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Abstract. This article concerns deformations of meromorphic linear
differential systems. Problems relating to their existence and classification
are reviewed, and the global and local behaviour of solutions to deformation
equations in a neighbourhood of their singular set is analysed. Certain clas-
sical results established for isomonodromic deformations of Fuchsian sys-
tems are generalized to the case of integrable deformations of meromorphic
systems.
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Introduction

The text has the following structure. The first section is introductory. We review
there some standard general concepts widely used in investigations involving mero-
morphic and especially Fuchsian linear systems. This involves an introduction to
the concept of monodromy, some basics of Levelt’s theory, and a short introduc-
tion to the integrability of Pfaffian systems, which will appear throughout the text.
Special attention is paid to resonant singularities of Fuchsian systems and their
relevance to uniqueness problems.

The second section is devoted to integrable deformations of meromorphic con-
nections. We give a proof of the existence of such a deformation for any initial holo-
morphic vector bundle with a meromorphic connection over the Riemann sphere C.

In the third section we treat isomonodromic deformations of Fuchsian systems, or
connections that have only poles of the first order as singular points. Such deforma-
tions are a special case of integrable ones. The fact that any isomonodromic defor-
mation is naturally related to some matrix differential 1-form possessing a number of
special properties allows us to construct a complete classification of isomonodromic
deformations of Fuchsian systems starting from the simplest case of the Schlesinger
deformation and moving to the most general resonant deformation with additional
parameters. The classification has a rather clear geometric interpretation in terms
of resonances and their dynamics, which we discuss in Appendix A.

In the fourth section we study properties of integrable deformations. Intro-
ducing the machinery of Fredholm theory, we investigate the (non-)triviality of
the deformed bundle, the properties of the theta-divisor, meromorphic continua-
tion, and the Painlevé property in the more general setting of integrable deforma-
tions, thus deriving analogues of classical results concerning isomonodromic defor-
mations of Fuchsian systems. To conclude we apply results on the behaviour of
Schlesinger isomonodromic families in a neighbourhood of the theta-divisor to esti-
mate the orders of moveable poles of Garnier integrable systems. Appendix B
reviews the symplectic nature of isomonodromic deformations.

1. Preliminaries

1.1. Linear systems and monodromy. Consider a meromorphic linear system
on the Riemann sphere C, that is, a system of p linear ordinary differential equations
with singularities a0

1, . . . , a
0
n ∈ C and possibly at ∞. Such a system can be written

in the form

dy

dz
= B(z) y, B(z) =

n∑
i=1

∑
l>1

B0
il

(z − a0
i )l

+
∑
l>0

B0
∞lz

l, (1)

where y(z) ∈ Cp and B0
il, B

0
∞l are (p × p)-matrices equal to zero for sufficiently

large l. Using a conformal map z 7→ az + b

cz + d
, one can always arrange that all the
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singularities are in the complex plane only. This means that one can reduce the
system (1) to one where all B0

∞l are equal to zero and

n∑
i=1

B0
i1 = 0, (2)

to ensure that ∞ is not a singular point.
The system (1) can be interpreted in more geometrical terms as follows. Consider

the open set U = C \ {a0
1, . . . , a

0
n} and the trivial vector bundle E0 = U × Cp of

rank p over U with the basis of trivializing sections s1, . . . , sp defined by si(z) = ei

for all z ∈ U . Here ei denotes the standard ith basis vector of Cp. One has the
holomorphic connection

∇0 : Γ0(E0) → Γ1(E0)

in E0, a linear map from the space Γ0(E0) of holomorphic sections of E0 to the
space Γ1(E0) of holomorphic differential 1-forms on U with values in E0 satisfying

∇0(fs) = s df + f∇0(s),

where s ∈ Γ0(E0) and f is a holomorphic function on U . This connection is deter-
mined by the connection form ω0 = −B(z) dz with respect to the basis {si}, which
means that (s1, . . . , sp) maps to (s1, . . . , sp)ω0 under ∇0. For a small disk D ⊂ U

the local holomorphic vector function y =
p∑

i=1

yisi in equation (1), considered in

D, corresponds in this picture to a section of E0|D. Such sections are said to be
horizontal because they satisfy ∇0(y) = 0.

An important characteristic of a meromorphic linear system (or holomorphic
connection in a trivial vector bundle over U) is the monodromy or monodromy
representation defined below. Assuming again that one has merely singularities at
the points a0

1, . . . , a
0
n in the complex plane, we consider in a neighbourhood D of

a non-singular point z0 a germ of a fundamental matrix Y (z) of the system (1).
Operating again with geometric terms, one says that the columns of Y (z) form
a basis in the space of horizontal (with respect to ∇0) sections of the bundle E0|D.
An analytic continuation of Y (z) along an arbitrary loop γ outgoing from z0 and
lying in C \ {a0

1, . . . , a
0
n} transforms the matrix Y (z) into (in general) a different

matrix Ỹ (z). The two fundamental matrices are connected via a non-singular
transition matrix Gγ corresponding to the loop γ:

Ỹ (z) = Y (z)Gγ .

The map [γ] 7→ G−1
γ depends only on the homotopy class [γ] of the loop γ and thus

defines a representation

χ : π1(C \ {a0
1, . . . , a

0
n}, z0) → GL(p,C)

of the fundamental group of C\{a0
1, . . . , a

0
n} into the space of non-singular complex

matrices of size p × p. This representation is called the monodromy of the linear
system (or connection ∇0).
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By the monodromy matrix of the system (1) at a singular point a0
i with respect

to the fundamental matrix Y (z) we mean the matrix Gi corresponding to a simple
loop γi encircling a0

i , so that G−1
i = χ([γi]). The matrices G1, . . . , Gn are the

generators of the monodromy group of the system (1). They satisfy the condition
G1 · · ·Gn = Id implied by the relation γn · · · γ1 = e for appropriately ordered
generators of the fundamental group.

If one takes another fundamental matrix Y ′(z) = Y (z)C, C ∈ GL(p,C), of the
system (1), then the corresponding monodromy matrices are G′i = C−1GiC. In
a similar way the matrices Gi depend on the choice of an initial point z0. So one
sees that the monodromy of a meromorphic linear system is defined up to an overall
conjugation by a constant non-singular matrix. Thus, it is more correct to say that
the monodromy is an element in the space of conjugacy classes of p-dimensional
representations of the group π1(C \ {a0

1, . . . , a
0
n}), which we denote by

Ma0 = Hom
(
π1(C \ {a0

1, . . . , a
0
n}), GL(p,C)

)
/GL(p,C).

We conclude this subsection by the following observation. Having a holomorphic
connection in a trivial holomorphic vector bundle of rank p over U = C\{a0

1, . . . , a
0
n},

one defines its monodromy as a p-dimensional representation of the group π1(U).
The converse also holds: given a p-dimensional representation χ of the group
π1(U), one can construct a unique holomorphic vector bundle of rank p over U
(which is trivial as a holomorphic vector bundle over a non-compact Riemann
surface; see [1], Proposition 30.4) with a holomorphic connection whose monodromy
coincides with χ (see, for example, [2], Lecture 8).

1.2. Fuchsian systems: local and global theory. Our special interest is in the
so-called Fuchsian systems on the Riemann sphere C, that is, meromorphic linear
systems (1) whose coefficient matrix has only poles of first order as singularities.
Such a system with singular points a0

1, . . . , a
0
n in the complex plane is of the following

form:
dy

dz
=
( n∑

i=1

B0
i

z − a0
i

)
y, y(z) ∈ Cp, B0

i ∈ Mat(p,C), (3)

where the relation (2) holds for the matrices B0
i .

Let us recall some facts about the local structure of fundamental matrices of the
Fuchsian system (3) in a neighbourhood of a singular point a0

i . Let Gi be the mon-
odromy matrix of the system at the point a0

i . According to Levelt [3], the system
has a fundamental matrix of the form

Yi(z) = Ui(z)(z − a0
i )

Λi(z − a0
i )

Ei , (4)

where
a) the matrix Ui(z) is holomorphically invertible at the point a0

i ;

b) the matrix Ei =
1

2π
√
−1

logGi = diag(E1
i , . . . , E

m
i ) is block-diagonal, each

block Ej
i is an upper triangular matrix with the unique eigenvalue ρj

i , and the
branch of the logarithm is chosen such that the eigenvalues of the matrix Ei satisfy
the condition

0 6 Re ρj
i < 1; (5)
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c) the matrix Λi = diag(Λ1
i , . . . ,Λ

m
i ) is a diagonal integer-valued matrix of the

same block structure as Ei and such that the diagonal elements of each block Λj
i

form a non-increasing sequence.
The matrix Yi(z) is called the (weakly) Levelt fundamental matrix. Its columns

form the (weakly) Levelt basis.
The eigenvalues βj

i of the residue matrix B0
i are said to be the exponents of the

Fuchsian system (3) at the singular point a0
i . Using the relation

B0
i = resa0

i

(
dYi

dz
Y −1

i

)
,

it is not difficult to check that the exponents coincide with the eigenvalues of the
matrix Λi + Ei. The matrix Λi is called the valuation matrix of the Fuchsian
system (3) at the singularity a0

i . According to (5) its diagonal elements coincide
with the integer parts of the numbers Reβj

i .
A singular point z = a0

i of the Fuchsian system (3) is said to be resonant if for
some pair βj

i , β
k
i of the exponents at this point their difference βj

i −βk
i is a non-zero

integer. Otherwise a singularity is said to be non-resonant. As follows from the
above, the singular point a0

i is non-resonant if and only if all blocks Λj
i of the matrix

Λi in the Levelt decomposition (4) are scalar. Resonances play an important role
in describing and parametrizing Fuchsian systems via their local data (monodromy
and asymptotics or exponents).

Two Fuchsian systems with a non-resonant singular point a0
i that have the same

monodromy matrix and the same exponents at this point are locally holomorphi-
cally equivalent (that is, they are locally connected by a gauge transformation
y′ = Γ(z)y, where Γ(z) is a matrix holomorphically invertible at the point a0

i ).
Indeed, the Levelt fundamental matrices Yi(z), Y ′i (z) of such systems at the point
a0

i are of the form

Yi(z) = Ui(z)(z − a0
i )

Λi(z − a0
i )

Ei , Y ′i (z) = U ′i(z)(z − a0
i )

Λi(z − a0
i )

E′i ,

where E′i = SEiS
−1 is conjugate to Ei by a matrix S = diag(S1, . . . , Sm) of the

same block-diagonal form as the matrices Ei, E′i. Since the matrices Λi and S
commute, one has

Y ′i (z)S = U ′i(z)S(z − a0
i )

Λi(z − a0
i )

Ei = U ′i(z)SU
−1
i (z)Yi(z),

which implies the local holomorphic equivalence of the two systems.
Globally, two Fuchsian systems with the same singularities, which are all non-

resonant, and having the same monodromy and exponents (at all singular points)
are connected by a constant gauge transformation y′ = Cy, C ∈ GL(p,C). (Using
analogous reasoning, one gets that such systems are globally holomorphically equiv-
alent, but a matrix holomorphic on the whole Riemann sphere is constant.) We
do not distinguish such systems, thus considering a Fuchsian system with n fixed
singularities a0

1, . . . , a
0
n as an element of the space

M ∗
a0 = {(B0

1 , . . . , B
0
n) | B0

i ∈ Mat(p,C), B0
1 + · · ·+B0

n = 0}/GL(p,C).

In this sense there can exist only one Fuchsian system with the given non-resonant
singularities, monodromy, and exponents.
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In the resonant case essentially different Fuchsian systems with the same
singularities, monodromy, and exponents can occur, and thus a moduli space
arises. We illustrate this with an example.

Example 1. Consider a Fuchsian system

dy

dz
=
((

1 t1
0 0

)
1

z − a1
+
(

0 −t1
0 −1

)
1

z − a2

+
(
−1 t2
0 0

)
1

z − a3
+
(

0 −t2
0 1

)
1

z − a4

)
y

of two equations with four resonant singular points a1, a2, a3, a4, where t1 and t2
are parameters. In fact, the pair (t1, t2) is projective since (t1, t2) and (λt1, λt2),
λ ̸= 0, define the same Fuchsian system in the above sense. At the same time it
can easily be checked that non-proportional pairs of parameters define essentially
different Fuchsian systems.

Since the coefficient matrix of this system is upper triangular, one can easily
integrate and obtain a fundamental matrix of the following form:

Y (z) =

z − a1

z − a3
0

0
z − a4

z − a2


1 α log

z − a1

z − a2
+

Ct1
z − a1

+
Dt1
z − a2

0 1

 ,

α = At1 +Bt2,

where A, B, C, D are some rational functions of a1, a2, a3, a4. The matrix Y (z)
has no ramification at the points a3, a4, while it goes to matrices Ỹ1(z) and Ỹ2(z)
after analytic continuations around the points a1 and a2, respectively:

Ỹ1(z) =

z − a1

z − a3
0

0
z − a4

z − a2


1 α log

z − a1

z − a2
+

Ct1
z − a1

+
Dt1
z − a2

+ 2πiα

0 1

 ,

Ỹ2(z) =

z − a1

z − a3
0

0
z − a4

z − a2


1 α log

z − a1

z − a2
+

Ct1
z − a1

+
Dt1
z − a2

− 2πiα

0 1

 .

Thus, the monodromy matrices of Y (z) are the following:

G1 =
(

1 2πiα
0 1

)
, G2 =

(
1 −2πiα
0 1

)
, G3 = G4 = Id.

For all (t1, t2) ∈ C2 such that α = At1 + Bt2 ̸= 0 the set {G1, . . . , G4} can be
transformed into the set

G′1 =
(

1 2πi
0 1

)
, G′2 =

(
1 −2πi
0 1

)
, G′3 = G′4 = Id

by simultaneous conjugation by the diagonal matrix diag(α, 1). This implies that
there is the whole space

{(t1 : t2) ∈ P1(C) | At1 +Bt2 ̸= 0}



On deformations of linear differential systems 69

of Fuchsian systems having the same four resonant singularities, monodromy, and
exponents. It is a complex projective line punctured at the point (−B : A).

There is another case of local holomorphic equivalence of two Fuchsian systems
having the same monodromy matrix Gi and the same exponents at a singular point
a0

i (either non-resonant or resonant). This is the case when the condition

rank(Gi − λ Id) > p− 1 ∀λ ∈ C, (6)

holds, which means that for each eigenvalue of the matrix Gi there is a unique
Jordan block with this eigenvalue. In this case a Jordan basis of the monodromy
operator in the space of local solutions to a system forms a (weakly) Levelt basis
(see [2], Example 5.2). Using this fact, one proves that if all monodromy matrices of
a Fuchsian system satisfy the condition (6), then there is no other Fuchsian system
with the same singularities, monodromy, and exponents. (Note that the monodromy
in Example 1 does not satisfy the condition (6) since the matrices G3 = G4 are
identities.)

1.3. Integrability of Pfaffian systems. The systems mainly considered in this
paper are particular cases of so-called Pfaffian systems, that is, systems of first-order
partial (or ordinary) differential equations of the form

dy1 − (f1
1 dz1 + · · ·+ f1

r dzr) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
dyp − (fp

1 dz1 + · · ·+ fp
r dzr) = 0,

(7)

where z1, . . . , zr are independent variables, y1, . . . , yp are unknowns, and f i
j =

f i
j(z, y) are holomorphic functions in a domain D ⊂ Cr × Cp. The system (7)

is said to be (completely) integrable if for any (z0, y0) ∈ D there exists a unique
solution y(z) such that y(z0) = y0.

The integrability of the system (7) can also be expressed in terms of the r-
dimensional holomorphic distribution S on D determined by this system. For an

arbitrary (z, y) ∈ D consider the basis
∂

∂z1
, . . . ,

∂

∂zr
,
∂

∂y1
, . . . ,

∂

∂yp
of the tangent

space T(z,y)D and let S(z,y) ⊂ T(z,y)D be the r-dimensional subspace spanned by

the vectors
{ p∑

i=1

f i
j

∂

∂yi
+

∂

∂zj

}r

j=1

(thus, S is generated by r holomorphic vector

fields on D). Then the integral manifolds of the system (7) are those of the
distribution S. The integrability of the system is then equivalent to the condition
that for any two local holomorphic vector fields X and Y satisfying X(z̃,ỹ),
Y(z̃,ỹ) ∈ S(z̃,ỹ) for all nearby (z̃, ỹ) the commutator also satisfies [X,Y ](z̃,ỹ) ∈ S(z̃,ỹ).

This can also be formulated on the level of the cotangent bundle. Denote by
θ1, . . . , θp the differential 1-forms on the left-hand side of (7) and by I the ideal in
the differential algebra of holomorphic k-forms (1 6 k 6 r + p) on D generated by
the 1-forms θ1, . . . , θp. Then one has the Frobenius integrability condition for the
Pfaffian system (7) (or the distribution S).

Theorem 1. The system (7) is integrable if and only if

dθ1, . . . , dθp ∈ I .
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The proof can be found in [4], Theorem 5.1, p. 13 (in the particular case r = 2,
p = 1), or in [5].1 The Frobenius integrability condition may be thought of as the
generalization of the Cauchy theorem for ordinary differential equations to the case
of partial differential equations. It is not difficult to check that the integrability
condition is always fulfilled in the case r = 1.

Example 2. Consider the algebra of rational functions in the variables t = (t1, . . . ,
tr) ∈ Cr, (p, q) = (p1, . . . , pn, q1, . . . , qn) ∈ C2n and the Poisson bracket { · , · } on
it, which maps a pair of functions f , g into the function

{f, g} =
n∑

i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
.

Then a Pfaffian system

dp1 =
r∑

j=1

{Hj , p1} dtj , . . . , dpn =
r∑

j=1

{Hj , pn} dtj ,

dq1 =
r∑

j=1

{Hj , q1} dtj , . . . , dqn =
r∑

j=1

{Hj , qn} dtj

(8)

is called a Hamiltonian system with Hamiltonians Hj = Hj(t, p, q). This system
can also be written in the form

∂pi

∂tj
=
∂Hj

∂qi
,

∂qi
∂tj

= −∂Hj

∂pi
, i = 1, . . . , n, j = 1, . . . , r.

The integrability condition for the Hamiltonian system (8) is formulated as fol-
lows (see [4], Proposition 6.4, p. 23). Put

Γij =
∂Hj

∂ti
− ∂Hi

∂tj
+ {Hi, Hj}.

Then the system (8) is integrable if and only if

{Γjk, pi} = {Γjk, qi} = 0, i = 1, . . . , n, j, k = 1, . . . , r,

that is, all the Γjk are independent of (p, q).

An important particular case of Pfaffian systems is the linear system (written in
the matrix form)

dy = Ωy, y(z) ∈ Cp, (9)

where Ω is a holomorphic matrix differential 1-form on U ⊂ Cr. For example, the
Fuchsian system (3) is a system of the form (9), where r = 1 and Ω is meromorphic
on C, with poles a0

1, . . . , a
0
n of the first order.

Obviously, the set of local solutions to the system (9) near any point z0 ∈ U
forms a vector space, and the integrability of the system is equivalent to the fact
that these spaces are p-dimensional. On the other hand, the Frobenius integrability
condition for the system (9) transforms as follows.

1 [5] concerns smooth rather than holomorphic distributions, but the proof is also suitable for
the latter.
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Corollary 1. The system (9) is integrable if and only if

dΩ = Ω ∧ Ω. (10)

Proof. If the system (9) is integrable, then there exists a local holomorphic (p×p)-
matrix Y (z) such that Ω = dY · Y −1. Therefore 2

dΩ = −dY ∧ d(Y −1) = dY ∧ Y −1 · dY · Y −1 = dY · Y −1 ∧ dY · Y −1 = Ω ∧ Ω.

Conversely, if the relation (10) holds, then the differential 1-forms θi = dyi −
p∑

j=1

Ωijyj satisfy the condition of Theorem 1 and the system (9) is integrable.

Indeed,

dθi = −
p∑

j=1

(dΩij)yj +
p∑

j=1

Ωij ∧ dyj = −
p∑

j=1

(dΩij)yj +
p∑

j=1

Ωij ∧
(
θj +

p∑
k=1

Ωjkyk

)

=
p∑

k=1

(
−dΩik +

p∑
j=1

Ωij ∧ Ωjk

)
yk +

p∑
j=1

Ωij ∧ θj =
p∑

j=1

Ωij ∧ θj .

The corollary is proved.

The linear Pfaffian system (9) again has a description in terms of holomorphic
vector bundles and connections. One considers the trivial vector bundle E = U×Cp

of rank p over U and an analogous basis {si} of trivializing sections corresponding
to the standard basis {ei} of Cp. A matrix

Ω =
r∑

i=1

Ci dzi

of holomorphic differential 1-forms on U defines with respect to the basis {si}
a holomorphic connection ∇ in E:

∇ : (s1, . . . , sp) 7→ −(s1, . . . , sp) Ω.

The connection ∇ : Γ0(E) → Γ1(E) has a natural extension ∇̃ : Γ1(E) → Γ2(E)
from the space Γ0(E) of holomorphic sections of E to the space Γ1(E) of holomor-
phic differential 1-forms with values in E, given by the formula

∇̃(s σ) = s dσ +∇(s) ∧ σ,

where s ∈ Γ0(E) and σ is a holomorphic differential 1-form on U . The space of

horizontal sections (that is, those y =
p∑

i=1

yisi with ∇(y) = 0) is p-dimensional if

and only if the curvature ∇̃◦∇ : Γ0(E) → Γ2(E) of ∇ is zero, that is, the curvature
2-form (with respect to the basis {si}) is

−dΩ + (−Ω) ∧ (−Ω) = 0,
2One should remember that for a function f and a differential 1-form σ one has d(fσ) =

fdσ + df ∧ σ, while d(σf) (which is the same) has the form d(σf) = (dσ)f − σ ∧ df .
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which is equivalent to the Pfaffian system (9) being integrable. The connection ∇ is
then also said to be integrable (or flat). In terms of the matrices Ci the integrability
of ∇ amounts to the so-called zero curvature equations

∂Cj

∂zi
− ∂Ci

∂zj
− [Ci, Cj ] = 0, i, j = 1, . . . , r.

By considering the above description appropriately, one can introduce for a (non-
trivial) holomorphic vector bundle E of rank p over a complex manifold Z notions
such as (holomorphic) connection, integrable connection, horizontal sections, and
monodromy of an integrable connection. Defining the last object requires the space
of local horizontal sections of the connection to be p-dimensional. This is provided
by the integrability of the connection.

2. Integrable deformations of meromorphic connections

For the space U = C \ {a0
1, . . . , a

0
n} above (see the end of § 1.1) a link was estab-

lished between an integrable holomorphic connection ∇0 in a (trivial) holomorphic
vector bundle of rank p over U and a p-dimensional representation of the funda-
mental group π1(U). This relation holds in general.

Let E be a holomorphic vector bundle of rank p over a complex manifold X
and ∇ an integrable connection in E. There exists between such pairs (E,∇) and
GL(p,C)-representations of the fundamental group of X a crucial relation which we
shall use widely: namely, the following statement holds (see [6], Proposition 2.5).

Theorem 2. If X is connected, then there is an equivalence between the category
of pairs (E,∇) consisting of a holomorphic vector bundle E of rank p over X and
an integrable connection ∇, and that of p-dimensional representations of π1(X).
This correspondence is given by the natural action of π1(X) on the fibre of E over
some base point of X .

The connections from (1) are not defined on the whole Riemann sphere C, but
possess singularities that are mild in the sense that the matrix B(z) is meromorphic
on C. Thus, one can say that the system (1) defines a meromorphic connection ∇0

in the trivial vector bundle E0 = C × Cp of rank p over C, a linear map from the
space M0(E0) of meromorphic sections of E0 to the space M1(E0) of meromorphic
differential 1-forms on C with values in E0. We now introduce this notion of
meromorphic connection in a very general setting. Let X be a complex manifold
of dimensionm, Y ⊂ X an analytic subset of codimension one, and E a holomorphic
vector bundle of rank p over X. If X is connected, then the space X \ Y is also
connected (see [7], Theorem 16.2). Assume that the restriction E|X\Y admits an
integrable connection ∇.

Definition 1. The connection ∇ is said to be meromorphic over Y if for any y ∈ Y
there exists a neighbourhood U of y such that E|U is trivial and the connection
form of ∇ with respect to a basis of holomorphic trivializing sections of E|U is
meromorphic on U , with a polar locus U ∩ Y .

Note that this notion is independent of the choice of local holomorphic trivializing
sections. Recall that a function f is meromorphic on U if it is holomorphic on
U \ P , cannot be extended to P holomorphically, and is represented as a quotient
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f(t) = ϕ(t)/ψ(t) of holomorphic functions in a neighbourhood of every point t∗ ∈ P
(hence ψ(t∗) = 0), where P ⊂ U is an analytic subset of codimension one (it is
defined locally by the equation ψ(t) = 0). The set P is called the polar locus of
the meromorphic function f . The points of this set are divided into poles (at which
the function ϕ does not vanish) and ambiguous points (at which ϕ = 0).

The connection defined by the Fuchsian system (3) serves as an example for the
following class of connections ∇ meromorphic over Y .

Definition 2. A connection ∇ that is meromorphic over Y is said to have a loga-
rithmic pole over Y if for any regular point y ∈ Y there exists a neighbourhood U
of y with local coordinates (t1, . . . , tm) such that Y ∩ U is given by {t1 = 0} and
the connection form ΩU of ∇ with respect to a basis of holomorphic trivializing
sections of E|U has the form

ΩU =
A1

t1
dt1 +

m∑
i=2

Ai dti,

where all the Ai are holomorphic (p× p)-matrices in U .

We will briefly say that ∇ is a meromorphic (respectively, logarithmic) connec-
tion in the holomorphic vector bundle E. The set Y is called the polar locus of the
connection ∇.

The starting point for integrable deformations is a meromorphic linear system
on C that only has singularities a0

1, . . . , a
0
n ∈ C. In more geometrical terms this

amounts to:
• a trivial holomorphic vector bundle E0 of rank p over C,
• an integrable meromorphic connection∇0 in E0 with singularities a0

1, . . . , a
0
n.

Since there are no non-zero holomorphic differential 1-forms on C, the connection
form ω0 of ∇0 can be written as

ω0 =
n∑

i=1

∑
l>1

B0
il

(z − a0
i )l

dz,

n∑
i=1

B0
i1 = 0.

The deformations we are interested in consist in moving the poles {a0
i } of ω0

inside C. More precisely, the way the poles move is determined by a connected
complex manifold T , called the deformation space for short, and a set of holomorphic
functions

ai : T → C, i = 1, . . . , n,

the so-called deformation functions. Furthermore, there has to be a base point
t0 ∈ T such that

ai(t0) = a0
i , i = 1, . . . , n.

We will restrict ourselves to deformations for which the poles never collide, that
is, ai(t) ̸= aj(t) for all t ∈ T and i ̸= j. Below are some examples of deformation
spaces which will be used later.

Example 3. 1) T = D(a0), a disk of small radius centred at the point a0 = (a0
1, . . . ,

a0
n) of the space

Z = Cn
∖ ⋃

i ̸=j

{ai = aj}.
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In this case the parameter a = (a1, . . . , an) ∈ D(a0) of the deformation is a set of
poles and the deformation functions are the projections on all coordinates, so that
we simply write ai instead of ai(a).

2) T = D(a0) × W , where W is a connected complex manifold. In this case
we distinguish the variables a ∈ D(a0) and w ∈ W for convenience. The ith
deformation function is (a,w) 7→ ai and we again write ai instead of ai(a,w).

3) T = Z̃, the universal covering space of Z. The ith deformation function is
then the composition of the cover Z̃ → Z with the projection on the ith coordinate.

Since Z̃ is a universal covering space, its fundamental group is trivial. Using the
exact sequence of homotopy groups for the fibre bundle

Cn
∖ ⋃

i ̸=j

{ai = aj} → Cn−1
∖ ⋃

i ̸=j

{ai = aj}

determined by the projection along the last coordinate, and induction with respect
to n, one can check that all the homotopy groups πk(Z̃) = πk(Z), k > 2, are also
trivial (see, for example, [2], Appendix 4). It follows then from the Whitehead
theorem (see [8], § 11.5) that the space Z̃ is contractible.

The space Z̃ possesses another useful property, namely it is a Stein manifold,
being the universal covering space of the Stein manifold Z (according to [9] every
unramified covering space of a Stein manifold is again a Stein manifold). Since Z̃ is
contractible, Grauert’s theorem applies to it, and hence every holomorphic vector
bundle over Z̃ is holomorphically trivial (see [10]).

Let now X be the manifold C × T . Inside X we consider the submanifold
Y = Y1 ∪ · · · ∪ Yn given by

Yi = {(z, t) ∈ X | z − ai(t) = 0}, i = 1, . . . , n.

This brings us to the introduction of the following notion.

Definition 3. An integrable deformation (E,∇) of the pair (E0,∇0) with the
deformation space T , deformation functions {ai(t)}, and base point t0 ∈ T con-
sists of

• a holomorphic vector bundle E of rank p over X = C× T ,
• an integrable meromorphic connection ∇ in E with Y as a polar locus, such

that the restriction of (E,∇) to C× {t0} is isomorphic to (E0,∇0).

Given the deformation space T , deformation functions {ai(t)}, and base point
t0 ∈ T , a relevant question is whether there exists an integrable deformation with
these deformation data. Here one might encounter topological obstructions.

Let i : C ↪→ C× T be the embedding, i(z) = (z, t0). It induces a natural map

i∗ : π1(C \ {a0
1, . . . , a

0
n}) → π1(X \ Y ).

In view of Theorem 2, the existence of an integrable deformation (E,∇) of (E0,∇0)
implies that the representation χ of π1(C \ {a0

1, . . . , a
0
n}) corresponding to (E0,∇0)

is isomorphic to χ̃ ◦ i∗, where χ̃ is the representation of π1(X \Y ) corresponding to
(E,∇). Consider the fibre bundle

p2 : X \ Y → T, p2(z, t) = t,
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over T with the fibre p−1
2 (t0) = C \ {a0

1, . . . , a
0
n}. The corresponding long exact

sequence

· · · −→ π2(T ) δ−→ π1(C \ {a0
1, . . . , a

0
n})

i∗−→ π1(X \ Y ) −→ π1(T ) (11)

of homotopy groups implies that χ, besides being extendable to χ̃, also has to be
trivial on the image of δ, since χ ◦ δ = χ̃ ◦ (i∗ ◦ δ) ≡ 1. This question does not arise
if π1(T ) = π2(T ) = {1}. Thus, for the spaces T = D(a0) or T = Z̃ in Example 3
and the corresponding deformation functions, there are no topological obstructions
to the existence of an integrable deformation with these deformation data. This
turns out to be sufficient for the following statement to hold.

Theorem 3. For any pair (E0,∇0) there exists an integrable deformation (E,∇)
of (E0,∇0) with Z̃ as a deformation space and the corresponding {ai(t)} as defor-
mation functions.

Proof. First we construct (E,∇) over X \ Y . From the exact sequence (11) of
homotopy groups we know that i∗ is an isomorphism. Hence the p-dimensional
representation of π1(C\{a0

1, . . . , a
0
n}) corresponding to the pair (E0|C\{a0

1,...,a0
n}
,∇0)

determines a p-dimensional representation of π1(X \ Y ), and thus we obtain a pair
(E,∇) over X \ Y . What remains is to extend the vector bundle E to X and
show that the connection ∇ is meromorphic over Y . This will be done on disjoint
neighbourhoods of the components of Y . It requires some notation.

For each t ∈ Z̃ one denotes by δ(t) the minimum of the distances {|ai(t)−aj(t)|,
|a0

i − a0
j |}i ̸=j and by Dj(t) the disk

Dj(t) =
{
z ∈ C

∣∣ |z − aj(t)| <
δ(t)
4

}
of radius δ(t)/4 about the point aj(t) ∈ C. Next, one defines the neighbourhood
Vj of Yj by

Vj = {(z, t) ∈ X | z ∈ Dj(t)}, j = 1, . . . , n.

By construction these open subsets are disjoint. The projection (z, t) 7→ t maps the
sets Vj \Yj onto Z̃ so that the fibre over t0 ∈ Z̃ is equal to Dj(t0)\{a0

j}. Hence these
neighbourhoods are fibre bundles with the base space Z̃ and fibre Dj(t0) \ {a0

j}.
The corresponding long exact sequence

· · · −→ π2(Z̃) −→ π1(Dj(t0) \ {a0
j})

i∗−→ π1(Vj \ Yj) −→ π1(Z̃)

of homotopy groups implies then that the map i∗ induces an isomorphism between
the groups π1(Dj(t0) \ {a0

j}) and π1(Vj \ Yj).
Consider the surjective maps

pj : Vj → Dj(t0), pj(z, t) = z − aj(t) + a0
j , j = 1, . . . , n,

and the vector bundles Ej over Vj obtained by pulling back through pj the bundle
E0|Dj(t0). Let ω0 be the connection form of∇0 with respect to the basis {s1, . . . , sp}
of holomorphic trivializing sections of the latter bundle. One defines the connec-
tion ∇j in Ej |Vj\Yj

as the connection whose connection form Ωj with respect to
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{p∗j (s1), . . . , p∗j (sp)} is p∗j (ω
0). In particular, one sees that Ωj can be written with

respect to any basis of holomorphic trivializing sections of Ej as

Ωj =
∑
l>1

Bjl(t)
(z − aj(t))l

d(z − aj(t)) + wj , (12)

where wj is a holomorphic matrix differential 1-form on Vj and {Bjl} are holomor-
phic (p× p)-matrices on Z̃ satisfying Bjl = 0 for all sufficiently large l. Since

dp∗j (ω
0) = p∗j (dω

0) = p∗j (ω
0 ∧ ω0) = p∗j (ω

0) ∧ p∗j (ω0),

the form Ωj = p∗j (ω
0) satisfies (10) and the connection∇j is integrable. Further, ∇j

is meromorphic over Yj since Ωj is, and the pull-back through i of the restriction
of (Ej ,∇j) to Dj(t0) × {t0} is isomorphic to (E0|Dj(t0),∇0). One sees that the
monodromy representations of the pairs (E|Vj\Yj

,∇) and (Ej |Vj\Yj
,∇j) are the

same, being both equal to that of (E0|Dj(t0),∇0). Hence these pairs are isomorphic
and in this way one has extended (E,∇) to X. This completes the proof of the
theorem.3

Remark 1. As follows from the proof of the theorem, if the initial connection ∇0 is
logarithmic, then the connection ∇ is logarithmic as well.

Remark 2. Clearly, if one replaces Z̃ by an arbitrary deformation space T with
π1(T ) = π2(T ) = {1}, such as a small disk D(a0) around a0, then the same
construction works. Integrable deformations also exist for a deformation space
T = D(a0)×W , where W is a connected complex manifold. In that case one takes
the integrable deformation on C × D(a0) and pulls it back through the standard
projection C× T → C×D(a0).

If a deformation space T is simply connected, then the deformation functions
ai(t) provide a holomorphic map

a : T → Z, a(t) =
(
a1(t), . . . , an(t)

)
,

which is lifted to ã : T → Z̃. Therefore one has the holomorphic map

f : C× T → C× Z̃, (z, t) 7→ (z, ã(t)).

The pull-back
(
f∗(E), f∗(∇)

)
of the integrable deformation (E,∇) obtained in

Theorem 3 is an integrable deformation as well (the set
n⋃

i=1

{z − ai(t) = 0} goes to

the polar locus of ∇ under the map f).

Remark 3. Let (E,∇) be an integrable deformation as defined above. Then it
determines by restriction an integrable connection ∇(∞) in E|{∞}×T .

3Note that each pj maps the corresponding hypersurface Yj into the singular point a0
j of the

connection ∇0, which is why we obtain the set Y =
⋃n

i=1 Yi as the polar locus of the constructed
connection∇. If instead of the local maps one used a simple global construction with the projection
C× Z̃ → C and pulled back the pair (E0,∇0) through it, then one would not obtain the required
polar locus.
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We note that restrictions of the integrable deformation (E,∇) to C×{t}, t ∈ T ,
determine the family (Et,∇t)t∈T of holomorphic vector bundles of rank p over C
with meromorphic connections. If the deformation space T is simply connected,
then the monodromy of the connection ∇t can be extended holomorphically to T
as a function of the parameter t. As shown in the proof of Theorem 3, in the case
of trivial π2(T ) this function is constant, that is, the deformation preserves the
monodromy of ∇t (the latter coincides with the monodromy of the connection ∇
for all t ∈ T ).

Further, we consider the two main goals of the paper:
1) Let (E,∇) be the integrable deformation in Theorem 3 (and Remark 2).

The first goal is to describe the set of those t ∈ T for which the bundle Et is
holomorphically trivial.

2) Let (E,∇) be an integrable deformation of the logarithmic connection ∇0 such
that the bundle E is holomorphically trivial for some deformation space (this is the
case for isomonodromic deformations of Fuchsian systems, which will be considered
in the next section). The second goal is to describe the connection form Ω of ∇.

For simplicity we do not consider isomonodromic deformations of differential
systems (1) with irregular (non-Fuchsian) singularities in this paper. Such defor-
mations are traditionally required to preserve not only the monodromy but also
the Stokes matrices of an initial system. These deformations are presented and
partially studied in [11]–[14].

3. Isomonodromic deformations of Fuchsian systems

3.1. General theory. Isomonodromic deformations of Fuchsian systems can be
defined as follows. Consider a family

dy

dz
=
( n∑

i=1

Bi(t)
z − ai(t)

)
y, y(z) ∈ Cp, Bi(t) ∈ Mat(p,C), (13)

of Fuchsian systems holomorphically depending on the parameter t ∈ T , where T
is a simply connected complex manifold with a base point t0. The family (13) is
defined on the space

(C× T )
∖ n⋃

i=1

{z − ai(t) = 0}.

We assume that the singularities of (13) do not collide, that is, ai(t) ̸= aj(t) for all
t ∈ T and i ̸= j.

Definition 4. One says that the family (13) is isomonodromic or more elaborately,
it is an isomonodromic deformation of the Fuchsian system (3), if ai(t0) = a0

i ,
Bi(t0) = B0

i , and for any t ∈ T the monodromy representations

χ : π1(C \ {a1(t), . . . , an(t)}) → GL(p,C)

of the corresponding systems are the same. This means that for every t ∈ T there
exists a fundamental matrix Y (z, t) of the corresponding system (13) such that its
monodromy does not depend on t. The matrix Y (z, t) is called an isomonodromic
fundamental matrix.
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We give some comments on this definition. Let Y 0(z, t) be the fundamental
matrix of (13) which satisfies the initial condition Y 0(z0, t) = Id and is thus ana-
lytically dependent on t by the corresponding theorem. Since T is simply connected,
the monodromy matrices G1(t), . . . , Gn(t) corresponding to Y 0(z, t) are holomor-
phic functions on the whole space T . Then the family (13) is isomonodromic if for
every t ∈ T there exists a matrix C(t) ∈ GL(p,C) such that

C−1(t)Gi(t)C(t) = const.

In other words, the monodromy matrices corresponding to the fundamental matrix
Y (z, t) = Y 0(z, t)C(t) do not depend on t. If T is a contractible Stein manifold, then
by Bolibrukh’s result (see [15] or [2], Theorem 13.1 for details) the matrix function
C(t) can be chosen to be holomorphic.4 Hence the isomonodromic fundamental
matrix Y (z, t) is holomorphically dependent on t as well.

The Fuchsian system (3) determines a logarithmic connection ∇0 in the holo-
morphically trivial vector bundle E0 of rank p over C. According to Theorem 3 and
Remarks 1 and 2 there exists an integrable deformation (E,∇) of (E0,∇0) with T
as deformation space and the {ai(t)} as deformation functions, and furthermore,
the connection ∇ is logarithmic. As mentioned above (see the end of § 2), the
restrictions of the pair (E,∇) to C× {t}, t ∈ T , determine the family (Et,∇t)t∈T

of holomorphic vector bundles over C with logarithmic connections, having the
same monodromy. If all the bundles Et are holomorphically trivial, then we have
an isomonodromic deformation of the initial Fuchsian system. Conversely, under
certain additional conditions on the deformation space T any isomonodromic defor-
mation of the Fuchsian system (3) determines an integrable deformation (E,∇) of
the pair (E0,∇0) such that the vector bundle E is holomorphically trivial, although
the connection ∇ may be non-logarithmic, as we will see later. This is provided by
the following theorem.

Theorem 4. Let T be a contractible Stein manifold. Then the family (13) of Fuch-
sian systems is isomonodromic if and only if there exists a meromorphic matrix

differential 1-form Ω on X = C× T (with the polar locus
n⋃

i=1

{z − ai(t) = 0}) such

that

i) Ω =
n∑

i=1

Bi(t)
z − ai(t)

dz for any fixed t ∈ T ;

ii) dΩ = Ω ∧ Ω.

Proof. If the family (13) is isomonodromic, then it has an isomonodromic funda-
mental matrix Y (z, t) that is analytically dependent on both variables z and t, as
mentioned above. It follows that Ω = dY · Y −1 is a matrix differential 1-form
meromorphic on X and satisfying conditions i) and ii). (In fact, the last condition
was checked in the proof of Corollary 1.)

Conversely, if there exists a meromorphic matrix differential 1-form Ω on X
that satisfies the conditions i) and ii), then it defines an integrable connection ∇ in
a holomorphically trivial vector bundle E of rank p overX, such that the pair (E,∇)

4Bolibrukh [15] proved this result by using isomonodromic families with the deformation space
T = D(a0) (see Example 3), but his proof can be applied to any contractible Stein manifold T .
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is an integrable deformation of the pair (E0,∇0). The restrictions of the pair (E,∇)
to C×{t}, t ∈ T , determine the family (Et,∇t)t∈T of holomorphically trivial vector
bundles over C with logarithmic connections, having the same monodromy. By

virtue of the condition i) the connection form of ∇t coincides with
n∑

i=1

Bi(t)
z − ai(t)

dz,

hence the family (13) is isomonodromic. The theorem is proved.

An isomonodromic deformation preserves not only the monodromy but also the
exponents of the initial system (so that the eigenvalues of the matrices Bi(t) do
not depend on the parameter). Indeed, the set of their possible values is discrete
by the isomonodromy. At the same time, they depend continuously on t as the
roots of polynomials with coefficients holomorphically dependent on t. Therefore,
the exponents are constant.

We should note that the 1-form in Theorem 4 is not quite unique. For instance,
one can consider another 1-form Ω′ = Ω+(df)Id, where f is a holomorphic function
on T . Then Ω′ and Ω both determine the same family, since they coincide for every
fixed t ∈ T , and dΩ′ = Ω′ ∧ Ω′.

However, if the monodromy of the isomonodromic family (13) is irreducible,
then the only ambiguity in the choice of a 1-form determining this family is that
described above. More precisely, in this case the matrix differential 1-form Ω in
Theorem 4 is uniquely defined by the family up to a summand (df)f−1Id, where f
is a non-vanishing holomorphic function on T (see [2], Proposition 15.1).

If the monodromy of the isomonodromic family (13) is reducible, then the latter
can have non-trivial symmetries of the form

y′ = Γ(z, t)y, Γ(z, t) = Y (z, t)C(t)Y −1(z, t),

where Y (z, t) is an analytic isomonodromic fundamental matrix of the family and
the matrix C(t), which is holomorphic on T , belongs to the centralizer of the mon-
odromy group of the family. Indeed, in this case the matrix Γ(z, t) is meromorphic
on the space X and the transformed matrix

Y ′(z, t) = Γ(z, t)Y (z, t) = Y (z, t)C(t)

is an analytic isomonodromic fundamental matrix of the same family (13). Such
symmetries (and only these) give different 1-forms

ΓΩΓ−1 + (dΓ)Γ−1,

determining the fixed isomonodromic family (13)
Given the criterion in Theorem 4 it is natural to investigate, describe, and clas-

sify matrix differential 1-forms Ω satisfying it. That is the main aim of this section.
As a result we obtain for isomonodromic deformations of Fuchsian systems a com-
plete description and classification that turn out to correspond to certain natural
geometric properties of deformations.

3.2. Schlesinger isomonodromic deformations. Let us begin with isomon-
odromic deformations whose deformation space T = D(a0) is a disk of small radius
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centred at the point a0 = (a0
1, . . . , a

0
n) of the space Z = Cn

∖ ⋃
i̸=j

{ai = aj} (see

Example 3). Consider a family

dy

dz
=
( n∑

i=1

Bi(a)
z − ai

)
y, Bi(a0) = B0

i , (14)

of Fuchsian systems which is holomorphically dependent on the parameter a =
(a1, . . . , an) ∈ D(a0). This family is defined on the space

(
C×D(a0)

) ∖ n⋃
i=1

{z − ai = 0}.

When looking for a meromorphic matrix differential 1-form on C×D(a0) restricting

to
n∑

i=1

Bi(a)dz/(z−ai) for {ai = const}, it seems quite natural to start from a form

like

Ωs =
n∑

i=1

Bi(a)
z − ai

d(z − ai).

Such an ansatz has a long history and is known as the Schlesinger form. This
approach proves to be rather successful. The statement below claims that for any
Fuchsian system one can always construct an isomonodromic deformation of it.

Theorem 5 (Schlesinger [16], [17]). For any initial data {a0
1, . . . , a

0
n, B

0
1 , . . . , B

0
n}

there exists a unique Schlesinger form

Ωs =
n∑

i=1

Bi(a)
z − ai

d(z − ai)

on C×D(a0) such that
(i) Bi(a0) = B0

i , i = 1, . . . , n,
(ii) dΩs = Ωs ∧ Ωs.

Written down in coordinate form, condition (ii) looks like

dBi = −
n∑

j=1, j ̸=i

[Bi, Bj ]
ai − aj

d(ai − aj), i = 1, . . . , n, (15)

and is well known under the name of the Schlesinger equation, being another exam-
ple of a Pfaffian system (for the equivalence of the condition dΩs = Ωs ∧Ωs to the
Schlesinger equation see, for example, [2], Theorem 14.1). To prove the theorem
it is sufficient to show the complete integrability of this equation. That can be
achieved by a straightforward check that the distribution defined by the matrix
differential 1-forms

Θi = dBi +
n∑

j=1, j ̸=i

[Bi, Bj ]
ai − aj

d(ai − aj), i = 1, . . . , n,
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satisfies the Frobenius integrability condition (see details in [4], Proposition 5.3,
p. 200, or [2], Theorem 14.2). Thus any Fuchsian system (3) can be included in a
Schlesinger isomonodromic family, that is, a family of the form (14) whose residue
matrices Bi(a) satisfy the Schlesinger equation.

Below we list some special and nice properties of the Schlesinger equation (15):
• it is completely integrable;
• it admits Hamiltonian ([18], Appendix 5, [19], § 5) and Lax ([11], Exam-

ple 3.1) representations;
• it has the Painlevé property (see § 4.3);
• for n > 4 and p = 2 it is equivalent to a Garnier system (which coincides

with the sixth Painlevé equation in the particular case n = 4; see § 4.4).
Theorem 5 is a statement on the local existence of isomonodromic deformations of

a Fuchsian system. Further, one can ask about the uniqueness of such a deformation
and the universality of the Schlesinger ansatz: are there any other 1-forms satisfying
the criterion in Theorem 4 and determining non-Schlesinger deformations, or are
there no other possibilities? In the original papers of Schlesinger [16], [17] there is
a statement that the family (14) is isomonodromic if and only if the matrices Bi(a)
satisfy the Schlesinger equation (15). In general this is not true, as we discuss later.
Below are two results concerning Schlesinger isomonodromic deformations.

Theorem 6 ([4], Theorem 5.1, p. 196). If the initial Fuchsian system (3) is non-
resonant, then its isomonodromic deformation (3) can be Schlesinger only (that is,
a matrix differential 1-form Ω giving the deformation can be chosen to be of the
form Ω = Ωs).

Theorem 7 (Bolibruch [15], [20]). If for each monodromy matrix Gi of the initial
Fuchsian system (3) one has

rank(Gi − λ Id) > p− 1 ∀λ ∈ C,

then its isomonodromic deformation (14) can be Schlesinger only.

Remark 4. Here and in the next subsection, § 3.3, we ignore trivial gauge transfor-
mations of a family that do not depend on z and only depend on parameters of the

deformation. These gauge transformations contribute the summand
n∑

i=1

Ci(a)dai

to a 1-form Ω and transform 1-forms Ωs to the so-called non-normalized Schlesinger
forms (and vice versa) giving non-normalized Schlesinger isomonodromic deforma-
tions.

The idea of the proof of Theorems 6 and 7 follows immediately from the construc-
tion of the moduli space of Fuchsian systems and the integrability of the Schlesinger
equation. The latter implies the existence of a Schlesinger deformation of the ini-
tial system. But a possible alternative to the Schlesinger isomonodromic family
must coincide with it, since in the non-resonant case as well as under the condition
of Theorem 7 there exists for any set {a1, . . . , an} of poles at most one Fuchsian
system with the given poles, monodromy, and exponents (see § 1.2).

To conclude the subsection on Schlesinger isomonodromic deformations we note
that the deformation parameter a = (a1, . . . , an) turns out to be quite natural for
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them. Indeed, if we consider a family (13) depending on the parameter t ∈ T ,
where dimT > n and the residue matrices Bi(t) satisfy the Schlesinger equation

dBi(t) = −
n∑

j=1, j ̸=i

[Bi(t), Bj(t)]
ai(t)− aj(t)

d
(
ai(t)− aj(t)

)
,

then for the analytic subset

A =
{(
a1(t), . . . , an(t)

)
= const

}
⊂ T

of positive dimension we have Bi|A = const in view of the Schlesinger equation.
Thus, the residue matrices of such a family can be regarded as functions of the
singular points: Bi = Bi(a).

3.3. Resonant isomonodromic deformations. However, the question still
remains whether there exist isomonodromic deformations (and matrix differential
1-forms Ω in Theorem 4) other than the Schlesinger ones. It turns out that they
really do exist. The first explicit example of a non-Schlesinger isomonodromic
deformation was constructed by Bolibrukh (others were later found; see [21], [22])

Example 4 (Bolibrukh [15]). Consider a family

dy

dz
=

((
1 0

− 2a
a2 − 1

0

)
1

z + a
+
(

0 −6a
0 −1

)
1
z

+

(
2 3 + 3a
1

a+ 1
−1

)
1

z − 1
+

( −3 −3 + 3a
1

a− 1
2

)
1

z + 1

)
y (16)

of Fuchsian systems with singular points a1 = −a, a2 = 0, a3 = 1, a4 = −1, where
a ∈ C \ {0, 1,−1} is a parameter.

This family is isomonodromic since it is determined by the matrix differential
1-form

Ω =

(
1 0

− 2a
a2 − 1

0

)
d(z + a)
z + a

+
(

0 −6a
0 −1

)
dz

z
+

(
2 3 + 3a
1

a+ 1
−1

)
d(z − 1)
z − 1

+

( −3 −3 + 3a
1

a− 1
2

)
d(z + 1)
z + 1

+

(
0 0
2a

a2 − 1
0

)
da

z + a
,

which satisfies the conditions of Theorem 4. The family (16), however, is not
a Schlesinger one (neither normalized, nor non-normalized), since its monodromy
is irreducible, and therefore any matrix differential 1-form determining this family
differs from Ω by a holomorphic summand of the form df(a)f−1(a)Id, where f is a
non-vanishing holomorphic function. Thus, one cannot eliminate the last summand
of Ω.

The irreducibility of the monodromy of the family (16) can be explained as
follows. The exponents βj

i of the family are

β1,2
1 = 0, 1, β1,2

2 = 0,−1, β1,2
3 =

1
2
±
√

21
2

, β1,2
4 = −1

2
±
√

37
2

,
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therefore the eigenvalues µj
i = e2π

√
−1 βj

i of the corresponding monodromy matri-
ces Gi are

µ1,2
1 = 1, µ1,2

2 = 1, µ1,2
3 = −e±π

√
−21, µ1,2

4 = −e±π
√
−37.

Thus, µj1
1 µ

j2
2 µ

j3
3 µ

j4
4 ̸= 1 for any j1, j2, j3, j4, which implies the irreducibility of

the monodromy (recall that the relation G1G2G3G4 = Id holds for the monodromy
matrices). Note also that one of the monodromy matrices G1, G2 is the identity by
virtue of Theorem 7.

A general form of a matrix differential 1-form determining the isomonodromic
family (14) of Fuchsian systems with resonant singular points was found by Boli-
brukh [15], [20] (see also [2], Theorem 15.2). His analytical approach can be applied
to any contractible Stein manifold T as well. So we pass to isomonodromic defor-
mations of the general form (13) and describe a matrix differential 1-form Ω in
Theorem 4 determining such deformations.

Let the dimension of the deformation space T , which is a contractible Stein
manifold, be equal to s.

Theorem 8. Any meromorphic matrix differential 1-form Ω determining the iso-
monodromic deformation (13) has the form

Ω =
n∑

i=1

Bi(t)
z − ai(t)

d(z − ai(t)) +
s∑

k=1

( n∑
i=1

ri∑
j=1

γijk(t)
(z − ai(t))j

)
dtk (17)

in local coordinates (z, t1, . . . , ts) of the space X = C× T , where the γijk are holo-
morphic matrix functions on T and ri is the maximal i-resonance of the family (13).

The maximal i-resonance in this theorem is the maximal difference among all
integer pairwise differences of the exponents at the point ai (recall that the expo-
nents are equal to the eigenvalues of Bi). Such integer differences always exist at
resonant singular points. If ai is non-resonant, then ri = 0, and one can easily
see that Theorem 6 emerges as a corollary of Theorem 8. Moreover, any matrix
differential 1-form Ω determining a non-resonant isomonodromic family is of the
form Ω = Ωs (modulo Remark 4).

Proof. We use Bolibrukh’s generalization of Levelt’s decomposition (4) to the case
of isomonodromic families ([20]; see also [2], Theorem 15.1). He established a decom-
position of an analytic isomonodromic fundamental matrix Y (z, t) in a neigh-
bourhood of the hypersurface {z − ai(t) = 0}. If the monodromy matrix Gi =
diag(G1

i , . . . , G
m
i ) of Y (z, t0) at the point a0

i is block-diagonal (with respect to the
decomposition into the direct sum of the root subspaces), then for any t∗ ∈ T
there exists a neighbourhood D(t∗) ⊂ T and a block-diagonal matrix Si(t) =
diag(S1

i (t), . . . , Sm
i (t)) which is holomorphically invertible in D(t∗) such that the

decomposition analogous to (4) holds:

Y (z, t)S−1
i (t) = Ui(z, t)

(
z − ai(t)

)Λi
(
z − ai(t)

)Ei(t)
, (18)

where the matrix Ui(z, t) is holomorphically invertible in a neighbourhood of the
hypersurface {z − ai(t) = 0} and Ei(t) = Si(t)EiS

−1
i (t) is an upper triangular

matrix.
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Let Ỹ (z, t) be the analytic isomonodromic fundamental matrix of the family (13)
such that Ω = (dỸ )Ỹ −1. One can take an invertible constant matrix Ci such that
the monodromy matrix Gi of Ỹ (z, t)Ci is of block-diagonal form. Then according
to (18) one has

Ỹ (z, t)Ci = Ui(z, t)
(
z − ai(t)

)Λi
Si(t)

(
z − ai(t)

)Ei

in a neighbourhood of the hypersurface {z − ai(t) = 0}. It follows that for the
1-form Ω one has there

Ω = (dỸ )Ỹ −1 = (dỸ Ci)(Ỹ Ci)−1 = Ω1 + Ω2,

where

Ω1 =
dUi

dz
U−1

i d(z − ai(t)) + Ui

(
Λi

z − ai(t)
+ (z − ai(t))Λi

Ei(t)
z − ai(t)

(z − ai(t))−Λi

)
× U−1

i d(z − ai(t)) + a holomorphic 1-form

=
Bi(t)

z − ai(t)
d(z − ai(t)) + a holomorphic 1-form,

Ω2 = Ui(z − ai(t))Λi(dSi)S−1
i

(
z − ai(t)

)−Λi
U−1

i

=
s∑

k=1

( ri∑
j=1

γijk(t)
(z − ai(t))j

)
dtk + a holomorphic 1-form,

with all the γijk holomorphic matrix functions in a coordinate neighbourhood D(t∗)
of the space T . The form of Ω2 follows from the block-diagonal structure of the
matrices Λi, Si and the definition of the maximal i-resonance ri of the family (13).

Therefore, the matrix differential 1-form

Ω̃ = Ω−
n∑

i=1

Bi(t)
z − ai(t)

d(z − ai(t))−
s∑

k=1

( n∑
i=1

ri∑
j=1

γijk(t)
(z − ai(t))j

)
dtk

is holomorphic on C × D(t∗), and so Ω̃ =
s∑

k=1

γk(t) dtk (where the γk are matrix

functions holomorphic on D(t∗)) and one obtains the statement of the theorem
modulo Remark 4.

Remark 5. In the proof of Theorem 8 one encounters the matrices CiS
−1
i (t) con-

necting the analytic isomonodromic fundamental matrix Ỹ (z, t) of the family (13)
with the Levelt fundamental matrices at the points ai(t). The isomonodromic fam-
ily (13) is a Schlesinger one if and only if these connection matrices are independent
of t (see [2], Exercise 15.3). This statement is formulated in a more rigorous set-
ting in [22], where such deformations (that is, when the connection matrices are
independent of t) are said to be isoprincipal.

A particular case of Theorem 8 concerns resonant isomonodromic families (14)
with the deformation space T = D(a0). It follows from this theorem that a matrix
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differential 1-form Ω determining such a deformation on the space C ×D(a0) has
the form

Ω =
n∑

i=1

Bi(a)
z − ai

d(z − ai) +
n∑

k=1

( n∑
i=1

ri∑
j=1

γijk(a)
(z − ai)j

)
dak, (19)

where the γijk are holomorphic matrix functions on D(a0) and ri is the maximal
i-resonance of the family (14).

Theorem 8 also helps one to understand the result of Poberezhnyi [23], who
studied the local geometry of a deformation space T in a general resonant case
when there are additional deformation parameters besides singular points. Assume
that locally T looks like a direct product D(a0) × W , where W ⊂ M ∗

a0,χ,exp is
a continuous component of the moduli space M ∗

a0,χ,exp of Fuchsian systems having
the singularities a0

1, . . . , a
0
n, monodromy χ, and fixed exponents. Generically one

has d = dimW > 0. Then the following statement holds.
Any meromorphic matrix differential 1-form Ω on the space C×D(a0)×W giving

the local isomonodromic deformation (13) has the form

Ω =
n∑

i=1

Bi(a,w)
z − ai

d(z − ai) +
n∑

k=1

( n∑
i=1

ri∑
j=1

γijk(a,w)
(z − ai)j

)
dak

+
d∑

l=1

( n∑
i=1

ri∑
j=1

βijl(a,w)
(z − ai)j

)
dwl, (20)

where the γijk and βijl are holomorphic matrix functions on D(a0)×W , w1, . . . , wd

are local coordinates on W , and ri is the maximal i-resonance of the family (13).

4. Integrable deformations and the Painlevé property

In this section we investigate singularities of deformation equations. We describe
the set of moveable singularities of the deformation (the theta-divisor) and the local
behavior of the coefficients of the family in a neighbourhood of this set. We gener-
alize the classical results (established for Schlesinger isomonodromic deformations
of Fuchsian systems) on meromorphic continuation of solutions to the Schlesinger
equation and the global structure of the theta-divisor, to the case of the integrable
deformations considered in Theorem 3. Following [24], [25], our approach makes
wide use of the theory of Fredholm operators briefly presented in the next subsec-
tion.

4.1. Fredholm operators. The Fredholm operators reviewed here play a role
in the analysis of families of vector bundles in the next subsection. Let H be
a separable complex Hilbert space. Denote by B(H) the space of bounded linear
operators from H to H.

Definition 5. An operator A ∈ B(H) is called a Fredholm operator if it satisfies
the following properties:

• the kernel kerA is a finite-dimensional subspace of H;
• the image ImA is a closed subspace in H of finite codimension

dim cokerA = dim(H/ ImA).
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The set of all Fredholm operators is denoted by Φ(H). For A ∈ Φ(H) one defines
the index indA by

indA = dim cokerA− dim kerA.

The set of all invertible operators is an open part of B(H) and clearly lies in the set
Φ(H), but also Φ(H) is an open part of B(H) (see, for instance, [26]). The set Φ(H)
possesses a number of properties which we list in a theorem. Their proofs can be
found, for instance, in the book [27] (see Theorem 1.4 in Chap. 4 and Theorems 2.3
and 3.1 in Chap. 5).

Theorem 9. Let K (H) be the ideal of compact operators in B(H). Then
1) if A ∈ Φ(H) and K ∈ K (H), then their sum A + K also belongs to Φ(H)

and the index does not change,

indA = ind(A+K);

2) for any A ∈ Φ(H) such that indA = 0 there exists a finite-dimensional
operator K ∈ B(H) such that A+K is an invertible operator;

3) for any two operators A,B ∈ Φ(H) the product AB belongs to Φ(H) and its
index is given by the formula

indAB = indA+ indB.

Here we treat a natural context related to the constructions in this paper, where
one meets Fredholm operators. Let S1 be the unit circle in the complex plane
and H = L2(S1,Cp) the Hilbert space of square-integrable Cp-valued functions.
Elements of H are Fourier series

h =
∑
n∈Z

bne
inϕ, bn ∈ Cp.

The space H decomposes as the direct sum H+ ⊕H−, where

H+ =
{∑

n>0

bnz
n

}

is the closure with respect to the L2-norm of the subspace of continuous functions
on S1 that extend holomorphically to the unit disk, and

H− =
{∑

n<0

bnz
n

}
is the closure with respect to the same norm of the subspace of continuous functions
on S1 that extend holomorphically to the exterior of the unit circle and are zero at
infinity.

Denote by Γ(U) the group of all holomorphic maps γ from a connected neigh-
bourhood U of S1 to GL(p,C) and let Γ be its inductive limit with respect to U .
This group is the collection of transition functions for holomorphic vector bundles
of rank p over C. The elements γ ∈ Γ act on H by left multiplication as linear
operators Mγ .
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For γ ∈ Γ let us decompose Mγ with respect to H = H+ ⊕H− as

Mγ =
(
A B
C D

)
.

We will show that A is a Fredholm operator.
According to the Birkhoff–Grothendieck theorem [28], [29], every holomorphic

vector bundle E of rank p over C is a direct sum of line bundles,

E ∼= O(m1)⊕ · · · ⊕ O(mp), mi ∈ Z,

which means that a matrix function γ(z) decomposes as

γ(z) = γ−(z)

z
m1 0

. . .
0 zmp

 γ+(z) = γ−(z)γ0(z)γ+(z),

where γ+ is an element of Γ that extends holomorphically to zero, and γ− is an
element of Γ that extends holomorphically to infinity and satisfies γ−(∞) = Id.
Therefore Mγ = Mγ−Mγ0Mγ+ , where the restrictions Mγ− |H− and Mγ+ |H+ are
isomorphisms of the subspaces H− and H+, respectively. Hence the operators Mγ−

and Mγ+ can be decomposed with respect to H = H+ ⊕H− as

Mγ− =
(
A− 0
C− D−

)
, Mγ+ =

(
A+ B+

0 D+

)
,

where A−, A+ : H+ → H+ are isomorphisms,5 and thus Fredholm operators of zero
index. Decomposing Mγ0 with respect to H = H+ ⊕H− as

Mγ0 =
(
A0 B0

C0 D0

)
,

we obtain the relation A = A−A0A+. One can check that A0 is a Fredholm operator
as follows.

Let e1, . . . , ep be the standard basis of Cp. The explicit form of the matrix
function γ0(z) implies that Mγ0(eiz

n) = eiz
n+mi , therefore

kerA0 = ⟨eiz
n | mi < 0, 0 6 n < −mi⟩, ImA0 = ⟨eiz

n | n > mi > 0⟩.

Hence

dim kerA0 = −
∑

{i:mi<0}

mi and dim cokerA0 =
∑

{i:mi>0}

mi.

This means thatA0 is a Fredholm operator of index
p∑

i=1

mi. According to Theorem 9

the same is true for the operator A = A−A0A+. Note that the index indA =
p∑

i=1

mi

of the operator A equals the degree of the holomorphic vector bundle determined
by the transition function γ(z).

5One can easily check that for any h+ ∈ H+ the equation A−(x+) = h+ has a unique solution
x+ ∈ H+. It is the projection of the element γ−1

− h+ ∈ H on the subspace H+.
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4.2. Non-triviality of the deformed bundle. Here we return to the integrable
deformations (E,∇) of the pair (E0,∇0) that were constructed in § 2. Recall that
the original vector bundle E0 of rank p over C was holomorphically trivial. This
implies that the restriction E|C×{t0} is also trivial. One might wonder whether
Et = E|C×{t} is trivial throughout the deformation space T . Consider therefore
the subset Θ of T where this property has been lost, that is,

Θ = {t ∈ T | Et is non-trivial}.

Proposition 1 (see also [24] and [30]). The set Θ is either empty or Θ ⊂ T is an
analytic subset of codimension one.

Proof. Choose real numbers ρ1 and ρ2 such that 0 < ρ1 < 1 < ρ2 and consider the
sets

D1 =
{
z ∈ C

∣∣ |z| > ρ1

}
, D2 =

{
z ∈ C

∣∣ |z| < ρ2

}
.

Choose also an open neighbourhood U of t ∈ T that is a contractible Stein manifold.
Then the vector bundles E|D1×U and E|D2×U are holomorphically trivial. (If T = Z̃

as in Theorem 3, then one could take U = Z̃.) Let {f1, . . . , fp} and {g1, . . . , gp}
be bases of holomorphic trivializing sections of E|D1×U and E|D2×U , respectively.
Then there is a holomorphic transition function

S : (D1 ∩D2)× U → GL(p,C),

which expresses {fi} in terms of {gi}, that is, (g1, . . . , gp) = (f1, . . . , fp)S. Take
any t ∈ U . Then by the Birkhoff–Grothendieck theorem one deduces that there are
holomorphic maps

S+( · , t) : D2 → GL(p,C), S−( · , t) : D1 → GL(p,C)

such that the above U -dependent family of elements in the group Γ decomposes as

S(z, t) = S−1
− (z, t) diag(zm1 , . . . , zmp)S+(z, t), (21)

where m1 > · · · > mp are integers and one may assume that S−(∞, t) = Id. The
bundle Et is holomorphically trivial if and only if all the mi equal zero, that is, for
all z ∈ D1 ∩D2 one has

S(z, t) = S−1
− (z, t)S+(z, t). (22)

One associates with each of the members in (21) a bounded linear operator on
the space H = L2(S1,Cp). As we saw in § 4.1, multiplication by S(· , t) determines
for a fixed t ∈ U a bounded linear operator S(t) on H whose decomposition with
respect to H = H+ ⊕H− is given by

S(t) =
(
A(t) B(t)
C(t) D(t)

)
,

where A(t) : H+ → H+ is a Fredholm operator of index
∑p

i=1mi. One sees that
the map t 7→ A(t) is holomorphic since the matrix function S(z, t) depends holo-
morphically on t.
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Now all the factors on the right-hand side of the relation (21) determine bounded
linear operators on H that are decomposed with respect to H = H+ ⊕H− as(

A− 0
C− D−

)
,

(
A0 B0

C0 D0

)
, and

(
A+ B+

0 D+

)
.

respectively, and thus
A(t) = A−A0A+.

Since A− and A+ are invertible, the invertibility of A(t) is equivalent to that of A0,
and from § 4.1 one sees directly that this holds if and only if all the mi equal zero,
that is, the bundle Et is holomorphically trivial and the decomposition (22) holds.

Since the set U is connected and the operator A(t0) is invertible (the bundle Et0

is holomorphically trivial), indA(t) = degEt = 0 for all t ∈ U (in other words, the
degree of the bundles Et, t ∈ U , does not change throughout an integrable deforma-
tion6). Because A(t) is a Fredholm operator, the last fact implies (see Theorem 9)
that for any t ∈ U there is a finite-dimensional operator K(t) ∈ B(H+) such that
A(t) +K(t) is invertible. Locally one can even choose K(t) = K independent of t.
Indeed, if A(t1) +K(t1) is invertible, then t 7→ A(t) +K(t1) is a continuous map
from U to Φ(H+). Since the set of invertible operators is an open part of Φ(H+),
the operators A(t) +K(t1) are invertible for all t close to t1. Thus we have

A(t)(A(t) +K)−1 = Id−K(A(t) +K)−1,

that is, for any tα ∈ U there exist an open neighbourhood Uα and a holomorphic
map

Qα : Uα → Aut(H+)

such that A(t)Q−1
α (t) − Id is a finite-dimensional operator. According to [29] any

bounded linear operator of the form Id + {finite-dimensional} possesses a well
defined determinant, and such an operator is invertible if and only if its deter-
minant is not equal to zero. Hence locally in a neighbourhood Uα we have

Uα ∩Θ =
{
t ∈ Uα | τα(t) := det

(
A(t)Q−1

α (t)
)

= 0
}
,

which proves the proposition.

On every non-empty intersection Uα ∩ Uβ one has(
A(t)Q−1

α (t)
)(
Qα(t)Q−1

β (t)
)

=
(
A(t)Q−1

β (t)
)
.

6Indeed, from the relation (21) it follows that

dz det S(z, t)

det S(z, t)
=

∑p
i=1 mi

z
dz +

dz det S+(z, t)

det S+(z, t)
−

dz det S−(z, t)

det S−(z, t)
,

therefore

deg Et =

p∑
i=1

mi =

∫
|z|=1

dz det S(z, t)

det S(z, t)

(the differential 1-forms
dz det S+(z, t)

det S+(z, t)
and

dz det S−(z, t)

det S−(z, t)
are holomorphic on D2 and D1, respec-

tively, so their integrals over the unit circle equal zero). Thus the integer-valued function deg Et

depends holomorphically on the parameter t, hence it is constant.
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Since the operators A(t)Q−1
α (t) and A(t)Q−1

β (t) are of the form Id +
{finite-dimensional}, so is the invertible operator Qα(t)Q−1

β (t). Hence it possesses
a non-vanishing determinant, and the functions τα and τβ differ by a factor equal
to the non-vanishing holomorphic function

det
(
Qα(t)Q−1

β (t)
)
.

The set of such functions defines a line bundle over U which is holomorphically
trivial, since U is a contractible Stein manifold. Therefore, the local functions τα
describing Θ can be glued together to form a global holomorphic function τ : U → C
for which U ∩ Θ is the zero set. Thus, for the deformation spaces T = Z̃ or
T = D(a0) there exists a global holomorphic function τ : T → C such that the set
Θ is its zero set. Then the analogous functions for the other integrable deforma-
tions constructed in § 2 (with the deformation space T = D(a0) ×W , where W is
a connected complex manifold, or with an arbitrary simply connected deformation
space T ) have the form τ ◦f , where f is the corresponding map D(a0)×W → D(a0)
or T −→ Z̃. Thus one obtains the following statement.

Corollary 2. For every integrable deformation (E,∇) constructed in § 2 and for
the corresponding deformation space T there is a global holomorphic function τ :
T → C such that

Θ = {t ∈ T | τ(t) = 0}.
The function τ is usually referred to as the (global) τ -function of the integrable

deformation (E,∇).
Let us investigate the character of the t-dependence of the matrices S+(z, t) and

S−(z, t) expressing the decomposition (22) in terms of the operator A(t). If t ̸∈ Θ,
then one defines the matrix Σ+(z, t) by

Σ+(z, t) = A−1(t) Id,

where the columns of the (p × p) identity matrix are seen as elements of H+ and
A−1(t) acts in the natural way on them. Thus, the matrix function Σ+ is holomor-
phic (in z) in a neighbourhood of the disk

{
z ∈ C

∣∣ |z| 6 1
}
. From the definition

of Σ+(z, t) we see that
A(t)Σ+(z, t) = Id,

where A(t) acts on the columns of the matrix Σ+(z, t) seen as elements of H+.
Therefore

S(z, t)Σ+(z, t) = Id + Σ−(z, t),

where the matrix function Σ− is holomorphic (in z) in a neighbourhood of
{
z ∈ C

∣∣
|z| > 1

}
, and Σ−(∞, t) = 0 because its columns are elements ofH−. Since constants

are the only holomorphic functions on C, we get from S(z, t) = S−1
− (z, t)S+(z, t)

that

S+(z, t)Σ+(z, t) = S−(z, t){Id + Σ−(z, t)} = S−(∞, t){Id + Σ−(∞, t)} = Id.

This implies the invertibility of the matrices Σ+(z, t) and Id + Σ−(z, t). Since they
depend holomorphically on t ∈ U \Θ, so do S+(z, t) and S−(z, t). Let us show that
the latter matrices are meromorphic along D2 ×Θ and D1 ×Θ, respectively.
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From [29] we know that the inverse of an operator of the form Id + F , where F
is a finite-dimensional operator in B(H+), is given by the formula

(Id + F )−1 =
1

det(Id + F )
R(F ).

Here the operator R(F ) ∈ B(H+) is defined by the series

R(F ) =
∞∑

n=0

Rn(F ), (23)

where R0(F ) = Id, and for each n > 1 the operator Rn(F ) ∈ B(H+) is defined as

Rn(F ) = Rn(F, . . . , F ),

with Rn a multilinear map from Bf(H+)n, the n-fold Cartesian product of the space
Bf(H+) ⊂ B(H+) of finite-dimensional operators, to B(H+). The multilinear map
Rn is defined by the pairing

Tr
(
F0 ◦Rn(F1, . . . , Fn)

)
= (n+ 1) Tr(F1 ∧ · · · ∧ Fn ∧ F0) ∀F0 ∈ Bf(H+),

where Tr denotes the trace of the operators involved. Note that the sum in (23) is
finite for every F ∈ Bf (H+) since the n-fold exterior power of such an F is zero as
soon as n > dim ImF . Moreover, if F depends holomorphically on the parameter t,
then the same holds for R(F ). We apply this to the present context as follows. As
above, let

Qα : Uα → Aut(H+)

be a holomorphic map such that Fα(t) := A(t)Q−1
α (t) − Id is a finite-dimensional

operator. Then the following holds:

Σ+(z, t) = A−1(t) Id = Q−1
α (t)

(
A(t)Q−1

α (t)
)−1 Id = Q−1

α (t)
(
Id + Fα(t)

)−1 Id

=
1

det(Id + Fα(t))
Q−1

α (t)R
(
Fα(t)

)
Id.

This implies that the map t 7→ τα(t)Σ+(z, t) is holomorphic on Uα and thus the
matrix Σ+(z, t) is meromorphic (in t) along Θ. The same holds for its inverse
S+(z, t). The matrix Id+Σ−(z, t) is by definition equal to S(z, t)Σ+(z, t). Therefore
the inverse S−(z, t) of Id + Σ−(z, t) is also meromorphic (in t) along Θ. Thus one
comes to the following statement.

Proposition 2. (see also [24] and [25]). Let T be a connected complex manifold,
let t0 ∈ T , and let

S : (D1 ∩D2)× T → GL(p,C)

be a holomorphic map such that

S(z, t0) = F−1
− (z)F+(z),

where F− and F+ are holomorphically invertible matrix functions on D1 and D2,
respectively. Then there is a subset Θ ⊂ T which is either empty or an analytic
subset of T of codimension one, and there exist holomorphic maps

S+ : D2 × (T \Θ) → GL(p,C), S− : D1 × (T \Θ) → GL(p,C)
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such that :
1) S(z, t) = S−1

− (z, t)S+(z, t) and S−(∞, t) = Id;
2) the maps S+ and S− are meromorphic along D2×Θ and D1×Θ, respectively.

Let us return to the proof of Proposition 1. Consider an open contractible Stein
manifold U ⊂ T and the bases {fi}, {gi}. Then the holomorphic sections on
C× (U \Θ)

(h1, . . . , hp) = (f1, . . . , fp)S−1
− = (g1, . . . , gp)S−1

+

form a basis of global trivializing sections (linearly independent at each point)
of a bundle that is holomorphically equivalent to E|C×(U\Θ). Thus the bundle
E|C×(T\Θ) is holomorphically trivial in the case of the integrable deformation (E,∇)

with deformation space T = Z̃ or T = D(a0). Since the other integrable deforma-
tions in § 2 were obtained as pull-backs of the latter, the analogous statement holds
for them.

Corollary 3. For every integrable deformation (E,∇) constructed in § 2 the vector
bundle E is holomorphically trivial over C× (T \Θ).

4.3. Meromorphic continuation. Consider an open contractible Stein mani-
fold U ⊂ T and the integrable connection ∇(∞) in the holomorphically trivial
vector bundle E|{∞}×U in Remark 3. Let {s1, . . . , sp} be a basis of horizontal
sections of this connection. Now we choose the basis {f1, . . . , fp} of holomorphic
sections of the restriction E|D1×U such that fj |{∞}×U = sj . Let {g1, . . . , gp} be a
basis of holomorphic sections of the restriction E|D2×U and let S(z, t), as in the
previous subsection, be the transition matrix relating {gj} and {fj}.

According to Proposition 2 the transition matrix S(z, t) decomposes over
(D1 ∩D2)× (U \Θ) as S = S−1

− S+. Then the trivializing basis {hj} in Corollary 3
consists of trivial extensions of {sj}. Let Ω be the connection form of ∇ with
respect to the basis {hj}. From the formula (12) we see that in a neighbourhood
of the hypersurface

Yi = {(z, t) ∈ C× U | z − ai(t) = 0}

the matrix differential 1-form Ω looks like

Ω =
∑
l>1

Bil(t)
(z − ai(t))l

d(z − ai(t)) + wi,

where wi is a holomorphic matrix differential 1-form near Yi and the matrices Bil

are holomorphic on U \Θ. We now introduce the matrix differential 1-form

Ωf =
n∑

i=1

∑
l>1

Bil(t)
(z − ai(t))l

d(z − ai(t)),

which is meromorphic on C× (U \Θ). Then Ω∞ = Ω−Ωf is a matrix differential
1-form which is holomorphic on C× (U \Θ). Hence it depends just on t. From the
definition of ∇(∞) one sees directly that Ω∞ is the connection form of ∇(∞) with
respect to the basis {sj}. Since the sections sj are horizontal, we obtain Ω∞ = 0,
that is, Ω = Ωf .
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Since the pair (Et0 ,∇t0) is isomorphic to the pair (E0,∇0), we may conclude
that there is a matrix C ∈ GL(p,C) such that

Bil(t0) = CB0
ilC

−1

for all i and l. Hence (by applying a linear transformation to the basis {hj}) we
may assume that the matrices Bil(t) satisfy the initial conditions Bil(t0) = B0

il for
all i and l. To see that these matrices are meromorphic on U let us consider the
connection forms Ω1 and Ω2 of ∇ in the bases {fj} and {gj}, respectively. Then
Ω1 and Ω2 are holomorphic on (D1 × U) \ Y and (D2 × U) \ Y and meromorphic
along Y = Y1 ∪ · · · ∪ Yn. They relate to Ω respectively according to

Ω = S−Ω1S
−1
− + (dS−)S−1

− on D1 × (U \Θ),

Ω = S+Ω2S
−1
+ + (dS+)S−1

+ on D2 × (U \Θ).

Taking into account Proposition 2, we may summarize the results of this subsection
as follows.

Consider a meromorphic linear system (1) with singularities a0
1, . . . , a

0
n in the

complex plane, so that all the B0
∞l are equal to zero and the relation (2) holds.

Regarding this system as an equation for horizontal sections of the meromorphic
connection ∇0 in the holomorphically trivial vector bundle E0, one can construct
the integrable deformation (E,∇) of the pair (E0,∇0) according to Theorem 3 (and
Remark 2).

Theorem 10. Every integrable deformation (E,∇) constructed in § 2 possesses the
following properties :

1) there is a neighbourhood V0 of any t0 ∈ T such that the restriction E|C×V0
is

holomorphically trivial and one can find a basis of its sections in which the connec-
tion form Ω of ∇ looks like

Ω =
n∑

i=1

∑
l>1

Bil(t)
(z − ai(t))l

d(z − ai(t)),

and Bil(t0) = B0
il for all i, l;

2) the solution {Bil(t)} to the integrability equation extends holomorphically to
T \Θ and is meromorphic along Θ.

For the integrable deformation constructed in Theorem 3 the above theorem
implies that the solution {Bil} extends meromorphically to Z̃. In the case that the
connection ∇0 is logarithmic one obtains a famous theorem of Malgrange.

Theorem 11 (Malgrange [24], [19]). Let {B1(a), . . . , Bn(a)} be a local solution
to the Schlesinger equation (15) with arbitrary initial conditions Bi(a0) = B0

i .
Then the matrices Bi(a) can be extended to the universal cover Z̃ of the space
Cn
∖ ⋃

i̸=j

{ai = aj} as meromorphic functions.

The statement of this theorem is commonly referred to as the Painlevé property of
the Schlesinger equation. Usually one says that a differential equation (or a system
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of differential equations) possesses the Painlevé property if its moveable singular-
ities 7 can only be poles, or equivalently, all solutions extend meromorphically to
the universal cover of the space of the independent variable punctured at the fixed
singularities.

The polar locus Θ ⊂ Z̃ of the extended matrix functions Bi(a) is called the Mal-
grange Θ-divisor 8 (Θ depends on the initial conditions Bi(a0) = B0

i ). According to
Corollary 2 there exists a function τ holomorphic on the whole space Z̃ and whose
zero set coincides with Θ. This is the global τ -function of the Schlesinger equation.
By Miwa’s theorem [31], [11] (see also [2], Lecture 17) the following holds:

d log τ(t) =
1
2

n∑
i=1

n∑
j=1, j ̸=i

Tr(Bi(t)Bj(t))
ai(t)− aj(t)

d
(
ai(t)− aj(t)

)
.

If we consider the Fuchsian system (3) as an equation for horizontal sections
of the logarithmic connection ∇0 (with singularities a0

1, . . . , a
0
n) in the holomorphi-

cally trivial vector bundle E0 of rank p over C, then the integrable deformation
(E,∇) of (E0,∇0) constructed in Theorem 3 (with the deformation space T = Z̃)
can be naturally called the Schlesinger integrable deformation, since the restriction
(E,∇)|C×D(a0) determines the Schlesinger isomonodromic deformation of this sys-
tem. But the construction in Theorem 3 can also be used to produce an integrable
deformation (E,∇) of an initial pair (E0,∇0) with holomorphically non-trivial
bundle E0. If degE0 = 0, the question is whether the bundles Et = E|C×{t} are
holomorphically trivial for almost all t ∈ T . This question should be asked in the
case when the monodromy representation of the connection ∇0 is irreducible, since
in the opposite case there are examples of representations that cannot be realized
by a Fuchsian system for any positions of poles (see [2], Example 11.1, [32]).

Let ∇0 be a logarithmic connection in a (non-trivial) holomorphic vector bundle
E0 of rank p and zero degree over C such that the monodromy representation of ∇0

is irreducible. Consider the Schlesinger integrable deformation (E,∇) of the pair
(E0,∇0) provided by Theorem 3.

Question. Is the set

Θ = {t ∈ T | Et = E|C×{t} is non-trivial}

an analytic subset of codimension one (if it is non-empty)?

The answer is known to be positive in the particular two-dimensional case
(p = 2); see [33] or [34].

Now we recall the definition of the divisor of a meromorphic function f : T → C.
Denote by A = N∪P the union of its zero set N and the polar locus P . Any regular
point t0 of the set A can belong to only one irreducible component of N or P . Thus,

7A differential equation has moveable singularities if the singular points of its solutions fill
some domain in the space of the independent variable. Points of this domain are called moveable
singular points of the equation. In other words, moveable singularities are those whose position
depends on the initial conditions of an equation. For instance, the singular points z = c of the
solutions y = 1/(c− z) to the equation dy/dz = y2 fill the whole complex plane C.

8Here the term ’divisor’ is not precise enough; a traditional definition of a divisor is given
later on.



On deformations of linear differential systems 95

one can define the order of this component as the degree (taken with + if t0 ∈ N ,
and with − if t0 ∈ P ) of the corresponding factor in the decomposition of the
function ϕ or ψ into irreducible factors (here ϕ and ψ locally define the sets N
and P , respectively). Then the divisor of the meromorphic function f is the pair
(A, κ), where κ = κ(t) is an integer-valued function on the set A0 of regular points
of A (which takes a constant value on each irreducible component of A0, this value
being equal to the order of a component). The pair (P, κ) is called the polar divisor
of the meromorphic function f . By (f)∞ we will mean the restriction of κ to the
regular points of P .

Notation. Let P be the polar locus of the function f and t0 ∈ P an arbitrary point
of this set. We denote by Σt0(f) the sum of the orders of all the irreducible com-
ponents of P ∩D(t0) (that is, the irreducible components of P that go through t0).

In the particular case presented below, which is important for applications, one
can describe the behaviour of a general solution to the Schlesinger equation near
the Θ-divisor.

Theorem 12 (Bolibrukh [35], [2], Theorem 16.1). Consider the two-dimensional
(p = 2) Schlesinger isomonodromic family (14) whose monodromy is irreducible.
Let a∗ be an arbitrary point of its Θ-divisor and

Ea∗ = E|C×{a∗} ∼= O(k)⊕ O(−k).

Then Σa∗(Bi) > −2k, i = 1, . . . , n.

Remark 6. In the paper [35] and the textbook [2] the above theorem is formulated
and proved in the particular case k = 1, but using the technique of the paper [36]
one can consider also the general case (see [34]).

It is known (see [2], Theorem 11.1) that 2k 6 n − 2. Thus, the estimate of
Theorem 12 can be written in the form Σa∗(Bi) > 2−n; furthermore Σa∗(Bi) > 3−n
in the case of odd n.

There also exists a kind of description (though not as direct as in Theorem 12)
of the local behaviour of solutions to the Schlesinger equation near the Malgrange
Θ-divisor in the case of arbitrary dimension p and arbitrary monodromy of the
family; see [37].

We should note that the Painlevé property can be violated in the general case
of a non-Schlesinger isomonodromic deformation of a Fuchsian system. Here we
return to Example 1 to illustrate this phenomenon (see also [22] and references
therein, where the illustration is based on the theory of holomorphic families of
Fuchsian systems whose fundamental solutions are generic rational matrices with
respect to z).

Example 5. On the basis of Example 1 we consider an isomonodromic family of
Fuchsian systems

dy

dz
=
((

1 1
0 0

)
1

z − a1
+
(

0 −1
0 −1

))
1

z − a2

+
(
−1 w
0 0

)
1

z − a3
+
(

0 −w
0 1

)
1

z − a4

)
y, (24)
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depending on the parameters

a = (a1, a2, a3, a4) ∈ C4
∖ ⋃

i ̸=j

{ai = aj}, w ∈ P1(C) \ {(−B : A)}

(see Example 1). Recall that for any fixed a, different values of the parameter w
define essentially different Fuchsian systems.

1) Fix a value w = w0 and consider the family (24) depending on the parameter
a only. This isomonodromic family is neither Schlesinger (since its residue matrices
B0

i are constant but do not commute) nor non-normalized Schlesinger, since it
cannot be transformed to a Schlesinger family via a gauge transformation y′ =
C−1(a)y. Indeed, if the latter were to hold, then the matrices C−1(a)B0

i C(a) would
satisfy the Schlesinger equation, or equivalently, the matrix differential 1-form Ψ =
(dC)C−1 would satisfy the system of linear algebraic equations

[B0
i ,Ψ] = −

4∑
j=1, j ̸=i

[B0
i , B

0
j ]

ai − aj
d(ai − aj), i = 1, . . . , 4.

But this system is overdetermined and, as can be checked, has no solution.
However, the constructed non-Schlesinger isomonodromic family obviously pos-

sesses the Painlevé property.
2) On the space C4

∖ ⋃
i ̸=j

{ai = aj} one can take any holomorphic function

f and consider the isomonodromic family (24), where w = w(a) = e1/(f(a)−c) is
a function of the parameter a and c = c(a0, w0) is a constant depending on the
initial condition w(a0) = w0. Then the hypersurfaces {f(a) = c} form the set of
moveable singularities for isomonodromic deformations of initial systems in (24).
Thus, such non-Schlesinger deformations do not possess the Painlevé property.

3) Regarding a and w as independent parameters, we have in (24) an example of
an isomonodromic family of the general form (13). One can obtain the matrix dif-
ferential 1-form Ω of the form (20) corresponding to this family with all resonances
rj equal to 1; this is left to the reader.

One should also note that the singularities of a Schlesinger isomonodromic
family are moveable singularities of the Schlesinger equation and only these, while
non-Schlesinger isomonodromic families may be undefined even at points where
the residue matrices are holomorphic. For the present example these are points
{(a,w) | Aw +B = 0} at which the monodromy changes.

4.4. Application to Garnier systems. The Garnier system Gn(θ) depending
on n + 3 complex parameters θ1, . . . , θn+2, θ∞ was obtained by Garnier [38] as
a completely integrable system of non-linear partial differential equations of the
second order. Later it was described by Okamoto [39] in an equivalent Hamiltonian
form (see Example 2)

∂ui

∂aj
=
∂Hj

∂vi
,

∂vi

∂aj
= −∂Hj

∂ui
, i, j = 1, . . . , n, (25)

with certain Hamiltonians Hj = Hj(a, u, v, θ) which are rationally dependent on
the independent variable a = (a1, . . . , an), the unknowns u = (u1, . . . , un) and
v = (v1, . . . , vn), and the parameter θ = (θ1, . . . , θn+2, θ∞).
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In the case n = 1, the Garnier system G1(θ1, θ2, θ3, θ∞) is an equivalent (Hamil-
tonian) form of the sixth Painlevé equation PVI(α, β, γ, δ), where

α =
1
2
θ2∞, β = −1

2
θ22, γ =

1
2
θ23, δ =

1
2

(1− θ21).

As is well known, the Painlevé equations possess the Painlevé property.
For n > 1 the Garnier system does not, in general, have the Painlevé property.

However, by virtue of Garnier’s theorem, the elementary symmetric polynomials
σi

(
u1(a), . . . , un(a)

)
depending on local solutions to the Garnier system extend to

meromorphic functions Fi on the universal cover Z̃ ′ of the space Z ′ = (C\{0, 1})n
∖⋃

i̸=j

{ai = aj}. One can study the behaviour of the functions Fi near their polar

loci using the relationship between Schlesinger isomonodromic deformations and
Garnier systems, which we recall below.

Consider a two-dimensional Schlesinger isomonodromic family

dy

dz
=
( n+2∑

i=1

Bi(a)
z − ai

)
y, Bi(a0) = B0

i ∈ sl(2,C), (26)

of Fuchsian systems with singular points a1, . . . , an, an+1 = 0, an+2 = 1, an+3 = ∞
which depends holomorphically on the parameter a = (a1, . . . , an) ∈ D(a0), where
D(a0) is a disk of small radius centred at the point a0 = (a0

1, . . . , a
0
n) of the space Z ′.

Denote by ±βi the eigenvalues of the matrices Bi(a), respectively. Recall that
the isomonodromic deformation preserves the eigenvalues of the residue matrices
Bi(a). As follows from the Schlesinger equation, the matrix residue at infinity is

constant. We assume that it is a diagonalizable matrix, that is,
n+2∑
i=1

Bi(a) = −B∞ =

diag(−β∞, β∞).
By Malgrange’s theorem the matrix functions

Bi(a) =
(
b11i (a) b12i (a)
b21i (a) b22i (a)

)
can be extended to the universal cover Z̃ ′ of the space Z ′ as meromorphic functions
(holomorphic off the analytic subset Θ of codimension one).

Since the upper-right element −
n+2∑
i=1

b12i (a) of the matrix B∞ equals zero, the

function

Pn(z, a) = (z − a1) · · · (z − an+2)
n+2∑
i=1

b12i (a)
z − ai

(27)

for every fixed a is a polynomial of degree n in z. We denote by u1(a), . . . , un(a)
the roots of this polynomial and define the functions v1(a), . . . , vn(a):

vj(a) =
n+2∑
i=1

b11i (a) + βi

uj(a)− ai
, j = 1, . . . , n.
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Then the following statement holds: the pair (u, v) = (u1, . . . , un, v1, . . . , vn) satis-
fies the Garnier system (25) with the parameters 2β1, . . . , 2βn+2, 2β∞ − 1 (see the
proof of Proposition 3.1 in [39], or [4], Corollary 6.2.2, p. 207).

Since the coefficients of the polynomial Pn(z, a) are expressed rationally via the
upper-right elements b12i (a) of the matrices Bi(a), so are the elementary symmet-
ric polynomials of the roots of Pn(z, a). In addition to formulae for the transition
from a two-dimensional Schlesinger isomonodromic family with sl(2,C)-residues
to a Garnier system, there also exist formulae for the inverse transition (see [39],
Proposition 3.2). It follows that the Garnier theorem (which claims that the elemen-
tary symmetric polynomials Fi = σi(u1, . . . , un) of solutions to a Garnier system
are meromorphic on Z̃ ′) can be regarded as a corollary to the Malgrange theo-
rem (Theorem 11). Moreover, applying Theorem 12 carefully, one can obtain the
supplement presented below.

By the linear monodromy of a solution to a Garnier system we will mean
the monodromy of the corresponding two-dimensional Schlesinger isomonodromic
family.

Theorem 13. Let
(
u(a), v(a)

)
be a solution to the Garnier system (25) that has

an irreducible linear monodromy, and let ∆i ⊂ Z̃ ′ denote the polar locus of the
function Fi, i = 1, . . . , n. Then

a) in the case θ∞ = 0 and ui ̸≡ uj for i ̸= j one has Σa∗(Fi) > −n− 1 for any
point a∗ ∈ ∆i;

b) in the case θ∞ ̸= 0 one has Σa∗(Fi) > −n for any point a∗ ∈ ∆i, with the
possible exception of some subset ∆0 ⊂ ∆i of positive codimension ; in any case
(Fi)∞ > −n.

Proof. Consider the family (26) with the irreducible monodromy corresponding
to the given solution, and the polynomial Pn(z, a) constructed from the residue
matrices Bi(a) (see (27)). Its coefficients can be expressed as follows.

Let us consider the elementary symmetric polynomials

σ1(a) =
n+2∑
i=1

ai, σ2(a) =
∑

16i<j6n+2

aiaj , . . . , σn+1(a) = a1 · · · an

of a1, . . . , an, an+1 = 0, an+2 = 1 and the polynomial Q(z) =
n+2∏
i=1

(z − ai). Then

Pn(z, a) =
n+2∑
i=1

b12i (a)
Q(z)
z − ai

=: b(a)zn + f1(a)zn−1 + · · ·+ fn(a)
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(recall that
n+2∑
i=1

b12i (a) = 0). By the Viète theorem one has

b(a) =
n+2∑
i=1

b12i (a)(−σ1(a) + ai) =
n+2∑
i=1

b12i (a)ai =
n∑

i=1

b12i (a)ai + b12n+2(a),

f1(a) =
n+2∑
i=1

b12i (a)
(
σ2(a)−

n+2∑
j=1, j ̸=i

aiaj

)
= −

∑
16i<j6n+2

(b12i (a) + b12j (a))aiaj .

In a similar way

fk(a) = (−1)k
∑

16i1<···<ik+16n+2

(b12i1 (a) + · · ·+ b12ik+1
(a))ai1 · · · aik+1

for each k = 1, . . . , n.
Now, by the Viète theorem, Fi(a) = (−1)ifi(a)/b(a). According to Theorem 12

and Remark 6, for each function fi and any point a∗ of the Θ-divisor of the family
(26) one has Σa∗(fi) > −n− 1.

It is not difficult to check (using the Schlesinger equation) that db(a) = −θ∞ ×
n∑

i=1

b12i (a) dai, where θ∞ = 2β∞ − 1.

a) In the case θ∞ = 0 one has db(a) ≡ 0, hence b(a) ≡ const ̸= 0. Indeed, if
b(a) ≡ 0, then Pn(z, a) is a polynomial of degree n − 1 in z, and ui(a) ≡ uj(a)
for some i ̸= j, which contradicts the conditions of the theorem. Thus, Σa∗(Fi) =
Σa∗(fi) > −n− 1 in this case.

b) In the case θ∞ ̸= 0 one has

b12i (a) = − 1
θ∞

∂b(a)
∂ai

, i = 1, . . . , n;

b12n+2(a) = b(a)−
n∑

i=1

b12i (a)ai, b12n+1(a) = −b12n+2(a)−
n∑

i=1

b12i (a). (28)

Thus, if the function b is holomorphic at a point a′ ∈ Z̃ ′, then so are the functions
b12i , i = 1, . . . , n+ 2, and hence the functions fi. Therefore, points a∗ ∈ ∆i can be
of two types: those such that b(a∗) = 0 (then Σa∗(Fi) > −1, since the function b is
irreducible 9) or those that belong to the polar locus ∆ ⊂ Θ of the function b.

Denote by ∆0 ⊂ ∆ the set of ambiguous points of the function b. Then in
a neighbourhood of any point a∗ ∈ ∆ \∆0 the function can be represented in the
form

b(a) =
h(a)

τ j1
1 (a) · · · τ jr

r (a)
, j1 > 1, . . . , jr > 1, (29)

9Indeed, if for some a′ ∈ {b(a) = 0} one has db(a′) ≡ 0, then

n∑
i=1

b12i (a′)dai ≡ 0 and b121 (a′) =

· · · = b12n (a′) = 0. Taking into consideration the relations (28), one also obtains b12n+2(a′) = 0 and

b12n+1(a′) = 0. This contradicts the irreducibility of the monodromy of the family (28).
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where the functions τl, h are holomorphic near a∗, h(a∗) ̸= 0, and furthermore, the
functions τl are irreducible at a∗, and at the same time

fi(a) =
gi(a)

τk1
1 (a) · · · τkr

r (a)
, k1 + · · ·+ kr 6 n+ 1, (30)

where the function gi is holomorphic near a∗ (i = 1, . . . , n). Thus,

fi(a)
b(a)

=
gi(a)

τk1
1 (a) · · · τkr

r (a)

/
h(a)

τ j1
1 (a) · · · τ jr

r (a)
=

gi(a)/h(a)

τk1−j1
1 (a) · · · τkr−jr

r (a)
,

therefore
Σa∗(Fi) = −

∑
α

(kα − jα) > −n

(the sum is taken over indices α such that kα− jα > 0), which proves the first part
of the statement b).

In a neighbourhood of a point a∗ ∈ ∆0 the decompositions (29), (30) are valid for
the functions b, fi, respectively, but h(a∗) = 0. However, due to the irreducibility
of b, all the irreducible factors of h in its decomposition h(a) = h1(a) · · ·hs(a)
near a∗ are distinct (we can assume also that none of the hi coincides with any
function τl). Since kl − jl 6 n for all l = 1, . . . , r, the second part of statement b)
follows from the decomposition

fi(a)
b(a)

=
gi(a)

h1(a) · · ·hs(a) τ
k1−j1
1 (a) · · · τkr−jr

r (a)
.

The theorem is proved.

Remark 7. As follows from Remark 6, in all the estimates in Theorem 13 one can
replace n by n− 1 in the case of even n.

In particular, the polar loci of the functions F1(a) = u1(a) + u2(a) and F2(a) =
u1(a)u2(a), where (u1, u2, v1, v2) represents a solution to the Garnier system
G2(θ1, . . . , θ4, θ∞) corresponding to a two-dimensional Schlesinger isomonodromic
family with five singular points and irreducible monodromy, are analytic submani-
folds with (Fi)∞ > −2. (Note that the bundle Ea∗ corresponding to a point a∗ of
the Θ-divisor of this family has the form Ea∗

∼= O(1) ⊕ O(−1), which implies the
regularity of the Θ-divisor; see [2], Theorem 16.2 or [34].)

Appendix A. Results of § 3.3 revisited

Here we consider the general case of families (13) of Fuchsian systems and give
an interpretation of the results in § 3.3, based on a moduli space approach. We will
describe a general scheme for an alternative proof of the representation (20). More
details can be found in [23].

The construction uses the technique of Schlesinger transformations as gauge
transformations of a matrix differential 1-form ω0 regarded as a connection form
in a holomorphically trivial vector bundle over C. This approach is widely used
in work on the Riemann–Hilbert problem and related topics. The gauge transfor-
mations under consideration preserve the monodromy of the system but change
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its exponents. Since the sum of the residues of a 1-form is an invariant, any local
changes of exponents should be compensated at the same or another singular point.
It follows that the simplest possible Schlesinger transformation (we call it elemen-
tary) that increases one of the exponents at some singular point should decrease
one at another singular point. Such a gauge transformation can be constructed
explicitly (see [23] for more details).

Now assume that we have an initial resonant Fuchsian system. First let us note
that using the sequence of elementary gauge transformations described above, one
can resolve all the resonances of the system by introducing some auxiliary fixed
singular point a∗. Indeed, any elementary gauge transformation deals with at most
two singular points, hence one can remove all the resonances by compensating every
change of valuations by an appropriate change of exponents at the point a∗. Now
there exists a Schlesinger family defined by this auxiliary system with the only
resonant singular point a∗.

Note that the gauge transformations of Fuchsian systems we used can be general-
ized to isomonodromic families as well. Since they have a rather explicit and simple
form, one can check directly the action of the reverse gauge transformations on the
Schlesinger 1-form. The next important observation is that during this reverse
gauge transforming from the Schlesinger family to the initial one there are two dif-
ferent steps: the creation of resonances and their amplification. When creating a
resonance one chooses the direction of the solution from the monodromy eigenspace
according to the data of our initial system. When disengaging the parameters
{w1, . . . , wd} encoding these directions, we obtain the whole connected component
W of the moduli space of Fuchsian systems, the set of all possible Fuchsian systems
having the prescribed monodromy and exponents. Finally, it remains to add these
parameters to the gauge transformations as new variables, and to modify the action
of the gauge transformations to include differentiation with respect to these new
variables. Since the new variables determine the Fuchsian system uniquely among
all systems having the same monodromy and exponents, any isomonodromic family
can be represented as a gauge transformed Schlesinger family. This also shows that
the proof is independent of the position of a∗. This position can be expressed in
terms of the new variables and is inessential. Explicit calculations give the repre-
sentation (20).

It is important to note that representing any possible isomonodromic family
as a result of certain elementary gauge transformations of the Schlesinger family
enables one to estimate the growth of its coefficients under the deformation and
demonstrate the possible satisfaction or violation of the Painlevé property for the
deformation equations. Indeed, assuming the new variables wi to be functions of
a1, . . . , an reduces the 1-form Ω to the representation (19), and if these functions
have greater than polynomial growth, then the Painlevé property must obviously
be violated for the resulting family (as we saw in Example 5). Moreover, this is the
only possible construction of a violation of the Painlevé property for isomonodromic
deformations (14) of Fuchsian systems. On the other hand, investigation of the
explicit form of the gauge transformations used in the above arguments can ensure
the satisfaction of the Painlevé property for the resulting family if there are no
dependences of the type w = w(a) or if the functions wi(a) exhibit an appropriate
growth.
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Appendix B. Symplectic structures

In this appendix we try to elucidate the geometry underlying isomonodromic
deformations and to give a short review of the links between these deformations and
certain symplectic structures on moduli spaces of connections and representations.

We begin with Fuchsian systems. The starting point is an investigation of the
properties of the monodromy map. This highly transcendental map has a number
of notable properties. Starting from a monodromy which maps a meromorphic dif-
ferential equation to its monodromy data, the map extends to the (appropriately
defined) moduli space of meromorphic connections, taking values in the moduli
space of fundamental group representations. The moduli space of connections is
naturally fibred over the space of deformation parameters; in addition there is a
bundle over the same base which is naturally associated with the moduli space of
representations. More precisely, that is the bundle obtained by extending the mod-
uli space by including certain additional (rather formal) data, namely, the positions
of the punctures that the generators of the fundamental group encircle. Clearly
one can easily define a monodromy map between these two bundles. Both bundles
have natural symplectic structures, and the monodromy map gives a symplectomor-
phism. The natural flat Ehresmann connection on the target bundle, corresponding
to the representations, is quite easy to describe: horizontal sections are those pass-
ing through the same class of monodromy representations over each base point.
The pull-backs of these sections are just isomonodromic families of Fuchsian sys-
tems. Thus, the equations of isomonodromic deformations describe the natural flat
symplectic connection on the moduli space of Fuchsian systems fibred over singu-
lar point positions. Expressed in terms of coordinates, the connection form varies
from (15) in the simplest case to (20) in the most general settings.

This approach was generalized by Boalch [40]. He described the corresponding
moduli spaces, symplectic (Poisson in the general case) structures, and the cor-
responding maps for the systems with singular points of positive Poincaré rank
(non-Fuchsian singular points). He has also shown that general symplectic geom-
etry also lies at the basis of such generalized deformations: the monodromy map
remains a symplectomorphism between the appropriately defined generalized mod-
uli spaces.
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[1] O. Forster, Riemannsche Flächen, Heidelberger Taschenbucher, vol. 184,
Springer-Verlag, Berlin–New York 1977, x+223 pp.

[2] А.А. Болибрух, Обратные задачи монодромии в аналитической
теории дифференциальных уравнений, МЦНМО, М. 2009, 220 с.,
http://biblio.mccme.ru/node/2154. [A. A. Bolibrukh, Inverse monodromy problems
in the analytic theory of differential equations, Moscow Center for Continuous
Mathematical Education, Moscow 2009, 220 pp.]

[3] A.H.M. Levelt, “Hypergeometric functions. II”, Nederl. Akad. Wetensch. Proc.
Ser. A 64 (1961), 373–385.

[4] K. Iwasaki, H. Kimura, S. Shimomura, and M. Yoshida, From Gauss to Painlevé.
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