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Abstract. The authors study new problems related to the theory of infinite-
dimensional dynamical systems that were intensively developed during the last
years. They construct the attractors and study their properties for various non-
autonomous equations of mathematical physics: the 2D and 3D Navier–Stokes
systems, reaction-diffusion systems, dissipative wave equations, the complex
Ginzburg–Landau equation, and others. Since, as it is shown, the attractors
usually have infinite dimension, the research is focused on the Kolmogorov
ε-entropy of attractors. Upper estimates for the ε-entropy of uniform attrac-
tors of non-autonomous equations in terms of ε-entropy of time-dependent
coefficients of the equation are proved.

Also, the authors construct attractors for those equations of mathemati-
cal physics for which the solution of the corresponding Cauchy problem is not
unique or the uniqueness is not known (for example, the 3D Navier–Stokes
system). The theory of the trajectory attractors for these equations is devel-
oped, which is later used to construct global attractors for equations without
uniqueness. The method of trajectory attractors is applied to the study of
finite-dimensional approximations of attractors. The perturbation theory for
trajectory and global attractors is developed and used in the study of the at-
tractors of equations with terms rapidly oscillating with respect to spatial and
time variables. It is shown that the attractors of these equations are contained
in a thin neighbourhood of the attractor of the averaged equation.
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Introduction

One of the major problems in the study of evolution equations of mathematical
physics is the investigation of the behaviour of the solutions of these equations
when time is large or tends to infinity. The related important questions concern
the stability of solutions as t→ +∞ or the character of the instability if a solution is
unstable. In the last decades considerable progress in this area have been achieved
in the study of autonomous evolution partial differential equations. For a number
of basic evolution equations of mathematical physics it was shown that the long
time behaviour of their solutions is characterized by attractors. Attractors were
constructed for the following equations and systems: the two-dimensional Navier–
Stokes system, various classes of reaction-diffusion systems, nonlinear dissipative
wave equations, complex Ginzburg–Landau equations and many other autonomous
equations and systems. Mainly the global attractors of these equations were studied.

An autonomous evolution equation can be written in the following abstract
form:

∂tu = A(u), u|t=0 = u0(x). (1)

Here u = u(x, t) is the solution of equation (1) and x, t denote the spatial and
time variables, respectively. Corresponding to this equation is the semigroup of
nonlinear operators {S(t)} = {S(t), t ≥ 0}. The operator S(t) maps the initial
data u0(x) to the solution u(x, t) of the Cauchy problem (1) at the time moment
t : S(t)u0(x) = u(x, t), t ≥ 0. We assume that the Cauchy problem has a unique
solution. The initial data u0(x) belongs, for example, to a certain Banach (or
metric) space E. The space E is chosen in such a way that u(x, t) belongs to E for
all t ≥ 0. Thus, the operator S(t) maps E into E for all t ≥ 0 : S(t) : E → E. The
operators {S(t)} satisfy the semigroup properties: S(t1)S(t2) = S(t1 + t2) for all
t1, t2 ≥ 0 and S(0) = Id is the identity operator.

A set A from E is said to be a global attractor of the equation under consider-
ation or, equivalently, of the corresponding semigroup {S(t)} if it has the following
properties: (i) the set A is compact in E; (ii) A attracts each bounded (in E) set B:
distE(S(t)B,A) → 0 as t → +∞; (iii) the set A is strictly invariant with respect
to {S(t)}, that is, S(t)A = A for all t ≥ 0. Here distE(·, ·) denotes the Hausdorff
distance in E : distE(U, V ) = supu∈U infv∈V ‖u − v‖E . It follows from the defini-
tion of the global attractor that the set A attracts solutions u(x, t) = S(t)u0(x) as
t→ +∞ uniformly with respect to bounded initial data u0(x). The global attractor
A is unique if it exists. Thus we can say that the global attractor describes all the
possible limits of solutions of equation (1).

It was shown that the Hausdorff and fractal dimension of the global attractors
are finite for a number of equations and systems of mathematical physics. The
estimates from above and from below for the Hausdorff and fractal dimension of
attractors were found. For certain types of equations the structure of the global
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2 INTRODUCTION

attractor A was completely described, for example, in the case where the equation
has a global Lyapunov function. All these and other problems are treated in great
detail in the books by R.Temam [156], A.V.Babin and M.I.Vishik [9], J.K.Hale
[82], O.A.Ladyzhenskaya [114] and in books of other authors.

In Part 1 of this book we study autonomous evolution equations of the form
(1) and their global attractors. We present the theorems on the existence and
structure of global attractors of the basic autonomous equations of mathematical
physics. We prove optimal (in some sense) estimates from above and from below
for the Hausdorff and fractal dimension of global attractors of these equations.
Part 1 contains mainly well-known results from the theory of global attractors of
autonomous partial differential equations.

The long-time behaviour of solutions of non-autonomous evolution equations
of the form

∂tu = A(u, t), u|t=τ = uτ (x) (2)

and their attractors were studied in details by many authors for ordinary differen-
tial equations (u ∈ RN ) and for some classes of operator and partial differential
equations. The construction of the skew product flow of the process (the analog of
the semigroup in autonomous case) played the main role in this theory; this allowed
one to reduce the problem to the study of an attractor of some semigroup acting
in an extended function phase space (see, for instance, R.K.Miller [134], G.R.Sell
[143], R.K.Miller and G.R.Sell [135], J.K.Hale [82]).

Dealing with evolution partial differential equations and especially with systems
arising from mathematical physics it is a good idea to extend the phase space
by using only the hull of the time-dependent coefficients of the equation under
consideration. From this point of view the research was focused in the last decade
on attractors for non-autonomous evolution equations of mathematical physics. It
was assumed that external forces, interaction functions, and other coefficients in the
equations explicitly depend on time. The dependence on time of these parameters
can be periodic, quasiperiodic, or almost periodic. The spaces of these functions
were studied in great detail in L.Amerio and G.Prouse [2], B.Levitan and V.Zhikov
[117]. In the present book we also study the equations whose time-depending
terms are translation compact functions in appropriate function spaces. The latter
means, that, say, in the case of the external force g(x, t) depending on time t ∈ R,
that all the translations {g(x, t + h), h ∈ R} form a precompact set in the space
L2([t1, t2];H) for every interval [t1, t2] ⊂ R. Here H is a Hilbert (or more general)
space corresponding to the physical nature of the function g(x, t). Similarly, the
translation compactness was defined for other terms of the equation, for example,
for interaction functions of the form f(u, t) and so on.

We denote by σ(t) the collection of all time-dependent coefficients of a non-
autonomous equation. The equation itself can be rewritten in the form

∂tu = Aσ(t)(u), u|t=τ = uτ (x). (3)

The parameter σ(t) is said to be the time symbol (or just the symbol) of the
equation. The values of σ(t) belong to a metric or Banach space. For example,
σ(t) = (f(u, t), g(x, t)) if the time-dependent terms of the equation are the interac-
tion function f(u, t) and the external force g(x, t). Dealing with non-autonomous
equations it is fruitful to study the entire family of equations (3) with time symbols
σ(t) belonging to a set Σ called the symbol space. A typical symbol space is as
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follows. We are given a fixed initial time symbol σ0(t) of the equation we want
to study. Then we consider the set of all time translations of σ0(t), i.e., the set
{σ0(t+ h), h ∈ R}. Moreover, we add to the symbol space Σ all the functions σ(t)
that are the limits of the sequences of the form {σ0(t+ hn)} as n→ ∞. The limits
are taken in a suitable function space. The resulting family of functions {σ(t)} is
called the hull of σ0(t) and is denoted by H(σ0). For example, if σ0(t) is an almost
periodic function with values in a metric space M, then H(σ0) is the hull of σ0 in
the space Cb(R;M). We now set Σ = H(σ0) and study the family of equations (3)
with symbols σ ∈ H(σ0).

We start from the fact that the properly defined attractor A of the initial
equation with symbol σ0(t) must simultaneously be the attractor of each equation
(3) with symbol σ(t) ∈ H(σ0) and, moreover, it must be the attractor of the entire
family of these equations. This observation leads to the concept of the uniform
(with respect to σ ∈ Σ) global attractor AΣ of the family of equations (3) with
symbols σ ∈ Σ.

The initial data uτ (x) for (3) is taken in the Banach space E. We assume that
the Cauchy problem (3) is uniquely solvable for every uτ ∈ E and for all τ ∈ R.
Corresponding to equation (3) is the process {Uσ(t, τ)} = {Uσ(t, τ) | t, τ ∈ R, t ≥
τ} acting in the space E. Similarly to the autonomous equation (1) the operator
Uσ(t, τ) maps the initial data uτ (x) ∈ E to the solution u(t, x) of the Cauchy
problem (3) at the time moment t : Uσ(t, τ)uτ (x) = u(x, t), t ≥ τ, τ ∈ R. We
assume that u(x, t) belongs to E for all t ≥ τ. Thus, the operators Uσ(t, τ) map
E into E for all t ≥ τ, τ ∈ R : Uσ(t, τ) : E → E. The notion of process is a
generalization of the notion of semigroup generated by an autonomous evolution
equation. The properties U(t, s)U(s, τ) = U(t, τ) for all t ≥ s ≥ τ, τ ∈ R and
U(τ, τ) = Id for all τ ∈ R are the characteristic properties of a process.

We study the uniform attractor of the family of processes {Uσ(t, τ)}, σ ∈ Σ
corresponding to the family of equations (3) with symbols σ ∈ Σ. A set AΣ from E
is said to be a uniform global attractor of the family of processes {Uσ(t, τ)}, σ ∈ Σ if
it has the following properties: (i) the set AΣ is compact in E; (ii) AΣ attracts any
bounded (in E) set B = {uτ (x)} of initial data uniformly with respect to σ ∈ Σ:
supσ∈Σ distE(Uσ(t, τ)B,AΣ) → 0 as t → +∞ for every τ ∈ R; (iii) AΣ is the
minimal set satisfying (i) and (ii), that is, if a set A1 is compact in E and attracts
any bounded set B uniformly with respect to σ ∈ Σ, then AΣ ⊆ A1. The notion
of uniform global attractor of a family of processes generalizes the notion of global
attractor of a semigroup. The invariance property is replaced by the property of
minimality.

In Part 2 of the book we study uniform attractors of basic non-autonomous
evolution equations of mathematical physics whose autonomous analogues were
treated in Part 1. The analysis of time symbols of these equations and systems
is the key element in the theory of non-autonomous partial differential equations.
The proposed method is quite simple and allows us to construct uniform attractors,
to study their structure, and to estimate some important quantities related to
attractors, such as the Hausdorff and fractal dimension and the Kolmogorov ε-
entropy.

To describe the structure of uniform attractors we introduce the notion of kernel
of an equation or a process. The kernel Kσ of equation (3) is the collection of all
bounded (in E) solutions u(t), t ∈ R of the equation that are defined on the entire
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time axis R. The set K(t) = {u(t) | u ∈ K} ⊆ E is called the kernel section at the
time moment t ∈ R. We prove the following identity for the uniform (w.r.t. σ ∈ Σ)
attractor of the family of processes {Uσ(t, τ)}, σ ∈ Σ corresponding to problem (3):

AΣ =
⋃

σ∈Σ

Kσ(0). (4)

Clearly, the right-hand side of (4) does not change if we replace 0 by an arbitrary
time moment τ.

We construct uniform attractors for the non-autonomous two-dimensional Nav-
ier–Stokes system, non-autonomous reaction-diffusion systems, non-autonomous
dissipative wave equations, non-autonomous Ginzburg–Landau equations and for
other equations and systems. For each equation or system we describe in detail the
function space to which the time symbol σ0(t) of this equation belongs. We present
the conditions that provide the translation compactness of the symbol σ0(t) or, more
precisely, the translation compactness of its components. We prove that the corre-
sponding Cauchy problems have unique solutions in suitable function spaces. Using
the property of dissipativity (specific to each problem) we establish the existence
of uniformly (w.r.t. σ ∈ H(σ0)) absorbing or attracting set for the corresponding
family of processes {Uσ(t, τ)}, σ ∈ H(σ0). We apply and develop various known
methods for the investigation of various partial differential equations. We derive
the corresponding a priori estimates for solutions u(x, t) of these non-autonomous
equations and systems. We also prove the necessary continuity properties of the
processes. Then the general theorem implies the existence of a uniform attractor
AH(σ0) of a non-autonomous equation. In particular, identity (4) holds, that is, the
global attractor is the union of all values of all bounded (in E) global solutions of
all equations (3) with time symbols σ ∈ H(σ0).

The notion of time symbol of a non-autonomous equation is also important
in the study of the dimension of uniform attractors of the above equations and
systems of mathematical physics. Using this approach we prove upper estimates
for the Hausdorff and fractal dimension of uniform attractors of these systems.
In a number of cases we are able to find lower estimates for the dimension of
uniform attractors. For example, we prove such upper and lower estimates for
the fractal dimension of the uniform attractor AΣ of the 2D Navier–Stokes system
with quasiperiodic (in time t) external force g0(x, t) = G(x, α1t, α2t, . . . , αkt). Here
G(x, ω1, ω2, . . . , ωk) is a function that is 2π-periodic in each variable ωi ∈ R. The
symbol space Σ = H(g0) is diffeomorphic to the k-dimensional torus. We prove that
the fractal dimension of the uniform attractor AΣ of this system does not exceed
the sum of two terms: the Grashof number Gr (the known parameter describing
the number of “degrees of freedom” of a flow) and the number k of rationally
independent frequencies of the external force g(x, t). The number k is the dimension
of the symbol space. Thus for k = 0 (autonomous case) we obtain the known
estimate for the fractal dimension of the global attractor of the autonomous 2D
Navier–Stokes system. Examples show that the fractal dimension of AΣ can be
greater than k. These facts reflect the importance of the number k in the estimates
of the dimension of uniform attractors for the Navier–Stokes system. Moreover, if
g0(x, t) is a general almost periodic function in time t, then examples show that the
fractal dimension of the uniform attractor can be infinite. Similar facts are proved
for other non-autonomous equations of mathematical physics having quasiperiodic
or almost periodic time symbols.
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In the cases where the fractal dimension of uniform attractors is equal to
infinity it is natural to study other characteristics and quantities of uniform at-
tractors of non-autonomous equations. The famous work A.N.Kolmogorov and
V.M.Tikhomirov [106] is devoted to the systematic study of the ε-entropy of com-
pact sets in various function spaces. Notice that the uniform attractor AΣ is a
compact set in E. Then it is reasonable to investigate the Kolmogorov ε-entropy
Hε(AΣ) of the uniform attractor. It is well known that the number Hε(AΣ) is equal
to log2Nε(AΣ), where Nε(AΣ) is the minimal number of balls in E with radius ε
covering the set AΣ. Since AΣ is compact, Hε(AΣ) is finite for every ε > 0. The
problem arises to study the rate of growth of the ε-entropy Hε(AΣ) as ε → 0 + .
In the book we find upper estimates for the Kolmogorov ε-entropy Hε(AΣ) of uni-
form attractors of non-autonomous evolution equations with translation compact
symbols σ0(t) in the corresponding spaces. These estimates are optimal in some
sense and generalize the well-known estimates for the fractal dimension of the cor-
responding autonomous equations and systems considered in Part 1 of the book.
In particular the ε-entropy of the uniform (w.r.t. g ∈ Σ = H(σ0)) attractor AΣ of
the 2D Navier–Stokes system does not exceed the sum of two terms: the first term
is the Grashof number Gr multiplied by log2

(
1
ε

)
and the second is the ε-entropy

Hε(H(g0)) of the hull of the external force g0(x, t) measured on the finite time
interval [0, l], where l = O

(
log2

(
1
ε

))
(in the quasiperiodic case this term has the

form k · log2

(
1
ε

)
, where k is the number of rationally independent frequencies of

g0(x, t)). In particular, the functional dimension of the uniform attractor does not
exceed the functional dimension of the hull H(g0). We prove similar results for other
non-autonomous equations of mathematical physics. In particular the estimates for
the ε-entropy of the uniform attractors imply the estimates for the fractal dimen-
sion of the uniform attractors if the symbols of the equations are quasiperiodic
functions.

In Part 3 of the book we study attractors of equations of mathematical physics
for which the solution of the corresponding Cauchy problem exists on any time
interval but, maybe, is not unique or the uniqueness theorem is not proved yet. The
classical example is the 3D Navier–Stokes system. It is known from the works of
J.Leray and E.Hopf that the Cauchy problem for this system has a weak solution on
an arbitrary time interval, but it is not known whether this weak solution is unique.
Another famous example is the wave equation with nonlinear interaction term of
fast polynomial growth. This hyperbolic equation appears in many branches of
modern physics, for example, in relativistic quantum mechanics. The existence of a
weak solution (in the sense of distributions) of the Cauchy problem for this equation
is known, whereas the uniqueness theorem is proved only for a moderate growth of
the interaction function (see J.-L.Lions [124]). Even though the complex Ginzburg–
Landau equations play a central role in the theory of amplitude equations, the
global existence and uniqueness of solutions are not established for all values of
the dispersion parameters. For all these equations and systems the theory of global
attractors of semigroups descried in Parts 1 and 2 of this book is not applicable. To
overcome this difficulty we develop the theory of so-called trajectory attractors which
enables us to study the limiting behaviour of solutions of equations of mathematical
physics without uniqueness. Moreover, it is also possible to construct generalized
global attractors for such equations using the trajectory attractors. In particular,
this theory covers all the above problems of mathematical physics.



6 INTRODUCTION

Let us briefly explain the idea of the construction of a trajectory attractor using
as an example the 3D Navier–Stokes system

∂tu+ νLu+ P (u,∇)u = Pg(x), (∇, u) = 0, u|∂Ω = 0, t ≥ 0, (5)

where x = (x1, x2, x3) ∈ Ω b R3, u = u(x, t) = (u1, u2, u3). Here L is the Stokes
operator, g(x) = (g1, g2, g3) is the external force, ν > 0 is the viscosity coefficient,
and P denotes the orthogonal projection onto the space H of divergence free vector
fields with finite L2-norm. We study weak solutions u(x, t), t ≥ 0 of system (5)
that satisfy the known energy inequality (see J.-L.Lions [124] and Chapter XII of
the present book). Notice that all the weak solutions resulting from the Galerkin
approximation method always satisfy this energy inequality. Therefore the stock
of such weak solution is reasonably large. The collection of all these solutions is
denoted by K+.

The traditional theory of global attractors uses the set of initial data {u0(x)} of
the Cauchy problem (1) as the phase space E on which the corresponding semigroup
{S(t)} acts. Now the phase space corresponding to system (5) is the set K+ =
{u(x, t), t ≥ 0} of weak solutions defined on the entire time semiaxis R+. The
elements of the phase space are functions depending on time. The set K+ is called
the trajectory space of the 3D Navier–Stokes system and the elements of K+ are
called trajectories. We consider the translation operators {T (h), h ≥ 0} acting on
K+ by the formula T (h)u(x, t) = u(x, t+h). The translation T (h), h ≥ 0 maps any
function u(x, t), t ≥ 0 onto the shifted function u(x, t+h), t ≥ 0. It follows from the
definition of K+ that u(x, t+h) ∈ K+ if u(x, t) ∈ K+. It is clear that the translations
{T (h)} = {T (h), h ≥ 0} form a semigroup acting on K+: T (h) : K+ → K+ for
h ≥ 0. We study the global attractor of the translation semigroup {T (h)} on K+.

In the trajectory space K+ we consider a weak convergence topology (see Chap-
ter XII). It follows easily that the space K+ is closed in this topology and the
translation semigroup {T (h)} is continuous in K+. We define bounded sets in K+

and prove the existence of a bounded absorbing set B0 of the semigroup {T (h)} in
K+, that is, for any bounded set B ⊂ K+ there exists h1 = h1(B) > 0 such that
T (h)B ⊂ B0 for all h ≥ h1. Since the set B0 is bounded, it is compact in the weak
topology of the space K+. From this facts it follows that the semigroup {T (h)} has
a global attractor A ⊂ K+, that is, A is compact in the weak topology, strictly
invariant with respect to {T (h)} : T (h)A = A for all h ≥ 0, and for every bounded
set B of trajectories from K+ the set T (h)B tends to A in the weak topology as
h → +∞. The set A is called the trajectory attractor of the 3D Navier–Stokes
system (5).

Notice that the weak topology in K+ is stronger than the local strong conver-
gence topology of the spaces Lloc

2 (R+;H1−δ) and Cloc(R+;H−δ), where 0 < δ ≤ 1.
Therefore for any bounded set B from K+ and for every M > 0

distL2(0,M ;H1−δ) (T (h)B,A) → 0, (6)

distC([0,M ];H−δ) (T (h)B,A) → 0 as h→ ∞. (7)

From (7) we deduce that the set A = A|t=0 ⊂ H is the global attractor of the
3D Navier–Stokes system (5). More precisely, A is bounded and closed in H and
satisfies the following attracting property: the restriction B|t at time t of any
bounded set of solutions B ⊂ K+ tends to A as t→ ∞ in the space H−δ :

distH−δ (B|t,A) → 0 (t→ ∞), 0 < δ ≤ 1. (8)
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Moreover, A is the minimal closed (in H) set that satisfies (8). Thus, the set A has
all the properties known for the global attractor of the semigroup corresponding to
the Cauchy problem for which the uniqueness theorem holds (for example, the 2D
Navier–Stokes system).

Using this scheme we construct trajectory attractors and global attractors for
other autonomous equations and systems of mathematical physics of the form (1)
for which the uniqueness theorem of the Cauchy problem is not proved or does not
hold. For example, we construct trajectory attractors and global attractors and
study their properties for the dissipative wave equation with arbitrary polynomial
growth of the interaction function.

Notice that in a number of cases it is also reasonable to study trajectory at-
tractors for the equations for which the uniqueness theorem holds. In this case the
trajectory attractor A consists of all trajectories u(t), t ≥ 0, that lie on the usual
global attractor A :

A = {u(t) = S(t)u0, t ≥ 0 | u0 ∈ A }
and A attracts bounded sets of trajectories in a stronger topology.

The methods of trajectory attractors is also fruitful in the theory of pertur-
bation of attractors and in the study of attractors of equations containing rapidly
oscillating terms. For example, we prove that the trajectory attractor Aε of the
wave equation

ε∂2
t u+ γ∂tu = ∆u− f(u) + g(x)

depending on a positive small parameter ε converges as ε→ 0+ in the corresponding
space to the trajectory attractor A0 of the limiting parabolic equation

γ∂tu = ∆u− f(u) + g(x).

Here f(u) is a function with arbitrary polynomial growth with respect to u. Since
for the limiting parabolic equation the uniqueness theorem holds, it has the usual
global attractor A0 and the trajectory attractor A0 consists of all solutions u(t) of
this equation lying on A0 for all t ≥ 0. Besides this case of a singular perturba-
tion we consider other problems of the theory of perturbation of partial differential
equations. These results reflect the following general property of the trajectory
attractors of equations of mathematical physics: the trajectory attractors of per-
turbed equations depend upper semicontinuously on the perturbation parameters.

Similarly to autonomous equations we study uniform trajectory attractors and
global attractors for non-autonomous equations of mathematical physics of the form
(3) with terms depending on time. We assume that the time symbols σ(t) are trans-
lation compact in the corresponding spaces. To begin with we consider the equa-
tions for which the existence of the Cauchy problem is not proved or does not hold.
We construct the uniform trajectory attractor for the non-autonomous 3D Navier–
Stokes system with translation compact (in time t) external force g = g(x, t). We
also study the dissipative hyperbolic equation containing the interaction function
f(u, t) with arbitrary polynomial growth with respect to u. We also consider other
non-autonomous equations of mathematical physics. Separately we study the tra-
jectory attractors for non-autonomous equations with uniqueness. This leads to
stronger attraction of trajectories to the uniform trajectory attractor.

The trajectory attractors also satisfy the following important property known
in the theory of global attractors. For example, we study the 3D Navier–Stokes
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system (5). We consider the corresponding Galerkin approximation system of or-
der m, that is, the system of ordinary differential equations in m-dimensional Eu-
clidean space. Using the above scheme we construct the trajectory attractor A(m)

of this system. Recall that A(m) consists of all solutions um(x, t), t ≥ 0 of the
Galerkin system that lie on the global attractor (in Rm) A(m) of this system. We
prove that A

(m) converges to A in the weak topology as m → +∞. In particular,
distH−δ

(
A(m),A

)
→ 0 (m → ∞), 0 < δ ≤ 1. Here A and A are the trajectory at-

tractor and the global attractor of the Navier–Stokes system (5), respectively. This
property of upper semicontinuity of attractors holds for all equation and systems
considered in this book. No matter whether the corresponding uniqueness theorem
holds or not.

We investigate the attractors of evolution equations with terms that oscillate
rapidly with respect to the spatial or time variable. The parameter ε−1, ε > 0
characterizes the oscillation frequency. We assume that rapidly oscillating terms
and coefficients have averages in a weak sense as ε → 0+ in the corresponding
function spaces. The equation with averaged terms and coefficients is called the
averaged equation. We prove that the trajectory attractor Aε of the equation with
rapidly oscillating terms converges as ε → 0+ to the trajectory attractor A of
the averaged equation in a suitable weak sense. Moreover, the global attractors
Aε of the original equations with rapidly oscillating terms converge as ε → 0+ to
the global attractor A of the averaged equation as ε → 0+ in the corresponding
function space. We apply these results to the 3D and 2D Navier–Stokes systems
with external force of the form g

(
x, x

ε

)
(or g

(
x, t, t

ε

)
). We assume that the function

g
(
x, x

ε

)
has the average ḡ (x) as ε→ 0+, for example, in the space Hw. (The space

Hw is the spaceH endowed with the weak topology). Then the trajectory attractors
Aε converge to A in the following sense: for every M > 0

distL2(0,M ;H1−δ)

(
Aε,A

)
→ 0, (9)

distC([0,M ];H−δ)(Aε,A) → 0 (ε → 0+), 0 < δ ≤ 1. (10)

For the corresponding global attractors Aε and A we have the following relation:

distH−δ

(
Aε,A

)
→ 0 (ε→ 0+). (11)

We prove similar results for the reaction-diffusion systems and for the dissipative
hyperbolic equations with rapidly oscillating terms. If the corresponding Cauchy
problem is uniquely solvable, then we prove that relations (9)-(11) hold in more
regular space with stronger topology. For example, for the 2D Navier–Stokes system
we have that

distH1−δ (Aε,A) → 0 as ε→ 0 + .

For perturbed potential reaction-diffusion systems with rapidly oscillating terms
it was recently shown that the distance between the global attractors Aε and A is
at most Cεγ , where γ > 0 (see B.Fiedler and M.I.Vishik [69]).

We now describe the content of the book in the order of chapters. The book is
divided into three parts and consists of eighteen chapters and two appendices.

Part 1 is devoted to the study of autonomous evolution equations of mathe-
matical physics for which the uniqueness theorems of the corresponding Cauchy
problems hold. It has three chapters. For reader’s convenience we begin the book
with Chapter I that contains main facts from the theory of global attractors of
autonomous finite-dimensional dynamical systems. We illustrate the theory with
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many examples from ordinary differential equations, for example, the well-known
Lorenz system.

In Chapter II we present the definitions of the main function spaces we use in
the book. We formulate the embedding theorems and prove the necessary differen-
tial and integral inequalities that will be used in the next chapters. We present some
important theorems concerning the functions with values in Banach spaces. The
detailed description of these questions can be found in the books R.Temam [156],
A.V.Babin and M.I.Vishik [9], and many others. Chapter II also deals with the
theory of semigroups corresponding to autonomous dissipative evolution equations
acting in Banach or metric spaces. We introduce the concept of global attractor of
a semigroup. We formulate the theorem on the existence of a global attractor. The
chapter also contains the study of the basic autonomous partial differential equa-
tions arising from mathematical physics. We consider reaction-diffusion systems of
different types, the 2D Navier–Stokes system, and the dissipative hyperbolic equa-
tion. For each system we briefly describe the function setting. Then we formulate
the theorem on the existence and the uniqueness of the corresponding Cauchy prob-
lems. We verify the dissipativity conditions for all these equations which make it
possible to apply the general theory and to prove the existence of global attractors
for these equations and systems.

Chapter III contains the review of the results concerning the dimension of
global attractors of autonomous evolution equations. We prove the upper esti-
mates for the Hausdorff and fractal dimension of attractors. We use the known
technique developed in the works of many authors (see A.Douady and J.Oesterle
[51], P.Constantin, C.Foias, and R.Temam [43], R.Temam [156], A.V.Babin and
M.I.Vishik [4]) the key element of which is the investigation of the Lyapunov ex-
ponents of the corresponding variational equations. Our main purpose is to prove
that under quite general hypotheses the upper estimates for the fractal dimension of
global attractors coincides with upper estimates of the Hausdorff dimension of these
attractors. We also consider lower bounds for the dimension of global attractors.
These lower bounds show that the upper bounds are optimal in some sense. We ap-
ply these results to the equations and systems of mathematical physics considered
in Chapter II.

Part 2 of the book deals with non-autonomous evolution equations and their
attractors. We assume that the corresponding Cauchy problems have unique solu-
tions. Part 2 includes the chapters from IV to IX.

Chapter IV contains a systematic study of the general non-autonomous equa-
tions and the corresponding processes. We introduce the concept of time symbol
of the equation and we study families of processes with symbols belonging to some
symbol space. We consider the main examples of such families of processes when
a symbol space is a hull of a given initial symbol which is a translation compact
function in an appropriate topological space. We define a uniform global attractor
of a family of processes and we prove theorems on the existence and the structure
of uniform attractors. We consider the relations between different definitions of
uniform and non-uniform attractors.

In Chapter V we study the properties of translation compact functions in var-
ious function spaces. We begin the chapter with the important notion of almost
periodic function, which is an example of translation compact function in the space
Cb(R;M) with uniform (in R) convergence topology. Here M is a complete metric
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or Banach space. Then we consider more general translation compact functions in
the spaces C(R;M), Lloc

p (R;M), and Lloc
p,w(R;M) with local convergence topologies

on any closed interval [t1, t2] ⊂ R. We prove the translation compactness criteria in
these spaces. This technical chapter can be omitted in the first reading.

In Chapter VI we apply the results of Chapters IV and V to the basic non-
autonomous evolution equations of mathematical physics we want to study. The
corresponding autonomous equations were considered in Chapter II. The follow-
ing PDEs are treated: the 2D Navier–Stokes system with time-dependent external
force, the reaction-diffusion systems with interaction function and external forces
depending on time, the non-autonomous Ginzburg–Landau equation, and the non-
autonomous dissipative hyperbolic equation with time-dependent terms. For each
equation we study the following questions: the time symbol of the equation and the
translation compactness criterion for it in a physically relevant space; the existence
and uniqueness of the solution of the Cauchy problem for this equation; the corre-
sponding family of processes and its properties; the existence of compact uniformly
attracting or absorbing sets for the family of processes, the kernel of the equation;
and finally, the existence of the uniform global attractor and its structure in terms
of kernel sections.

Chapter VII deals with the so-called semiprocesses and their attractors. A
semiprocess corresponds to a non-autonomous equation with time symbol defined
on the semiaxis R+. Such equations describe dynamical systems for which the past
history is unknown. We study the behaviour of solutions as t → +∞. Similarly
to processes we study the family of semiprocesses and their uniform attractors.
We prove the theorem on the existence of uniform attractors. If the symbol of
the equation satisfies the backward uniqueness property, then we prove that there
exists the unique family of processes whose uniform attractor coincides with the
uniform attractor of the original family of semiprocesses. This reduction is im-
portant in applications especially if the corresponding family of processes has a
simple symbol space, for example, a periodic function with its shifts or a hull of a
quasiperiodic function diffeomorphic to a torus. Usually this reduction also leads
to the simplification of the structure of the uniform attractor of the original equa-
tion. As an application, we study non-autonomous equations with asymptotically
almost periodic symbols and so-called cascade systems with symbols generated by
an autonomous evolution equation.

In Chapter VIII we study kernels of non-autonomous evolution equations. The
notion of a kernel is important because kernels are used in the description of the gen-
eral structure of the uniform global attractors of autonomous and non-autonomous
equations. In this chapter we establish certain weak invariance and attracting prop-
erties of the kernel of a given process. Notice that, unlike the previous chapters,
we do not assume that the symbol of the equation is a translation compact func-
tion in the corresponding space. We also study the fractal dimension of a kernel
section. We prove that the fractal dimension of kernel sections is finite and has the
uniform upper bound similar to the corresponding autonomous case. These results
are applied to non-autonomous partial differential equations studied in Chapter IV
but without the hypothesis that their symbols are translation compact functions.

In Chapter IX we prove upper estimates for the Kolmogorov ε-entropy of uni-
form attractors of non-autonomous evolution equations with translation compact
symbols. This theory generalizes the results of Chapter III on the upper estimates
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for the fractal dimension of global attractors of autonomous evolution equations.
We apply these estimates to various non-autonomous partial differential equations
with translation compact terms. The estimates so obtained depend explicitly on
the parameters of the equations. We also consider the important case where the
time symbol of the equation is a quasiperiodic function. In Chapter IX we also
consider some classes of symbol spaces with infinite fractal dimension and deduce
upper bounds for their ε-entropy.

In Part 3 of the book, consisting of Chapters X–XVIII, we study trajectory
attractors of autonomous and non-autonomous evolution equations of mathematical
physics. We now do not assume that the corresponding Cauchy problem has a
unique solution.

In Chapter X we explain the method of trajectory attractors using autonomous
ordinary differential equations. We define trajectory spaces and trajectory attrac-
tors for these equations. We prove the theorem on the existence of a trajectory
attractor.

In Chapter XI we prove the theorem on the existence of a global attractor of
an abstract semigroup acting in a general Hausdorff topological space. Usually in
the literature results of this type are proved for complete metric spaces. However,
in application we deal with translation semigroups acting in various topological
spaces with local weak topology which is not metrizable. That is the reason why
we include in the book this abstract topological result. In the beginning of the
chapter we recall the main general notions, definitions, and results from the theory
of topological spaces. This material is useful for a better understanding of the next
chapters.

Chapter XII presents the theory of trajectory attractors for abstract autono-
mous evolution equations. It is not necessary to assume any longer the unique
solvability of the Cauchy problems for these equations. We explain the properties of
trajectory spaces of these equations that we need for the construction of a trajectory
attractor. We prove the theorem on the existence of a trajectory attractor. We
define a kernel for an equation and describe the structure of the trajectory attractors
in terms of kernels. Moreover, we define a global attractor for an autonomous
equation without the assumption that the solution of the corresponding Cauchy
problem is unique. The trajectory attractor is useful in the construction of global
attractors of such equations.

In Chapter XIII we study trajectory attractors and global attractors for the
following autonomous evolution equations of mathematical physics: the 3D Navier–
Stokes system and the dissipative hyperbolic equation with nonlinear term of high
polynomial growth. For these equations the uniqueness theorem is not proved
yet. Nevertheless, it is possible to study the limiting behaviour of their solutions
using trajectory attractors and generalized global attractors. We also study the
perturbation of trajectory and global attractors for these equations containing small
parameters.

Chapter XIV is devoted to the construction of a uniform trajectory attractor
for a non-autonomous evolution equation written in an abstract operator form.
Here we assume that the corresponding Cauchy problem has a solution which is
not necessarily unique. Similarly to Chapter IV we consider the entire family of
non-autonomous equations with symbols from the hull of a given initial symbol.
Then we define the united trajectory space and study the global attractor of the



12 INTRODUCTION

translation semigroup acting on the united trajectory space. This attractor is called
the uniform trajectory attractor of the initial non-autonomous equation. Using the
uniform trajectory attractor we also construct a uniform global attractor of this non-
autonomous equation which is a generalization of the notion of a uniform attractor
considered in Chapter IV. We also consider uniform trajectory attractors for non-
autonomous equations with symbol defined on the semiaxis R+. This material is
an extension and generalization of Chapter VII.

The results of Chapter XIV are applied to non-autonomous partial differential
equations in Chapter XV. We study the non-autonomous 2D and 3D Navier–Stokes
systems, reaction-diffusion equations, the Ginzburg–Landau equation, and dissipa-
tive hyperbolic equations. For each particular equation or system we define the
symbol space and the trajectory space. Then we prove the theorem on the existence
of a uniform trajectory and global attractors. We study both the equations with-
out uniqueness and the equations with unique solvability of the Cauchy problem.
The latter equations admit the attraction to the trajectory and global attractors in
stronger topologies.

In Chapter XVI we study the approximation of trajectory and global attractors
by trajectory and global attractors of the corresponding Galerkin systems. We
prove that the trajectory and global attractors of Galerkin systems converge to the
trajectory and global attractors of the original PDE in the corresponding spaces.

In Chapter XVII we briefly consider the theory of perturbation of trajectory
attractors and global attractors for non-autonomous partial differential equations.
The corresponding theory for autonomous equations was studied in Chapter XIII
in greater detail.

The last Chapter XVIII deals with averaging of attractors of evolution equa-
tions with rapidly oscillating terms. We study functions that oscillate rapidly with
respect to spatial or time variables. We consider the basic autonomous and non-
autonomous evolution equations of mathematical physics from the previous chap-
ters. For each equation with oscillating coefficients we define an averaged equation.
We prove that the trajectory and global attractors of initial equations converge to
the trajectory and global attractors of the averaged equations respectively in the
corresponding spaces.

The book ends with two Appendices providing the proofs of some general the-
orem formulated in different chapters of the book.

Notice that the book [89] by A.Haraux contains chapters that are devoted to the
study of attractors of processes generated by non-autonomous partial differential
equations with almost periodic in time coefficients and terms. This book played a
stimulated role for the authors in the study of non-autonomous evolution equations.
The paper G.R.Sell [145] is devoted to the construction of an attractor of the 3D
Navier–Stokes system. Other papers and books devoted to the study of attractors
of autonomous and non-autonomous equations of mathematical physics are cited
in the text of the book and in Bibliography.

In this book the authors have tried to treat systematically some questions
related to the theory of attractors of autonomous and non-autonomous evolution
equations of mathematical physics. The authors’ interest for the subject of this
book was stimulated by seminars at the Moscow State University and the Institute
for Information Transmission Problems (Russian Academy of Sciences).
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