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1 1. INTRODUCTION

In this paper, we prove the finite�step realizability
of the joint/generalized spectral radius for a bounded
set of matrices with the so�called uniformly sub�
peripheral spectrum.

1.1. Joint and Generalized Spectral Radii

Throughout this paper, we let

be a bounded set of d × d matrices over the field � = �,
� indexed by elements from some set K. Let also || ⋅ || be
a row�vector norm on �1 × d and also the induced
matrix�norm on �d × d. Associate with any finite�
length word

the matrix S
σ
 =  …  and define for any integer

n ≥ 1 two quantities

and .

Here ρ(A) stands for the usual spectral radius for an
arbitrary matrix A ∈ �d × d. Then by the sub�multiplica�

1 The article was translated by the authors.
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tive property ||AB || ≤ ||A || ⋅ ||B || for all A, B ∈ �d × d there
exists the limit

which does not depend on the choice of the norm || ⋅ ||.
This limit was called by Rota and Strang [1] the joint
spectral radius of the matrix set S. Analogously, there
exists the limit

which was called by Daubechies and Lagarias [2] the
generalized spectral radius of the matrix set S. As is
shown in [3], for finite matrix sets S the quantities

(S) and ρ(S) coincide with each other, and for any n
the following inequalities hold

(1)

which are useful for numerical computation of the
joint spectral radius (S).

1.2. Spectral Finiteness Property

In [4] Lagarias and Wang conjectured that for finite

sets S the value ρ(S) in fact coincides with  for

some n and σ ∈ Kn; that is to say, S has the spectral

ρ̂ S( ) lim ρ̂n S( )n
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finiteness property. If this Finiteness conjecture is true,
then the problem of determining whether ρ(S) < 1 is
decidable. This is because if ρ(S) < 1, then there exists
n such that ρn(S) < 1, whereas if (S) ≥ 1, the Finite�
ness conjecture implies that there exists n such that

(S) ≥ 1. By checking both conditions for increasing
values of n, one of them will be eventually satisfied and
a decision will be made after a finite amount of com�
putation. Note that for a single matrix the problem is
decidable. So, the Finiteness conjecture has strong
implications on the computation of the joint/general�
ized spectral radius.

A simplest example of matrix sets having the finite�
ness property are bounded sets of matrices consisting
of upper (or lower) triangular matrices. Another trivial
example deliver bounded matrix sets S consisting of
matrices S ∈ S “isometric to a scalar factor” in some
row�vector norm || ⋅ || on F1 × d, i.e., such that for any x ∈
�1 × d, ||xS || = λS||x || with some constant λS. One more
example was given by Plischke and Wirth [5] who

proved that irreducible
2
 bounded “symmetric” matrix

sets
3
 possess the finiteness property. Less trivial exam�

ples were constructed by Omladi  and Radjavi in [6],
where they showed that the finiteness property holds
for matrix sets S for which the semigroup S+ of all the
products of matrices from S possesses the so�called
“sub�multiplicative spectral radius property”, i.e.,
ρ(FH) ≤ ρ(F) ⋅ ρ(H) for all F, H ∈ S+.

In [7] Gurvits showed that, for real matrix sets S,
the Finiteness conjecture holds if there is a real poly�

tope extremal norm
4
. In [4], Lagarias and Wang

proved a more general result that Finiteness conjec�
ture holds if there is a piecewise real analytic extremal
norm. At last, as showed Guglielmi et al. [8], for com�
plex matrix sets S, the Finiteness conjecture holds if
there is a complex polytope extremal norm. However,
to make use of these results, one needs to know
whether a set S admits an extremal norm or not. It was
shown, e.g., in [9–11] that bounded irreducible sets of
matrices always admit extremal norms, yet nothing
proves that polytope or piecewise analytic extremal
norms are always possible, see, e.g., [12] and refer�
ences therein. In [8] Guglielmi et al. conjectured that

every non�defective
5
 finite family of complex matrices

that possesses the finiteness property has a complex

2 A matrix set S is called irreducible, if the matrices from this set
have no common invariant subspaces except {0} and �1 × d. We
notice that this is completely different with the “irreducibility”
of a Markov transition matrix in probability theory. 

3 A matrix set S is called symmetric if S ∈ S implies that S* ∈ S,
where S* is a matrix conjugate to S. 

4 A norm || ⋅ || is called extremal for the matrix set S if ||S || ≤ ρ(S) for
all S ∈ S.

5 A matrix set S is called non�defective if the semigroup generated
by the set ρ(S)–1S is bounded. 

ρ̂

ρ̂n

c
�

polytope extremal norm. Unfortunately, later on this
conjecture was disproved by Jungers and Protasov [13].

Despite of the above examples in which the Finite�
ness conjecture holds, the Finiteness conjecture is
turned to be false in general. The first counterexample
to the Finiteness conjecture was given by Bousch and
Mairesse in [14], and the corresponding proof was
essentially based on the analysis of the so�called topi�
cal maps and Sturmian measures. Later on in [15, 16]
Blondel, Theys and Vladimirov proposed another
proof of the counterexample to the Finiteness Conjec�
ture, which extensively exploited combinatorial prop�
erties of permutations of products of positive matrices.
In the control theory, as well as in the general theory
of dynamical systems, the notion of generalized spec�
tral radius is used basically to describe the rate of
growth or decrease of the trajectories generated by
matrix products. In connection with this, Kozyakin in
[17,18] presented one more proof of the counterexam�
ple to the Finiteness conjecture fulfilled in the spirit of
the theory of dynamical systems. In this proof, the
method of Barabanov norms [9] was the key instru�
ment in disproving the Finiteness conjecture. The
related constructions were essentially based on the
study of the geometrical properties of the unit balls of
some specific Barabanov norms and properties of dis�
continuous orientation preserving circle maps.

To appreciate the merits of the above mentioned
disproofs of the Finiteness conjecture let us point out
that the key ideas underlying all the proofs in [14, 16–
18] were based on the frequency properties of the Stur�
mian sequences. In [14] such properties were formu�
lated and investigated in terms of the so�called Stur�
mian ergodic invariant measures on the spaces of
binary sequences. In [16–18], the ergodic theory for�
mally was not mentioned. However, the usage of com�
binatorial properties of Sturmian sequences in [16] or
of the fact that Sturmian sequences naturally arise in
symbolic description of trajectories of (discontinuous)
orientation preserving circle rotation maps in [17, 18]
were essentially motivated namely by ergodic proper�
ties of Sturmian sequences.

Unfortunately, all the disproofs [14,16−18] of the
Finiteness conjecture were pure “existence” (or,
sooner, “non�existence”) unconstructive results.
Only recently, in [19] Hare et al. combined the
approaches developed in [14, 16–18] with some rap�
idly�converging lower bounds for the joint spectral
radius based on the multiplicative ergodic theory
obtained by Morris [20], which allowed them to build
explicitly the set of matrices for which the Finiteness
conjecture fails. Namely, for the matrix set

they computed an explicit value of

α* � 0.74932654633036755794396194809...

S α( ) := S1
1 1

0 1
, S2 α 1 0

1 1
= =

⎩ ⎭
⎨ ⎬
⎧ ⎫
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such that S(α*) does not satisfy the finiteness prop�

erty. It is still unknown whether α* is rational or not.
So, ideas of ergodic theory are proved to be fruitful

in disproving the Finiteness conjecture [14, 16–20].
Further development of the ergodic theory approach
to investigation of the properties of the joint spectral
radius was done by Dai et al. in [21, 22]. Based on the
classic multiplicative ergodic theorem and the semi�
uniform subadditive ergodic theorem, they showed in
particular that there always exists at least one ergodic
Borel probability measure on the one�sided symbolic

space  of all one�sided infinite sequences i: � 
K such that the joint spectral radius of a finite set of
square matrices S can be realized almost everywhere
with respect to this measure [21].

Since the Finiteness conjecture was proved to be
invalid generally, serious efforts were undertaken by
some investigators to find less general classes of matri�
ces for which the Finiteness conjecture still might be
valid. One of the most interesting such classes consti�
tute matrices with rational entries. In [23, 24], Jungers
and Blondel showed that the finiteness property holds
for nonnegative rational matrices if and only if it holds
for pairs of binary matrices, i.e., matrices with the
entries {0, 1}. So they conjectured that pairs of binary
matrices always have the finiteness property. In sup�
port to this conjecture they proved that the finiteness
property holds for pairs of 2 × 2 binary matrices. They
gave also a similar result for matrices with negative
entries. Namely, they proved that the finiteness prop�
erty holds for (general) rational matrices if and only if
it holds for pairs of sign�matrices, i.e., matrices with
entries {–1, 0, 1}. More recently, Cicone et al. in [25]
proved that the finiteness property holds for pairs of
2 × 2 sign�matrices; and Dai et al. in [26] proved that
for any pair S = {S1, S2} ⊂ �d × d, if one of S1, S2 has the
rank 1, then S possesses the finiteness property.

The aim of this paper is to present yet another suf�
ficient condition enabling the finiteness property of a
set of matrices.

2. PURE PERIPHERAL SPECTRUM 
AND MAIN STATEMENT

Recall that an eigenvalue λ of a matrix A ∈ �d × d is
said to belong to the peripheral spectrum of A if |λ| =
ρ(A). If |λ| = ρ(A) for all eigenvalues λ of A, then we say
that A has the pure peripheral spectrum. For example,
any unitary matrix has the pure peripheral spectrum.
Let us say that a family of matrices S

σ
 has the uniformly

sub�peripheral spectrum if there exists a constant κ with
0 < κ < 1 such that each eigenvalue λ of S

σ
 satisfies

κρ(S
σ
) ≤ |λ | ≤ ρ(S

σ
). Clearly, if the spectrum of every

matrix S
σ
 is pure peripheral then the whole family of

matrices S
σ
 has a uniformly sub�peripheral spectrum.

Now our main statement may be formulated as fol�
lows:

ΣK
+

Theorem 1. Let S = {Sk}k ∈ K ⊂ �d × d be a bounded set
of matrices. If there exists a sequence of matrix products

 for S, where σ(nl) ∈  and nl  +∞, such that

its spectrum is uniformly sub�peripheral and

(2)

then S possesses the spectral finiteness property with

ρ(S) = (Sk).

In light of the counterexample of Hare et al. [19]
where S = {S1, S2} and the spectra of both S1 and S2 are
pure peripheral, with ρ(S1) = 1 and ρ(S2) = α*, our

assumption that the matrix sequence  has

the uniformly sub�peripheral spectrum is essential for
the statement of Theorem 1.

Let us present one example in which the claim of
Theorem 1 is evident. If each element of the multipli�
cative semigroup S+ ⊂ �d × d, generated by S, has the
pure peripheral spectrum then

This implies that

,

and so in this case the set of matrices S has the spectral
finiteness property.

Matrix multiplicative semigroups satisfying
ρ(AB) = ρ(A) ⋅ ρ(B) for any their members A and B are
called semigroups with multiplicative spectral radius,
see, e.g. [6]. As is shown in [6, Theorem 2.5], for any
such irreducible semigroup of matrices there exists a
(vector) norm || ⋅ || in which each matrix from the sem�
igroup is a direct sum of isometry (in the norm || ⋅ ||) and
a nilpotent matrix. Nontrivial examples of semigroups
with multiplicative spectral radius can be found in [6].

Let us remark that under the conditions of Theo�

rem 1 the set of matrices  does not need to

be a semigroup and moreover this set in general lacks
the multiplicative spectral radius property. Still, The�
orem 1 is valid in this more restrictive, comparing with
Theorem 2.5 from [6], situation, too.

Proof. Let  be a sequence of matrix

products for S specified by the condition of
Theorem 1. Then, since the family of matrix products

Sσ nl( ) K
nl

ρ S( ) ρ Sσ nl( )( )nl ,
l +∞→
lim=

ρ
k K∈
sup

Sσ nl( ){ }l 1=
+∞

ρ AB( ) det AB( )d det A( )d det B( )d⋅= =

= ρ A( ) ρ B( ), A B,( ) S+
.∈∀⋅

ρ S( ) ρ Sk( )
k K∈
sup=

Sσ nl( ){ }l 1=
+∞

Sσ nl( ){ }l 1=
+∞
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 has the uniformly sub�peripheral spec�

trum, we have

where σ(nl) = (i1(nl), ..., (nl)), for some constant

0 < κ < 1. Together with (2), these latter inequalities
imply that

(3)

On the other hand, by (1) we have

which together with (3) implies

Theorem 1 is thus proved.
Remark 1. From Theorem 1 it follows that if a

matrix set S does not possess the finiteness property
then for any sequence  satisfying condition (2)

the minimal absolute value of the eigenvalues of 

divided by ρ  tends to zero as l  +∞.

Let us recall now from [27] that the limit semigroup
S
∞

 generated by the set of matrices S is defined to be
the set of all limit points for the matrix sequences

 where σ(nl) ∈  and nl  ∞. As

is known [27], the limit semigroup is nonempty
bounded when the set of matrices S is irreducible.

As a consequence of Theorem 1, we can obtain a
sufficient condition for the finiteness property for an
irreducible S.

Theorem 2. Let an irreducible bounded set of matri�
ces S = {Sk}k ∈ K ⊂ �d × d do not possess the finiteness
property. Then any matrix A ∈ S

∞
 is degenerate, that is,

detA = 0.
Proof. Since the bounded set of matrices S is irre�

ducible then 0 < ρ(S) < +∞, see, e.g., [27]. So, without
loss of generality, it may be assumed that ρ(S) = 1. Fix

Sσ nl( ){ }l 1=
+∞

κρ Sσ nl( )( ) det Si1 nl( )⋅⋅⋅Sinl
nl( )( )d≤

=  det Si1 nl( )( )⋅⋅⋅det Sinl
nl( )( )d

=  det Si1 nl( )( )d ⋅⋅⋅ det Sinl
nl( )( )d ρ Si1 nl( )( )⋅⋅⋅ρ Sinl

nl( )( )≤

≤ ρ Sk( )
k K∈
sup( )

nl
,

inl

ρ S( ) ρ Sσ nl( )( )nl

l +∞→
lim κ 1– ρ Sk( )

k K∈
sup( )

nlnl

l +∞→
lim≤

=  ρ Sk( ).
k K∈
sup

=

ρ S( ) ρ Sk( )
k K∈
sup ,≥

ρ S( ) ρ Sk( )
k K∈
sup .=

Sσ nl( ){ }

Sσ nl( )

Sσ nl( )( )

ρ S( )
nl–
Sσ nl( ){ }l 1=

+∞
, K

nl

an arbitrary matrix A ∈ S
∞

. Then there exists a

sequence of finite�length words  with σ(nl)

∈  and nl  ∞ as l  +∞, such that

If A would be singular, then we could stop our proof
here. Next, we assume detA ≠ 0 and then ρ(A) > 0.
Since ρ  converges to ρ(A) as l  +∞, it fol�

lows

  1 = ρ(S).

So, condition (2) holds for the sequence 

Then denoting by λl an eigenvalue of  with the

smallest absolute value we get by Remark 1 that

λl  0 as l  ∞. (4)

Now, by (1) all the other eigenvalues of the matrix
 have the absolute values do not exceeding 1. So,

and by (4) we obtain

which is a contradiction to the assumption.
Due to arbitrariness of the matrix A ∈ S

∞
, the the�

orem is thus proved.
It is interesting to formulate Theorem 2 equiva�

lently as follows:
Theorem 3. Let a bounded set of matrices S =

{Sk}k ∈ K ⊂ �d × d be irreducible. If there exists a nonsin�
gular A ∈ S

∞
, then S has the finiteness property.

Recall from [28] that an irreducible set of matrices
S is said to have rank one property if every nonzero ele�
ment of S

∞
 has rank one. Then from [28, Corollary

1.6] it follows that for each card(K), d ≥ 2 there exists
an irreducible finite set of matrices S = {Sk}k ∈ K ⊂ �d × d

which satisfies both the finiteness and the rank one
properties; for example,

where 0 < |λ | < 1

has the finiteness and rank�one properties [28, Exam�
ple 2]. Therefore, the condition presented in Theorem
3 does not need to be necessary for the finiteness prop�
erty. However, there always exist open subsets of irre�
ducible pairs S = {S1, S2} ⊂ �2 × 2 in which the rank one
property does not hold [28] and hence the finiteness

σ nl( ){ }l 1=
+∞

K
nl

A Sσ nl( )l +∞→
lim .=

Sσ nl( )( )

ρ Sσ nl( )( )nl

Sσ nl( ){ }.

Sσ nl( )

Sσ nl( )

detSσ nl( ) λl≤

detA detSσ nl( )l +∞→
lim 0,= =

S 1 0

0 λ
0 λ
λ 0

,
⎩ ⎭
⎨ ⎬
⎧ ⎫

,=
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property holds from Theorem 3. In addition, the
counterexample S(α*) of Hare et al. [19], mentioned

in Section 1.2, has the rank one property from Theo�
rem 3.

3. A STABILITY CRITERION FROM 
PERIODICALLY SWITCHED STABILITY

Let us recall that a finite set S = {Sk}k ∈ K ⊂ �d × d is
called periodically switched stable if ρ(S

σ
) < 1 for all

σ ∈ Kn and all n ≥ 1; see, e.g., [22, 29]. The following
question of substantial importance was posed by
E. S. Pyatniskii in 1980s: when does periodically
switched stability imply the absolute stability for S?

Since the spectral finiteness property is equivalent
to the absolute stability of some periodically switched
stable system, then from Theorem 1 it follows imme�
diately the following stability criterion:

Theorem 4. Let S = {Sk}k ∈ K ⊂ �d × d be periodically
switched stable. If there exists a sequence of words

 satisfying the requirements of Theorem 1,

then S is absolutely stable; that is, || ⋅⋅⋅ ||  0 as

n  +∞ for all one�sided infinite switching sequences
i.: �  K.

So, in the situation of Theorem 1, the stability of S
is algorithmically decidable.

4. CONCLUDING REMARKS

In this paper, we have presented a short survey on
the spectral finiteness property for a finite set of d × d
matrices. We have proved also that if a bounded set S
of d × d matrices satisfies the so�called uniformly sub�
peripheral spectrum condition and an approximation
property of Lyapunov exponents, then S possesses the
spectral finiteness property. This result has direct
implication for the stability problem for finite sets of
matrices.
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