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Torus Actions Determined by Simple Polytopes

Victor M. Buchstaber and Taras E. Panov

Abstract. An n-dimensional polytope P n is called simple if exactly n
codimension-one faces meet at each vertex. The lattice of faces of a sim-
ple polytope P n with m codimension-one faces defines an arrangement of
coordinate subspaces in Cm. The group Rm−n acts on the complement of
this arrangement by dilations. The corresponding quotient is a smooth man-
ifold ZP invested with a canonical action of the compact torus T m with the
orbit space P n. For each smooth projective toric variety M2n defined by a
simple polytope P n with the given lattice of faces there exists a subgroup
T m−n ⊂ T m acting freely on ZP such that ZP /T m−n = M2n. We calculate
the cohomology ring of ZP and show that it is isomorphic to the cohomology
of the Stanley–Reisner ring of P n regarded as a module over the polynomial
ring. In this way the cohomology of ZP acquires a bigraded algebra structure,
and the additional grading allows to catch combinatorial invariants of the
polytope. At the same time this gives an example of explicit calculation of
the cohomology ring for the complement of a subspace arrangement defined
by simple polytope, which is of independent interest.

Introduction

A convex n-dimensional polytope Pn is called simple if exactly n codimension-
one faces meet at each vertex. Such polytopes are generic points in the variety of
all n-dimensional convex polytopes. One can associate to each simple polytope Pn

a smooth (m + n)-dimensional manifold ZP with canonical action of the torus Tm

on it; here m is the number of codimension-one faces of Pn.
A number of manifolds playing an important role in different aspects of topol-

ogy, algebraic and symplectic geometry are quotients ZP /T k for the action of some
subgroup T k ⊂ Tm. The most well-known class of such manifolds are the (smooth,
projective) toric varieties in algebraic geometry. From the viewpoint of our ap-
proach, these toric varieties (or toric manifolds) correspond to those simple poly-
topes Pn for which there exists a torus subgroup in Tm of maximal possible rank
m−n that acts freely on ZP . Thus, all toric manifolds can be obtained as quotients
of ZP by a torus of above type.
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The manifolds ZP were firstly introduced in [DJ] via certain equivalence rela-
tion ∼ as ZP = Tm×Pn/ ∼ (see Definition 1.2). We propose another approach to
defining ZP based on a construction from the algebraic geometry of toric varieties.
This construction was initially used in [Ba] (see also [Au], [Co]) for definition of
toric manifolds. Namely, the combinatorial structure of Pn defines an algebraic set
U(Pn) ⊂ Cm (the complement of a certain arrangement of coordinate subspaces,
see Definition 2.1) with action of the group (C∗)m on it. Toric manifolds appear
when one can find a subgroup D ⊂ (C∗)m isomorphic to (C∗)m−n that acts freely
on U(Pn). However, it turns out that it is always possible to find a subgroup
R ⊂ (C∗)m isomorphic to Rm−n that acts on U(Pn) freely. Then, for each sub-
group R of such kind the corresponding quotient U(Pn)/R is homeomorphic to
ZP .

One of our main goals here is to study relationships between the combinatorial
structure of simple polytopes and the topology of the above manifolds. One as-
pect of this relation is the existence of a certain bigraded complex calculating the
cohomology of ZP . This bigraded complex arises from the interesting geometric
structure on ZP , which we call bigraded cell structure. This structure is defined
by the torus action and the combinatorics of polytope. Thus, it seems to us that
the above manifolds defined by simple polytopes could be also used as a powerful
combinatorial tool.

Part of results of this article were announced in [BP1].
The authors express special thanks to Nigel Ray, since the approach to study-

ing the manifolds ZP described here was partly formed during the work on the
article [BR].

1. Manifolds defined by simple polytopes

We start with reviewing some basis combinatorial objects associated with sim-
ple polytopes. The good references here are [Br] and [Zi].

For any simple Pn, let fi denote the number of faces of codimension (i + 1),
0 ≤ i ≤ n − 1. The integer vector (f0, . . . , fn−1) is called the f -vector of Pn. It
is convenient to set f−1 = 1. We will also consider the another integral vector
(h0, . . . , hn) called h-vector of Pn, where hi are retrieved from the formula

h0t
n + . . . + hn−1t + hn = (t− 1)n + f0(t− 1)n−1 + . . . + fn−1,

that is,
n∑

i=0

hit
n−i =

n∑

i=0

fi−1(t− 1)n−i.(1.1)

This implies that

(1.2) hk =
k∑

i=0

(−1)k−i

(
n− i

k − i

)
fi−1.

Now let F = (Fn−1
1 , . . . , Fn−1

m ) be the set of all codimension-one faces of Pn,
so m = f0. We fix a commutative ring k, which we refer to the as ground ring.

Definition 1.1. The face ring (or the Stanley–Reisner ring) k(Pn) is defined
to be the ring k[v1, . . . , vm]/I, where

I = (vi1 . . . vis : i1 < i2 < . . . < is, Fi1 ∩ Fi2 ∩ · · · ∩ Fis = ∅) .
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Thus, the face ring is a quotient ring of polynomial ring by an ideal generated
by some square free monomials of degree ≥ 2. We make k(K) a graded ring by
setting deg vi = 2, i = 1, . . . , m.

For any simple polytope Pn one can define (n− 1)-dimensional simplicial com-
plex KP dual to the boundary ∂Pn. Originally, face ring was defined by Stan-
ley [St2] for simplicial complexes. In our case Stanley’s face ring k(KP ) coincides
with k(Pn).

Below for any simple Pn with m codimension-one faces we define, follow-
ing [DJ], two topological spaces ZP and BT P .

Set the standard basis {e1, . . . , em} in Zm, and define canonical coordinate
subgroups T k

i1,...ik
⊂ Tm as tori corresponding to the sublattices spanned in Zm by

ei1 , . . . , eik
.

Definition 1.2. The space ZP associated with simple polytope Pn is ZP =
(Tm × Pn)/ ∼, where the equivalence relation ∼ is defined as follows: (g1, p) ∼
(g2, q) ⇐⇒ p = q and g1g

−1
2 ∈ T k

i1,...,ik
. Here {i1, . . . , ik} is the set of indices of all

codimension-one faces containing the point p ∈ Pn, that is, p ∈ Fi1 ∩ · · · ∩ Fik
.

Note that dimZP = m+n. The torus Tm acts on ZP with orbit space Pn. This
action is free over the interior of Pn and has fixed points corresponding to vertices of
Pn. It was mentioned above that there are other well-known in algebraic geometry
examples of manifolds with torus action and orbit space a simple polytope. These
are the toric varieties [Da], [Fu] (actually, we consider only smooth projective toric
varieties). The space ZP is related to this as follows: for any smooth toric variety
M2n over Pn the orbit map ZP → Pn decomposes as ZP → M2n → Pn, where
ZP → M2n is a principal Tm−n-bundle, and M2n → Pn is the orbit map for M2n.
We will review this connection with more details later.

Example 1.3. Let Pn = ∆n (an n-dimensional simplex). Then m = n + 1,
and it is easy to check that ZP = (Tn+1 ×∆n)/∼ ∼= S2n+1.

Using the action of Tm on ZP , define the homotopy quotient (the Borel con-
struction)

(1.3) BT P = ETm ×T m ZP ,

where ETm is the contractible space of universal Tm-bundle over BTm = (CP∞)m.
It is clear that the homotopy type of BT P is defined by the simple polytope Pn.

Let Iq be the standard q-dimensional cube in Rq:

Iq = {(y1, . . . , yq) ∈ Rq : 0 ≤ yi ≤ 1, i = 1, . . . , q}.
A cubical complex is a topological space represented as the union of homeomorphic
images of standard cubes in such a way that the intersection of any two cubes is a
face of each.

Lemma 1.4. Any simple polytope Pn has a natural structure of cubical complex
C, which has s = fn−1 n-dimensional cubes In

v indexed by the vertices v ∈ Pn and
1 + f0 + f1 + . . . + fn−1 vertices. Moreover there is a natural embedding iP of C
into the boundary complex of standard m-dimensional cube Im.

Proof. Let us take a point in the interior of each face of Pn (we also take
all vertices and a point in the interior of the polytope). The resulting set S of
1 + f0 + f1 + . . . + fn−1 points is said to be the vertex set of the cubical complex
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Figure 1. The embedding ip : Pn → Im for n = 2, m = 3.

C. Now let us construct the embedding C ↪→ Im. We map the point of S that lies
inside the face Fn−k = Fn−1

i1
∩· · ·∩Fn−1

ik
, k ≥ 1 to the vertex of the cube Im whose

yi1 , . . . , yik
coordinates are zero, while other coordinates are 1. The point of S in

the interior of Pn is then mapped to the vertex of Im with coordinates (1, . . . , 1).
Let us consider the simplicial subdivision K of the polytope Pn that is constructed
as the cone over the barycentric subdivision of simplicial complex Kn−1 dual to
the boundary of Pn. The vertex set of the simplicial complex K is our set S, and
for any vertex v of Pn one can find a subcomplex Kv ⊂ K (the cone over the
barycentric subdivision of the (n − 1)-simplex in Kn−1 corresponding to v) that
simplicially subdivides the cube In

v . Now we can extend the map S ↪→ Im linearly
on each simplex of the triangulation K to the embedding iP : Pn ↪→ Im. ¤

Figure 1 describes the embedding iP : Pn ↪→ Im in the case n = 2, m = 3.
The embedding iP : Pn ↪→ Im has the following property:

Proposition 1.5. If v = Fn−1
i1

∩ · · · ∩ Fn−1
in

is a vertex of Pn, then the cube
In
v ⊂ Pn is mapped onto the n-face of the cube Im determined by m− n equations

yj = 1, j /∈ {i1, . . . , in}. ¤

Now, let us consider the standard unit poly-disk

(D2)m = {(z1, . . . , zm) ∈ Cm : |zi| ≤ 1} ⊂ Cm.

The standard action of Tm on Cm by diagonal matrices defines the action of Tm

on (D2)m with orbit space Im.

Theorem 1.6. The space ZP has a canonical structure of smooth (m + n)-
dimensional manifold such that the Tm-action is smooth. The embedding iP : Pn ↪→
Im constructed in Lemma 1.4 is covered by a Tm-equivariant embedding ie : ZP ↪→
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(D2)m ⊂ Cm. This can be described by the commutative diagram

ZP
ie−−−−→ (D2)m

y
y

Pn iP−−−−→ Im,

Proof. Let ρ : ZP → Pn be the orbit map. It easily follows from the definition
of ZP that for each cube In

v ⊂ Pn (see Lemma 1.4) we have ρ−1(In
v ) ∼= (D2)n ×

Tm−n. Here (D2)n is the unit poly-disk in Cn with diagonal action of Tn. Hence,
ZP is represented as the union of blocks Bv = ρ−1(In

v ), each of which is isomorphic
to (D2)n × Tm−n. These blocks Bv are glued together along their boundaries to
get the smooth Tm-manifold ZP .

Now, let us prove the second part of the theorem concerning the equivari-
ant embedding. First, we fix a numeration of codimension-one faces of Pn:
Fn−1

1 , . . . , Fn−1
m . Take the block

Bv
∼= (D2)n × Tm−n = D2 × . . .×D2 × S1 × . . .× S1

corresponding to a vertex v ∈ Pn. Each factor D2 or T 1 in Bv corresponds to a
codimension-one face of Pn and therefore acquires a number (index) i, 1 ≤ i ≤ m.
Note that n factors D2 acquire the indices corresponding to those codimension-one
faces containing v, while other indices are assigned to m − n factors T 1. Now we
numerate the factors D2 ⊂ (D2)m of the poly-disk in any way and embed each
block Bv ⊂ ZP into (D2)m according to the indexes of its factors. It can be easily
seen that the embedding of a face In given by m−n equations of type yj = 1 (as in
Proposition 1.5) into the cube Im is covered by the above constructed embedding
of Bv

∼= (D2)n × Tm−n into (D2)m. Then it follows from Proposition 1.5 that the
set of embeddings (D2)n×Tm−n ∼= Bv ↪→ (D2)m defines an equivariant embedding
ie : ZP ↪→ (D2)m. By the construction, this embedding covers the embedding
iP : Pn ↪→ Im from Lemma 1.4. ¤

Example 1.7. If Pn = ∆1 is an 1-dimensional simplex (a segment), then Bv =
D2 × S1 for each of the two vertices, and we obtain the well-known decomposition
Z∆1 ∼= S3 = D2×S1∪S1×D2. If Pn = ∆n is an n-dimensional simplex, we obtain
the similar decomposition of a (2n + 1)-sphere into n + 1 “blocks” (D2)n × S1.

2. Connections with toric varieties and subspace arrangements

The above constructed embedding ie : ZP ↪→ (D2)m ⊂ Cm allows us to connect
the manifold ZP with one construction from the theory of toric varieties. Below we
describe this construction, following [Ba].

Definition 2.1. Let I = {i1, . . . , ip} be an index set, and let AI ⊂ Cm denote
the coordinate subspace zi1 = · · · = zip = 0. Define the arrangement A(Pn) of
subspaces of Cm as

A(Pn) =
⋃

I

AI ,

where the union is taken over all I = {i1, . . . , ip} such that Fi1 ∩ · · · ∩ Fip = ∅ in
Pn. Put

U(Pn) = Cm \A(Pn).
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Note that the closed set A(Pn) has codimension at least 2 and is invariant with
respect to the diagonal action of (C∗)m on Cm. (Here C∗ denote the multiplicative
group of non-zero complex numbers). Hence, (C∗)m, as well as the torus Tm ⊂
(C∗)m, acts on U(Pn) ⊂ Cm.

It follows from Proposition 1.5 that the image of ZP under the embedding ie :
ZP → Cm (see Theorem 1.6) does not intersect A(Pn), that is, ie(ZP ) ⊂ U(Pn).

We put
Rm

> = {(α1, . . . , αm) ∈ Rn : αi > 0}.
This is a group with respect to multiplication, which acts by dilations on Rm and
Cm (an element (α1, . . . , αm) ∈ Rm

> takes (y1, . . . , ym) ∈ Rm to (α1y1, . . . , αmym)).
There is the isomorphism exp : Rm → Rm

> between additive and multiplicative
groups, which takes (t1, . . . , tm) ∈ Rm to (et1 , . . . , etm) ∈ Rm

> .
Remember that the polytope Pn is a set of points x ∈ Rn satisfying m linear

inequalities:

(2.1) Pn = {x ∈ Rn : 〈li, x〉 ≥ −ai, i = 1, . . . ,m},
where li ∈ (Rn)∗ are normal (co)vectors of facets. The set of (µ1, . . . , µm) ∈ Rm

such that µ1l1 + . . . + µmlm = 0 is an (m − n)-dimensional subspace in Rm. We
choose a basis {wi = (w1i, . . . , wmi)>}, 1 ≤ i ≤ m − n, in this subspace and form
the m× (m− n)-matrix

(2.2) W =




w11 . . . w1,m−n

. . . . . . . . .
wm1 . . . wm,m−n




of maximal rank m− n. This matrix satisfies the following property.

Proposition 2.2. Suppose that n facets Fn−1
i1

, . . . , Fn−1
in

of Pn meet at the
same vertex v: Fn−1

i1
∩ · · · ∩ Fn−1

in
= v. Then the minor (m − n) × (m − n)-

matrix Wi1...in obtained from W by deleting n rows i1, . . . , in is non-degenerate:
detWi1...in 6= 0.

Proof. Suppose det Wi1,...,in = 0, then one can find a zero non-trivial linear
combination of vectors li1 , . . . , lin . But this is impossible: since Pn is simple, the set
of normal vectors of facets meeting at the same vertex constitute a basis of Rn. ¤

The matrix W defines the subgroup

RW = {(ew11τ1+···+w1,m−nτm−n , . . . , ewm1τ1+···+wm,m−nτm−n) ∈ Rm
>} ⊂ Rm

> ,

where (τ1, . . . , τm−n) runs over Rm−n. This subgroup is isomorphic to Rm−n
> . Since

U(Pn) ⊂ Cm (see Definition 2.1) is invariant with respect to the action of Rm
> ⊂

(C∗)m on Cm, the subgroup RW ⊂ Rm
> also acts on U(Pn).

Theorem 2.3. The subgroup RW ⊂ Rm
> acts freely on U(Pn) ⊂ Cm. The

composite map ZP → U(Pn) → U(Pn)/RW of the embedding ie and the orbit map
is a homeomorphism.

Proof. A point from Cm may have the non-trivial isotropy subgroup with
respect to the action of Rm

> on Cm only if at least one of its coordinates vanishes.
As it follows from Definition 2.1, if a point x ∈ U(Pn) has some zero coordinates,
then all of them correspond to facets of Pn having at least one common vertex
v ∈ Pn. Let v = Fn−1

i1
∩ · · · ∩ Fn−1

in
. Then the isotropy subgroup of the point x
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with respect to the action of RW is non-trivial only if some linear combination of
vectors w1, . . . , wm−n lies in the coordinate subspace spanned by ei1 , . . . , ein

. But
this means that det Wi1...in

= 0, which contradicts Proposition 2.2. Thus, RW acts
freely on U(Pn).

Now, let us prove the second part of the theorem. Here we use both embed-
dings ie : ZP → (D2)m ⊂ Cm from Theorem 1.6 and iP : Pn → Im ⊂ Rm

from Lemma 1.4. It is sufficient to prove that each orbit of the action of RW

on U(Pn) ⊂ Cm intersects the image ie(ZP ) at a single point. Since the em-
bedding ie is equivariant, instead of this we may prove that each orbit of the
action of RW on the real part UR(Pn) = U(Pn) ∩ Rm

+ intersects the image
iP (Pn) in a single point. Let y ∈ iP (Pn) ⊂ Rm. Then y = (y1, . . . , ym) lies
in some n-face In

v of the unit cube Im ⊂ Rm as described by Proposition 1.5.
We need to show that the (m − n)-dimensional subspace spanned by the vectors
(w11y1, . . . , wm1ym)>, . . . , (w1,m−ny1, . . . , wm,m−nym)> is in general position with
the n-face In

v . But this follows directly from Propositions 1.5 and 2.2. ¤

The above theorem gives a new proof of the fact that ZP is a smooth manifold,
which allows a Tm-equivariant embedding into Cm ∼= R2m with trivial normal
bundle.

Example 2.4. Let Pn = ∆n (an n-simplex). Then m = n + 1, U(Pn) =
Cn+1 \ {0}, Rm−n

> is R>, and α ∈ R> takes z ∈ Cn+1 to αz. Thus, we have
ZP = S2n+1 (this could be also deduced from Definition 1.2; see also Example 1.7).

Now, suppose that all vertices of Pn belong to the integer lattice Zn ⊂ Rn.
Such an integral simple polytope Pn defines a projective toric variety MP (see [Fu]).
Normal (co)vectors li of facets of Pn (see (2.1)) can be taken integral and primitive.
The toric variety MP defined by Pn is smooth if for each vertex v = Fi1∩. . .∩Fin the
vectors li1 , . . . , lin constitute an integral basis of Zn. As before, we may construct
the matrix W (see (2.2)) and then define the subgroup

CW = {(ew11τ1+···+w1,m−nτm−n , . . . , ewm1τ1+···+wm,m−nτm−n)} ⊂ (C∗)m,

where (τ1, . . . , τm−n) runs over Cm−n. This subgroup is isomorphic to (C∗)m−n. It
can be shown (see [Ba]) that CW acts freely on U(Pn) and the toric manifold MP

is identified with the orbit space (or the geometric quotient) U(Pn)/CW . Thus, we
have the commutative diagram

U(Pn)
RW

∼=Rm−n
>−−−−−−−→ ZP

CW
∼=(C∗)m−n

y
yT m−n

M2n M2n.

Since ZP can be viewed as the orbit space of U(Pn) with respect to the action
of RW

∼= Rm−n
> , the manifold ZP and the complement U(Pn) of an arrangement of

planes are of same homotopy type. In the next section we calculate the cohomology
ring of ZP (or U(Pn)).

3. Cohomology ring of ZP

The following lemma follows readily from the construction of ZP .
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Lemma 3.1. If Pn is the product of two simple polytopes: Pn = Pn1
1 × Pn2

2 ,
then ZP = ZP1 ×ZP2 . If Pn1

1 ⊂ Pn is a face, then ZP1 is a submanifold of ZP . ¤

The space BTm = (CP∞)m has a canonical cellular decomposition (that is,
each CP∞ has one cell in each even dimension). For each index set I = {i1, . . . , ik}
we introduce the cellular subcomplex BT k

I = BT k
i1,...,ik

⊂ BTm homeomorphic
to BT k.

Definition 3.2. Define the cellular subcomplex B̃T P ⊂ BTm to be the union
of BT k

I over all I = {i1, . . . , ik} such that Fi1 ∩ · · · ∩ Fip 6= ∅ in Pn.

Theorem 3.3. The cellular embedding i : B̃T P ↪→ BTm (see Definition 3.2)
and the fibration p : BT P → BTm (see (1.3)) are homotopically equivalent. In
particular, B̃T P and BT P are of same homotopy type.

Proof. The proof can be found in [BP1]. ¤

Corollary 3.4. The cohomology ring of BT P is isomorphic to the face ring
k(Pn) (see Definition 1.1). The projection p : BT P ↪→ BTm induces the quotient
epimorphism p∗ : k[v1, . . . , vm] → k(Pn) = k[v1, . . . , vm]/I in the cohomology. ¤

A simple polytope Pn with m codimension-one faces is called q-neighbourly [Br]
if the (q − 1)-skeleton of the simplicial complex Kn−1

P dual to the boundary ∂Pn

coincides with the (q − 1)-skeleton of an (m − 1)-simplex. Equivalently, Pn is q-
neighbourly if any q codimension-one faces of Pn have non-empty intersection. Note
that any simple polytope is 1-neighbourly. The next theorem about the homotopy
groups of ZP and BT P follows easily from cellular structure of BT P and exact
homotopy sequence of the bundle p : BT P → BTm with fibre ZP .

Theorem 3.5. For any simple polytope Pn with m codimension-one faces we
have:

(1) π1(ZP ) = π1(BT P ) = 0.
(2) π2(ZP ) = 0, π2(BT P ) = Zm.
(3) πq(ZP ) = πq(BT P ) for q ≥ 3.
(4) If Pn is q-neighbourly, then πi(ZP ) = 0 for i < 2q + 1, and π2q+1(ZP )

is a free Abelian group whose generators correspond to monomials
vi1 · · · viq+1 ∈ I (see Definition 1.1). ¤

From (1.3) we obtain the commutative square

ZP −−−−→ BT Py
yp

∗ −−−−→ BTm.

The Eilenberg–Moore spectral sequence [Sm] of this square has the E2-term

E2
∼= Tork[v1,...,vm]

(
k(Pn),k

)
,

where k(Pn) is regarded as a k[v1, . . . , vm]-module by means of quotient projection
k[v1, . . . , vm] → k[v1, . . . , vm]/I = k(Pn). This spectral sequence converges to the
cohomology of ZP . It turns out that the spectral sequence collapses at the E2 term,
and moreover, the following statement holds:
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Theorem 3.6. Provided that k is a field, we have an isomorphism of algebras:

H∗(ZP ) ∼= Tork[v1,...,vm]

(
k(Pn),k

)
.

The additive structure of the cohomology is thus given by the isomorphisms

Hr(ZP ) ∼=
⊕

2j−i=r

Tor−i,2j
k[v1,...,vm]

(
k(Pn),k

)
, i, j ≥ 0.

Proof. The proof of the theorem uses some results of [Sm] on the Eilenberg–
Moore spectral sequences and Theorem 3.3. This proof can be found in [BP1]. ¤

Suppose that there is at least one smooth toric variety M2n whose orbit space
with respect to the Tn-action has combinatorial type of the simple polytope Pn.
Then one can find a subgroup Tm−n ∼= H ⊂ Tm that acts freely on the manifold
ZP such that M2n = ZP /H. In general case such a subgroup may fail to exist;
however, sometimes one can find a subgroup of dimension less than m−n that acts
freely on ZP . So, let H ∼= T r be such a subgroup. Then the inclusion s : H ↪→ Tm

is determined by an integral (m× r)-matrix (sij) such that the Z-module spanned
by its columns sj = (s1j , . . . , smj)>, j = 1, . . . , r, is a direct summand in Zm.
Choose any basis ti = (ti1, . . . , tim), i = 1, . . . ,m− r, in the kernel of the dual map
s∗ : (Zm)∗ → (Zr)∗. Then we have the following result describing the cohomology
ring of the manifold Y = ZP /H.

Theorem 3.7. The following isomorphism of algebras holds:

H∗(Y) ∼= Tork[t1,...,tm−r]

(
k(Pn),k

)
,

where the k[t1, . . . , tm−r]-module structure on k(Pn) = k[v1, . . . , vm]/I is defined
by the map

k[t1, . . . , tm−r] → k[v1, . . . , vm]
ti → ti1v1 + . . . + timvm.

Proof. This theorem, as well as the previous one, can be proved by considering
a certain Eilenberg–Moore spectral sequence. See [BP1, Theorem 4.13]. ¤

In the case of toric varieties (that is, r = m− n in Theorem 3.7) we obtain

H∗(M2n) ∼= Tork[t1,...,tn]

(
k(Pn),k

)
.

It can be shown that in this case k(Pn) is a free k[t1, . . . , tn]-module (which implies
that t1, . . . , tn is a regular sequence, and k(Pn) is a so-called Cohen–Macaulay ring).
Thus, we have

H∗(M2n) ∼= k(Pn)/J = k[v1, . . . , vm]/I+J,

where J is the ideal generated by ti1v1 + . . . + timvm, i = 1, . . . , n. This result
(the description of the cohomology ring of a smooth toric variety) is well known in
algebraic geometry as the Danilov–Jurkiewicz theorem [Da].

In order to describe the cohomology ring of ZP more explicitly, we apply some
constructions from homological algebra.

Let Γ = k[y1, . . . , yn], deg yi = 2, be a graded polynomial algebra, and let A be
any graded Γ-module. Let Λ[u1, . . . , un] denote the exterior algebra on generators
u1, . . . , un over k, and consider the complex

E = Γ⊗ Λ[u1, . . . , un].



10 VICTOR M. BUCHSTABER AND TARAS E. PANOV

This is a bigraded differential algebra; its gradings and differential are defined by

bideg(yi ⊗ 1) = (0, 2), d(yi ⊗ 1) = 0;

bideg(1⊗ ui) = (−1, 2), d(1⊗ ui) = yi ⊗ 1

and requiring that d be a derivation of algebras. The differential adds (1, 0) to
bidegree, hence, the components E−i,∗ form a cochain complex. It is well known
that this complex is a Γ-free resolution of k (regarded as a Γ-module) called the
Koszul resolution (see [Ma]). Thus, for any Γ-module A we have

TorΓ(A,k) = H
[
A⊗Γ Γ⊗ Λ[u1, . . . , un], d

]
= H

[
A⊗ Λ[u1, . . . , un], d

]
,

where d is defined as d(1⊗ ui) = yi ⊗ 1.
Applying this construction to the case Γ = k[v1, . . . , vm], A = k(Pn) and using

Theorem 3.6, we get the following statement.

Theorem 3.8. The following isomorphism of graded algebras holds:

H∗(ZP ) ∼= H
[
k(Pn)⊗ Λ[u1, . . . , um], d

]
,

bideg vi = (0, 2), bideg ui = (−1, 2),

d(1⊗ ui) = vi ⊗ 1, d(vi ⊗ 1) = 0,

where k(Pn) = k[v1, . . . , vm]/I is the face ring. ¤

Corollary 3.9. The Leray–Serre spectral sequence of the Tm-bundle

ZP × ETm → BT P = ZP ×T m ETm

collapses at the E3 term. ¤

Theorems 3.6 and 3.8 show that instead of usual grading, the cohomology of
ZP has bigraded algebra structure with bigraded components

H−i,2j(ZP ) ∼= Tor−i,2j
k[v1,...,vm]

(
k(Pn),k

)
, i, j ≥ 0,

satisfying Hr(ZP ) =
⊕

2j−i=r H−i,2j(ZP ).
Since ZP is a manifold, there is the Poincaré duality in H∗(ZP ). This Poincaré

duality has the following combinatorial interpretation.

Lemma 3.10.
(1) The Poincaré duality in H∗(ZP ) regards the bigraded structure defined by

theorems 3.6 and 3.8. More precisely, if α ∈ H−i,2j(ZP ) is a cohomology
class, then its Poincaré dual Dα belongs to H−(m−n)+i,2(m−j).

(2) Let v = Fn−1
i1

∩ · · · ∩ Fn−1
in

be a vertex of the polytope Pn, and let j1 <
. . . < jm−n, {i1, . . . , in, j1, . . . , jm−n} = {1, . . . ,m}. Then the value of the
element

vi1 · · · vinuj1 · · ·ujm−n ∈ Hm+n(ZP )

on the fundamental class of ZP equals ±1.
(3) Let v1 = Fn−1

i1
∩ · · · ∩ Fn−1

in
and v2 = Fn−1

i1
∩ · · · ∩ Fn−1

in−1
∩ Fn−1

j be two
vertices of Pn connected by an edge, and j1, . . . , jm−n as above. Then

vi1 · · · vinuj1 · · ·ujm−n = vi1 · · · vin−1vj1uinuj2 · · ·ujm−n

in Hm+n(ZP ).
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Proof. The second assertion follows from the fact that the cohomology
class under consideration is a generator of the module Tor−(m−n),2m

k[v1,...,vm]

(
k(Pn),k

)
=

Hm+n(Zm+n
P ) (see Theorem 3.6). To prove the third assertion we just mention

that

d(vi1 · · · vin−1uinuj1uj2 · · ·ujm−n)
= vi1 · · · vin

uj1 · · ·ujm−n
− vi1 · · · vin−1vj1uin

uj2 · · ·ujm−n

in k(Pn)⊗ Λ[u1, . . . , um] (see Theorem 3.8). ¤

Changing the numeration of codimension-one faces of Pn and the orientation
of ZP if necessary, we may assume that the fundamental cohomology class of ZP

is represented by the cocycle v1 · · · vnum+1 · · ·um ∈ k(Pn)⊗ Λ[u1, . . . , um].

4. New relations between combinatorics and topology

The results on the topology of manifolds defined by simple polytopes obtained
in the previous sections give rise to new remarkable connections with combinatorics
of polytopes. Here we discuss only few examples.

Set T i = Tor−i
k[v1,...,vm]

(
k(Pn),k

)
and T i,j = Tor−i,j

k[v1,...,vm]

(
k(Pn),k

)
. Then

Lemma 3.10 shows that the Poincaré duality for ZP can be shortly written as the
following identity for the Poincaré series F (T i, t) =

∑m
r=0 dimk(T i,2r)t2r of T i:

(4.1) F (T i, t) = t2mF (T m−n−i, 1
t ).

The above identity is well known in commutative algebra for so-called Gorenstein
simplicial complexes (see [St2, p. 76]). A simplicial complex K with m vertices is
Gorenstein over k if the face ring k(K) is Cohen–Macaulay and

dimTor−(m−n)
k[v1,...,vm]

(
k(K),k

)
= 1,

where n is the maximal number of algebraically independent elements of k(K), that
is, the maximal number of vertices of simplices of K. It is known that the face ring of
simplicial subdivision of a sphere Sn−1 is Gorenstein (see [St2, p. 76]). In particular,
our face ring k(Pn) of simple polytope Pn is Gorenstein, and the maximal number
of algebraically independent elements of k(Pn) equals the dimension of Pn.

A simple combinatorial argument (see [St2, part II, §1]) shows that for any
simple polytope Pn the Poincaré series F

(
k(Pn), t

)
can be written as follows

F
(
k(Pn), t

)
= 1 +

n−1∑

i=0

fit
2(i+1)

(1− t2)i+1
,

where (f0, . . . , fn−1) is the f -vector of P . This series can be also expressed in terms
of the h-vector (h0, . . . , hn) (see (1.1)) as

(4.2) F
(
k(Pn), t

)
=

h0 + h1t
2 + . . . + hnt2n

(1− t2)n
.

On the other hand, one can also deduce the formula for F
(
k(Pn), t

)
from the

Hilbert syzygy theorem by applying it to the minimal resolution of k(Pn) regarded
as a k[v1, . . . , vm]-module. This formula is as follows

(4.3) F
(
k(Pn), t

)
=

∑m
i=0(−1)iF (T i, t)

(1− t2)m
.
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Combining (4.1), (4.2), and (4.3) we get

(4.4) hi = hn−i, i = 0, 1, . . . , n.

These are the well-known Dehn–Sommerville equations (see, for example, [Br]) for
simple (or simplicial) polytopes. Dehn–Sommerville equations also hold for any
Gorenstein simplicial complex K (that is, such that the face ring k(K) is Goren-
stein, see [St2, p. 77]). Thus, we see that the algebraic duality (4.1) for Gorenstein
simplicial complexes and the combinatorial Dehn–Sommerville equations (4.4) fol-
low from the Poincaré duality for the manifold ZP .

Now, we define the bigraded Betti numbers b−i,2j as

b−i,2j = dimk Tor−i,2j
k[v1,...,vm]

(
k(Pn),k

)
.

Then by Theorem 3.6, br(ZP ) =
∑

2j−i=r b−i,2j . It is easy to check that

b0,0 = 1, b−q,2s = 0 if 0 < s ≤ q.

Now, one can define Euler characteristics χs as

χs =
m∑

q=0

(−1)qb−q,2s, s = 0, . . . ,m

and then define the series χ(t) as

χ(t) =
m∑

s=0

χst
2s.

It can be shown that for this series the following identity holds

(4.5) χ(t) = (1− t2)m−n(h0 + h1t . . . + hnt2n).

This formula allows to express the h-vector (h0, . . . , hn) of a simple polytope Pn in
terms of the bigraded Betti numbers b−q,2r(ZP ) of the corresponding manifold ZP .

At the end let us mention two more connections with well-known combinatorial
results. Firstly, consider the first non-trivial MacMullen inequality for simple Pn

(see [Br]):
h1 ≤ h2, for n ≥ 3.

Using identity (4.5), one can express the above inequality in terms of the bigraded
Betti numbers b−q,2r as follows:

(4.6) b3(ZP ) = b−1,4(ZP ) ≤ (
m−n

2

)
, for n ≥ 3.

Secondly, let us consider the well-known Upper Bound for the number of faces
of simple polytope. In terms of the h-vector it is as follows:

hi ≤
(
m−n+i−1

i

)

(see [Br]). Using the identity
(

1
1− t2

)m−n

=
∞∑

i=0

(
m− n + i− 1

i

)
t2i,

and formula (4.5), we deduce that the Upper Bound is equivalent to the following
inequality:

(4.7) χ(t) ≤ 1, |t| ≤ 1.
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It would be interesting to obtain a purely topological proof of inequalities (4.6)
and (4.7).

5. Concluding remarks

As we mentioned in the introduction, the confluence of ideas from topology and
combinatorics that gives rise to our notion of manifolds defined by simple polytopes
ascends to geometry of toric varieties. Toric geometry enriched combinatorics of
polytopes by very powerful topological and algebraic-geometrical methods, which
led to solution of many well-known problems. Here we mention only two aspects.
The first one is counting lattice points: starting from [Da] the Riemann–Roch the-
orem for toric varieties and related results were used for calculating the number
of lattice points inside integral polytopes (see also [Fu]). The second aspect is the
famous Stanley theorem [St1] that proves the necessity of MacMullen’s conjecture
for the number of faces of a simple (or simplicial) polytope. The proof uses the
projective toric variety constructed from a simple polytope with vertices in inte-
gral lattice. This toric variety is not determined by the combinatorial type of the
polytope: it depends also on integral coordinates of vertices. Many combinatorial
types can be realized as integral simple polytopes in such a way that the resulting
toric variety is smooth; in this case the Dehn–Sommerville equations follow from
the Poncaré duality for ordinary cohomology, while the MacMullen inequalities fol-
low from the Hard Lefschetz theorem. However, there are combinatorial types of
simple polytopes that do not admit any smooth toric variety. The simplest exam-
ples are duals to the so-called cyclic polytopes of dimension ≥ 4 with sufficiently
many vertices (see [DJ, Corollary 1.23]). For such polytopes Stanley’s proof uses
the Poincaré duality and the Hard Lefschetz theorem for intersection cohomology
of the corresponding (singular) toric variety. We mention that the Hard Lefschetz
theorem for intersection cohomology is a very deep algebraic-geometrical result.
Nevertheless, methods of toric geometry fail to give a proof of very natural general-
ization of MacMullen’s conjecture to the case of simplicial spheres. The discussion
of MacMullen’s inequalities for simplicial spheres, Gorenstein complexes and re-
lated topics can be found in [St2]. On the other hand, our approach provides an
interpretation of Dehn–Sommerville equations in terms of Poincaré duality in or-
dinary cohomology for any combinatorial simple polytope and gives a topological
interpretation of MacMullen’s inequalities. Moreover, our methods extend natu-
rally to simplicial spheres. In can be easily seen that the construction of manifold
ZP and other constructions from our paper are equally applicable for non-polytopal
simplicial spheres. Actually, an analog of ZP can be constructed for any simplicial
complex. In general case this fails to be a manifold, however it still decomposes
into blocks of type (D2)q × Tm−q as described in the proof of Theorem 1.6. We
call this space the moment-angle complex defined by simplicial complex. As in the
case of a simple polytope, the moment-angle complex is homotopically equivalent
to a certain coordinate subspace arrangement determined by the simplicial complex
(see Section 2). In our paper [BP3] we study topology of moment-angle complexes
and calculate the cohomology rings of general coordinate subspace arrangements.
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