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Abstract—As is well known, given a Fuchsian differential equation, one can construct a Fuch-
sian system with the same singular points and monodromy. In the present paper, this fact is
extended to the case of linear differential equations with irregular singularities.
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1. INTRODUCTION

The classical Riemann–Hilbert problem, i.e., the question of existence of a system

dy

dz
= B(z)y, y(z) ∈ C

p, (1)

of p linear differential equations with given Fuchsian singular points a1, . . . , an ∈ C and monodromy

χ : π1(C \ {a1, . . . , an}, z0) → GL(p, C), (2)

has a negative solution in the general case. Recall that a singularity ai of system (1) is said to be
Fuchsian if the matrix differential 1-form B(z) dz has simple poles at this point. The monodromy of
a system is a representation of the fundamental group of a punctured Riemann sphere in the space
of nonsingular complex matrices of dimension p. Under this representation, a loop γ is mapped to
a matrix Gγ such that Y (z) = Ỹ (z)Gγ , where Y (z) is a fundamental matrix of the system in the
neighborhood of the point z0 and Ỹ (z) is its analytic continuation along γ.

The first counterexample to the Riemann–Hilbert problem was produced by A.A. Bolibruch in
the case of p = 3 and n = 4 (see [1, Ch. 2] for more details). He also obtained various sufficient
conditions for the positive solution of the problem. Here we focus on one of them that served as
the basis for the present study.

(�) If representation (2) is the monodromy of a linear differential equation

dpu

dzp
+ b1(z)

dp−1u

dzp−1
+ . . . + bp(z)u = 0 (3)

of order p all of whose singularities a1, . . . , an are Fuchsian, then the Riemann–Hilbert problem has
a positive solution (see [4, Addendum 1]). A singular point ai of the scalar equation (3) is Fuchsian
if the coefficient bj(z) has a pole of order at most j at this point, j = 1, . . . , p.

Note that the Fuchsian singularities of both the system and the scalar equation are regular
singular points; i.e., all solutions near these points have at most power growth. Therefore, the
Riemann–Hilbert problem, as well as the above-mentioned sufficient condition for its solvability,
can be reformulated in terms of meromorphic equivalence of systems of linear differential equations.
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CONSTRUCTION OF A SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS 323

A linear transformation
ỹ = Γ(z)y (4)

(either local in a neighborhood Oi of a singular point ai, or global) is said to be meromorphically
invertible if the matrix Γ(z) is meromorphic (either in Oi or in C, respectively) and det Γ(z) �≡ 0.
Such a transformation makes system (1) into the system

dỹ

dz
= B̃(z)ỹ, B̃(z) =

dΓ
dz

Γ−1 + ΓB(z)Γ−1, (5)

which is said to be meromorphically equivalent to the original system (1).
According to Plemelj’s theorem, there always exists a system (1) with given regular singular

points a1, . . . , an and monodromy (2). Therefore, the negative solution to the Riemann–Hilbert
problem implies that some systems with regular singular points cannot be (globally) meromorphi-
cally equivalent to Fuchsian systems with the same singularities.1 At the same time, in view of the
sufficient condition (�), a system of special form

dy

dz
=

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 1 0
0 . . . . . . . . 0 1

−bp . . . . . . . . . . . . . −b1

⎞
⎟⎟⎟⎟⎟⎠ y, (6)

obtained from the Fuchsian equation (3) by the standard substitution

y1 = u, y2 =
du

dz
, . . . , yp =

dp−1u

dzp−1
(7)

(hence, all singular points of this system are regular), is globally meromorphically equivalent to a
Fuchsian system with the same singularities.

In this paper, we consider a generalized Riemann–Hilbert problem for linear systems with irreg-
ular (i.e., nonregular) singular points and an analog of the sufficient condition (�) for this problem.
The basic concepts and facts related to irregular singularities of linear differential equations are
presented in the next section.

Prior to formulating the generalized Riemann–Hilbert problem (posed in [5]), we recall the
definition of the minimal Poincaré rank of system (1) at a singular point.

If the Laurent series of the matrix B(z) of coefficients of system (1) has the form

B(z) =
B−r−1

(z − a)r+1
+ . . . +

B−1

z − a
+ B0 + . . . , B−r−1 �= 0,

in a neighborhood of a singular point a = ai, then the number r is called the Poincaré rank of the
system at this point.

It is easy to notice that (local) meromorphic transformations (4) can either increase or de-
crease the Poincaré rank. The minimal Poincaré rank of system (1) at a singular point ai is the
least of the Poincaré ranks of systems (5) that are meromorphically equivalent to system (1) in a
neighborhood Oi of the point ai.

For example, the minimal Poincaré rank of a regular singular point is zero, while the minimal
Poincaré rank of an irregular singularity is positive.

1Here we use the simple fact that two linear systems with identical sets of regular singular points are (globally)
meromorphically equivalent if and only if they have the same monodromy.
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324 I.V. V’YUGIN, R.R. GONTSOV

The generalized Riemann–Hilbert problem for systems with irregular singular points can be
formulated as follows.

For every i = 1, . . . , n, consider a local system

dy

dz
= Bi(z)y, Bi(z) =

Bi
−ri−1

(z − ai)ri+1
+ . . . +

Bi
−1

z − ai
+ Bi

0 + . . . , (8)

in a neighborhood Oi of a singular point ai of minimal Poincaré rank ri. Does there exist a global
system (1) with singularities a1, . . . , an of Poincaré ranks r1, . . . , rn that has a given monodromy (2)
and is meromorphically equivalent to systems (8) in the respective neighborhoods Oi?

Naturally, this problem may have a positive solution only if the monodromy groups of the local
systems (8) coincide with the corresponding restrictions χ|π1(Oi\{ai}) of representation (2).

Representation (2) together with local systems (8) will be referred to as generalized mon-
odromy data.

The classical Riemann–Hilbert problem is a particular case of the generalized problem (with
all ri = 0).2 In Section 3, we consider some types of counterexamples to the latter with positive
minimal Poincaré ranks ri, i.e., with irregular singularities of systems (8).

The main result of this study is the following generalization of the sufficient condition (�). This
result is proved in Section 4.

Theorem 1. Suppose that system (6) corresponds to equation (3) with more than one singular-
ity and each of these singularities is formally unramified. Then such a system (6) is meromorphically
equivalent to a system (1) with the same singular points whose Poincaré ranks are minimal.

In other words, the generalized Riemann–Hilbert problem has a positive solution for generalized
monodromy data corresponding to a scalar equation (3) whose singularities are formally unramified.

2. A METHOD FOR SOLVING THE GENERALIZED
RIEMANN–HILBERT PROBLEM

First, recall the basic concepts and facts from the local theory of linear differential equations
and systems with irregular singular points.

It is well known (see, for example, [2]) that in a neighborhood of an irregular singularity a = ai

of Poincaré rank r = ri, system (8) has a formal fundamental matrix Ŷ (z) of the form

Ŷ (z) = F̂ (z)(z − a)ÊeQ(z), (9)

where
(a) F̂ (z) is a formal (matrix) Laurent series about z = a with finite principal part and det F̂ (z) �≡

0;
(b) Q(z) = diag(Q1, . . . , QN ), where the diagonal matrices Qj(z) are polynomials P j in

(z − a)−1/s without free terms of degree at most rs, and each block Qj(z) is closed with respect
to the analytic continuation around the singular point z = a (i.e., the matrices Qj(a + ze2πi) and
Qj(a + z) differ only by some permutation of the diagonal elements);

(c) Ê = (1/2πi) ln Ĝ, Ĝ = diag(Ĝ1, . . . , ĜN ), is the formal monodromy matrix (of block diagonal
form corresponding to the form of the matrix Q) defined by

Ŷ (a + ze2πi) = Ŷ (a + z)Ĝ;

the eigenvalues ρ of the matrix Ê satisfy the condition 0 ≤ Re ρ < 1.
2In this case, systems (8) can be omitted because they are uniquely defined by the monodromy representation (2).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 271 2010



CONSTRUCTION OF A SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS 325

A neighborhood of a singular point a can be covered by a finite set {Sα} of sectors with vertices
at this point so that in each sector Sα there exists a fundamental matrix Yα(z) of system (8) for
which the formal fundamental matrix (9) is asymptotic. The latter means that the formal matrix
Laurent series F̂ (z) =

∑∞
j=−m Fj(z − a)j is asymptotic in the sector Sα for the matrix function

Yα(z)e−Q(z)(z − a)−Ê ; i.e.,

Yα(z)e−Q(z)(z − a)−Ê −
l∑

j=−m

Fj(z − a)j = o(|z − a|l) as z → a, z ∈ Sα,

for all l ≥ −m.
It is also known that each diagonal element q(z) of the matrix Q(z) has the form

q(z) = −λ

r
(z − a)−r + o(|z − a|−r), z → a,

where λ is an eigenvalue of the matrix Bi
−ri−1 (for different q(z), the corresponding eigenvalues of

the matrix Bi
−ri−1 are different).

Definition 1. The Katz index Ki of a singular point a = ai is the number (deg P )/s, where
P = diag(P 1, . . . , PN ) is regarded as a polynomial in (z − a)−1/s.

Since the matrix Q(z) is a meromorphic invariant of system (8), it follows from the properties
of this matrix that the Katz index Ki is not greater than the minimal Poincaré rank ri of the
singularity.

Definition 2. An irregular singularity of system (8) is said to be formally unramified if the
diagonal elements of the matrix Q(z) in decomposition (9) are linear combinations of integer powers
of z − a, i.e., if s = 1. Otherwise a singularity is said to be formally ramified. (The Fuchsian
singularities can also be naturally regarded as unramified ones.)

In the case of a formally unramified singularity, each block Qj(z) of the matrix Q(z) in decom-
position (9) is scalar and the matrix Ê is a Jordan matrix.

The Katz index of a singular point of the scalar equation (3) is defined as the corresponding
Katz index of system (6); however, it can also be calculated directly from the coefficients of the
equation. Namely (see [12] or [10, § 9.E]),

Ki = max
(

0, max
j=1,...,p

−j − ordai bj

j

)
, ai �= ∞. (10)

In particular, the Katz index of a Fuchsian singularity is zero. If equation (3) also has a singularity
at infinity, then the Katz index K∞ of the singularity at infinity is equal to the Katz index of the
singularity t = 0 of the equation obtained by passing to the coordinate t = 1/z in equation (3).
Calculations lead to the formula

K∞ = max
(

0, max
j=1,...,p

j − ord∞ bj

j

)
. (11)

According to (10), Ki ≥ −1 − ordai bj/j; i.e., the order of the pole of the function bj(z) at the
point ai is not greater than j(�Ki	 + 1), where � · 	 denotes the ceiling function. Therefore, the
transformation (4) with

Γ(z) = (z − ai)(�Ki�+1)D, D = diag(0, 1, . . . , p − 1),

reduces the Poincaré rank of the singularity ai of system (6) to the number �Ki	 (and the Poincaré
rank cannot be reduced further). Since any system (8) is meromorphically equivalent to a system of
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326 I.V. V’YUGIN, R.R. GONTSOV

the form (6) (see [9, Lemma II.1.3]), the minimal Poincaré rank ri of a singular point of system (8)
is related to the Katz index Ki of this singularity as follows: ri = �Ki	.

A method for solving the generalized Riemann–Hilbert problem is expounded in [5]. It is anal-
ogous to the method for solving the classical problem (see [4, Lecture 8]). Recall it briefly.

First, over the punctured Riemann sphere C\{a1, . . . , an}, one constructs a holomorphic vector
bundle F̃ of rank p with holomorphic connection ∇̃ that has a given monodromy (2). The bundle
is defined by a set {Uα} of small disks that cover C \ {a1, . . . , an} and by a set {gαβ} of constant
matrices that define a gluing cocycle. The connection ∇̃ is defined by the set {ωα} of matrix
differential 1-forms ωα ≡ 0.

Then one extends the pair (F̃ , ∇̃) to a bundle F 0 with meromorphic connection ∇0 that are
defined over the whole Riemann sphere and called a canonical extension of the pair (F̃ , ∇̃). To this
end, one adds neighborhoods O1, . . . , On of the points a1, . . . , an, respectively, to the covering {Uα}.
In a nonempty intersection Oi∩Uα, the gluing function giα(z) = Yi(z) is defined by the fundamental
matrix Yi(z) of the corresponding system (8), and the analytic continuations of this function to other
nonempty intersections Oi ∩ Uβ define the gluing functions giβ(z), so that the set {gαβ , giα(z)}
defines a cocycle corresponding to the covering {Uα, Oi} of the Riemann sphere. The meromorphic
connection ∇0 is defined by the set {ωα, ωi} of matrix differential 1-forms, where ωi = Bi(z)dz =
(dYi)Y −1

i are 1-forms of the coefficients of systems (8).
Next, one can construct a family F of extensions of the pair (F̃ , ∇̃) by replacing the matrices

giα(z) in the construction of the pair (F 0,∇0) with the matrices

g̃iα(z) = Γi(z)giα(z) (12)

and the forms ωi with the forms

ω̃i = (dΓi)Γ−1
i + ΓiωiΓ−1

i , (13)

where ỹ = Γi(z)y are all possible meromorphic transformations of system (8) that do not increase
its Poincaré rank ri, i = 1, . . . , n.

If the bundle F is holomorphically trivial for some pair (F,∇) ∈ F , then the corresponding
connection ∇ defines a global system (1) that solves the generalized Riemann–Hilbert problem.
Therefore, the generalized Riemann–Hilbert problem for systems with irregular singular points is
solvable if and only if one of the bundles of the family F constructed by the generalized monodromy
data (2), (8) is holomorphically trivial (see [5]).

The degree deg F of a bundle F with a meromorphic connection ∇ that has singularities
a1, . . . , an can be calculated by the formula deg F =

∑n
i=1 tr resai∇, where resai∇ is the residue

of the matrix differential 1-form that defines the connection in a neighborhood of the point ai.
According to the Birkhoff–Grothendieck theorem, any holomorphic vector bundle F of rank p over
a Riemann sphere is equivalent to the direct sum of line bundles, F ∼= O(k1) ⊕ . . . ⊕ O(kp); i.e.,
such a bundle can be described in the coordinate form as

U0 = C, U∞ = C \ {0}, g0∞(z) = zK ,

where K = diag(k1, . . . , kp). The set of integers k1 ≤ . . . ≤ kp is called the splitting type of the
bundle F . The splitting type uniquely defines the bundle. The sum

∑p
j=1 kj coincides with the

degree of the bundle F .
Now, in the family F , we distinguish a subset E ⊂ F constructed by means of meromorphic

transformations with matrices Γi(z) from (12) and (13) of special form. To this end, we need the
following definition of an admissible matrix.

Definition 3. Consider system (8) with an (irregular) singular point a = ai and a formal
fundamental matrix Ŷ (z) of the form (9). A diagonal integer matrix Λi = diag(Λ1

i , . . . ,Λ
N
i ) split
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CONSTRUCTION OF A SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS 327

into blocks in the same way as the matrix Q(z) is called an admissible matrix for this system if
• the diagonal elements of the block Λj

i form a nonincreasing sequence for any unramified
block Qj(z);

• Λj
i is a scalar matrix for any ramified block Qj(z).

We represent the matrix Ŷ (z) as follows:

Ŷ (z) = F̂ (z)(z − a)−Λi(z − a)Λi(z − a)ÊieQ(z). (14)

By virtue of an analog of the Sauvage lemma (see [11, Lemma 11.2]) for formal matrix series, there
exists a matrix Γ′

i(z) holomorphically invertible in Oi such that

Γ′
i(z)F̂ (z)(z − a)−Λi = (z − a)K F̂0(z), (15)

where K is a diagonal integer matrix and F̂0(z) is an invertible formal (matrix) Taylor series
around z = a.

Now, we define the required meromorphic transformation for each irregular singular point a = ai

by the matrix ΓΛi(z) = (z − a)−KΓ′
i(z), which depends on an admissible matrix Λi (since Γ′

i(z)
depends on Λi). It follows from (14) and (15) that the transformation y′ = ΓΛi(z)y maps system (8)
to a system with the formal fundamental matrix

Ŷ ′(z) = F̂0(z)(z − a)Λi(z − a)ÊieQ(z).

As shown in [5], such a transformation does not increase the Poincaré rank ri of system (8). The
family E of extensions (FΛ,∇Λ) of the pair (F,∇) to the whole Riemann sphere is obtained by
means of all possible sets Λ = {Λ1, . . . ,Λn} of admissible matrices for the singularities a1, . . . , an.
Thus, the family E is a subset of the family F . The degree of the bundle FΛ can be calculated by
the formula deg FΛ =

∑n
i=1 tr(Λi + Êi).

Note that the holomorphic triviality of one of the bundles in the family E implies the positive
solvability of the Riemann–Hilbert problem (since E ⊂ F); however, the absence of the holomor-
phically trivial bundles in the family E does not imply the negative solution of the problem.

3. COUNTEREXAMPLES TO THE GENERALIZED
RIEMANN–HILBERT PROBLEM

The generalized monodromy data (2), (8) are said to be reducible if both representation (2) and
the local systems (8) are reducible. The reducibility of the latter means that they are meromor-
phically equivalent to systems with coefficients matrices of the same block upper triangular form.
Otherwise the generalized monodromy data are said to be irreducible.

Among the sufficient conditions for the positive solution of the generalized Riemann–Hilbert
problem that were obtained in [5], there was the following: if the singularity of one of the local
systems (8) is formally unramified and the generalized monodromy data (2), (8) are irreducible,
then the problem is solvable.

If the singularities of all local systems (8) are formally ramified, then the generalized Riemann–
Hilbert problem may have a negative solution even in the case of irreducible monodromy data.

Example 1 (van der Put and Saito [7]). Consider a linear system of two equations,

dy

dz
= B(z)y, B(z) =

(
0 f(z)
1 0

)
, (16)

where f(z) = f3z
3 + f1z + f0 is a third-degree polynomial. Below we will show that the only

singularity z = ∞ of this system is formally ramified; therefore, the system is irreducible.
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328 I.V. V’YUGIN, R.R. GONTSOV

System (16), together with the trivial monodromy representation, defines irreducible generalized
monodromy data for which the generalized Riemann–Hilbert problem is unsolvable.

First of all, note that system (16) is obtained from the scalar equation

d2u

dz2
− f(z)u = 0

by the substitution y1 = du
dz and y2 = u; therefore, the Katz index K∞ of the singular point z = ∞

of this system coincides with the corresponding Katz index of the equation, and, according to (11),

K∞ =
2 − ord∞ f(z)

2
=

5
2
.

Thus, the singularity z = ∞ of system (16) is formally ramified and its minimal Poincaré rank is
r∞ =

⌈
5
2

⌉
= 3.

Suppose that the generalized Riemann–Hilbert problem has a positive solution, i.e., there exists
a meromorphic transformation (in a neighborhood of infinity) ỹ = Γ(z)y that maps system (16) to
a system with the coefficient matrix

B̃(z) =
dΓ
dz

Γ−1 + ΓB(z)Γ−1 = B0 + B1z + B2z
2. (17)

Then the entries of the matrix Γ(z) are polynomials because they satisfy the system of linear
differential equations dΓ

dz = B̃Γ− ΓB whose coefficients (the entries of the matrices B(z) and B̃(z))
are holomorphic in C. It follows from the Liouville formula that the determinant of the matrix Γ(z)
satisfies the linear differential equation d

dz det Γ = tr(B̃ − B) det Γ and therefore does not vanish
and is constant. We may assume that det Γ(z) ≡ 1.

Introducing the notation
(

a b
c d

)∗ =
(

d −b
−c a

)
, we write the matrices Γ and Γ−1 in the form

Γ(z) = Γ0 + Γ1z + . . . + Γsz
s, Γ−1(z) = Γ∗

0 + Γ∗
1z + . . . + Γ∗

sz
s, Γs �= 0.

Calculating the coefficients of z2s+3 and z2s+1 in the matrix polynomial dΓ
dz Γ−1 + ΓB(z)Γ−1 (which

vanish in view of (17)) leads to the following conclusions:

Γs

(
0 f3

0 0

)
Γ∗

s = 0 ⇒ Γs =
(
∗ ∗
0 0

)
, Γs−1

(
0 f3

0 0

)
Γ∗

s−1 = 0 ⇒ Γs−1 =
(
∗ ∗
0 0

)
.

If s = 1, then the matrix Γ(z) = Γ0 + Γ1z has the form
( ∗ ∗

0 0

)
, which contradicts the fact that

it is nondegenerate.
If s > 1, then the coefficient of z2s in the matrix polynomial dΓ

dz Γ−1 + ΓB(z)Γ−1 also vanishes;
this implies that Γs

(
0 f0
1 0

)
Γ∗

s = 0, i.e., Γs = 0. This fact contradicts the assumption Γs �= 0.
Example 1 also shows that if all singularities of the scalar equation (3) are formally ramified,

then the corresponding system (6) may not be meromorphically equivalent to system (1) with the
same singular points whose Poincaré ranks are minimal.

Below, we give a counterexample to the generalized Riemann–Hilbert problem. This coun-
terexample is based on the following proposition (see [3, Proposition 2.2.4, proof of Theorem 2.3.3,
Corollary 2.3.2]).

Proposition 1. For any set of points a1, . . . , an ∈ C and any even number γ, 0 < γ ≤ n − 2,
one can construct a three-dimensional representation χ∗ : π1(C\{a1, . . . , an}) → GL(3, C) possessing
the following properties :

(a) there exists a system (1) with singularities a1, . . . , an and monodromy χ∗; the singularity a1

is regular and its Poincaré rank is γ/2, while the other singularities are Fuchsian ;
(b) there does not exist a similar system with smaller Poincaré rank at the point a1.
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Example 2. Let a1, . . . , a6 ∈ C, γ = 4, and χ∗ be an appropriate representation from Propo-
sition 1. Denote by G1, . . . , G6 ∈ GL(3, C) generators of this representation and by E1, . . . , E6 the
normalized logarithms of these generators (i.e., Ek = 1

2πi ln Gk).
Consider the following generalized monodromy data:

(∗) the representation χ∗ and
(∗∗) the local systems dy

dz = Bk(z)y, k = 1, . . . , 6, where

B1(z) =
E1

z − a1
− I

(z − a1)2
, Bk(z) =

Ek

z − ak
, k = 2, . . . , 6.

Let us show that the generalized Riemann–Hilbert problem for the monodromy data (∗), (∗∗)
has a negative solution.

Suppose that there exists a (global) system

dy

dz
= B(z)y (18)

that has singular points a1, . . . , a6 of Poincaré ranks r1 = 1, r2 = . . . = r6 = 0, respectively, and the
monodromy χ∗ and is meromorphically equivalent to the system dy

dz = B1(z)y in a neighborhood of
the (irregular) singularity a1. Then the fundamental matrix of this system can be written as

Y (z) = Γ1(z)(z − a1)E1e
1

z−a1 ,

where the matrix Γ1(z) is meromorphically invertible at the point a1. Hence, the system

dỹ

dz
=

(
B(z) +

I

(z − a1)2

)
ỹ,

obtained from (18) by the substitution ỹ = e
− 1

z−a1 y, has the same singularities and monodromy, but
the point a1 is a regular singularity of Poincaré rank 1 for the latter system. This fact contradicts
one of the properties of the representation χ∗ (property (b) in Proposition 1).

4. PROOF OF THEOREM 1

The proof of Theorem 1 consists of two parts. In the first part, using equation (3), we construct a
pair consisting of a holomorphic vector bundle and a meromorphic connection and prove its stability
(Lemmas 1 and 2). The second part is a modification of Theorem 2 from [5] (Lemma 3).

Recall that the family F consists of bundles with connections.
Lemma 1. Among the elements of the family F constructed from equation (3), there exists a

pair (F,∇) such that

F ∼= O ⊕O(R + n − 2) ⊕ . . . ⊕O((p − 1)(R + n − 2)), R =
n∑

i=1

ri. (19)

Proof. Let a1 = ∞, a2, . . . , an ∈ C\{0} be the singular points of equation (3). This assumption
does not restrict the generality because one singularity can always be transferred to infinity and
another can be removed from zero by an appropriate linear fractional change of the independent
variable. These transformations do not change the Katz indices of the equations.

Let us examine the singular points a1, . . . , an of system (6) constructed from equation (3) by the
standard substitution (7). Recall that the minimal Poincaré rank ri of the singularity ai is related
to its Katz index Ki by the formula ri = �Ki	.
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As shown in Section 2, the gauge transformation

ỹ = (z − ai)(ri+1)Dy, D = diag(0, 1, . . . , p − 1), i = 2, . . . , n,

reduces system (6) to a system with Poincaré rank ri at the point ai (for all points except a1 = ∞).
At the same time, in view of (11),

ord∞ bj(z) ≥ −j(r1 − 1), j = 1, . . . , p; (20)

therefore, the gauge transformation ỹ = z−(r1−1)Dy reduces system (6) to a system with Poincaré
rank r1 at the point a1 = ∞.

Now, we consider a holomorphic vector bundle F of rank p over C defined by the coordinate
description U0 = C, U∞ = C \ {0}, g0∞(z) = z(R+n−2)D. Let us show that one can introduce
a meromorphic connection ∇ in F such that the matrix differential 1-forms ω0 and ω∞ of the
connection (defined in the neighborhoods U0 and U∞, respectively) possess the following properties:

(a) the systems dy = ω0y and dy = ω∞y are meromorphically equivalent to system (6) in U0

and U∞, respectively;
(b) the Poincaré ranks of the singularities (a2, . . . , an and a1, . . . , an, respectively) of these sys-

tems are minimal.

Let us apply gauge transformations of the form ỹ = Γ0(z)y and y′ = Γ∞(z)y with

Γ0(z) =
n∏

i=2

(z − ai)(ri+1)D, Γ∞(z) =
n∏

i=2

(z − ai

z

)(ri+1)D
z−(r1−1)D

to system (6) (in U0 and U∞, respectively). Then, according to the construction, the systems

dỹ = ω0ỹ, dy′ = ω∞y′ (21)

possess properties (a) and (b), and the matrix differential 1-forms ω0 and ω∞ define a meromorphic
connection ∇ in the bundle F . The latter follows from the fact that systems (21) are related in
U0 ∩ U∞ by the gauge transformation ỹ = g0∞(z)y′,

g0∞(z) = Γ0(z)Γ−1
∞ (z) = z(R+n−2)D ;

hence, the 1-forms ω0 and ω∞ satisfy the required gluing condition

ω0 = (dg0∞)g−1
0∞ + g0∞ω∞g−1

0∞.

The lemma is proved. �
The following lemma completes the first part of the proof of Theorem 1.
Lemma 2. The pair (F,∇) constructed in Lemma 1 is stable.
Proof. We have to prove that for every subbundle F 1 ⊂ F that is stabilized by the connec-

tion ∇, the slope µ(F ) = deg F/ rk F of the bundle F is greater than the slope µ(F 1) of F 1. Recall
that the existence of a subbundle stabilized by the connection implies that the pair (F,∇) admits a
coordinate description in which the matrices that define the cocycle of the bundle F have the same
block upper triangular form as the matrix differential 1-forms that define the connection ∇.

Note at once that the holomorphic type of the bundle F is known (see (19)); therefore, we can
calculate its slope

µ(F ) =
(R + n − 2)(p − 1)

2
.
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If the bundle F has a subbundle F 1 of rank l that is stabilized by the connection ∇, then the
monodromy of equation (3) is reducible. Consider a basis u1(z), . . . , up(z) of the solution space of
equation (3) such that the first l of its elements form a basis of a monodromy-invariant subspace X l

of solutions. Note that the fundamental matrix Y (z) of system (6) has the form

Y (z) =

⎛
⎜⎜⎜⎜⎝

u1(z) u2(z) . . . up(z)
du1(z)

dz
du2(z)

dz . . .
dup(z)

dz
...

...
. . .

...
dp−1u1(z)

dzp−1
dp−1u2(z)

dzp−1 . . .
dp−1up(z)

dzp−1

⎞
⎟⎟⎟⎟⎠ .

Now, consider a linear differential equation

1
W (u1, . . . , ul)

det

⎛
⎜⎜⎜⎝

u1 . . . ul u
du1
dz . . . dul

dz
du
dz

...
. . .

...
...

dlu1

dzl . . . dlul

dzl
dlu
dzl

⎞
⎟⎟⎟⎠ = 0 (22)

of order l for the unknown u(z), where

W (u1, . . . , ul) = det

⎛
⎜⎜⎜⎝

u1 . . . ul
du1
dz . . . dul

dz
...

. . .
...

dl−1u1

dzl−1 . . . dl−1ul

dzl−1

⎞
⎟⎟⎟⎠

is the Wronskian of the functions u1(z), . . . , ul(z). Since these functions are linearly independent
and generate a monodromy-invariant subspace, it follows that W (u1, . . . , ul) �≡ 0 and the coefficients
of equation (22) are single-valued functions on the Riemann sphere. Below we will need the following
important proposition.

Proposition 2. The coefficients of equation (22) are meromorphic functions on the Riemann
sphere.

Proof. Outside the singular points a1, . . . , an of the original equation (3), equation (22) may
have singularities only at the zeros of the Wronskian W (u1, . . . , ul). The latter are poles for the
coefficients of equation (22); therefore, to prove Proposition 2, it suffices to establish that

(a) the set {bα} of zeros of the Wronskian W (u1, . . . , ul) is finite, and
(b) the coefficients of equation (22) have poles at the points a1, . . . , an.
It suffices to prove that the zero set of the Wronskian W (u1, . . . , ul) has no limit points. Clearly,

the point z0 ∈ C\{a1, . . . , an} cannot be a limit point because the function W (u1(z), . . . , ul(z)) �≡ 0
is holomorphic in a neighborhood of this point. Now, we show that the points a1, . . . , an cannot be
limit points for the set {bα}.

Due to formula (9) and the reducibility of system (6), a fundamental system (û1(z), . . . , ûp(z))
of formal solutions of equation (3) in a neighborhood D(a) of the point a = ai has the form

(û1(z), . . . , ûp(z)) =
(
f̂1(z), . . . , f̂p(z)

)
(z − a)ÊeQ(z),

Ê =
(

Ê1 ∗
0 Ê2

)
, Q(z) =

(
Q1(z) 0

0 Q2(z)

)
,

(23)

where f̂j(z) are formal Laurent series about z = a with finite principal part and the blocks Ê1 and
Q1(z) are of dimension l × l.
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As mentioned in Section 2, the neighborhood D(a) can be covered by a finite set of sectors with
vertices at the point a so that in each sector the formal fundamental system (23) is asymptotic for
some real system. If the point a is a limit point of the set {bα}, then one of the sectors (denote it
by Sa) contains an infinite number of points bα that approximate to a. Take a fundamental system
(v1, . . . , vp) of solutions of equation (3) for which (23) is asymptotic in Sa and in which the first l
elements form a basis of the space X l; i.e., (v1, . . . , vl) = (u1, . . . , ul)C, C ∈ GL(l, C). The latter is
possible since system (6) is reducible. Then the points bα are zeros of the Wronskian W (v1, . . . , vl).

By construction, the vector function (v1(z), . . . , vl(z))e−Q1(z)(z − a)−Ê1 has an asymptotic rep-
resentation (f̂1(z), . . . , f̂l(z)) in the sector Sa. Therefore, using the basic properties of asymptotic
series (addition, multiplication, and differentiation; see [6, Theorems 8.2, 8.3, 8.8]) and the properties
of the determinant of a matrix, we find that the formal series W (f̂1(z), . . . , f̂l(z)) =

∑∞
j=−m fj(z−a)j

is asymptotic for the function

f(z) = W (v1(z), . . . , vl(z))e− tr Q1(z)(z − a)− tr Ê1

in the sector Sa. However, since this function vanishes at the points bα, it follows that this series is
a zero series. Indeed,

(z − a)mf(z) − f−m = o(1), z → a, z ∈ Sa;

therefore, approaching the point a along the set {bα}∩Sa, we obtain f−m = 0. Then, we successively
prove that all fj, j ≥ −m, vanish.

Since W (f̂1(z), . . . , f̂l(z)) ≡ 0, the series f̂1(z), . . . , f̂p(z) are linearly dependent. Consequently,
W (û1(z), . . . , ûp(z)) ≡ W (f̂1(z), . . . , f̂p(z)) ≡ 0, which is impossible for the formal fundamental
system (û1(z), . . . , ûp(z)). Thus, we have shown that the set of zeros of the Wronskian W (u1, . . . , ul)
is finite. It remains to verify that the points a1, . . . , an cannot be essential singular points for the
coefficients of equation (22).

Denote by Vj(u1, . . . , ul) the determinant of the matrix obtained by eliminating the (j + 1)th
row of the (l + 1) × l matrix ⎛

⎜⎜⎜⎝
u1 . . . ul
du1
dz . . . dul

dz
...

. . .
...

dlu1

dzl . . . dlul

dzl

⎞
⎟⎟⎟⎠ .

Then the coefficient of the derivative dju
dzj in equation (22) is Vj(u1,...,ul)

W (u1,...,ul)
, j = 0, 1, . . . , l. It follows

from the above analysis that the functions

Vj(u1(z), . . . , ul(z))e− tr Q1(z)(z − a)− tr Ê1

have the asymptotic representation const · Vj(f̂1(z), . . . , f̂l(z)) in each of the sectors covering the
neighborhood D(a) of the point a = ai (the constant depends only on the sector). Therefore,
each ratio Vj(u1,...,ul)

W (u1,...,ul)
has the same asymptotic representation (obtained by dividing the series

Vj(f̂1(z), . . . , f̂l(z)) and W (f̂1(z), . . . , f̂l(z)), see [6, Theorem 8.5]) in all sectors.
Thus, the coefficients of equation (22), which are holomorphic in the annular neighborhood

D(a) \ {a}, can be asymptotically represented by Laurent series in this neighborhood; i.e., the
point a is a pole for these coefficients (see [6, Theorem 8.6]). �

Now we return to the proof of Lemma 2. We have established that the singularities of equa-
tion (22) with meromorphic coefficients are the singular points a1, . . . , an of the original equation (3)
and the additional false singularities b1, . . . , bh ∈ C \ {a1, . . . , an}, the zeros of the Wronskian
W (u1(z), . . . , ul(z)). The latter are Fuchsian because the solutions are holomorphic at these points.
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It is also clear that the Katz indices of the singularities ai of equation (22) are not greater than the
corresponding Katz indices of equation (3).

Thus, the coefficients of equation (22) expressed in the standard form

dlu

dzl
+ q1(z)

dl−1u

dzl−1
+ . . . + ql(z)u = 0 (24)

have the corresponding orders of poles; i.e., the functions

qj(z)
n∏

i=2

(z − ai)j(ri+1)
h∏

k=1

(z − bk)j and qj(z)z−j(r1−1)

are holomorphic in C and at ∞, respectively (j = 1, . . . , l).
Using equation (24), we can obtain expressions for the derivatives of order m ≥ l of any of the

functions u1(z), . . . , ul(z) in terms of the derivatives of order less than m. One can easily verify
that these expressions have the form

dmu

dzm
= q̃ m

1 (z)
dm−1u

dzm−1
+ . . . + q̃ m

m (z)u, m ≥ l,

where the functions

q̃ m
j (z)

n∏
i=2

(z − ai)j(ri+1)
h∏

k=1

(z − bk)j and q̃ m
j (z)z−j(r1−1)

are also holomorphic in C and at ∞, respectively (j = 1, . . . ,m).
Let us apply the gauge transformation ỹ = Γ(z)y, where

Γ(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0 1
...

. . . . . .
0 . . . 0 1

−q̃ l
l (z) . . . . . . . . −q̃ l

1(z) 1
... . . . . . . . . . . . . . . . .

. . . . . .
−q̃ p−1

p−1 (z) . . . . . . . . . . . . . . . . . . . . . −q̃ p−1
1 (z) 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is a lower triangular matrix, to the fundamental matrix Y (z) of system (6). This transformation
subtracts a linear combination of the previous rows (with coefficients q̃ m−1

1 , . . . , q̃ m−1
m−1 ) from each

row of the matrix Y (z) with number m > l and leaves the first l rows unchanged. The entries of the
transformed matrix Γ(z)Y (z) that occupy the intersection of the last p− l rows and first l columns
are zero.

By construction, the matrices Γ̃0(z) = Γ0(z)Γ(z)Γ−1
0 (z) and Γ̃∞(z) = Γ∞(z)Γ(z)Γ−1

∞ (z) are
holomorphically invertible in the domains U0 \ {b1, . . . , bh} and U∞ \ {b1, . . . , bh}, respectively;
therefore, the transformations x̃ = Γ̃0(z)ỹ and x′ = Γ̃∞(z)y′ applied to system (21) map the matrix
differential 1-forms ω0 and ω∞, which define the meromorphic connection ∇ with singularities
a1, . . . , an in the bundle F , to the matrix differential 1-forms

ω̃0 = Γ̃0ω0Γ̃−1
0 + (dΓ̃0)Γ̃−1

0 , ω̃∞ = Γ̃∞ω∞Γ̃−1
∞ + (dΓ̃∞)Γ̃−1

∞

of block upper triangular form, which define a meromorphic connection ∇̃ with singularities
a1, . . . , an, b1, . . . , bh in the same bundle F (although Γ̃0(z) and Γ̃∞(z) have singularities in U0

and U∞, respectively):

g̃0∞ = Γ̃0g0∞Γ̃−1
∞ = (Γ0ΓΓ−1

0 )Γ0Γ−1
∞ (Γ∞Γ−1Γ−1

∞ ) = Γ0Γ−1
∞ = g0∞.
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Thus, the bundle F has a subbundle F̃ 1 ⊂ F that is stabilized by the connection ∇̃, and

F̃ 1 ∼= O ⊕O(R + n − 2) ⊕ . . . ⊕O((l − 1)(R + n − 2)).

Hence,

µ(F̃ 1) = (R + n − 2)
l − 1

2
< (R + n − 2)

p − 1
2

= µ(F ). (25)

On the other hand, denoting by ∇̃1 and ∇1 the restrictions of the connections ∇̃ and ∇ to the
subbundles F̃ 1 and F 1, respectively, we obtain

deg F̃ 1 =
n∑

i=1

tr resai∇̃1 +
h∑

k=1

tr resbk
∇̃1 =

n∑
i=1

tr resai∇1 +
h∑

k=1

resbk

dW (u1, . . . , ul)
W (u1, . . . , ul)

= deg F 1 + H,

where

H =
h∑

k=1

resbk

dW (u1, . . . , ul)
W (u1, . . . , ul)

=
h∑

k=1

ordbk
W (u1, . . . , ul) ≥ 0

(the equalities tr resai∇̃1 = tr resai∇1 follow from the holomorphic equivalence at ai of the corre-
sponding matrix differential 1-forms that define the connections ∇̃1 and ∇1).

Thus, µ(F 1) ≤ µ(F̃ 1) < µ(F ), which proves the stability of the pair (F,∇). �
The first part of the proof of Theorem 1 is complete.
Due to (25), the inequality µ(F ) > µ(F 1) is oversatisfied:

µ(F ) − µ(F 1) > (R + n − 2)
p − l

2
. (26)

This allows us to apply the following lemma, which completes the proof of Theorem 1.
Lemma 3. Suppose that the singular point of each system (8) is formally unramified. If the

family F constructed by the generalized monodromy data (2), (8) contains a stable pair (F,∇)
for which the inequalities for the slopes hold in the strengthened form (26), then the corresponding
generalized Riemann–Hilbert problem has a positive solution.

This lemma complements one of the main results of [5]: If the singularity of at least one of
the systems (8) is formally unramified and the subfamily E ⊂ F contains a stable pair, then the
corresponding generalized Riemann–Hilbert problem has a positive solution.

Proof. According to [5], it suffices to show that the existence of a stable pair (F,∇) ∈ F
satisfying the conditions of the lemma implies the existence of a stable pair (FΛ,∇Λ) ∈ E . To find
a set Λ = {Λ1, . . . ,Λn} of admissible matrices generating a stable pair (FΛ,∇Λ), we will use the
following procedure, which is composed of three transformations and is applied to each system (8).
This procedure is thoroughly described in [8].

1. Conjugating by a constant nondegenerate matrix, we reduce the leading coefficient Bi
−ri−1 of

expansion (8) to the block diagonal form diag(B1, . . . , Bm), where each block Bj of dimension pj

(p1+. . .+pm = p) has a unique eigenvalue λj and λj �= λk for j �= k. According to Sibuya’s splitting
lemma (see, for example, [6, Theorem 11.1]), system (8) can be formally reduced by a holomorphic
transformation ŷ = Γ̂(z)y to a system with the matrix of coefficients (which are formal in general)
B̂i(z) = diag(B̂1

i (z), . . . , B̂m
i (z)) of the same block diagonal form.

The formal fundamental matrices Ŷ j(z) of the subsystems corresponding to the blocks B̂j
i (z)

have the form (9):

Ŷ j(z) = F̂ j(z)(z − ai)Ê
j
eQj(z),
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where F̂ j(z) is a formal (matrix) Laurent series about z = ai with finite principal part and
det F̂ j(z) �≡ 0, Êj is an upper triangular matrix, and Qj(z) is a diagonal matrix whose entries
are polynomials in 1/(z − ai). Each block F̂ j(z) can be represented as F̂ j(z) = V̂ j(z)M j(z), where
V̂ j(z) is an invertible formal (matrix) Taylor series about z = ai and M j(z) is an upper triangular
matrix meromorphic at the point ai (see, for example, [8]). Thus, the holomorphic transformation

y1 = V̂ −1(z)Γ̂(z)y, V̂ (z) = diag
(
V̂ 1(z), . . . , V̂ m(z)

)
,

reduces formally system (8) to a system with the coefficient matrix B1
i (z) = diag(B1

i (z), . . . , Bm
i (z))

of block diagonal form, with each block Bj
i (z) being an upper triangular matrix:

Bj
i (z) =

dM j

dz
(M j)−1 + M j

(
Êj

z − ai
+ (z − ai)Ê

j dQj

dz
(z − ai)−Êj

)
(M j)−1.

2. The transformation

y′ = eqj(z)y, qj(z) =
λj/ri

(z − ai)ri
,

applied to each subsystem dy
dz = Bj

i (z)y of the system obtained above reduces the former to the
system

dy′

dz
=

(
Bj

i (z) − λj

(z − ai)ri+1
I

)
y′, j = 1, . . . ,m.

Since the leading coefficient of the Laurent series of the matrix Bj
i (z) is an upper triangular matrix

with a unique eigenvalue λj, it follows that the leading coefficient of the Laurent series of the matrix
Bj

i (z) − λj

(z−ai)ri+1 I is an upper triangular nilpotent matrix. Thus, the transformation

y2 = eQ(z)y1, Q(z) = diag
(
q1(z)Ip1 , . . . , qm(z)Ipm

)
,

where Ipj is the identity matrix of dimension pj , takes the system

dy1

dz
= B1

i (z)y1

to a system with the block diagonal coefficient matrix B2
i (z) = B1

i (z) + dQ
dz .

3. Each diagonal block Bj
i (z)− λj

(z−ai)ri+1 I of the matrix B2
i (z) is an upper triangular matrix such

that the leading coefficient of its Laurent series is a nilpotent matrix. Hence, the transformation

y3 = (z − ai)−Dy2, D = diag(D1, . . . ,Dm), Dj = diag(0, 1, . . . , pj − 1),

takes the system
dy2

dz
= B2

i (z)y2

to a system with the coefficient matrix

B3
i (z) = (z − ai)−DB2

i (z)(z − ai)D − D

z − ai
.

The Poincaré rank of the latter at the point ai is less than the Poincaré rank of the original system (8)
at least by one. Moreover, the form of the above-described transformations implies the relation

tr resai B3
i (z) = tr resai Bi(z) − tr D = tr resai∇−

m∑
j=1

pj(pj − 1)
2

. (27)
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Applying at most ri steps of the above-described procedure, we obtain a system

dy

dz
= BF

i (z)y

with a Fuchsian singularity ai. Such a system has a fundamental matrix of the form

Y F
i (z) = Ui(z)(z − ai)Λi(z − ai)Êi ,

where Ui(z) is a matrix that is holomorphically invertible at the point ai and Λi is an admissible
matrix. Therefore, tr

(
Λi + Êi

)
= tr resai BF

i (z) and, according to (27),

tr resai∇ =
∑

h + tr resai BF
i (z). (28)

By
∑

h we denoted the sum of quantities of the form h =
∑m

j=1 pj(pj − 1)/2 over all steps of
the procedure (at different steps, the numbers m of blocks and their dimensions pj are generally
different).

The set Λ of the obtained admissible matrices Λ1, . . . ,Λn for the singularities a1, . . . , an defines
an element (FΛ,∇Λ) of the subfamily E ⊂ F . Let us show that the pair (FΛ,∇Λ) is stable.

First of all, note that

tr resai ∇Λ = tr
(
Λi + Êi

)
= tr resai BF

i (z). (29)

Let E1 ⊂ FΛ be a rank l subbundle stabilized by the connection ∇Λ, and F 1 ⊂ F be the cor-
responding subbundle stabilized by the connection ∇. Denote by ∇Λ

1 and ∇1 the restrictions of
the connections ∇Λ and ∇ to these subbundles. In a neighborhood of the point ai, system (8) is
holomorphically equivalent to the system

dy

dz
=

(
Ci(z) ∗

0 ∗

)
y

with the coefficient matrix of block upper triangular form, where Ci(z) is an l× l block. Consider a
step of the procedure applied to the subsystem defined by this block. Assume that this subsystem,
just as system (8), is split into m blocks of dimensions lj, but some lj may vanish: 0 ≤ lj ≤ pj ,
l1 + . . . + lm = l. Then, according to (27), using the notation introduced above, we obtain the
relations

tr resai∇1 = h1 + tr resai C3
i (z), h1 =

m∑
j=1

lj(lj − 1)
2

,

tr resai∇ = h + tr resai B3
i (z), h =

m∑
j=1

pj(pj − 1)
2

.

The following proposition plays a key role in the proof of the stability of the pair (FΛ,∇Λ).
Proposition 3. The numbers h1 and h satisfy the inequality

h

p
− h1

l
≤ p − l

2
. (30)

Proof. Taking into account the relations
∑m

j=1 pj = p and
∑m

j=1 lj = l, we rewrite inequal-
ity (30) as ∑

j<k pjpk∑m
j=1 pj

≥
∑

j<k lj lk∑m
j=1 lj

.
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To prove this inequality, it suffices to verify that the function

F (x1, . . . , xm) =

∑
j<k xjxk∑m

j=1 xj

increases in each variable on the set R
m
≥0 \{0}. Let us fix some values of the variables x1, . . . , xm−1:

x1 = c1 ≥ 0, . . . , xm−1 = cm−1 ≥ 0, and consider the function f(x) = F (c1, . . . , cm−1, x) of a
variable x ∈ R≥0:

f(x) =
ax + b

x + a
, a =

m−1∑
j=1

cj, b =
∑

1≤j<k≤m−1

cjck.

Its derivative
df

dx
=

a2 − b

(x + a)2
=

∑m−1
j=1 c2

j + b

(x + a)2

is nonnegative; this proves that the function F (x1, . . . , xm) increases in the variable xm. For the
other variables, the proof is similar. �

In at most ri steps we obtain a system with a Fuchsian singular point ai; so, according to the
construction and equalities (28) and (29), we have

tr resai∇1 =
∑

h1 + tr resai ∇Λ
1 , tr resai∇ =

∑
h + tr resai ∇Λ,

where ∑
h

p
−

∑
h1

l
≤ p − l

2
ri

in view of Proposition 3. Hence,

1
p

tr resai∇− 1
l

tr resai∇1 =
1
p

tr resai∇Λ − 1
l

tr resai∇Λ
1 + ∆i, ∆i ≤

p − l

2
ri.

Summing over all singular points, we obtain the relation

µ(F ) − µ(F 1) = µ(FΛ) − µ(E1) + ∆, ∆ ≤ p − l

2
R.

Since µ(F ) − µ(F 1) > (R + n − 2)(p − l)/2, it follows that the quantity

µ(FΛ) − µ(E1) = µ(F ) − µ(F 1) − ∆ >
p − l

2
(n − 2)

is positive for n > 1, which proves the stability of the pair (FΛ,∇Λ). �
Note that applying the arguments from the proof of Lemma 1 and the sufficient condition (�)

(see [4, Addendum 1]), we can augment Theorem 1 with the following statement.
Theorem 2. System (6) corresponding to equation (3) one of whose singularities is Fuchsian

is meromorphically equivalent to system (1) with the same singular points whose Poincaré ranks are
minimal.

In conclusion, we conjecture that in the hypotheses of Theorem 1 it suffices to require that at
least one singularity of equation (3), rather than all of them, should be formally unramified.
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