.e., the function σ0(t) is translation compact in C loc(R; Ψ).
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Example 2. Quasiperiodic functions are important particular cases of almost periodic functions
with values in Ψ. A function σ0(t) ∈ C loc(R; Ψ) is called quasiperiodic if it has the form

σ0(t) = φ (α1t, α2t, . . . , αkt) = φ (αt) , φ (αt) ∈ Ψ, ∀t ∈ R, (50)

where the function φ (ω) = φ (ω1, ω2, . . . , ωk) is continuous and 2π-periodic with respect to each
variable ωi ∈ R:

φ (ω1, . . . , ωi + 2π, . . . , ωk) = φ (ω1, . . . , ωi + 2π, . . . , ωk) , i = 1, . . . , k.

For k = 1, we get periodic functions. Let Tk = [Rmod 2π]k denote the k-dimensional torus. Then
φ(ω) ∈ C(Tk; Ψ). We assume that the components of the vector α = (α1, α2, . . . , αk) in (50) are
rationally independent numbers (otherwise we can reduce the number of independent arguments
ωi in the representation (50)). It is easy to show that the hull of the function σ0(t) in Cb(R; Ψ)
consists of the functions {

φ(αt+ ω1) | ω1 ∈ Tk
}

= H(σ0). (51)

Consequently, the hull H(σ0) is a continuous image of the k-dimensional torus Tk. In particular,
if the function φ(ω) is smooth, then the fractal dimension of the set H(σ0) does not exceeds k, i.e.,

dF (H(σ0)) ≤ dF
(
Tk
)

= k, (52)

and is equal to k in the generic case (inequality in (52) can be strict).

We now present a simple example of a translation-compact function in C loc(R; Ψ), which is not
almost periodic or quasiperiodic.

Example 3. Assume that the function σ0(t) ∈ Cb(R; Ψ) has the following property: σ0(t)→ σ+

(t → +∞) and σ0(t) → σ− (t → −∞), where σ+, σ− ∈ Ψ, σ+ 6= σ−. Then the function σ0,
evidently, is not almost periodic, while the function σ0(s) is translation-compact in C loc(R; Ψ) and
its hull is H(σ0) = {σ0(s + h) | h ∈ R} ∪ {σ−(t), σ+(t)}, where σ±(t) ≡ σ± for all t ∈ R. Other
examples of translation-compact functions are given in [13].

Now consider the family of equations (48) with symbols σ(t) ∈ H(σ0), where σ0(t) is a trans-
lation compact function in C loc(R; Ψ). We assume that, for any symbol σ ∈ H(σ0), the Cauchy
problem (48) is uniquely solvable for each τ ∈ R and arbitrary initial data yτ ∈ E. Therefore, we
have a family of processes {Uσ(t, τ)}, σ ∈ H(σ0), acting in the space E. The family of processes
{Uσ(t, τ)}, σ ∈ H(σ0), is called (E ×H(σ0), E)-continuous if, for any t and τ, t ≥ τ , the mapping
(y, σ) 7→ Uσ(t, τ)y from E ×H(σ0) into E is continuous.

Let us formulate the main theorem on the structure of the global attractor of equation (38)
with translation-compact symbol σ0(t). The process corresponding to this symbol is denoted by
{Uσ0(t, τ)}.

Theorem 3. Assume that the function σ0(t) is translation compact in C loc(R; Ψ). Let the pro-
cess {Uσ0(t, τ)} be asymptotically compact, and let the corresponding family of processes {Uσ(t, τ)},
σ ∈ H(σ0), be (E ×H(σ0), E)-continuous. Then the process {Uσ0(t, τ)} has the global attractor
A b E, and the identity

A =
⋃

σ∈H(σ0)

Kσ(0) =
⋃

σ∈H(σ0)

Kσ(t) (53)

holds, where Kσ is the kernel of the process {Uσ(t, τ)} with symbol σ ∈ H(σ0). Here, t is an
arbitrary fixed number. The kernel Kσ is nonempty for every symbol σ ∈ H(σ0).

A detailed proof of Theorem 3 can be found in [13,22].
We apply Theorem 3 to the wave equation (40) and obtain the following result.
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Proposition 7. Let the external force g0(· , t) be a translation-compact function in the space
C loc(R;L2(Ω)). Then the process {Ug0(t, τ)} of problem (40), (41) has the global attractor A b
E = H1

0 (Ω)× L2(Ω) and, moreover,

A =
⋃

g∈H(g0)

Kg(0), (54)

where Kg is the kernel of the wave equation with external force g(· , t) ∈ H(g0).

The proof is given in [13]. For the construction of this global attractor, the fact is used that
the process {Ug0(t, τ)} can be represented as a sum of two terms, namely, a compact term and
exponentially vanishing one. This property is due to the presence of the dissipative term γ∂tu in
the equation and to the translation compactness of the function g0(· , t).

Consider the nonautonomous sine-Gordon equation

∂2
t u+ γ∂tu = ∆u− β sin(u) + g0(x, t), u|∂Ω = 0, (55)

which is a particular case of equation (40) and, therefore, has the global attractor A under the as-
sumption that g0(· , t) is translation-compact in C loc(R;L2(Ω)). Let us formulate a nonautonomous
analog of Proposition 3.

Proposition 8. Let g0(· , t) be an almost periodic function with values in L2(Ω). Furthermore,
let β < λ1 and γ > γ0 (see (18)). Then equation (55) has a unique almost periodic solution u0(x, t),
t ∈ R:

‖u0(· , t)‖H1
0 (Ω) ≤ C, ‖∂tu0(· , t)‖L2(Ω) ≤ C, ∀t ∈ R,

which is asymptotically stable; i.e., for every solution y(t) = (u(t), ∂tu(t)) = Ug0(t, τ)yτ of equa-
tion (55), we have the inequality

‖y(t)− z(t)‖E ≤ C‖yτ − z(τ)‖Ee−δ(t−τ), (56)

where z(t) = (u0(t), ∂tu0(t)), C > 0, δ > 0, and the constants C and δ are independent of yτ .
If the function g0(x, t) = φ(x, α1t, α2t, . . . , αkt) is quasiperiodic, then the solution u0(x, t) is

also quasiperiodic with the same collection of rationally independent frequencies, that is, u0(x, t) =
Φ(x, α1t, α2t, . . . , αkt), where Φ(x,ω) ∈ C(Tk;E) is a periodic function.

For the proof, see [12].

Corollary 1. Under the assumptions of Proposition 8, the global attractor

A = [{z(t) | t ∈ R}]E , where z(t) = (u0(· , t), ∂tu0(· , t)). (57)

Proof. It follows from (56) that the set defined on the right-hand side of (57) is attracting for
the process {Ug0(t, τ)}. Furthermore, it is easy to see that this set belongs to any closed attracting
set, i.e., is minimal; therefore, we get (57). 4

Corollary 2. If g0(x, t) = φ (x, α1t, α2t, . . . , αkt) is a quasiperiodic Lipschitz-continuous func-
tion, then we have the following estimate for the fractal dimension dF (A) of the global attractor A:

dF (A) = dF (H(g0)) ≤ k. (58)

For its ε-entropy, we have the inequality

Hε(A) . k log
(

1
ε

)
. (59)

If g0(x, t) is an almost periodic function with infinite number of rationally independent frequencies,
then dF (A) = +∞.

In the next section we study the ε-entropy of the global attractor A of nonautonomous equa-
tion (38) with a generic translation compact symbol σ0(t). These results will be applied to equa-
tions (40) and (55).
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4. ε-ENTROPY OF GLOBAL ATTRACTORS OF NONAUTONOMOUS EQUATIONS

We study the family of equations (48) with σ(t) ∈ H(σ0). We assume that the original symbol
σ0(t) is a translation-compact function in the space C loc(R; Ψ). Consider the corresponding family
of processes {Uσ(t, τ)}, σ ∈ H(σ0), acting in E. We assume that the conditions of Theorem 3 hold.
Then the process {Uσ0(t, τ)} has a global attractor A, which is of the form (53).

The problem is to study the ε-entropy Hε(A) = Hε(A, E) of the global attractor A in the
space E. We assume that the behavior of the ε-entropy of the set Π0,lH(σ0) in the space C([0, l]; Ψ)
is known. Here, Π0,l denotes the restriction operator onto the segment [0, l].

Let us formulate some additional necessary conditions for the process {Uσ0(t, τ)}. First of all,
we have to generalize the property of quasidifferentiability introduced for semigroups in Section 2.
Let {U(t, τ)} be a process in E. The space E is assumed to be Hilbert. Consider the kernel K of
this process. The definition of a kernel of a process implies the invariance property of the kernel
sections:

U(t, τ)K(t) = K(τ), ∀t ≥ τ, τ ∈ R. (60)

Definition 9. A process {U(t, τ)} in E is called uniformly quasidifferentiable on K if there
exists a family of linear bounded operators {L(t, τ, y)}, where y ∈ K(τ), t ≥ τ , τ ∈ R, such that

‖U(t, τ)y1 − U(t, τ)y − L(t, τ, y)(y1 − y)‖E ≤ γ(‖y1 − y‖E , t− τ)‖y1 − y‖E (61)

for all y, y1 ∈ K, where the function γ = γ(ξ, s)→ 0+ as ξ → 0+ for each fixed s ≥ 0.

We assume that the process {Uσ0(t, τ)} is uniformly quasidifferentiable on the kernel Kσ0 and
its quasidifferentials are generated by the variational equation

∂tz = Aσ0y(y(t))z, z|t=τ = zτ ∈ E, (62)

where y(t) = Uσ0(t, τ)yτ , yτ ∈ Kσ0(τ), that is, L(t, τ, yτ )zτ = z(t), where z(t) is a solution of
problem (62). It is assumed that this Cauchy problem is uniquely solvable for all yτ ∈ Kσ0(τ) and
for every zτ ∈ E. Similarly to (24), we introduce the numbers

q̃j = lim
t→+∞

sup
τ∈R

sup
y0∈K(τ)

1
t

t∫
0

Trj(Aσ0y(y(s))) ds, (63)

where y(t) = Uσ0(t, τ)yτ , and the trace Trj(L) of a linear operator L is defined in (23).
We also assume the validity of the following Lipschitz condition for the family of processes

{Uσ(t, τ)}, σ ∈ H(σ0):

‖Uσ1(h, 0)y−Uσ2(h, 0)y‖E ≤ C(h)‖σ1−σ2‖C([0,h];Ψ), ∀σ1, σ2 ∈ H(σ0), y ∈ A, h ≥ 0. (64)

Let us formulate the main result.

Theorem 4. Let the assumptions of Theorem 3 be valid. Assume that the process {Uσ0(t, τ)}
is uniformly quasidifferentiable on Kσ0 , its quasidifferentials are generated by the variational equa-
tion (62), and the numbers q̃j (see (63)) satisfy the inequalities

q̃j ≤ qj, j = 1, 2, 3, . . . . (65)

Assume also that the Lipschitz condition (64) holds for the family of processes {Uσ(t, τ)}, σ ∈
H(σ0), and the function qj is concave in j. Let m be the smallest number such that qm+1 < 0 (i.e.,
qm ≥ 0). Denote

d = m+ qm/(qm − qm+1).
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Then, for every δ > 0, there exist numbers α ∈ (0, 1), ε0 > 0, h ≥ 0, such that

Hε(A) ≤ (d+ δ) log2

(
ε0

αε

)
+ Hε0(A) + H εα

4C(h)

(
Π0,h log1/α( ε0αε)

H(σ0)
)
, ∀ε < ε0. (66)

The function C(h) is taken from the Lipschitz condition (64).

The proof is given in [13]. We now formulate some important corollaries.

Corollary 3. Assume that the function σ0(t) is almost periodic, that is, the hull H(σ0) is com-
pact in Cb(R; Ψ). Then inequality (66) admits a simpler form:

Hε(A) ≤ (d+ δ) log2

(
ε0

αε

)
+ Hε0(A) + H εα

4C(h)
(H(σ0)) , ∀ε < ε0, (67)

where Hε (H(σ0)) is the ε-entropy of the hull H(σ0) in the space Cb(R; Ψ).

Indeed, the ε-entropy of Π0,lH(σ0) in C([0, l]; Ψ) does not exceed the ε-entropy of the set H(σ0)
in the space Cb(R; Ψ). Estimate (67) shows that, for a generic almost periodic function σ0(t) having
infinitely many rationally independent frequencies, the main contribution to the estimate for the

ε-entropy of the global attractor A is made by the ε/L-entropy of the hullH(σ0), where L =
4C(h)
α

.

However, if the function σ0(t) has a finite number of frequencies, i.e., is quasiperiodic, then the

contribution of this quantity is comparable with the contribution of the term d log2

(
ε0

αε

)
. This

leads to the finite dimensionality of the global attractor.

Corollary 4. Let, in the assumptions of Theorem 4, the function σ0(t) be quasiperiodic of the
form σ0(t) = φ(α1t, α2t, . . . , αkt) = φ(αt), where φ(ω1, ω2, . . . , ωk) = φ(ω) ∈ CLip(Tk; Ψ). Then
estimate (67) becomes

Hε(A) ≤ (d+ δ) log2

(
ε0

αε

)
+ Hε0(A) + k log2

(
8C(h)
Kαε

)
, ∀ε < ε0, (68)

where K is the Lipschitz constant from the inequality

‖φ(ω1)− φ(ω2)‖Ψ ≤ K‖ω1 − ω2‖Rk , ∀ω1,ω2 ∈ Tk.

Moreover,
dF (A) ≤ d+ k. (69)

Proof. If σ1, σ2 ∈ H(σ0), then σi(t) = φ(αt + ωi) for some ωi ∈ Tk, i = 1, 2 (see (51)).
Therefore,

‖σ1 − σ2‖Cb(R;Ψ) ≡ sup
t∈R
‖σ1(t)− σ2(t)‖Ψ

= sup
t∈R
‖φ(αt+ ω1)− φ(αt+ ω2)‖Ψ ≤ L|ω1 − ω2|Tk .

Hence,
Nε(H(σ0)) ≤ NLε(Tk).

It is known that the torus Tk with Euclidean metrics can be covered by at most
(

2
ρ

)k
balls of

radius ρ < 1 (see [24]). Thus, for ρ = Lε, we obtain

Nε(H(σ0)) ≤
(

2
Lε

)k
,
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Hε(H(σ0)) ≤ k log2

(
2
Lε

)
, ∀ε < L−1.

Substituting ε =
εα

4C(h)
into (67), we get (68). It remains to note that inequality (68) implies the

following estimate:

dF (A) ≡ lim
ε→0+

Hε(A)
log2 (1/ε)

≤ d+ k + δ, ∀δ > 0.

Consequently, inequality (69) also holds. 4
Recall that, in the autonomous case with k = 0, estimate (26) is an analog of estimate (69) with

X = A: dF (A) ≤ d. In the nonautonomous case, when k 6= 0, estimate (69) with the number k of
rationally independent frequencies of the function σ0(t) added to d is valid.

Consider two important characteristics of a compact set X in the space E introduced in [1].
The number

df(X,E) = df(X) = lim
ε→0+

log2 (Hε(X))
log2 log2 (1/ε)

(70)

is called the functional dimension of the set X in E, and the number

q(X,E) = q(X) = lim
ε→0+

log2 (Hε(X))
log2 (1/ε)

(71)

is called its metric order in E. It is easy to see that df(X) = 1 and q(X) = 0 if dF (X) < +∞. Thus,
the values df(X) and q(X) characterize infinite dimensional sets. Some examples of calculation of
these values are given in [1] (see also [25]).

Corollary 5. Let σ0(t) be an almost periodic function. Then

df(A) ≤ df (H(σ0), Cb(R; Ψ)) , (72)
q(A) ≤ q (H(σ0), Cb(R; Ψ)) . (73)

Let us now briefly explain the application of Theorem 4 and Corollaries 3–5 to the dissipative
wave equation (40). In Section 3, it was proved that this equation has the global attractor A in
E = H1

0 (Ω)× L2(Ω) of the form (54).
Changing the variables w = (u, v) = (u, p+ ηu), we rewrite equation (40) as

∂tw = A(w) = Lw −Gg0(t)(w), w|t=τ = wτ , (74)

where the operator L is defined by formula (32) and Gg0(t)(w) = (0, f(u) − g0(x, t)). Consider the
case n = 3. The function f(u) satisfies (27). The variational equation for (74) has the form

∂tz = Lz −Gg0w(w(t))z = Ag0w(w(t))z, z|t=τ = zτ , z = (r, q), (75)

where Gg0w(w(t))z = (0, f ′u(u)r). Similarly to the autonomous case (see [5]), we prove that the
process {Ug0(t, τ)} of problem (74) is uniformly quasidifferentiable, and its quasidifferentials are
generated by system (75). Using the reasoning from the proof of Theorem 2, we get the following
estimate for the numbers q̃j:

q̃j ≤ qj = −(η/4)j + (C2(M1)/η)j1/3 (76)

(see (34)–(37)), where M1 is due to the inequality

sup
{
‖u(· , t)‖C(Ω), t ∈ R, (u(·), ∂tu(·)) ∈ Kg0

}
≤M1.

In [13], it was shown that the family of processes {Ug(t, τ)} g ∈ H(g0), satisfies the Lipschitz
condition (64). Applying Theorem 4, we obtain the following result.
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Theorem 5. If the function g0(x, t) is translation-compact in the space C loc(R;L2(Ω)), then
the ε-entropy of the global attractor A of problem (74) satisfies the inequality

Hε(A) ≤ C(M1)
η3

log2

(
ε0

αε

)
+ Hε0(A) + H εα

4C(h)

(
Π0,h log1/α( ε0αε)

H(σ0)
)
, ∀ε < ε0, (77)

where α, ε0, and h are some positive numbers.

For equation (40), Corollaries 3–5 also hold in the cases where the external force is almost
periodic or quasiperiodic. It is also easy to prove estimates for the ε-entropy and fractal dimension
of the nonautonomous sine-Gordon equation.
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14. Douady, A. and Oesterlé, J., Dimension de Hausdorff des attracteurs, C. R. Acad. Sci. Paris, sér. A,
1980, vol. 290, pp. 1135–1138.

15. Babin, A.V. and Vishik, M.I., Attractors of Evolutionary Partial Differential Equations and Estimates of
Their Dimensions, Uspekhi Mat. Nauk, 1983, vol. 38, no. 4, pp. 133–187 [Russian Math. Surveys (Engl.
Transl.), 1983, vol. 38, no. 4, pp. 151–213].

16. Constantin, P., Foias, C., and Temam, R., Attractors Representing Turbulent Flows, Mem. AMS, vol. 53,
1985.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 39 No. 1 2003



20 VISHIK, CHEPYZHOV

17. Chepyzhov, V.V. and Ilyin, A.A., On the Fractal Dimension of Invariant Sets; Applications to Navier–
Stokes Equations, Discr. Continuous Dynam. Syst., to appear.

18. Blinchevskaya, M.A. and Ilyashenko, Yu.S., Estimate for the Entropy Dimension of the Maximal Attrac-
tor for k-Contracting Systems in an Infinite-Dimensional Space, Russian J. Math. Phys., 1999, vol. 6,
no. 1, pp. 20–26.
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