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Abstract—Reed-Solomon code-based LDPC (RS-LDPC) block
codes are obtained by replacing single parity-check codes in
Gallager’s LDPC codes with Reed-Solomon constituent codes.
This paper investigates asymptotic error correcting capabilities
of ensembles of random RS-LDPC codes, used over the binary
symmetric channel and decoded with a low-complexity hard-
decision iterative decoding algorithm. The number of required
decoding iterations is a logarithmic function of the code length. It
is shown that there exist RS-LDPC codes for which such iterative
decoding corrects any error pattern with a number of errors that
grows linearly with the code length. The results are supported
by numerical examples, for various choices of code parameters.

I. INTRODUCTION

Long block codes can be obtained by combining one or
more simpler codes in various types of concatenated struc-
tures. Such constructions are of interest since they can yield
powerful codes with good error-correcting capabilities, which
are decodable with low complexity, using simple constituent
decoders as separate modules.

A method for constructing long codes from short constituent
codes, based on bipartite graphs, was introduced by Tanner in
[1]. In this method, one of the two sets of nodes in a bipartite
graph is associated with code symbols, while the other set is
associated with constituent block codes of length equal to the
node degree. These two sets of nodes are hereinafter referred to
as variable nodes and constraint nodes, respectively. Tanner’s
general code construction unifies many known code families
that can be obtained by choosing different underlying bipartite
graphs and associating different constituent codes with its
constraint nodes. For example, Gallager’s Low-Density Parity-
Check (LDPC) codes [2], and woven graph codes [3] can all
be described using a bipartite graph-based approach.

For Gallager’s LDPC codes [2], each constraint node in the
corresponding bipartite graph represents a single parity-check
(SPC) code over the variable nodes connected to it. In this
case, the parity-check matrix of the code coincides with the
adjacency matrix1 of the corresponding bipartite graph. If the
degree of each node is very small compared to the number of
variable nodes (code length) the parity-check matrix is sparse.
When the bipartite graph is regular, all variable nodes have
degree j and all constraint nodes have degree k. Then the

1Here it is assumed that the adjacency matrix A of a bipartite graph
with two vertex sets V1 and V2 is a |V1| × |V2| binary matrix specifying
connections among vertices, that is, (A)ij = 1 iff nodes vi ∈ V1 and
vj ∈ V2 are connected with a branch.

parity-check matrix contains j ones in each column and k
ones in each row, and it specifies a (j, k)-regular LDPC code.

The error-correcting capabilities of LDPC codes for the
binary symmetric channel (BSC) were studied in [4], where it
was shown that there exist LDPC codes capable of correcting
a portion of errors that grows linearly with the code length
n, with decoding complexity O(n log n). A similar result for
expander codes was proven in [5].

The SPC codes associated with constraint nodes in the
Tanner graph of an LDPC code can be replaced with other
constituent block codes (e.g. Reed-Solomon codes [6]), which
yields alternative constructions of LDPC codes, often referred
to as generalized LDPC codes. The parity-check matrix of
such an LDPC code is obtained by replacing every 1 in the
graph’s adjacency matrix with a column of the constituent
code’s parity-check matrix, and every 0 with an all-zero
column.

In this paper, we consider the asymptotic performance of
random RS-LDPC codes, when the code length n grows to
infinity. We will prove that there exist RS-LDPC codes which,
when decoded with a simple iterative decoder of complexity
O(n log n), can correct any error pattern with a number of
errors growing linearly with the code length. Our approach
builds upon the work of [4] where such a result was proved for
LDPC codes with constituent SPC codes which have minimum
distance d0 = 2. A similar result holds for expander codes if
the constituent codes have large enough minimum distance, cf.
[5]. The work presented here, with constituent Reed-Solomon
codes of minimum distance d0 =3, is a step towards ‘closing
the gap’ between these two results.

II. CONSTRUCTION AND PROPERTIES OF RS-LDPC
CODES

An (n0, k0, d0) extended Reed-Solomon code has length
n0 = 2q , dimension k0 = n0 − d0-1, code rate R0 = 1-(d0-
1)/n0.. We will consider single-error correcting extended RS
code with minimum distance d0 = 3,

A parity-check matrix H0 of a Reed-Solomon code is an
(d0-1) × n0 matrix whose columns are all nonzero q-nary
(d0-1)-tuples. We will consider RS-LDPC codes with identical
constituent codes. Let Hb denote a block-diagonal matrix
with the b constituent parity-check matrices H0 on the main



diagonal, that is,

Hb =




H0 0 0 · · · 0
0 H0 0 · · · 0
...

. . . . . . . . .
...

0 0 0 · · · H0


 (1)

where b is very large. The matrix Hb is of size bm×bn0. Let
π(Hb) denote a random column permutation of Hb. Then the
matrix constructed using ` ≥ 2 such permutations as layers,

H =




H1

H2

...
H`


 =




π1(Hb)
π2(Hb)

...
π`(Hb)


 (2)

is a sparse `bm×bn0 parity-check matrix which characterizes
the ensemble of Reed-Solomon code-based LDPC codes of
length n = bn0, where n À n0. Let C (n0, `, b) denote
this ensemble. For a given constituent Reed-Solomon code
with parity-check matrix H0, the elements of the ensemble
C (n0, `, b) are obtained by sampling independently the per-
mutations πl, l = 1, 2, ..., `, which are all equiprobable. The
rate of a code C ∈ C (n0, `, b) is lower-bounded by [1]

R ≥ 1− `b(n0 − k0)
n

= 1− `(1−R0) (3)

with equality iff the matrix H has full rank. This imposes a
restriction on the rate of the constituent codes, namely,

R0 > 1− 1
`

that is, the more layers there are, the higher the rate of the
constituent codes must be.

The RS-LDPC codes from the ensemble C (n0, `, b) contain
`b constituent Reed-Solomon codes; b in each layer. Such RS-
LDPC codes can be represented by a Tanner graph [1] with
n = bn0 variable nodes, and `b constraint nodes, as illustrated
in Figure 1. Each constraint node comprises n0−k0 parity-
check constraints specified by the rows of the corresponding
constituent parity-check matrix. If a codesymbol is checked by
a constituent code (that is, by at least one row of its parity-
check matrix), there is a branch connecting the corresponding
variable node and the constraint node. Each codesymbol is
checked by exactly one Reed-Solomon code in each layer.
The graph is regular, with the variable-node degree equal to
`, and the constraint-node degree equal to n0. Such a graph is
a special type of expander [7], where it is required that the `
constraint nodes adjacent to each variable node all belong to
different layers.

Consider communication over a binary symmetric channel
(BSC) using RS-LDPC codes with hard-decision decoding.
Let v be the transmitted codeword and e be the error pattern.
Then the received sequence is given by r = v+e. The weight
of the error sequence is W = |e| and the fraction of erroneous
symbols is ω = W/n. For code length n →∞, the fraction of
erroneous symbols ω converges in probability to the crossover
probability of the BSC.

For a given error pattern with W errors, we introduce the
`-tuple a = (a1 a2 ... a`), where al, l = 1, 2, ..., `, denotes the
number of constituent codes at the lth layer whose codewords
are affected by errors. Note that a contains realizations of `
independent random variables that are integer-valued in the
range 0 ≤ al ≤ b, l = 1, 2, ..., `. Furthermore, let a denote the
total number of constituent codes affected by errors, that is,

a = |a| =
∑̀

l=1

al.

In other words, a is the number of constraint nodes in the
Tanner graph that are connected to at least one variable node
with an erroneously received value.

III. DECODING ALGORITHM

Consider an iterative hard-decision decoding algorithm A ,
whose decoding iterations i, i = 1, 2, ..., imax, consist of the
following two steps:

1) For the tentative sequence r(i), where r(1) is the received
sequence r, decode independently `b constituent Reed-
Solomon codes (that is, compute their syndromes sj,l,
j = 1, 2, ..., b, l = 1, 2, ..., `, and if the value is nonzero,
output the n0-tuple where the position indicated by the
syndrome is flipped). This yields ` independent decisions
for each of the n symbols.
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Fig. 1. Tanner graph of an RS-LDPC code defined by the parity-check matrix
H given in (2). The graph illustrates the case when the first layer of H is
the matrix Hb itself, i.e., π1(Hb) = Hb (then the b constraint nodes in
layer 1 are connected to the consecutive blocks of n0 variable nodes). Other
layers are obtained with arbitrary permutations.



2) Flip every symbol r
(i)
k , k = 1, 2, ..., n, in the sequence

r(i), for which at least one of the ` decisions requires
that. This yields the updated sequence r(i+1).

Assume that the error pattern e is such that the number of
errors that can be corrected by the constituent codes is larger
than the number of uncorrectable errors. Then, during the first
iteration of the algorithm A , all correctable errors will be
corrected, while the uncorrectable ones will result in erroneous
decodings. Since Reed-Solomon codes are perfect single-error
correcting codes with covering radius ρ = 1, each erroneous
decoding will introduce at most one new error. Hence, the new
error pattern, resulting from one decoding iteration has fewer
errors than the initial error pattern. Clearly, if in each of the
following iterations, the number of correctable errors is larger
than the number of uncorrectable ones, then the total number
of errors in r(i) will decrease with the iteration number i and
the algorithm yields the correct decision, i.e., r(imax) = v.
Then, we can state the following

Lemma 1: For any RS-LDPC code from the ensemble
C (n0, `, b), if an error pattern is such that in each iteration
of algorithm A the number of errors correctable by the
constituent codes is larger than the number of uncorrectable
errors, then algorithm A yields a correct decision after
O(log n) iterations, where n = bn0 is the code length.

Proof: Let W = ωn be the weight of the error pattern,
and let ε denote a lower bound on the fraction of errors that are
corrected in each iteration, 0 < ε < 1. Then, after x iterations,
the number of remaining errors is at most ωn(1 − ε)x. The
final decoding iteration imax is reached when

ωn(1− ε)imax ≤ 1

that is,
log(ωn) + imax log(1− ε) ≤ 0

which yields

imax ≤ 1

log
(

1
1−ε

) log(ωn). (4)

Thus, the number of iterations is a logarithmic function of the
code length.

The complexity of each decoding iteration of the algorithm
A is proportional to the code length n. Thus, according to
Theorem 1, the overall decoding complexity is O(n log n),
given that the number of correctable errors in the error pattern
is larger than the number of the uncorrectable ones. The
following lemma formulates a condition under which this
holds.

Lemma 2: If for any error pattern with w ≤ W errors, the
number of constituent Reed-Solomon codes of an RS-LDPC
code from the ensemble C (n0, `, b) that are affected by errors
is a = αw` with α > 2/3, then the number of correctable
errors in any such error pattern is always larger than the
number of uncorrectable errors.

In other words, α > 2/3 specifies the necessary expansion
of the Tanner (expander) graph of the code [7], which ensures
that the number of errors decreases in each iteration of
algorithm A .

Proof: The W variable nodes with erroneously received
values are connected via W` branches to a ≤ W` constraint
nodes. If a > (2/3)W`, then more than (2/3)W` branches
reach distinct constraint nodes, while the remaining less than
(1/3)W` branches arrive to constraint nodes that are already
connected with one branch to a variable node with an erro-
neously received value. Thus, out of the a constraint nodes,
more than 1/2 is connected to only one variable node with
an erroneously received value, which is a correctable error
pattern for a Reed-Solomon code, while less than 1/2 have
uncorrectable errors.

Note that there is an important difference between the
algorithm A and the decoding algorithm considered in [4]:
in [4], a majority rule is applied for each symbol, that is,
a symbol is flipped only if more than `/2 constituent SPC
codes requires that. In the algorithm A , however, a symbol
is flipped as soon as at least one constituent Reed-Solomon
code requires that.

IV. ASYMPTOTIC PERFORMANCE

As shown in the previous section, the iterative algorithm
A corrects any error pattern with W or fewer errors, if the
code’s Tanner graph has the expansion coefficient α > 2/3.
The question that arises, however, is whether such a code exists
in the ensemble C (n0, `, b). The following theorem allows us
to receive the positive answer.

Theorem 1: In the ensemble C (n0, `, b) of RS-LDPC codes,
there exist codes (with probability p, where lim

n→∞
p = 1),

which can correct any error pattern of weight up to ωαn, with
decoding complexity O(n log n). The value ωα is the largest
root of the equation

h(ω)− `F (α, ω, n0) = 0 (5)

where h(ω) = −ω log2 ω−(1−ω) log2(1−ω) and the function
F (α, ω, n0) is given by

F (α, ω, n0) , h(ω) + ω log2(q − 1)− 1
n0

h(αωn0)

+ max
{

ω log2 s− αω log2

(
(1 + s(q − 1))n0 − 1

)}
(6)

where α> 2/3 and the maximization is performed over all s
such that

s >
1

(1− αωn0)1/n0
− 1.

Proof: For a fixed combination of W = ωn errors,
the probability that the number of constituent Reed-Solomon
codes of an RS-LDPC code from the ensemble C (n0, `, b) that



are affected by errors, will not exceed a certain value αW` is
upper-bounded by:

P (a ≤ αW`) ≤ 2−n`F (α,ω,n0) (7)

where the function F (α, ω, n0) is given by (6). The proof of
this statement follows Appendix 1 in [4] and is omitted here
for brevity.

Now consider the probability that the number of constituent
codes affected by errors is at most αW` for any error pattern
of a given weight W . If this probability is smaller than 1,
then there exist codes in the ensemble C (n0, `, b) for which
a > αW` for any weight-W error pattern. Thus, the existence
of such codes is ensured if(

n

W

)
P (a ≤ αW`) < 1.

Taking the logarithm and using the inequalities (7) and
(

n

ωn

)
. 2nh(ω)

where the asymptotic equality holds for n → ∞, we readily
obtain

h(ω)− `F (α, ω, n0) < 0. (8)

The largest value of ω which satisfies (8) for a given α is ωα.
Finally, we have from Lemmas 1 and 2 that for α > 2/3, the
algorithm A corrects ωαn errors with complexity O(n log n),
which completes the proof.

Theorem 1 allows us to compute ωα numerically for several
choices of code parameters. The computations confirm the
existence of codes with a nonvanishing ωα. We use α = 0.67,
which is slightly above the limit value of 2/3. First, we
consider code ensembles of a rate close to 1/2. Figure 2 illus-
trates the values of ωα computed for several code ensembles
C (n0, `, b) of rates approximately 1/2. With increasing n0

(and, in order to keep the rate fixed, also with increasing `)
the value of ωα increases only up to a certain point, n0 = 128,
where it reaches its maximum. With further increase of n0 and
`, ωα decays quickly.

Next we consider code ensembles of different rates, but with
a fixed constituent code. Figure 3 illustrates the values ωα

for RS-LDPC codes with the constituent (128, 126, 3) Reed-
Solomon code and with different code rates R, obtained by
varying the choice of `. We have found a nonvanishing ωα

for a wide range of code rates, and its value decreases with
increasing code rate.

It is interesting to note that our construction compares
favourably to the best known expander given in [7]. For
example, for an RS-LDPC code ensemble of rate R ≈ 1/2
with the constituent code length n0 = 128 and ` = 32 layers
(cf. Figure 2), we obtain ω = 0.00105, while the expander
in [7] yields ω = 0.00014. This improvement increases with
increasing n0 and `.
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Fig. 2. Values of ωα computed for α = 0.67 according to Theorem 1 for
several code ensembles of rates approximately R ≈ 1/2. The maximum is
achieved with the constituent code length n0 = 128.
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Fig. 3. Values of ωα computed for α = 0.67 according to Theorem 1
for several code ensembles of different rates with the fixed constituent code
length n0 = 128.

V. CONCLUSIONS

We have studied the performance of ensembles of Reed-
Solomon code-based LDPC codes used over the BSC, when
the code length n grows to infinity. It was shown that
these codes can be decoded with a simple iterative decoding
algorithm whose complexity is O(n log n), and that there
exist Reed-Solomon-LDPC codes which, when decoded with
such an algorithm, are asymptotically capable of correcting
a number of errors that grows linearly with the code length
n. Such a property was previously proven to hold only for
Gallager’s LDPC codes and for the expander codes. The
key property, which determines the code’s error-correcting



capability, is how good an expander the underlying bipartite
graph is.

The maximum fraction of errors ω, correctable with the
iterative decoder, was computed numerically for two types of
code ensembles, which are known to have minimum distances
that asymptotically almost meet the Gilbert-Varshamov bound:
codes of fixed rate R ≈ 1/2 and codes of variable rates with
a fixed constituent Reed-Solomon code.
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