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among which an application to stabilizing unmanned aerial vehicle systems. Pros and cons of

the proposed approach are discussed.
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1. INTRODUCTION

The theory of asynchronous systems Asarin et al. (1992);
Bertsekas and Tsitsiklis (1989); Kaszkurewicz and Bhaya
(2000) got its rather distinctive shape about 20 years ago
and nowadays has many connections with switching and
discrete-event systems Shorten et al. (2007) and other
fields of control theory. It was grounded on quite practical
problems concerning functioning of distributed computa-
tional networks and from the very beginning demonstrated
plenty of mathematically difficult, though easily formu-
lated, problems. Examples of systems, for which the prob-
lem of synchronization is acute, are complex digital elec-
tronic devices, multiprocessor systems, distributed digital
networks, discrete-time models of market economy, various
problems of control theory, etc. So, from different points of
view it should be very attractive field of investigation for
mathematicians. Nevertheless, until now only few practical
methods to deal with asynchronous systems are known.

The paper is devoted to discussion of a new method
allowing to ‘asynchronously stabilize’ a broad class of
control systems. Advantages of the proposed approach
are demonstrated by some examples among which an
application to stabilizing unmanned aerial vehicle systems.

2. STATEMENT OF A PROBLEM

Given a system W consisting of subsystems (components,
elements, parts) Wi, Ws, ..., Wy which, in the course of
functioning, can exchange information between each other
at time moments {t,} and are influenced by the outdoor
environment,.
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Fig. 1. Example of an asynchronous system

Then, in general, the dynamics of a synchronous system,
i.e., the system each components of which are switched
simultaneously, is governed by the following equation:

z(n+1) = Az(n) + f(n), (1)
where z:(n),z(n + 1) are the state vectors of a system at
the time moments t¢,, and t,,+1, respectively, while A is the
transition matrix of a system and f(n) is the vector of
external actuations.

In the case when not all the components of a system
are switched simultaneously at the time moment t,,, the
behavior of the system is described by the following
equation:

r(n+1) = Aymyx(n) + fom)s (2)
where w(n) is the set of indices of components switching
at the moment ¢, and A, ,) is the matrix row of which
with the indices 7 € w(n) coincide with the corresponding
rows of the matrix A whereas the rows with indices i ¢
w(n) coincide with the corresponding rows of the identity
matrix.

One of the principal problems in the theory of asyn-
chronous systems is as follows: what are conditions under
which the asynchronous system (2) related to its syn-
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chronous counterpart (1) converges to the solution of the
linear equation

v=Av+f, (3)
for arbitrary choice of the index sequences {w(n)}?

In general, convergence of the synchronous system (1) does
not imply convergence of its asynchronous counterpart
(2). Moreover, there are examples demonstrating that all
possible combinations of stability/instability are possible
for the pair ‘synchronous system + its asynchronous coun-
terpart’ Asarin et al. (1992); Kozyakin (2004). At the same
time, classes of matrices A are known for which conver-
gence of the synchronous system (1) implies convergence of
its asynchronous counterpart (2). For example, symmetric
matrices as well as matrices with non-negative entries the
spectral radius of which is less than one form such classes.

It is worth mentioning that the transition from an
asynchronous system to asynchronous one is coordinate-
dependent Asarin et al. (1992). This observation rises a
possibility, in some situations, to bring equations (1) and
(2), by means of a change of variables z = Qy, to the form

y(n+1)=Q ' AQy(n) + Q7' f (4)

and

y(n+1) = (Q7AQy(n) + Q7' u(n), ()

respectively, where equation (5) becomes convergent to the
solution of the linear equation

y=Q 'AQy+Q'f

under arbitrary choice of the index sequences {w(n)},
which allows to recover the solution x = Qy of the initial
equation z = Az + f.

Unfortunately, not for each pair of systems (1) and (2)
one can find a change of variables under which the pair of
systems (4) and (5) becomes convergent. Moreover, even
in the case when such a desirable change of variables exists
it is technically difficult to find an appropriate matrix Q.

Nevertheless, it is possible, at least theoretically, to over-
come this seemingly unresolvable situation using the fol-
lowing observation by Daimond and Opoitsev (2001): if
the spectral radius p(A) of a (d x d)-matriz A is strictly
less than 1 then, for some natural number D, there exist a
(D x d)-matriz L, (d x D)-matriz P, and (D x D)-matriz
B with non-negative entries such that

LA=BL, AP = PB, (6)
with
p(B) < 1.

Relations (6) mean that the matrices L and P are pseu-
doinverse to each other.

The Diamond-Opoitsev observation provides a ground
for developing the following scheme of ‘transition of the
matrix A to space of higher dimension’ which can be
treated as the scheme of pre-encoding (transition from
the vector x to the vector y of higher dimension to make
computations) and post-decoding (transition from the
vector y to the original vector x = Qy of lower dimension
to make interpretation of computed results).

3. ALGORITHM OF PRE-ENCODING AND
POST-DECODING

To be short, let us present a toy example demonstrating
how the algorithm of construction of the matrix B works.
Consider a system transition between states of which are
governed by a ‘rotation matrix with contraction’:

z(n+1) = Az(n) + f(n),
where

A=\ (C(?SO‘ _Sma> . A€ (0,1), aeR.
S1n &« COS «x

For a chosen matrix A, we have p(4) = A < 1. Then
there exists a norm || - ||« such that ||A||. < 1. In our case
such a norm may be chosen explicitly as the matrix norm
generated by the usual Euclidean vector norm ||z|s =

Vo w2 It’s well-known (see, e.g., Horn and Johnson
(1994)) [|All2 = /p(A*A) = A < 1.

On the plain, the unit ball in the Euclidean norm Q =
{z : ||z|l2 < 1} is the circle of radius 1 centered at the
origin (0,0). The matrix A maps this ball into itself or,
more specifically, into the ball Q) = {z : ||z|| < A}, which
is the circle of radius A centered at the origin (0,0).

Let us inscribe an arbitrary convex polygon J in the ring
between the balls 2 and 2, and denote by D the number
of vertices of this polygon. Of course the number D will
depend on the value of the gap between the balls 2 and
Q», and will grow as the value of the gap decrease. Then
the matrix A will map the polygon J onto a polygon J
lying inside the ball Q,, see Fig. 2.

Fig. 2. Polygons J and J; case D =5

Now, let us embed the polygon J into D-dimensional
space L = R” and define a basis in L in such a way
that the vertices of J were the basis vectors ey, e, ..., ep,
see Fig. 3. Then the convex hull of vectors ey, es,...,ep,
passing the vertices of J, will form the cone K of vectors
with non-negative coordinates in L. Finally, let us define
the (D x D)-matrix B as such a matrix which maps
the basis vectors ej,es,...,ep in L (equiv. vertices of
J) to appropriate vertices of the polygon J. Then it is
straightforward to show that B will be desired matrix with
nonnegative entries since it maps the cone K into itself.

Summarizing the above reasoning, we need to find a convex
polygon J lying in the gap between the balls 2 and Q, and
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Fig. 3. Polygons J and J embedded in L; case D = 6

then to build a matrix B which transforms the polygon J
to polygon J. Then this operation may be treated as a ‘pre-
encoding’ of the matrix A, and the matrix B automatically
will be non-negative. The procedure of computation of the
entries of the matrix B is straightforward.

So, describing the work with the iteration process (1) in a
bit more formal terms, we should behave as follows:

Step 1: Preparation of a procedure. Given a matrix
A with the spectral radius satisfying p(4) < 1, it is
needed to find the number D and matrices L, P and B.

Remark that, for any eigenvalue A of the matrix B,
the equality Ax = Bx implies
ALzl = (1Bl < 1B - [l«f] = [A < [[B]],
that is any norm of the matrix B is not less than A. In
particular,
p(B) < Bl
Step 2: Pre-encoding. To find solutions of the equation
r=Ax+ f
we perform the change of variables y = Lz, f = Lf,
where the vectors i and f belong to space R of rather
high dimension.

Step 3: Asynchronous computations with encoded
data. To construct successive approximations we con-
sider the following asynchronous procedure

By construction of the matrix B, this last iteration
procedure is convergent for any choice of the index
sequence {w(n)}.

Step 4: Post-decoding. To compute successive approx-
imations to the solution of the initial equation

r=Ax+f

it suffices to perform the ‘backward’ change of variables
xz(n) = Py(n) (post-decoding).

4. TESTING

Let us consider the iteration procedure
z(n+1) = Az(n) + f(n),

where _
cosa —sina
A_)“<Sina cosa)
and
2 0.5 0.5
A =0.99, a—?, xo_(0.5>’ f—(0'5>

Synchronous computations for this procedure are conver-
gent whereas asynchronous computations are divergent
which is demonstrated by Fig. 4.

S

/
|
\

Fig. 4. Divergence of asynchronous procedure

To implement the asynchronous procedure with pre-
encoding we first computed dimension D of the matrix
B which is in our case equals to 23. We omit the entries of
the matrix B due to its high dimension, and only remark
that

p(B) < |[B]y = max ) |bi;| = 0.9999 < 1
75

The rate and details of convergence for the both syn-
chronous and asynchronous procedures are plotted in
Figs. 5 and 6. More specifically, Fig. 6 plots the second
coordinate of the vectors z(n) in the procedure

z(n+ 1) = Az(n) + a(n) (COSO‘ >

with a periodic quantity a(n).

—>» Sync

—e—Coding

Fig. 5. Successive approximations for synchronous and pre-
encoded asynchronous processes

5. APPLICATION TO STABILIZING UNMANNED
AERIAL 2-VEHICLE SYSTEM

In investigation of distributed computations modeling dy-
namics of the autonomous flight of an unmanned aerial

5857



Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

04

0.3

0,2
7N\ TN —> s
01

\ ——Coding
o

50 / o 1 D\ 2 D/ 230 300
0,1

N \/

0,2

Fig. 6. Convergence of synchronous and pre-encoded asyn-
chronous processes with periodic external excitation

vehicle system (UAVs) consisting of several inter-operating
unmanned aerial vehicles (UAVs), the problem of tracking
of one vehicle by another is of great importance. One of
the main difficulties here is that re-formation of a flown
UAV relative to a lead UAV is affected by considerable
time lags.

In a simplified form, the dynamics of the UAV’s flight
altitude is governed by a third-order differential equation.
The related difference scheme for such an equation is as
follows:

z1(t+1) = ax(t)
— ]{711'2(75) =+ (l‘ln<t + 1) — .Tg(t))
_ (7)
aﬁg(t + 1) = xg(t) —+ x1 (t)&t
l‘3(t + 1) = xg(t) + Z‘g(t)(st
where x3 is the observed flight altitude of an UAV, x5 =

dd% is the velocity of changing of the flight altitude, and

ot = 0.1 sec. is the sampling period for coordinates.

The tracking system of the flown UAV tracks the coor-
dinate value z3 of the lead UAV. Typically, this is ac-
companied by a considerable time lag in tracking of x4
(flown UAV flight altitude) comparing with x3 (lead UAV
flight altitude). The related results of computer testing are
presented in Fig. 7.

We modeled the dynamics of the flight of two UAVs by
distributed computations, where the dynamics of UAVs
is described by six-order difference equations with inde-
pendent quantization periods close to dt = 0.1 sec. and
independent tracking of the flown UAV coordinates with
period close to dt = 0.5 sec. Our aim was to try to change
the dynamics of UAVs consisting of two vehicles in such a
way to improve the accuracy of tracking the coordinates
of the lead UAV by the flown UAV. In order to do it,
we extended the phase space of the system. For the sake
of convenience, we enlarged only dimension of the phase
space of the flown UAV. Let us note that in our case the
related asynchronous system is stable. Therefore it was
reasonable to try to correct dynamics of the system by a
moderate expanding of the phase space. It turned out that
in our case the double enlargement of space dimension was
enough. The difference equations for the enlarging filter of
the second order are as follows:

.’i‘g(t + 1) = .’)AL‘Q(t) + 71(1’3@ + 1) — Lf’:g(t)),
23t + 1) = &3(t) + T2(t)0t + y2(x3(t + 1) — 23(1)),
where the coordinate I, tracks the velocity xo of the

changing of the altitude x3, while the coordinate 23 tracks
the altitude x3.

This, together with the difference scheme (7), yields the
difference equation of the fifth order. Our goal was to
minimize the lead UAV altitude tracking error

|23(t + 1) — a5(t)]
by adjusting the coefficients 77 and 9 in the above

equations. Results of modeling of the tracking dynamics
in the extended space are presented in Fig. 8.

Relying on the presented example, we can conclude that
the technique of extending the phase space might be an
efficient tool of improving the quality of transient pro-
cesses in asynchronous systems. Contrary to the case of
synchronous systems, in the case of asynchronous systems
there arise a need to synchronize computations in the
extended system with those in the original one. Unfortu-
nately, in some cases this may lead to essential increasing
of dimension of the phase space of asynchronous system
comparing with that of synchronous one. Also it is worth
mentioning that dynamics of the extended system depends
on the sampling periods for coordinates, and it is required
to take care of physical realizability of the enlarging filter.
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Fig. 7. Tracking the flight altitude of a host UAV

6. DISCUSSION

Let us mention briefly principal pros and cons for the
approach proposed in the paper.

6.1 Pros

The main advantage of the proposed approach is that it
justifies principal possibility to use asynchronous proce-
dures to compute solutions of equation (1), for arbitrary
matrix with the spectral radius not exceeding 1.

Another possible advantage of the proposed approach
is that the operands of a computational procedure, i.e.,
processors computing the vectors y3 on Step 3, will work
with encoded data whereas the initial encoding of the data
on Steps 1 and 2 and further decoding on Step 4 will be
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Fig. 8. Tracking the flight altitude of a host UAV in an
extended phase space

done by a ‘problem originator’. In some cases the fact that
real computational data are hidden from view of operands
of a computational procedure might be essential.

6.2 Cons

The main disadvantage of the proposed approach is that
dimension D of the matrix B is much higher than the
dimension d of the initial matrix A. A rough estimate
shows that D ~ (1 — p(A))~(@=1/2,

At the same time, it is worth mentioning that the matrix
B is turned out to be a sparse matrix with each its row
and column containing no more than d + 1 non-vanishing
entries. As is known, this essentially lowers the computing
load at work with such matrices. Besides, more elaborate
means of construction of the matrix B might also to lower
the value of D essentially.

7. CONCLUSION

The proposed approach of transition to asynchronous pro-
cedures with guaranteed convergence is far from being
perfect and from practical implementation. Nevertheless,
in this work, we tried to demonstrate that, at least the-
oretically, construction of asynchronous procedures with
guaranteed convergence is possible in rather general sit-
uations. This means that intensive investigations in the
indicated direction might be fruitful.
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