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Colimits, Stanley-Reisner Algebras,
and Loop Spaces

Taras Panov, Nigel Ray, and Rainer Vogt

Abstract. We study diagrams associated with a finite simplicial complex K,
in various algebraic and topological categories. We relate their colimits to
familiar structures in algebra, combinatorics, geometry and topology. These
include: right-angled Artin and Coxeter groups (and their complex analogues,
which we call circulation groups); Stanley-Reisner algebras and coalgebras;
Davis and Januszkiewicz’s spaces DJ(K) associated with toric manifolds and
their generalisations; and coordinate subspace arrangements. When K is a
flag complex, we extend well-known results on Artin and Coxeter groups by
confirming that the relevant circulation group is homotopy equivalent to the
space of loops ΩDJ(K). We define homotopy colimits for diagrams of topo-
logical monoids and topological groups, and show they commute with the
formation of classifying spaces in a suitably generalised sense. We deduce
that the homotopy colimit of the appropriate diagram of topological groups
is a model for ΩDJ(K) for an arbitrary complex K, and that the natural
projection onto the original colimit is a homotopy equivalence when K is flag.
In this case, the two models are compatible.

1. Introduction

In this work we study diagrams associated with a finite simplicial complex K,
in various algebraic and topological categories. We are particularly interested in
colimits and homotopy colimits of such diagrams.

We are motivated by Davis and Januszkiewicz’s investigation [12] of toric
manifolds, in which K arises from the boundary of the quotient polytope. In the
course of their cohomological computations, Davis and Januszkiewicz construct
real and complex versions of a space whose cohomology ring is isomorphic to the
Stanley-Reisner algebra (otherwise known as the face ring [33]) of K, over Z/2
and Z respectively. We denote spaces of this homotopy type by DJ (K), and follow
Buchstaber and Panov [7] by describing them as colimits of diagrams of classifying
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spaces. In this context, an exterior version arises naturally as an alternative. Sug-
gestively, the cohomology algebras and homology coalgebras of the DJ (K) may be
expressed as the limits and colimits of analogous diagrams in the corresponding
algebraic category.

When colimits of similar diagrams are taken in a category of discrete groups,
they yield right-angled Coxeter and Artin groups. These are more usually described
by a complementary construction involving only the 1-skeleton K(1) of K. When-
ever K is determined entirely by K(1) it is known as a flag complex, and results
such as those of [12] and [22] may be interpreted as showing that the associated
Coxeter and Artin groups are homotopy equivalent to the loop spaces ΩDJ (K),
in the real and exterior cases respectively. In other words, the groups are discrete
models for the loop spaces. These observations raise the possibility of modelling
ΩDJ (K) in the complex case, and for arbitrary K, by colimits of diagrams in a
suitably defined category of topological monoids. Our primary aim is to carry out
this programme.

Before we begin, we must therefore confirm that our categories are sufficiently
cocomplete for the proposed colimits to exist. We show that this is indeed the case
(as predicted by folklore), and explain how the complex version of ΩDJ (K) is
modelled by the colimit of a diagram of tori whenever K is flag. We refer to
the colimit as a circulation group, and consider it as the complex analogue of
the corresponding right-angled Coxeter and Artin groups. Of course, it is also
determined by K(1). On the other hand, there are simple examples of non-flag
complexes for which the colimit groups cannot possibly model ΩDJ (K) in any of
the real, exterior, or complex cases. More subtle constructions are required.

Since we are engaged with homotopy theoretic properties of colimits, it is no
great surprise that the appropriate model for arbitrary complexes K is a homotopy
colimit. Considerable care has to be taken in formulating the construction for
topological monoids, but the outcome clarifies the status of the original colimits
when K is flag; flag complexes are precisely those for which the colimit and the
homotopy colimit coincide. Our main result is therefore that ΩDJ (K) is modelled
by the homotopy colimit of the relevant diagram of topological groups, in all three
cases and for arbitrary K. When K is flag, the natural projection onto the original
colimit is a homotopy equivalence, and is compatible with the two model maps.
Our proof revolves around the fact that homotopy colimits commute with the
classifying space functor, in a context which is considerably more general than is
needed here.

For particular complexes K, our constructions have interesting implications
for traditional homotopy theoretic invariants such as Whitehead products, Samel-
son products, and their higher analogues and iterates. We hope to deal with these
issues in subsequent work [27].

We now summarise the contents of each section.
It is particularly convenient to use the language of enriched category theory,

so we devote Section 2 to establishing the notation, conventions and results that we
need. These include a brief discussion of simplicial objects and their realisations,
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and verification of the cocompleteness of our category of topological monoids in
the enriched setting. Readers who are familiar with this material, or willing to
refer back to Section 2 as necessary, may proceed directly to Section 3, where
we introduce the relevant categories and diagrams associated with a simplicial
complex K. They include algebraic and topological examples, amongst which are
the exponential diagrams GK ; here G denotes one of the cyclic groups C2 or C,
or the circle group T , in the real, exterior, and complex cases respectively.

We devote Section 4 to describing the limits and colimits of these diagrams.
Some are identified with standard constructions such as the Stanley-Reisner alge-
bra of K and the Davis-Januszkiewicz spaces DJ (K), whereas the GK yield right-
angled Coxeter and Artin groups, or circulation groups respectively. In Section 5
we study aspects of the diagrams involving associated fibrations and homotopy
colimits. We note connections with coordinate subspace arrangements.

We introduce the model map fK : colimtmg GK → ΩDJ (K) in Section 6,
and determine the connectivity of its homotopy fibre in terms of combinatorial
properties of K. The results confirm that fK is a homotopy equivalence whenever
K is flag, and quantify its failure for general K. In our final Section 7 we con-
sider suitably well-behaved diagrams D of topological monoids, and prove that
the homotopy colimit of the induced diagram of classifying spaces is homotopy
equivalent to the classifying space of the homotopy colimit of D, taken in the
category of topological monoids. By application to the exponential diagrams GK ,
we deduce that our generalised model map hK : hocolimtmg GK → ΩDJ (K) is
a homotopy equivalence for all complexes K. We note that the two models are
compatible, and homotopy equivalent, when K is flag.

We take the category top of k-spaces X and continuous functions f : X → Y
as our underlying topological framework, following [35]. Every function space Y X

is endowed with the corresponding k-topology. Many of the spaces we consider have
a distinguished basepoint ∗, and we write top+ for the category of pairs (X, ∗)
and basepoint preserving maps; the forgetful functor top+ → top is faithful. For
any object X of top, we may add a disjoint basepoint to obtain a based space X+.
The k-function space (Y, ∗)(X,∗) has the trivial map X → ∗ as basepoint. In some
circumstances we need (X, ∗) to be well pointed, in the sense that the inclusion
of the basepoint is a closed cofibration, and we emphasise this requirement as it
arises.

Several other useful categories are related to top+. These include tmonh,
consisting of topological monoids and homotopy homomorphisms [5] (essentially
equivalent to Sugawara’s strongly homotopy multiplicative maps [34]), and its sub-
category tmon, in which the homorphisms are strict. Again, the forgetful functor
tmon → top+ is faithful. Limiting the objects to topological groups defines a
further subcategory tgrp, which is full in tmon. In all three cases the identity
element e is the basepoint, and we may sometimes have to insist that objects are
well pointed. The Moore loop space ΩX is a typical object in tmonh for any pair
(X, ∗), and the canonical inclusion M → ΩBM is a homotopy homomorphism for
any well-pointed topological monoid M .
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For each m ≥ 0 we consider the small categories id(m), which consist of m ob-
jects and their identity morphisms; in particular, we use the based versions id∅(m),
which result from adjoining an initial object ∅. Given a topological monoid M , the
associated topological category c(M) consists of one object, and one morphism
for each element of M . Segal’s [32] classifying space Bc(M) then coincides with
the standard classifying space BM .

Given objects X0 and Xn of any category c, we denote the set of n-composable
morphisms

X0
f1−→ X1

f2−→ · · · fn−→ Xn

by cn(X0, Xn), for all n ≥ 0. Thus c1(X, Y ) is the morphism set c(X, Y ) for all
objects X and Y , and c0(X, X) consists solely of the identity morphism on X .

In order to distinguish between them, we write T for the multiplicative topo-
logical group of unimodular complex numbers, and S1 for the circle. Similarly,
we discriminate between the cyclic group C2 and the ring of residue classes Z/2,
and between the infinite cyclic group C and the ring of integers Z. We reserve the
symbol G exclusively for one of the groups C2, C, or T , in contrast to an arbitrary
topological group Γ .

The first and second authors benefitted greatly from illuminating discussions
with Bill Dwyer at the International Conference on Algebraic Topology held on the
Island of Skye during June 2001. They are particularly grateful to the organisers
for providing the opportunity to work in such magnificent surroundings.

2. Categorical prerequisites

We refer to the books of Kelly [21] and Borceux [3] for notation and terminology
associated with the theory of enriched categories, and to Barr and Wells [1] for
background on the theory of monads (otherwise known as triples). For more specific
results, we cite [14] and [18]. Unless otherwise stated, we assume that all our
categories are enriched in one of the topological senses described below, and that
functors are continuous. In many cases the morphism sets are finite, and therefore
invested with the discrete topology.

Given an arbitrary category r, we refer to a covariant functor D : a → r as
an a-diagram in r, for any small category a. Such diagrams are the objects of a
category [a,r] , whose morphisms are natural transformations of functors. We may
interpret any object X of r as a constant diagram, which maps each object of a
to X and every morphism to the identity.

Examples 2.1. Let ∆ be the category whose objects are the sets (n) = {0, 1, . . . , n},
where n ≥ 0, and whose morphisms are the nondecreasing functions; then ∆op- and
∆-diagrams are simplicial and cosimplicial objects of r respectively. In particular,
∆ : ∆ → top is the cosimplicial space which assigns the standard n-simplex ∆(n)
to each object (n). Its pointed analogue ∆+ is given by ∆+(n) = ∆(n)+.

If M is a topological monoid, then c(M)- and c(M)op-diagrams in top are
left and right M -spaces respectively.
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We recall that (s, �, Φ) is a symmetric monoidal category if the bifunctor
� : s × s → s is coherently associative and commutative, and Φ is a coherent
unit object. Such an s is closed if there is a bifunctor s × sop → s, denoted by
(Z, Y ) �→ [Y, Z], which satisfies the adjunction

s(X � Y, Z) ∼= s(X, [Y, Z])

for all objects X , Y , and Z of s. A category r is s-enriched when its morphism
sets are identified with objects of s, and composition factors naturally through �.
A closed symmetric monoidal category is canonically self-enriched, by identifying
s(X, Y ) with [X, Y ]. Henceforth, s denotes such a category.

Example 2.2. A small s-enriched category a determines a diagram A : a×aop → s,
whose value at (a, b) is the morphism object a(b, a).

An s-functor q → r of s-enriched categories acts on morphism sets as a
morphism of s. The category [q,r] of such functors has morphisms consisting of
natural transformations, and is also s-enriched. The s-functors F : q → r and
U : r→ q are s-adjoint if there is a natural isomorphism

r(F (X), Y ) ∼= q(X, U(Y ))

in s, for all objects X of q and Y of r.

Examples 2.3. The categories top and top+ are symmetric monoidal under carte-
sian product × and smash product ∧ respectively, with unit objects the one-point
space ∗ and the zero-sphere ∗+. Both are closed, and therefore self-enriched, by
identifying [X, Y ] with Y X and (Y, ∗)(X,∗) respectively.

Since (Y, ∗)(X,∗) inherits the subspace topology from Y X , the induced top-
enrichment of top+ is compatible with its self-enrichment. Both tmon and tgrp
are top+-enriched by restriction.

In certain situations it is helpful to reserve the notation t for either or both
of the self-enriched categories top and top+. Similarly, we reserve tmg for either
or both of the top+-enriched categories tmon and tgrp.

It is well known that top and top+ are complete and cocomplete, in the
standard sense that every small diagram has a limit and colimit. Completeness
is equivalent to the existence of products and equalizers, and cocompleteness to
the existence of coproducts and coequalizers. Both top and top+ actually admit
indexed limits and indexed colimits [21], involving topologically parametrized dia-
grams in the enriched setting; in other words, t is t-complete and t-cocomplete.
A summary of the details for top can be found in [26].

Amongst indexed limits and colimits, the enriched analogues of products and
coproducts are particularly important.

Definitions 2.4. An s-enriched category r is tensored and cotensored over s if there
exist bifunctors r× s→ r and r× sop → r respectively, denoted by

(X, Y ) �−→ X ⊗ Y and (X, Y ) �−→ XY ,
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together with natural isomorphisms

(2.5) r(X ⊗ Y, Z) ∼= s(Y,r(X, Z)) ∼= r(X, ZY )

in s, for all objects X , Z of r and Y of s. �
For any such r, there are therefore natural isomorphisms

(2.6) X ⊗ Φ ∼= X ∼= XΦ and X ⊗ (Y � W ) ∼= (X ⊗ Y )⊗W.

Every s is tensored over itself by �, and cotensored by [ , ].

Examples 2.7. The categories t are tensored and cotensored over themselves; so
X ⊗Y and XY are given by X×Y and XY in top, and by X ∧Y and (Y, ∗)(X,∗)

in top+.

The rôle of tensors and cotensors is clarified by the following results of Kelly
[21, (3.69)–(3.73)].

Theorem 2.8. An s-enriched category is s-complete if and only if it is complete, and
cotensored over s; it is s-cocomplete if and only if it is cocomplete, and tensored
over s.

Theorem 2.8 asserts that standard limits and colimits may themselves be
enriched in the presence of tensors and cotensors, since they are special cases of
indexed limits and colimits. Given an a-diagram D in r, where a is also s-enriched,
we deduce that the natural bijections

(2.9) r(X, lim D)←→ [a,r](X, D) and r(colim D, Y )←→ [a,r](D, Y )

are isomorphisms in s, for any objects X and Y of r. Henceforth, we assume that
s is complete and cocomplete in the standard sense.

It is convenient to formulate several properties of tmon and tgrp by ob-
serving that both categories are top+-complete and -cocomplete. We appeal to
the monad associated with the forgetful functor U : tmg → top+; in both cases
it has a left top+-adjoint, given by the free monoid or free group functor F . The
composition U ·F defines a top+-monad L : top+ → top+, whose category topL

+

of algebras is precisely tmg.

Proposition 2.10. The categories tmon and tgrp are top+-complete and top+-
cocomplete.

Proof. We consider the forgetful functor topL
+ → top+, noting that top+ is

top+-complete by Theorem 2.8.
Part (i) of [14, VII, Proposition 2.10] asserts that the forgetful functor creates

all indexed limits, confirming that tmg is top+-complete. Part (ii) (whose origins
lie in work of Hopkins) asserts that topL

+ is top+-cocomplete if L preserves reflex-
ive coequalizers, which need only be verified for U because F preserves colimits.
The result follows for an arbitrary reflexive pair (f, g) in tmg by using the right
inverse to show that the coequalizer of (U(f), U(g)) in top+ is itself in the image
of U , and lifts to the coequalizer of (f, g). �
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Pioneering results on the completeness and cocompleteness of categories of
topological monoids and topological groups may be found in [6]. Our main deduc-
tion from Proposition 2.10 is that tmon and tgrp are tensored over top+. By
studying the isomorphisms (2.5), we may construct the tensors explicitly; they are
described as pushouts in [30, 2.2].

Construction 2.11. For any objects M of tmon and Y of top+, the tensored
monoid M � Y is the quotient of the free topological monoid on U(M)∧Y by the
relations

(m, y)(m′, y) = (mm′, y) for all m, m′ ∈M and y ∈ Y .

For any object Γ of tgrp, the tensored group Γ � Y is the topological group
V (Γ ) � Y , where V denotes the forgetful functor tgrp→ tmon.

The cotensored monoid MY and cotensored group Γ Y are the function spaces
top+(Y, M) and top+(Y, Γ ) respectively, under pointwise multiplication. �

Lemma 2.12. The forgetful functor V : tgrp→ tmon preserves indexed limits and
colimits.

Proof. Since V is right top+-adjoint to the universal group functor, it preserves
indexed limits. Construction 2.11 confirms that V preserves tensors, so we need
only show that it preserves coequalizers, by the results of [21]. But the coequalizer
of topological groups Γ1

−→−→Γ2 in tmon is also a group; and inversion is continuous,
being induced by the continuous isomorphism γ �→ γ−1 on Γ2. �

The constructions of Section 7 involve indexed colimits in tmg, and Lemma
2.12 ensures that these may be formed in tmon, even when working exclusively
with topological groups.

Given a category r which is tensored and cotensored over s, we may now
describe several categorical constructions. They are straightforward variations on
[18, 2.3], and initially involve three diagrams. The first is D : bop → r, the second
E : b→ s, and the third F : b→ r.

Definitions 2.13. The tensor product D ⊗b E is the coequalizer of
∐

g:b0→b1

D(b1)⊗ E(b0)
α

−−−→−−−→
β

∐

b

D(b)⊗ E(b)

in r, where g ranges over the morphisms of b, and α|g = D(g) ⊗ 1 and β|g =
1⊗ E(g). The homset Homb(E, F ) is the equalizer of

∏

b

F (b)E(b)
α

−−−→−−−→
β

∏

g:b0→b1

F (b1)E(b0)

in r, where α =
∏

g ·E(g) and β =
∏

g F (g)· . �

We may interpret the elements of Homb(E, F ) as mappings from the diagram
E to the diagram F , using the cotensor pairing.
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Examples 2.14. Consider the case r = s = top or top+, with b = ∆. Given
simplicial spaces X• : ∆op → top and Y• : ∆op → top+, the tensor products

|X•| = X• ×∆ ∆ and |Y•| = Y• ∧∆ ∆+

represent their topological realisation [24] in top and top+ respectively. If we
choose r = tmg and s = top+, a simplicial object M• : ∆op → tmg has internal
and topological realisations

|M•|tmg = M• �∆ ∆+ and |M•| = U(M)• ∧∆ ∆+

in tmg and top+ respectively. Since | | preserves products, |M•| actually lies in
tmg.

If r = s, then D ⊗b Φ is colimD, where Φ is the trivial b-diagram. Also,
Homb(E, F ) is the morphism set [b,r](E, F ), consisting of the natural transfor-
mations E → F .

For Y• in Examples 2.14, its top- and top+-realisations are homeomorphic
because basepoints of the Yn represent degenerate simplices for n > 0. We identify
|M•|tmg with |M•| in Section 7.

We need certain generalisations of Definitions 2.13, in which analogies with
homological algebra become apparent. We extend the first and second diagrams
to D : a × bop → r and E : b × cop → s, and replace the third by F : c × dop →
s or G : a × cop → r. Then D ⊗b E becomes an (a × cop)-diagram in r, and
Homcop(E, G) becomes an (a×bop)-diagram in r. The extended diagrams reduce
to the originals by judicious substitution, such as a = c = id in D and E.

Example 2.15. Consider the case r = s = top+, with a = c = id and b =
∆. Given E = ∆+ as before, and G a constant diagram Z : id → top+, then
Homcop(E, G) coincides with the total singular complex Sin(Z) as an object of
[∆op,top+] . If r = tmg and N : id→ tmg is a constant diagram, then Sin(N) is
an object of [∆op,tmg] .

Important properties of tensor products are described by the natural equiv-
alences

(2.16) D ⊗b B ∼= D and (D ⊗b E)⊗c F ∼= D ⊗b (E ⊗c F )

of (a×bop)- and (a×dop)-diagrams respectively, in r. The first equivalence applies
Example 2.2 with a = b, and the second uses the isomorphism of (2.6). The adjoint
relationship between ⊗ and Hom is expressed by the equivalences

[a×cop,r](D ⊗b E, G) ∼= [b×cop,s](E, [a,r](D, G))
∼= [a×bop,r](D, Homcop(E, G)),

(2.17)

which extend the tensor-cotensor relations (2.5), and are a consequence of the
constructions.
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Examples 2.18. Consider the data of Example 2.15, and suppose that D is a sim-
plicial pointed space Y• : ∆op → top+. Then the adjoint relation (2.17) provides a
homeomorphism

top+(|Y•|, Z) ∼= [∆op,top+](Y•,Sin(Z)).

If r = tmg and s = top+, and M• is a simplicial object in tmg, we obtain a
homeomorphism

tmg(|M•|tmg, N) ∼= [∆op,tmg](M•,Sin(N))

for any object N of tmg.
If r = s and E = Φ, the relations (2.17) reduce to the second isomorphism

(2.9).

The first two examples extend the classic adjoint relationship between | | and
Sin.

We now assume r = s = top. We let D be an (a × bop)-diagram as above,
and define B•(∗,a, D) to be a degenerate form of the 2-sided bar construction. It
is a bop-diagram of simplicial spaces, given as a bop × ∆op-diagram in top by

(2.19) (b, (n)) �−→
⊔

a0,an

D(a0, b)× an(a0, an)

for each object b of b; the face and degeneracy maps are described as in [18]
by composition (or evaluation) of morphisms and by the insertion of identities
respectively. The topological realisation B(∗,a, D) is a bop-diagram in top. These
definitions ensure the existence of natural equivalences

B•(∗,a, D)×b E ∼= B•(∗,a, D ×b E)

and B(∗,a, D)×b E ∼= B(∗,a, D ×b E)
(2.20)

of cop-diagrams in [∆op,top] and top respectively.

Examples 2.21. If b = id, the homotopy colimit [4] of a diagram D : a → top is
given by

hocolimD = B(∗,a, D),
as explained in [18]; using (2.16) and (2.20), it is homeomorphic to both of

B(∗,a, A)×a D ∼= D ×aop B(∗,a, A).

In particular, B•(∗,a, ∗) is the nerve [32] B•a of a, whose realisation is the classi-
fying space Ba of a. The natural projection hocolim D → colimD is given by the
map

D ×aop B(∗,a, A) −→ D ×aop ∗,
induced by collapsing B(∗,a, A) onto ∗.

If a = c(M), where M is an arbitrary topological monoid, then D is a left M -
space and B(∗,c(M), C(M)) is a universal contractible right M -space EM [13].
So

hocolimD = B(∗,c(M), C(M))×c(M) D

is a model for the Borel construction EM ×M D.
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3. Basic constructions

We choose a universal set V of vertices v1,. . . ,vm, and let K denote a simplicial
complex with faces σ ⊆ V . The integer |σ| − 1 is the dimension of σ, and the
greatest such integer is the dimension of K. For each 1 ≤ j ≤ m, the faces of
dimension less than or equal to j form a subcomplex K(j), known as the j-skeleton
of K; in particular, the 1-skeleton K(1) is a graph. We abuse notation by writing
V for the zero-skeleton of K, more properly described as {{vj} : 1 ≤ j ≤ m}. At
the other extreme we have the (m − 1)-simplex, which is the complex containing
all subsets of V ; it is denoted by 2V in the abstract setting and by ∆(V ) when
emphasising its geometrical realisation. Any simplicial complex K therefore lies in
a chain

(3.1) V −→ K −→ 2V

of subcomplexes. Every face σ may also be interpreted as a subcomplex of K, and
so masquerades as a (|σ| − 1)-simplex.

A subset W ⊆ V is a missing face of K if every proper subset lies in K, yet
W itself does not; its dimension is |W | − 1. We refer to K as a flag complex , or
write that K is flag, when every missing face has two vertices. The boundary of a
planar m-gon is therefore flag whenever m ≥ 4, as is the barycentric subdivision
K ′ of an arbitrary complex K. The flagification Fl(K) of K is the minimal flag
complex containing K as a subcomplex, and is obtained from K by adjoining every
missing face containing three or more vertices.

Example 3.2. For any n > 2, the simplest non-flag complex on n vertices is the
boundary of an (n− 1)-simplex, denoted by ∂(n); then Fl(∂(n)) is ∆(n− 1) itself.

Given a subcomplex K ⊆ L on vertices V , it is useful to define W ⊆ V as
a missing face of the pair (L, K) whenever W fails to lie in K, yet every proper
subset lies in L.

Every finite simplicial complex K gives rise to a finite category cat(K),
whose objects are the faces σ and morphisms the inclusions σ ⊆ τ . The empty
face ∅ is an initial object. For any subcomplex K ⊆ L, the category cat(K) is a
full subcategory of cat(L); in particular, (3.1) determines a chain of subcategories

(3.3) id∅(m) −→ cat(K) −→ cat(2V ).

For each face σ, we define the undercategory σ ↓ cat(K) by restricting attention
to those objects τ for which σ ⊆ τ ; thus σ is an initial object. Insisting that the
inclusion σ ⊂ τ be strict yields the subcategory σ⇓cat(K), obtained by deleting
σ. The overcategories cat(K) ↓ σ and cat(K) ⇓ σ are defined likewise, and may
be rewritten as cat(σ) and cat(∂(σ)) respectively.

A complex K also determines a simplicial set S(K), whose nondegenerate
simplices are exactly the faces of K [24]. So the nerve B•cat(K) coincides with
the simplicial set S(Con(K ′)), where Con(K ′) denotes the cone on the barycentric
subdivision of K, and the cone point corresponds to ∅. More generally, B(σ ↓
cat(K)) is the cone on B(σ⇓cat(K)).
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Examples 3.4. If K = V , then Bid∅(m) is the cone on m disjoint points. If
K = 2V , then Bcat(2V ) is homeomorphic to the unit cube IV ⊂ R

V , and defines
its canonical simplicial subdivision; the homeomorphism maps each vertex σ ⊆ V
to its characteristic function χσ, and extends by linearity. If K is the subcomplex
∂(m), then Bcat(∂(m)) is obtained from the boundary ∂Im by deleting all faces
which contain the maximal vertex (1, . . . , 1).

The undercategories define a cat(K)op-diagram ↓cat(K) in the category of
small categories. It takes the value σ ↓cat(K) on each face σ, and the inclusion
functor τ ↓cat(K) ⊆ σ ↓cat(K) on each reverse inclusion τ ⊇ σ. The formation
of classifying spaces yields a cat(K)op-diagram B( ↓ cat(K)) in top+, which
consists of cones and their inclusions. It takes the value B(σ ↓cat(K)) on σ and
B(τ ↓ cat(K)) ⊆ B(σ ↓ cat(K) on τ ⊇ σ, and its colimit is the final space
Bcat(K). Following [18], we note the isomorphism

(3.5) B( ↓cat(K)) ∼= B(∗,cat(K),CAT(K))

of cat(K)op-diagrams in top+ (using the notation of Example 2.2).
We refer to the cones B(σ ↓ cat(K)) as faces of Bcat(K), amongst which

we distinguish the facets B(v ↓ cat(K)), defined by the vertices v. The facets
determine the faces, according to the expression

B(σ↓cat(K)) =
⋂

v∈σ

B(v↓cat(K))

for each σ ∈ K, and form a panel structure on Bcat(K) as described by Davis
[11]. This terminology is motivated by our next example, which lies at the heart
of recent developments in the theory of toric manifolds.

Example 3.6. The boundary of a simplicial polytope P is a simplicial complex KP ,
with faces σ. The polar P ∗ of P is a simple polytope of the same dimension, whose
faces Fσ are dual to those of P (it is convenient to consider F∅ as P ∗ itself).
There is a homeomorphism Bcat(KP ) → P ∗, which maps each vertex σ to the
barycentre of Fσ, and transforms each face B(σ ↓cat(K)) PL-homeomorphically
onto Fσ.

Classifying the categories and functors of (3.3) yields the chain of subspaces

(3.7) Con(V ) −→ Bcat(K) −→ Im.

So Bcat(K) contains the unit intervals along the coordinate axes, and is a sub-
complex of Im. It is therefore endowed with the induced cubical structure, as are
all subspaces B(σ ↓ cat(K)). In particular, the simple polytope P ∗ of Example
3.6 admits a natural cubical decomposition.

In our algebraic context, we utilise the category grp of discrete groups and
homomorphisms. Many constructions in grp may be obtained by restriction from
those we describe in tmon, and we leave readers to provide the details. In partic-
ular, grp is a full subcategory of tmg, and is top+-complete and -cocomplete.
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Given a commutative ring Q (usually the integers, or their reduction mod 2),
we consider the category Qmod of left Q-modules and Q-linear maps, which
is symmetric monoidal with respect to the tensor product ⊗Q and closed un-
der (Z, Y ) �→ Qmod(Y, Z). We usually work in the related category gQmod of
connected graded modules of finite type, or more particularly in the categories
gQcalg and gQcocoa, which are dual; the former consists of augmented com-
mutative Q-algebras and their homomorphisms, and the latter of supplemented
cocommutative Q-coalgebras and their coalgebra maps.

As an object of Qmod, the polynomial algebra Q[V ] on V has a basis of
monomials vW =

∏
W vj , for each multiset W on V . Henceforth, we assign a

common dimension d(vj) > 0 to the vertices vj for all 1 ≤ j ≤ m, and interpret
Q[V ] as an object of gQcalg; products are invested with appropriate signs if d(vj)
is odd and 2Q �= 0. Then the quotient map

Q[V ] −→ Q[V ]/(vλ : λ ⊆ V and λ /∈ K)

is a morphism in gQcalg, whose target is known as the graded Stanley-Reisner Q-
algebra of the simplicial complex K, and written SRQ(K). This ring is a fascinating
invariant of K, and reflects many of its combinatorial and geometrical properties,
as explained in [33]. Its Q-dual is a graded incidence coalgebra [20], which we
denote by SRQ(K).

We define a cat(K)op-diagram DK in top+ as follows. The value of DK on
each face σ is the discrete space σ+, obtained by adjoining + to the vertices, and
the value on τ ⊇ σ is the projection τ+ → σ+, which fixes the vertices of σ and
maps the vertices of τ \ σ to +.

Definition 3.8. Given objects (X, ∗) of top+ and M of tmg, the exponential dia-
grams XK and MK are the cotensor homsets Homid(DK , X) and Homid(DK , M)
respectively; they are cat(K)-diagrams in top+ and tmg. Alternatively, they are
the respective compositions of the exponentiation functors X( ) : topop

+ → top+

and M ( ) : topop
+ → tmg with Dop

K . �

So the value of XK on each face σ is the product space Xσ, whose elements
are functions f : σ → X , and the value of XK on σ ⊆ τ is the inclusion Xσ ⊆ Xτ

obtained by extending f over τ by the constant map ∗. The space X∅ consists
only of ∗. In the case of MK , each Mσ is invested with pointwise multiplication,
so HK takes values in grp for a discrete group H .

In gQcalg, we define a cat(K)op-diagram Q[K] by analogy. Its value on σ is
the graded polynomial algebra Q[σ], and on τ ⊇ σ is the projection Q[τ ]→ Q[σ].
We denote the dual cat(K)-diagram Homid(Q[K], Q) by Q〈K〉, and note that
it lies in gQcocoa. Its value on σ is the free Q-module Q〈S(σ)〉 generated by
simplices z in the simplicial set S(σ), and on σ ⊆ τ is the corresponding inclusion
of coalgebras. The coproduct is given by δ(z) =

∑
z1 ⊗ z2, where the sum ranges

over all partitions of z into subsimplices z1 and z2.
When Q = Z/2 we let the vertices have dimension 1. Every monomial vU

therefore has dimension |U | in the graded algebra Z/2[σ], and every j-simplex in
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S(σ) has dimension j + 1 in Z/2〈S(σ)〉. We refer to this as the real case. When
Q = Z we consider two possibilities. First is the complex case, in which the vertices
have dimension 2, so that the additive generators of Z[σ] and Z〈S(σ)〉 have twice
the dimension of their real counterparts. Second is the exterior case, in which
the dimension of the vertices reverts to 1. Every squarefree monomial vU then
has dimension |U | in Z[σ], and anticommutativity ensures that every monomial
containing a square is zero; every j-face of σ has dimension j + 1 in Z〈S(σ)〉, and
every degenerate j-simplex z represents zero. To distinguish between the complex
and exterior cases, we write Q as Z and ∧ respectively.

In the real and complex cases, Davis and Januszkiewicz [12] introduce homo-
topy types DJR(K) and DJC(K). The cohomology rings H∗(DJ R(K); Z/2) and
H∗(DJC(K); Z) are isomorphic to the graded Stanley-Reisner algebras SRZ/2(K)
and SRZ(K) respectively. We shall deal with the exterior case below, and discuss
alternative constructions for all three cases. We write DJ (K) as a generic sym-
bol for Davis and Januszkiewicz’s homotopy types, and refer to them as Davis-
Januszkiewicz spaces for K. They are represented by objects in top.

4. Colimits

In this section we introduce the colimits which form our main topic of discussion,
appealing to the completeness and cocompleteness of t and tmg as described in
Section 2. We consider colimits of the diagrams XK , MK , GK , and Q〈K〉 in the
appropriate categories, and label them colim+ XK , colimtmg MK , colimtmg GK ,
and colimQ〈K〉 respectively. Similarly, we write the limit of Q[K] as lim Q[K].
As we shall see, these limits and colimits coincide with familiar constructions in
several special cases.

As an exercise in acclimatisation, we begin with the diagrams associated to
(3.3). Exponentiating with respect to (X, ∗) and taking colimits provides the chain
of subspaces

(4.1)
m∨

j=1

Xj −→ colim+ XK −→ Xm,

thereby sandwiching colim+ XK between the axes and the cartesian power. On
the other hand, using an object M of tmg yields the chain of epimorphisms

(4.2)
m∗

j=1
Mj −→ colimtmg MK −→Mm,

giving a presentation of colimtmg MK which lies between the m-fold free product
of M and the cartesian power.

The following example emphasises the influence of the underlying category
on the formation of colimits, and is important later.
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Example 4.3. If K is the non-flag complex ∂(m) of Example 3.2 (where m > 2),
then colim+ XK is the fat wedge subspace {(x1, . . . , xm) : some xj = ∗}; on the
other hand, colimtmg MK is isomorphic to Mm itself.

By construction, colimtmg CK
2 in grp enjoys the presentation

〈a1, . . . , am : a2
j = 1, (aiaj)2 = 1 for all {vi, vj} in K〉

and is isomorphic to the right-angled Coxeter group Cox (K(1)) determined by the
1-skeleton of K. Readers should not confuse K(1) with the more familiar Coxeter
graph of the group, which is almost its complement!

Similarly, colimtmg CK has the presentation

〈b1, . . . , bm : [bi, bj ] = 1 for all {vi, vj} in K〉
(where [bi, bj ] denotes the commutator bibjb

−1
i b−1

j ), and so is isomorphic to the
right-angled Artin group Art(K(1)). Such groups are sometimes called graph groups,
and are special examples of graph products [10]. As explained to us by Dave Benson,
neither should be confused with the graphs of groups described in [31].

In the continuous case, we refer to colimtmg T K as the circulation group
Cir (K(1)) in tmg. Every element of Cir (K(1)) may therefore be represented as a
word

(4.4) ti1(1) · · · tik
(k),

where tij (j) lies in the ijth factor Tij for each 1 ≤ j ≤ k. Two elements tr ∈ Tr

and ts ∈ Ts commute whenever {r, s} is an edge of K.
Following (4.2), we abbreviate the generating subgroups Gvj < colimGK

to Gj , where 1 ≤ j ≤ m, and call them the vertex groups. Since colimtmg GK is
presented as a quotient of the free product ∗m

j=1 Gj , its elements g may be assigned
a wordlength l(g). In addition, the arguments of [8] apply to decompose every g
from the right as

(4.5) g =
n∏

j=1

sj(g)

for some n ≤ l(g), where each subword sj(g) contains the maximum possible
number of mutually commuting letters, and is unique.

Given any subset W ⊆ V of vertices, we write KW for the complex obtained
by restricting K to W . The following Lemma is a simple restatement of the basic
properties of colimtmg GK .

Lemma 4.6. We have that

(1) the subgroup colimtmg GKW ≤ colimtmg GK is abelian if and only if K
(1)
W is

a complete graph, in which case it is isomorphic to GW ;
(2) when K is flag, each subword sj(g) of (4.5) lies in a subgroup Gσj for some

face σj of K.
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Other algebraic examples of our colimits relate to the Stanley-Reisner alge-
bras and coalgebras of K. By construction, there are algebra isomorphisms

(4.7) lim Z/2[K] ∼= SRZ/2(K), lim Z[K] ∼= SRZ(K), and lim∧[K] ∼= SR∧(K),

where the limits are taken in gZcalg. Dually, there are coalgebra isomorphisms

colimZ/2〈K〉 ∼= SRZ/2(K), colimZ〈K〉 ∼= SRZ(K),

and colim∧〈K〉 ∼= SR∧(K)
(4.8)

in gZcocoa. The analogues of 4.1 display these limits and colimits as
m⊕

j=1

Q[vj ]←− lim Q[K]←− Q[V ]

and
m⊕

j=1

DPQ(vj) −→ colim Q〈K〉 −→ DPQ(V )

(4.9)

respectively; here DPQ(W ) denotes the divided power Q-coalgebra of multisets on
W ⊆ V , graded by dimension.

If we let (X, ∗) be one of the pairs (BC2, ∗), (BT, ∗), or (BC, ∗), then sim-
ple arguments with cellular chain complexes show that the cohomology rings
H∗(colim+(BC2)K ; Z/2), H∗(colim+(BT )K ; Z), and H∗(colim+(BC)K ; Z) are iso-
morphic to the limits (4.7) respectively. Similarly, the homology coalgebras are
isomorphic to the dual coalgebras (4.8). In cohomology, these observations are due
to Buchstaber and Panov [7] in the real and complex cases, and to Kim and Roush
[22] in the exterior case (at least when K is 1-dimensional). In homology, they may
be made in the context of incidence coalgebras, following [29]. In both cases, the
maps of (4.1) induce the homomorphisms (4.9).

Such calculations do not identify colim+(BC2)K and colim+(BT )K with
Davis and Januszkiewicz’s constructions. Nevertheless, Buchstaber and Panov
provide homotopy equivalences colim+(BC2)K � DJR(K) and colim+(BT )K �
DJC(K), which also follow from Corollary 5.4 below; the Corollary yields a corre-
sponding equivalence in the exterior case. Of course, colim+(BC)K is a subcomplex
of the m-dimensional torus (S1)m, and is therefore finite.

In due course, we shall use these remarks to interpret the following proposi-
tion in terms of Davis-Januszkiewicz spaces. The proof for G = C2 is implicit in
[12], and for G = C is due to Kim and Roush [22].

Proposition 4.10. When G = C2 or C, there is a homotopy equivalence

colim+(BG)K � B colimtmg GK

for any flag complex K.

Since both cases are discrete, B colimtmg GK is, of course, an Eilenberg-Mac
Lane space; Charney and Davis [9] discuss the identification of good models for
BA, given any Artin group A. Proposition 4.10 fails for arbitrary complexes K,
as our next examples show.



276 T. Panov, N. Ray, and R. Vogt

Examples 4.11. Proposition 4.10 applies when K = V , because the discrete complex
is flag; then colimtmg GK is isomorphic to the free product of m copies of G,
whose classifying space is the m-fold wedge

∨m
j=1 BGj (by [6], for example). On

the other hand, when K is the non-flag complex ∂(m), Example 4.3 confirms that
B colimtmg GK is BGm, whereas colim+(BG)K is the fat wedge subspace.

These examples apply unchanged to the case G = T , and serve to motivate
our extension of Proposition 4.10 to the complex case in Proposition 6.1 below.
So far as C2 and C are concerned, the proposition asserts that certain homotopy
homomorphisms

(4.12) hK : Ω colim+(BG)K −→ colimtmg GK

are homotopy equivalences when K is flag. We therefore view the hK as modelling
the loop spaces; in the complex case, they express Ω colim+(BT )K in terms of
the circulation groups colimtmg T K . In Section 7 we will use homotopy colimits to
describe analogues of hK for all complexes K.

Our interest in the loop spaces Ω colim+(BG)K has been stimulated by sev-
eral ongoing programmes in combinatorial algebra. For example, Herzog, Reiner,
and Welker [17] discuss combinatorial issues associated with calculating the k-
vector spaces TorSRk(K)(k, k) over an arbitrary ground field k, and refer to [16]
for historical background. Such calculations have applications to diagonal sub-
space arrangements, as explained by Peeva, Reiner and Welker [28]. Since these
Tor spaces also represent the E2-term of the Eilenberg-Moore spectral sequence
for H∗(ΩDJ (K); k), it seems well worth pursuing geometrical connections. We
consider the algebraic implications elsewhere [27].

5. Fibrations and homotopy colimits

In this section we apply the theory of homotopy colimits to study various relevant
fibrations and their geometrical interpretations. Some of the results appear in [7],
but we believe that our approach offers an attractive and efficient alternative, and
eases generalisation. We refer to [18] and [36] for the notation and fundamental
properties of homotopy colimits. Several of the results we use are also summarised
in [37], together with additional information on combinatorial applications.

We begin with a general construction, based on a well-pointed topological
group Γ and a diagram H : a → tmg of closed subgroups and their inclusions.
We assume that the maps of the classifying diagram BH : a → top+ are cofi-
brations, and that the Projection Lemma [37] applies to the natural projection
hocolim+ BH → colim+ BH , which is therefore a homotopy equivalence. The cofi-
brations BH(a) → BΓ correspond to the canonical map fH : colim+ BH → BΓ
under the homeomorphism (2.9).

By Examples 2.1 the coset spaces Γ/H(a) define an a× c(Γ ) diagram Γ/H
in top, and by Examples 2.21 the cofibration BH(a) → BΓ is equivalent to the
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fibration
B

(∗,c(Γ ), C(Γ )×c(Γ ) Γ/H(a)
) −→ Bc(Γ )

for each object a of a. So fH is equivalent to

hocolim+ B(∗,c(Γ ), C(Γ )×c(Γ ) Γ/H) −→ BΓ

in the homotopy category of spaces over BΓ , where the homotopy colimit is taken
over a.

Proposition 5.1. The homotopy fibre of fH is the homotopy colimit hocolim+ Γ/H.

Proof. We wish to identify the homotopy fibre of the projection

B
(∗,a, B(∗,c(Γ ), C(Γ )×c(Γ ) Γ/H)

) −→ BΓ.

But we may rewrite the total space as B(∗,a, Γ/H)×c(Γ )op B(∗,c(Γ ), C(Γ )), and
therefore as B(∗,c(Γ ), C(Γ ))×c(Γ ) B(∗,a, Γ/H), using (2.20) and Examples 2.21.
So the homotopy fibre is B(∗,a, Γ/H), as required. �

Given a pair of simplicial complexes (L, K) on vertices V , we let a = cat(K),
and choose Γ = colimtmg GL and H = GK ; we also abbreviate the diagram Γ/H
to L/K. Then fH is the induced map

(5.2) fK,L : colim+(BG)K −→ B colimtmg GL,

and the Projection Lemma applies to (BG)K because the maps colim+(BG)∂(σ) →
BGσ are closed cofibrations for each face σ. In particular, the canonical projection

(5.3) hocolim+(BG)K −→ colim+(BG)K = DJ (K)

is a homotopy equivalence. We may also deduce the following corollary to Propo-
sition 5.1.

Corollary 5.4. The homotopy fibre of fK,L is the homotopy colimit hocolim L/K,
and is homeomorphic to the identification space

(5.5)
(
Bcat(K)× colimtmg GL

)
/ ∼,

where (p, gh) ∼ (p, g) whenever h ∈ Gσ and p lies in the face B(σ↓cat(K)).

Proof. By (3.5), the homotopy colimit B(∗,cat(K), L/K) may be expressed as

B( ↓cat(K))×cat(K) L/K,

and the inclusions B(σ ↓ cat(K)) ⊆ Bcat(K) induce a homeomorphism with
(5.5). �

We write the canonical action of colimtmg GL on B(∗,cat(K), L/K) as µ for
future use.

We note that fK,L coincides with the right-hand map of (4.1) when L = 2V

and X = BG; the cases in which K = L (abbreviated to fK) and L = Fl(K) also
feature below. The space hocolim 2V /K plays a significant rôle in [12], where it
is described as the identification space of Corollary 5.4 and denoted by ZP (with
P the dual of K, in the sense of Example 3.6). To emphasise this connection, we
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write hocolimL/K as ZG(K, L), which we abbreviate to ZG(K) when K = L. It
appears repeatedly below, by virtue of Proposition 5.1. Our examples assume that
L = 2V , and continue the theme of Examples 4.11.

Examples 5.6. If K = V then ZG(K, 2V ) is the homotopy fibre of
∨m

j=1 BGj →
BGm, the inclusion of the axes; it has been of interest to homotopy theorists for
many years. If K is the non-flag complex ∂(m), then ZG(K, 2V ) is homotopy
equivalent to Sm−1 for G = Z/2, and S2m−1 for G = T .

The second of these examples may be understood by noting that the inclusion
of the fat wedge in BGm has the Thom complex of the external product ζm of
Hopf bundles as its cofibre.

Davis and Januszkiewicz [12] prove that the mod 2 cohomology ring of
ECm

2 ×Cm
2
ZC2(K, 2V ) and the integral cohomology ring of ET m ×T m ZT (K, 2V )

are isomorphic to the Stanley Reisner algebras SR∗
Z/2(K) and SR∗

Z
(K) respectively.

In view of Corollary 5.4 (in the case L = 2V ), we regard the spaces colim+(BG)K

and the Davis-Januszkiewicz homotopy types as interchangeable from this point
on.

The canonical projection ZG(K, L) → Bcat(K) is obtained by factoring
out the action µ of colimtmg GL on hocolimL/K. The cubical structure (3.7) of
the quotient lifts to an associated decomposition of ZG(K, L); when G = T and
L = 2V , for example, we recover the description of [7] in terms of polydiscs and
tori.

The action µ has other important properties.

Proposition 5.7. The isotropy subgroups of the action µ are given by the conjugates
wGσw−1 < colimtmg GL, as σ ranges over the faces of K.

Proof. It suffices to note from Corollary 5.4 that each point [x, wGσ ] is fixed by
wGσw−1 < colimtmg GL, for any x ∈ B(σ↓cat(K)). �

Corollary 5.8. The commutator subgroup of colimtmg GL acts freely on ZG(K, L)
under µ.

Proof. The isotropy subgroups are abelian, and so have trivial intersection with
the commutator subgroup. �

When K = L and G = C2, Proposition 5.7 strikes a familiar chord. The
parabolic subgroups of a Coxeter group H are the conjugates wΓw−1 of certain
subgroups Γ , generated by subsets of the defining Coxeter system; when H is
right-angled, and therefore takes the form Cox (K(1)), such subgroups are abelian.
When L = 2V , each subgroup wGσw−1 reduces to Gσ. In this case, Proposition
5.7 implies that the isotropy subgroups form an exponential catop(K)-diagram in
tgrp, which assigns Gσ to the face σ and the quotient homomorphism Gτ → Gσ

to the reverse inclusion τ ⊇ σ.
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As detailed in [7], the homotopy fibre ZG(K, 2V ) is closely related to the
theory of subspace arrangements and their auxiliary spaces. These spaces are de-
fined in each of the real, complex, and exterior cases, and will feature below; we
introduce them here as homotopy colimits.

Given a pointed space (Y, 0), we let Y× denote Y \ 0. For any subset W ⊆ V ,
we write YW ⊆ Y V for the coordinate subspace of functions f : V → Y for which
f(W ) = 0. The set of subspaces

AY (K) = {YW : W /∈ K}
is the associated arrangement of K, whose complement UY (K) is given by the
equivalent formulae

(5.9) Y V \⋃
W /∈KYW = {f : f−1(0) ∈ K}.

The cat(K)-diagram Y (K) associates the function space Y (σ) = {f : f−1(0) ⊆ σ}
to each face σ, and the inclusion Y (σ) ⊆ Y (τ) to each morphism σ ⊆ τ . It follows
that Y (σ) is homeomorphic to Y σ × (Y V \σ

× ), and that UY (K) is colim Y (K).
The exponential cat(K)-diagram Y

V \K
× associates Y

V \σ
× to σ; when Y is

contractible, we may therefore follow Proposition 5.1 by combining the Projection
Lemma and Homotopy Lemma of [37] to obtain a homotopy equivalence

(5.10) hocolimY
V \K
× � UY (K).

Now let us write F for one of the fields R or C. The study of the coordinate
subspace arrangements AF(K), together with their complements, is a special case
of a well-developed theory whose history is rich and colourful (see [2], for example).
In the exterior case, we replace F by the union of a countably infinite collection
of 1-dimensional cones in R

2, which we call a 1-star and write as E. So E
V is an

m-star; it is homeomorphic to the union of countably many m-dimensional cones
in (R2)V , obtained by taking products.

As G ranges over C2, T and C, we let F denote R, C and E respectively. In all
three cases, the natural inclusion of G into F× is a cofibration, and F× retracts onto
its image. So (5.10) applies, and may be replaced by the corresponding equivalence

(5.11) hocolimGV \K � UF(K).

Proposition 5.12. The space ZG(K, 2V ) is homotopy equivalent to UF(K), for any
complex K.

Proof. Substitute L = 2V in Corollary 5.4 and apply (5.11). �

By specialising results of [37] and [38], we may also describe
(⋃

W /∈K FW

)\ 0
as a homotopy colimit. This space is dual to UF(K), and appears to have a more
manageable homotopy type in many relevant cases. For G = C2 and T , a version
of Proposition 5.12 features prominently in [7].

The following examples illustrate Proposition 5.12, in the light of Exam-
ples 5.6.
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Examples 5.13. For m > 2 and G = T , the subspace arrangements of the discrete
complex V and the non-flag complex ∂(m) are given by

{{z : zj = zk = 0} : 1 ≤ j < k ≤ m
}

and {0}
respectively; the corresponding complements are

{z : zj = 0⇒ zk �= 0 for all k �= j} and C
m \ 0.

The former is homotopy equivalent to a wedge of spheres, and the latter to S2m−1.

6. Flag complexes and connectivity

In this section, we examine the homotopy fibre ZG(K, L) more closely. The results
form the basis of our model for ΩDJ (K) when K is flag, and enable us to measure
the extent of its failure for general K.

We consider a flag complex K, and substitute K = L into Corollary 5.4
to deduce that ZG(K) is the homotopy fibre of the cofibration fK : DJ (K) →
B colimtmg GK . It is helpful to abbreviate B(σ↓cat(K)) to B(σ) throughout the
following argument.

Proposition 6.1. The cofibration fK is a homotopy equivalence whenever K is flag.

Proof. We prove that ZG(K) is contractible.
For any face σ ∈ K, the space (colimtmg GK)/Gσ inherits an increasing filtra-

tion by subspaces (colimtmg GK)i/Gσ, consisting of those cosets wGσ for which a
representing element satisfies l(w) ≤ i. We may therefore define a cat(K)-diagram
Ki/K, which assigns (colimtmg GK)i/Gσ to each face σ and the corresponding
inclusion to each inclusion σ ⊆ τ . By construction, ZG(K) is filtered by the sub-
spaces hocolimKi/K and each inclusion hocolimKi−1/K ⊂ hocolimKi/K is a
cofibration. We proceed by induction on i.

For the base case i = 0, we observe that (colimtmg GK)0/Gσ is the single point
eGσ for all values of σ. Thus hocolimK0/K is homeomorphic to B(∅), and is con-
tractible. To make the inductive step, we assume that hocolim Ki/K is contractible
for all i < n, and write the quotient space (hocolimKn/K)/(hocolimKn−1/K) as
Qn. It then suffices to prove that Qn is contractible.

Every point of Qn has the form (x, wGσ), for some x ∈ B(σ) and some w of
length n. If the final letter of w lies in Gσ, then (x, wGσ) is the basepoint of Qn.
Otherwise, we rewrite w as w′s by (4.5), where s contains the maximum possible
number of mutually commuting letters. These determine a subset χ ⊆ V , and
Lemma 4.6 confirms that K(1) contains the complete graph on vertices χ. Since
K is flag, we deduce that 2χ ∈ K, and therefore that (x, w′Gχ) is the basepoint of
Qn. To describe a contraction of Qn, we may find a canonical path p in cat∅(K),
starting at x and finishing at some x′ in B(χ); of course p must vary continuously
with (x, wGσ), and lift to a corresponding path in Qn. If x is a vertex of B(σ),
we choose p to run at constant speed along the edge from x to the cone point ∅,
and again from ∅ to the vertex χ ∈ B(χ). If x is an interior point of B(σ), we
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extend the construction by linearity. Then p lifts to the path through (p(t), w) for
all 0 < t < 1, as required. �

We expect Proposition 6.1 to hold for more general topological groups Γ .
The Proposition also leads to the study of fK,L : DJ (K)→ B colimtmg GL for

any subcomplex K ⊆ L. We consider the missing faces of K with three or more
vertices and write c(K) ≥ 2 for their minimal dimension. We let d(K) denote
c(K) − 1 when G = C2 or C, and 2c(K) when G = T ; thus K is flag if and only
if c(K) (and therefore d(K)) is infinite. Finally, we define

c(K, L) =

{
c(K) if L ⊆ Fl(K)
1 otherwise,

and let d(K, L) be given by c(K, L)− 1 or 2c(K, L) as before.

Theorem 6.2. For any subcomplex K ⊆ L, the cofibration fK,L is an equivalence
in dimensions ≤ d(K, L).

Proof. We may factorise fK,L as

DJ (K) −→ DJ (Fl(K)) −→ DJ (Fl (L)) −→ B colimtmg GFl(L).

The first map is induced by flagification, and is a d(K)-equivalence by construction.
The second is the identity if L ⊆ Fl(K); otherwise, it is 0-connected when G = C2

or C, and 2-connected when G = T . The third map is fFl(L), and an equivalence
by Proposition 6.1. �

Theorem 6.2 suggests our first model for ΩDJ (K).

Proposition 6.3. For any complex K, there is a homotopy homomorphism and
(d(K)−1)-equivalence hK : ΩDJ (K)→ colimtmg GK ; in particular, it is an equiv-
alence when K is flag.

Proof. We deduce that ΩfK : ΩDJ (K)→ ΩB colimtmg GK is a (d(K)− 1)-equiv-
alence by applying Theorem 6.2 with K = L. The result follows by composing
with the canonical homotopy homomorphism ΩBH → H , which exists for any
topological group H . �

When L = 2V , the missing faces of (2V , K) are precisely the non-faces of K.
In this case only, we write their minimal dimension as c′(K).

It is instructive to consider the homotopy commutative diagram

(6.4)

ZG(K, L) id−−−−→ ZG(K, L) −−−−→ ∗
�p

�
�

ZG(K, 2V ) −−−−→ DJ (K)
fK,2V−−−−−→ BGm

�γ

�fK,L

�id

B[G, L] −−−−→ B colimtmg GL Ba−−−−→ BGm
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of fibrations, where a is the abelianisation homomorphism and [G, L] denotes the
commutator subgroup of colimtmg GL. By Theorem 6.2, ZG(K, L) and ZG(K, 2V )
are (d(K, L)− 1)- and (d′(K)− 1)-connected respectively, where d(K, L) ≥ d′(K)
by definition. In fact ZG(K, 2V ) is d′(K)-connected, by considering the homotopy
exact sequence of fK,2V .

Corollary 5.8 confirms that

(6.5) [G, L] −→ ZG(K, L)
p−→ ZG(K, 2V )

is a principal [G, L]-bundle, classified by γ. This bundle encodes a wealth of ge-
ometrical information on the pair (L, K). Its total space measures the failure of
fK,L to be a homotopy equivalence, and its base space is the complement of the
coordinate subspace arrangement AF(K) by Corollary 5.12. Moreover, Theorem
6.2 implies that γ is also a d(K, L)-equivalence, and so sheds some light on the
homotopy type of UF(K).

Looping (6.4) gives a homotopy commutative diagram of fibrations

(6.6)

ΩZG(K, L) id−−−−→ ΩZG(K, L) −−−−→ 1
�Ωp

�
�

ΩUF(K) i−−−−→ ΩDJ (K)
ΩfK,2V−−−−−−→ Gm

�Ωγ

�ΩfK,L

�id

[G, L] −−−−→ colimtmg GL a−−−−→ Gm

in tmonh, which offers an alternative perspective on ΩDJ (K).

Lemma 6.7. The loop space ΩDJ (K) splits as Gm × ΩUF(K) for any simplicial
complex K; the splitting is not multiplicative.

Proof. The vertex groups Gj embed in ΩDJ (K) via homotopy homomorphisms,
whose product j : Gm → ΩDJ (K) is left inverse to ΩfK,2V (but not a homotopy
homomorphism). The product of the maps i and j is the required homeomorphism.

�

The following examples continue the theme of Examples 5.6 and 5.13. They
refer to the second horizontal fibration of the diagram (6.6), which is homotopy
equivalent to the third whenever K = L is flag, by Proposition 6.1. The second
examples also appeal to James’s Theorem [19], which identifies the loop space ΩSn

with the free monoid F+(Sn−1) for any n > 1.

Examples 6.8. If K is the discrete flag complex V , then ΩUF(K) is homotopy
equivalent to the commutator subgroup of the free product ∗m

j=1 Gj. If K is the
non-flag complex ∂(m), then ΩUF(K) is homotopy equivalent to F+(Sm−2) for
G = Z/2, and F+(S2m−2) for G = T ; the map i identifies the inclusion of the
generating sphere with the higher Samelson product (of order m) in π∗(ΩDJ (K)).
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Of course, both examples split topologically according to Lemma 6.7. The
appearance of higher products in ΩDJ (∂(m)) shows that commutators alone can-
not model ΩDJ (K) when K is not flag. More subtle structures are required, based
on higher homotopy commutativity; they are related to Samelson and Whitehead
products, as we explain elsewhere [27].

7. Homotopy colimits of topological monoids

We now turn to the loop space ΩDJ (K) for a general simplicial complex K,
appealing to the theory of homotopy colimits. Although the resulting models are
necessarily more complicated, they are homotopy equivalent to colimtmg GK when
K is flag. The constructions depend fundamentally on the categorical ideas of
Section 2, and apply to more general spaces than DJ (K). We therefore work with
an arbitrary diagram D : a → tmg for most of the section, and write BD : a →
top+ for its classifying diagram. Our applications follow by substituting GK for D.

We implement proposals of earlier authors (as in [36], for example) by form-
ing the homotopy colimit hocolimtmg D in tmg, rather than top+. This is made
possible by the observation of Section 2 that the categories tmg are t-cocomplete,
and therefore have sufficient structure for the creation of internal homotopy colim-
its. We confirm that hocolimtmg D is a model for the loop space Ω hocolim+ BD
by proving that B commutes with homotopy colimits in the relevant sense. As
usual, we work in tmg, but find it convenient to describe certain details in terms
of topological monoids; whenever these monoids are topological groups, so is the
output.

We recall the standard extension of the 2-sided bar construction to the based
setting, with reference to (2.19). We write B+

• (∗,a, D) for the diagram bop×∆op →
top+ given by

(b, (n)) �−→
∨

a0,an

D(a0, b) ∧ an(a0, an)+,

where D is a diagram a×bop → top+. Following Examples 2.21, we define the
homotopy top+-colimit as

hocolim+ D = B+(∗,a, D),

and note the equivalent expressions B+(∗,a, A+) ∧a D ∼= D ∧aop B+(∗,a, A+).
For tmg, we proceed by categorical analogy. We replace the top-coproduct

in (2.19) by its counterpart in tmg, and the internal cartesian product in top
by the tensored structure of tmg over top+. For any diagram D : a→ tmg, the
simplicial topological monoid Btmg

• (∗,a, D) is therefore given by

(7.1) (n) �−→ ∗
a0,an

D(a0) � an(a0, an)+,

where ∗ denotes the free product of topological monoids. The face and degeneracy
operators are defined as before, but are now homomorphisms. When a is of the
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form cat(K), the n-simplices (7.1) may be rewritten as the finite free product

Btmg
n (∗,cat(K), D) = ∗

σn⊇···⊇σ0
D(σ0),

where there is one factor for each n-chain of simplices in K.

Definition 7.2. The homotopy tmg-colimit of D is given by

hocolimtmg D = |Btmg
• (∗,a, D)|tmg

in tmg, for any diagram D : a→ tmg. �
So hocolimtmg D is an object of tmg. Following Construction (2.11), it may

be described in terms of generators and relations as a quotient monoid of the form
(
∗

n≥0

(
Bn(∗,a, D) � ∆n

+

) ) / 〈(
di

n(b), s
)

=
(
b, δi

n(s)
)
,

(
si

n(b), t
)

=
(
b, σi

n(t)
)〉

,

for all b ∈ Bn(∗,a, D), and all s ∈ ∆(n− 1) and t ∈ ∆(n + 1). Here δi
n and σi

n are
the standard face and degeneracy maps of geometric simplices.

Example 7.3. Suppose that a is the category · → · , with a single non-identity.
Then an a-diagram is a homomorphism M → N in tmg, and hocolimtmg D is its
tmg mapping cylinder. It may be identified with the tmg-pushout of the diagram

M � ∆(1)+
j←−M −→ N,

where j(m) = (m, 0) in M � ∆(1)+ for all m ∈M .

An alternative expression for the simplicial topological monoid Btmg
• (∗,a, D)

arises by analogy with the equivalences (2.20).

Proposition 7.4. There is an isomorphism D �aop B+• (∗,a, A+) ∼= Btmg• (∗,a, D)
of simplicial topological monoids, for any diagram D : a→ tmg.

Proof. By (2.17), the functor D�aop : [aop×∆op,top+] → [∆op,tmg] is left top+-
adjoint to tmg(D, ), and therefore preserves coproducts. So we may write

D �aop B+
• (∗,a, A+) ∼= ∗

a,b
D �aop (a( , a)+ ∧ a•(a, b)+)

∼= ∗
a,b

D(a) � a•(a, b)+

as required, using the isomorphism D �aop a( , a) ∼= D(a) of (2.16). �
We must decide when the simplicial topological monoids Btmg

• (∗,a, D) are
proper simplicial spaces (in the sense of [25]) because we are interested in the
homotopy type of their realisations. This is achieved in Proposition 7.8, and leads
on to the analogue of the Homotopy Lemma for tmg. These are two of the more
memorable of the following sequence of six preliminaries, which precede the proof of
our main result. On several occasions we insist that objects of tmg are well pointed,
and even that they have the homotopy type of a CW-complex. Such conditions
certainly hold for our exponential diagrams, and do not affect the applications.

We consider families of monoids indexed by the elements s of an arbitrary
set S.
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Lemma 7.5. Let fs : Ms → Ns be a family of homomorphisms of well-pointed
topological monoids, which are homotopy equivalences; then the coproduct homo-
morphism

∗
s
fs : ∗

s
Ms −→ ∗

s
Ns

is also a homotopy equivalence.

Proof. Let f : M → N denote the homomorphism in question, and write FkM
for the subspace of M of elements representable by words of length ≤ k. Hence
F0 = {e}, and Fk+1M is the pushout

(7.6)

∨
K WK(M) ⊆−−−−→ ∨

K PK(M)
�

�

FkM
jk−−−−→ Fk+1M

in top+, where K runs through all (k + 1)-tuples (s1, . . . , sk+1) ∈ Sk+1 such that
si+1 �= si, and WK(M) ⊂ PK(M) is the fat wedge subspace of Ms1 × · · · ×Msk+1 .
Each Ms is well pointed, so WK(M) ⊂ PK(M) is a closed cofibration, and therefore
so is jk. Since M = colimk FkM in top+, it remains to confirm that the restriction
fk : FkM → FkN is a homotopy equivalence for all k. We proceed by induction,
based on the trivial case k = 0.

The map f induces a homotopy equivalence WK(M)→WK(N) because Ms

and Ns are well pointed, and a further homotopy equivalence PK(M)→ PK(N) by
construction. So the inductive hypothesis combines with Brown’s Gluing Lemma
[37, 2.4] to complete the proof. �

Lemma 7.7. For any subset R ⊂ S, the inclusion ∗rMr → ∗sMs is a closed
cofibration; in particular, ∗sMs is well pointed.

Proof. Let B → M be the inclusion in question, with FkM as in the proof of
Lemma 7.5 and F ′

kM = B∪FkM . Then F ′
k+1M is obtained from F ′

kM by attaching
spaces PK(M), where K runs through all (s1, . . . , sk+1) in Sk+1 \Rk+1 such that
si+1 �= si. Thus B → F ′

kM is a cofibration for all k, implying the result. �

Proposition 7.8. Given any small category a, and any diagram D : a → tmg of
well-pointed topological monoids, the simplicial space Btmg

• (∗,a, D) is proper, and
its realisation is well pointed.

Proof. By Lemma 7.7, each degeneracy map Btmg
n (∗,a, D) → Btmg

n+1(∗,a, D) is a
closed cofibration. The first result then follows from Lillig’s Union Theorem [23]
for cofibrations. So Btmg

0 (∗,a, D) ⊂ |Btmg
• (∗,a, D)| is a closed cofibration and

Btmg
0 (∗,a, D) is well pointed, yielding the second result. �

As described in Examples 2.14, every simplicial object M• in tmg has two
possible realisations. We now confirm that they agree, and identify their classifying
space.
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Lemma 7.9. The realisations |M•|tmg and |M•| are naturally isomorphic objects
of tmg, whose classifying space is naturally homeomorphic to |B(M•)|.
Proof. We apply the techniques of [14, VII §3] and [26, §4] to the functors | |tmg

and the restriction of | | to [∆op,tmg] . Both are left top+-adjoint to Sin : tmg→
[∆op,tmg] , and so are naturally equivalent. The homeomorphism B|M•| ∼= |B(M•)|
arises by considering the bisimplicial object (k, n) �→ (Mn)k in top+, and forming
its realisation in either order. �

We may now establish our promised Homotopy Lemma.

Proposition 7.10. Given diagrams D1, D2 : a → tmg of well-pointed topological
monoids, and a map f : D1 → D2 such that f(a) : D1(a) → D2(a) is a homotopy
equivalence of underlying spaces for each object a of a, the induced map

hocolimtmg D1 −→ hocolimtmg D2

is a homotopy equivalence.

Proof. This follows directly from Lemmas 7.5 and 7.9, and Proposition 7.8. �

We need one more technical result concerning homotopy limits of simplicial
objects. We work with diagrams X• : a × ∆op → top+ of simplicial spaces, and
D• : a× ∆op → tmg of simplicial topological monoids.

Proposition 7.11. With X• and D• as above, there are natural isomorphisms

hocolim+ |X•| ∼= | hocolim+ X•| and hocolimtmg |D•| ∼= | hocolimtmg D•|
in top+ and tmg respectively.

Proof. The isomorphisms arise from realising the bisimplicial objects

(k, n) �−→ B+
k (∗,a, Xn) and (k, n) �−→ Btmg

k (∗,a, Dn)

in either order. In the case of D•, we must also apply the first statement of Lemma
7.9. �

Parts of the proofs above may be rephrased using variants of the equivalences
(2.16). They lead to our first general result, which states that the formation of
classifying spaces commutes with homotopy colimits in an appropriate sense.

Theorem 7.12. For any diagram D : a→ tmg of well-pointed topological monoids
with the homotopy types of CW-complexes, there is a natural map

gD : hocolim+ BD −→ B hocolimtmg D

which is a homotopy equivalence.

Proof. For each object a of a, let D•(a) be the singular simplicial monoid of D(a).
The natural map |D•(a)| → D(a) is a homomorphism of well-pointed monoids
and a homotopy equivalence, so it passes to a homotopy equivalence B|D•(a)| →
BD(a) under the formation of classifying spaces. By Proposition 7.10 and the
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corresponding Homotopy Lemma for top+, it therefore suffices to prove our result
for diagrams of realisations of simplicial monoids.

Let D• : a×∆op → tmg be a diagram of simplicial monoids. By Lemma 7.9
and Proposition 7.11, we must exhibit a natural homotopy equivalence

| hocolim+ BD•| −→ |B hocolimtmg D•|.
Since both simplicial spaces are proper, it suffices to find a natural map

hocolim+ BD• −→ B hocolimtmg D•

which is a homotopy equivalence in each dimension n. But hocolim+ BDn is the
realisation of the proper simplicial space B+

• (∗,a, BDn), and Lemma 7.9 confirms
that B hocolimtmg Dn is naturally homeomorphic to the realisation of the proper
simplicial space B(Btmg• (∗,a, Dn)); so gD may be specified by a sequence of maps
B+

k (∗,a, BDn)→ B(Btmg
k (∗,a, Dn), where k ≥ 0. They are most easily described

as maps

(7.13)
∨

a0→···→ak

BDn(a0) −→ B
( ∗

a0→···→ak

Dn(a0)
)
,

and are induced by including each of the Dn(a0) into the free product. Since
(7.13) is a homotopy equivalence by a theorem of Fiedorowicz [15, 4.1], the proof
is complete. �

Various steps in the proof of Theorem 7.12 may be adapted to verify the
following, which answers a natural question about tensored monoids.

Proposition 7.14. For any well-pointed topological monoid M and based space Y ,
the natural map

BM ∧ Y −→ B(M � Y )

is a homotopy equivalence if M and Y have the homotopy type of CW-complexes.

Proof. As in Theorem 7.12, we need only work with the realisations |M•| and
|Y•| of the total singular complexes. Since B|M•| ∧ |Y•| → B(|M•| � |Y•|) is the
realisation of the natural map BMn∧Yn → B(Mn �Yn), it suffices to assume that
Y is discrete; in this case,

BM ∧ Y −→ B
(∗

y
My

)

is a homotopy equivalence by the same result of Fiedorowicz [15]. �

We apply Theorem 7.12 to construct our general model for ΩDJ (K), but
require a commutative diagram to clarify its relationship with the special case hK

of Proposition 6.3. We deal with aop × ∆op-diagrams X• in top+, and certain
of their morphisms. These include θ : X• → top+(BD, B(D �aop X•)), defined
for any X• by θ(x) = B(d �→ d � x), and the projection π : B+• → (∗+)•, where
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B+
• and (∗+)• denote B+

• (∗,a, A) and the trivial diagram respectively. Under the
homeomorphism
[∆op,top+]

(
BD ∧aop X•, B(D �aop X•)

)

∼= [aop×∆op,top+]
(
X•,top+(BD, B(D �aop X•))

)

of (2.17), θ corresponds to a map φ : BD ∧aop X• → B(D �aop X•) of simplicial
spaces.

Proposition 7.15. For any diagram D : a→ tmg, there is a commutative square

hocolim+ BD
gD−−−−→ B hocolimtmg D

�p+
�Bptmg

colim+ BD
fD−−−−→ B colimtmg D

,

where p+ and ptmg are the natural projections.

Proof. By construction, the diagram

B+•
θ−−−−→ top+ (BD, B(D �aop B+• ))

�π

�B(1�π)·

(∗+)•
θ−−−−→ top+ (BD, B(D �aop (∗+)•))

is commutative in [aop×∆op,top+] , and has adjoint

(7.16)

BD ∧aop B+•
φ−−−−→ B(D �aop B+• )

�1∧π

�B(1�π)

BD ∧aop (∗+)•
φ−−−−→ B(D �aop (∗+)•)

in [∆op,top+] . By Proposition 7.4, the upper φ is the map B+
• (∗,a, BD) →

B (Btmg
• (∗,a, D)) obtained by applying the relevant map (7.13) in each dimension.

By Examples 2.14, the lower φ is given by the canonical map fD : colim+ BD →
B colimtmg D in each dimension. Since realisation commutes with B, the topo-
logical realisation of (7.16) is the diagram we seek; for Lemma 7.9 identifies the
upper right-hand space with B hocolimtmg D, and Examples 2.21 confirms that
the vertical maps are the natural projections. �
Theorem 7.17. There is a homotopy commutative square

Ω hocolim+(BG)K hK−−−−→ hocolimtmg GK

�ΩpK

�qK

ΩDJ (K) hK−−−−→ colimtmg GK

of homotopy homomorphisms, where pK and hK are homotopy equivalences for
any simplicial complex K.
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Proof. We apply Proposition 7.15 with D = GK , and loop the corresponding
square; the projection pK : hocolim+(BG)K → DJ (K) is a homotopy equivalence,
as explained in (5.3). The result follows by composing the horizontal maps with
the canonical homotopy homomorphism ΩBH → H , where H = hocolimtmg GK

and colimtmg GK respectively. �

It is an interesting challenge to describe good geometrical models for homo-
topy homomorphisms which are inverse to hK and hK .
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réarrangements, volume 85 of Lecture Notes in Mathematics. Springer Verlag, 1969.

[9] Ruth Charney and Michael Davis. Finite K(π, 1) for Artin groups. In Prospects in
Topology (Princeton NJ, 1994), volume 138 of Annals of Mathematics Studies, pages
110–124. Princeton University Press, 1995.

[10] Ian M. Chiswell. The Euler characteristic of graph products and of Coxeter groups.
In William J. Harvey and Colin Maclachlan, editors, Discrete Groups and Geome-
try (Birmingham, 1991), volume 173 of London Mathematical Society Lecture Note
Series, pages 36–46. Cambridge University Press, 1992.

[11] Michael W. Davis. Groups generated by reflections and aspherical manifolds not
covered by Euclidean space. Annals of Mathematics, 117:293–324, 1983.

[12] Michael W. Davis and Tadeusz Januszkiewicz. Convex polytopes, Coxeter orbifolds
and torus actions. Duke Mathematical Journal, 62:417–451, 1991.

[13] Albrecht Dold and Richard Lashof. Principal quasifibrations and fibre homotopy
equivalence of bundles. Illinois Journal of Mathematics, 3:285–305, 1959.

[14] Anthony D. Elmendorf, Igor Kriz, Michael P. Mandell, and J. Peter May. Rings,
Modules, and Algebras in Stable Homotopy Theory, volume 47 of Mathematical Sur-
veys and Monographs. American Mathematical Society, 1997.



290 T. Panov, N. Ray, and R. Vogt

[15] Zbigniew Fiedorowicz. Classifying spaces of topological monoids and categories.
American Journal of Mathematics, 106:301–350, 1984.

[16] Tor Gulliksen and Gerson Levin. Homology of local rings, volume 20 of Queen’s papers
in Pure and applied Mathematics. Queen’s University, Kingston, Ontario, 1969.

[17] Jørgen Herzog, Victor Reiner, and Volkmar Welker. Componentwise linear ideals
and Golod rings. Michigan Mathematical Journal, 46:211–223, 1999.

[18] Jens Hollender and Rainer M. Vogt. Modules of topological spaces, applications to
homotopy limits and E∞ structures. Archiv der Mathematik, 59:115–129, 1992.

[19] Ioan M. James. Reduced product spaces. Annals of Mathematics, 62:259–280, 1955.

[20] S.A. Joni and G.-C. Rota. Coalgebras and bialgebras in combinatorics. Studies in
Applied Mathematics, 61:93–139, 1979.

[21] G. Maxwell Kelly. Basic Concepts of Enriched Category Theory, volume 64 of London
Mathematical Society Lecture Note Series. Cambridge University Press, 1982.

[22] Ki Hang Kim and Fred W. Roush. Homology of certain algebras defined by graphs.
Journal of Pure and Applied Algebra, 17:179–186, 1980.

[23] Joachim Lillig. A union theorem for cofibrations. Archiv der Mathematik, 24:410–415,
1973.

[24] J. Peter May. Simplicial Objects in Algebraic Topology, volume 11 of Van Nostrand
Mathematical Studies. Van Nostrand Reinhold, 1967.

[25] J. Peter May. E∞-spaces, group completions and permutative categories. In Graeme
Segal, editor, New Developments in Topology, volume 11 of London Mathematical
Society Lecture Notes Series, pages 153–231. Cambridge University Press, 1974.

[26] James McClure, Roland Schwänzl, and Rainer Vogt. THH(R) ∼= R⊗S1 for E∞ ring
spectra. Journal of Pure and Applied Algebra, 121:137–159, 1997.

[27] Taras Panov and Nigel Ray. The homology and homotopy theory of certain loop
spaces. In preparation, University of Manchester.

[28] Irena Peeva, Victor Reiner, and Volkmar Welker. Cohomology of real diagonal sub-
space arrangments via resolutions. Compositio Mathematica, 117:99–115, 1999.

[29] Nigel Ray and William Schmitt. Combinatorial models for coalgebraic structures.
Advances in Mathematics, 138:211–262, 1998.

[30] Roland Schwänzl and Rainer M Vogt. The categories of A∞ and E∞ monoids and
ring spectra as closed simplicial and topological model categories. Archiv der Math-
ematik, 56:405–411, 1991.

[31] Peter Scott and Terry Wall. Topological methods in group theory. In C.T.C. Wall,
editor, Homological Group Theory (Proceedings of the Durham Symposium, 1977),
volume 36 of London Mathematical Society Lecture Note Series, pages 137–203. Cam-
bridge University Press, 1979.

[32] Graeme Segal. Classifying spaces and spectral sequences. Institut des Hautes Études
Scientifiques, Publications Mathématiques, 34:105–112, 1968.
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