Pokrovskii: Economics via Asynchronous Systems

Victor Kozyakin

Introduction
Problem Formulation
Economic Background
Problem Solving
Step 1: Additive Reformulation
Step 2: Linearization
Step 3: Dimensionality Reduction
Step 4: Matrix Representation
Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture
Conclusion
A Question
Further Work

One Idea of Pokrovskii
 How to Link Economic Problems with Asynchronous Systems?

Victor Kozyakin

Institute for Information Transmission Problems
Russian Academy of Sciences

Nonlinear Dynamics Conference in Memory of Alexei Pokrovskii
University College Cork, Ireland
September 5-9, 2011

```
Pokrovskii: Economics
    via Asynchronous
        Systems
    Victor Kozyakin
```


Introduction

Problem Formulation
Economic Background
Problem Solving
Step 1: Additive Reformulation
Step 2: Linearization
Step 3: Dimensionality Reduction Step 4: Matrix Representation Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture
Conclusion
A Question
Further Work

Being in the summer of 2009 in Moscow, Alexei has asked me to think a bit about one problem.

He added: It seems, it is a kind of problems you like. ${ }^{1}$
Indeed, the formulation of the problem was so simple that I was not able to get rid of it...

[^0]Pokrovskii: Economics via Asynchronous Systems

Victor Kozyakin

Introduction

Problem Formulation
Economic Background
Problem Solving
Step 1: Additive Reformulation Step 2: Linearization Step 3: Dimensionality Reduction Step 4: Matrix Representation Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

$$
r_{i j}=\frac{1}{r_{j i}}>0
$$

Given a triplet $\omega=(i, j, k)$ with $i \neq j, k \neq i, j$, let us update the weights in accordance with the following rule:

$$
r_{i j}^{\text {new }}=\max \left\{r_{i j}, r_{i k} \cdot r_{k j}\right\}, \quad r_{j i}^{\text {new }}=1 / r_{i j}^{\text {new }} .
$$

Conjecture

For any sequence of triplets $\left\{\omega_{n}\right\}$, the updated wights converge to an equilibrium.

Pokrovskii: Economics via Asynchronous Systems

Victor Kozyakin

Introduction

Problem Formulation
Economic Background
Problem Solving
Step 1: Additive Reformulation
Step 2: Linearization
Step 3: Dimensionality Reduction
Step 4: Matrix Representation
Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture
Conclusion
A Question
Further Work

WIKIPEDIA
 The Free Encyclopedia

Main page
Contents
Featured content
Current events
Random article
Donate to Wikipedia

- Interaction

Help
About Wikipedia
Community portal
Recent changes
Contact Wikipedia

- Toolbox
- Print/export

Triangular arbitrage

From Wikipedia, the free encyclopedia
(Redirected from Triangle arbitrage)
Triangular arbitrage (also referred to as cross currency arbitrage or threepoint arbitrage) is the act of exploiting an arbitrage opportunity resulting from a pricing discrepancy among three different currencies in the foreign exchange market. ${ }^{[1][2][3]}$ A trianqular arbitraqe strategy involvac three trades, exchanging the

Cross exchange rate discrepancies

Triangular arbitrage opportunities may only exist when a bank's quoted exchange rate is not equal to the market's implicit cross exchange rate. The following equation represents the calculation of an implicit cross exchange rate, the exchange rate one would expect in the market as implied from the ratio of two currencieorther than the base currency. ${ }^{[6][7]}$

$$
S_{a / \$}=S_{a / b} S_{b / \$}
$$

$S_{a / b}$ is the implicit cross exchange rate for dollars in terms of currency a $S_{a / b}$ is the quoted market cross exchange rate for b in terms of currency a $S_{b / \$}$ is the quoted market cross exchange rate for dollars in terms of currency b
$S_{\$ / b}$ is merely the reciprocal exchange rate for currency b in dollar terms, in

Figure: Transform rules $r_{i j}^{\text {new }}=\max \left\{r_{i j}, r_{i k} \cdot r_{k j}\right\}$ are motivated by economic reasons.

Pokrovskii: Economics via Asynchronous Systems

Victor Kozyakin

Introduction
Problem Formulation

Economic Background

Problem Solving
Step 1: Additive Reformulation
Step 2: Linearization
Step 3: Dimensionality Reduction Step 4: Matrix Representation Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture

Conclusion

A Question
Further Work

Figure: A visual representation of a realistic triangular arbitrage scenario, using sample bid and ask prices quoted by international banks

Pokrovskii: Economics via Asynchronous

Systems

Victor Kozyakin

Introduction

Problem Formulation
Economic Background
Problem Solving
Step 1: Additive Reformulation
Step 2: Linearization
Step 3: Dimensionality Reduction Step 4: Matrix Representation
Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture
Conclusion

A Question

Further Work

WikipediA

The Free Encyclopedia

Main page
Contents
Featured content
Current events
Random article
Donate to Wikipedia

- Interaction

Help
About Wikipedia
Community portal
Recent changes
Contact Wikipedia
, Toolbox

- Print/export
* Languages

الحريبة
Česky
${ }^{6} \mathrm{Log}$ in / create account
Article Discussion Read Edit View history Search Q

Arbitrage

From Wikipedia, the free encyclopedia

For the upcoming film, see Arbitrage (film).
Not to be confused with Arbitration.
In economics and finance, arbitrage (IPA:/'arbitra:3/) is the practice of taking advantage of a price difference between two or more markets: striking a combination of matching deals that capitalize upon the imbalance, the profit being the difference between the market prices. When used by academics, an arbitrage is a transaction that involves no negative cash flow at any probabilistic or temporal state and a positive cash flow in at

Price convergence

[edit]

> Arbitrage has the effect of causing prices in different markets to converge. As a result of arbitrage, the currency exchange rates, the price of commodities, and the price of securities in different markets tend to converge to the same prices, in all markets, in

Figure: Arbitrage has the effect of causing prices to converge

Additive Reformulation

Pokrovskii: Economics via Asynchronous Systems

VICTOR KOZYAKIN

Introduction

Problem Formulation

Economic Background
Problem Solving
Step 1: Additive Reformulation
Step 2: Linearization
Step 3: Dimensionality Reduction Step 4: Matrix Representation Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

We have the graph

$$
r_{i j}=\frac{1}{r_{j i}}>0
$$

and the set of multiplicative updating rules:

$$
r_{i j}^{\mathrm{new}}=\max \left\{r_{i j}, r_{i k} \cdot r_{k j}\right\}, \quad r_{j i}^{\mathrm{new}}=1 / r_{i j}^{\mathrm{new}} .
$$

To simplify Problem, let us set

$$
a_{i j}:=\log r_{i j} \quad \forall i, j .
$$

Additive Reformulation

Pokrovskii: Economics via Asynchronous

Systems
Victor Kozyakin

Introduction

Problem Formulation
Economic Background
Problem Solving
Step 1: Additive Reformulation
Step 2: Linearization
Step 3: Dimensionality Reduction Step 4: Matrix Representation Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture

Conclusion

A Question
Further Work

We obtain the graph

$$
a_{i j}=-a_{j i}
$$

and the set of additive updating rules:

$$
a_{i j}^{\mathrm{new}}=\max \left\{a_{i j}, a_{i k}+a_{k j}\right\}, \quad a_{j i}^{\mathrm{new}}=-a_{i j}^{\mathrm{new}} .
$$

- - vantro
‘Linearization’ of Problem

via Asynchronous
Systems
VICTOR KOZYAKIN

Introduction

Problem Formulation

Economic Background
Problem Solving
Step 1: Additive Reformulation Step 2: Linearization

Step 3: Dimensionality Reduction Step 4: Matrix Representation Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture
Conclusion
A Question
Further Work

Each updating rule

$$
a_{i j}^{\mathrm{new}}=\max \left\{a_{i j}, a_{i k}+a_{k j}\right\}, \quad a_{j i}^{\mathrm{new}}=-a_{i j}^{\mathrm{new}}
$$

means the following 'timing' operations:
(1) given indices i and j we first update $a_{i j}$ to $a_{i j}^{\text {new }}$;
(2) then, knowing $a_{i j}^{\text {new }}$ we update $a_{j i}$ to $a_{j i}^{\text {new }}$;
(3) as a result, we obtain the updated pair $\left(a_{i j}^{\text {new }}, a_{j i}^{\text {new }}\right)$.

Question

How will look updating rules if we start updating from the pair of indices (j, i) ?

Ftanti.?

‘Linearization’ of Problem (cont.)

Pokrovskii: Economics via Asynchronous
Systems

Victor Kozyakin

Introduction

Problem Formulation
Economic Background
Problem Solving
Step 1: Additive Reformulation Step 2: Linearization
Step 3: Dimensionality Reduction Step 4: Matrix Representation Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture

Conclusion

A Question
Further Work

$$
a_{j i}^{\mathrm{new}}=\max \left\{a_{j i}, a_{j k}+a_{k i}\right\}
$$

$$
-a_{i j}^{\text {new }}=\max \left\{-a_{i j},-a_{k j}-a_{i k}\right\}
$$

$$
\begin{gathered}
\Downarrow \\
-a_{i j}^{\mathrm{new}}=-\min \left\{a_{i j}, a_{i k}+a_{k j}\right\}
\end{gathered}
$$

$$
\downarrow
$$

$$
a_{i j}^{\mathrm{new}}=\min \left\{a_{i j}, a_{i k}+a_{k j}\right\}
$$

‘Linearization’ of Problem (cont.)

Pokrovskii: Economics via Asynchronous Systems

Victor Kozyakin

Introduction

Problem Formulation

Economic Background
Problem Solving
Step 1: Additive Reformulation Step 2: Linearization Step 3: Dimensionality Reduction Step 4: Matrix Representation Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture
Conclusion

A Question

Further Work

If we don't care which of the weights $a_{i j}$ or $a_{j i}$ is updated first, then we obtain that there are valid both of the following updating rules:

$$
a_{i j}^{\text {new }}=\max \left\{a_{i j}, a_{i k}+a_{k j}\right\}, \quad a_{j i}^{\text {new }}=-a_{i j}^{\text {new }} .
$$

or

$$
a_{i j}^{\mathrm{new}}=\min \left\{a_{i j}, a_{i k}+a_{k j}\right\}, \quad a_{j i}^{\mathrm{new}}=-a_{i j}^{\mathrm{new}} .
$$

Conclusion

max and min in the above updating rules are irrelevant and may be discarded.
‘Linearization’ of Problem (cont.)

Pokrovskii: Economics via Asynchronous Systems

Victor Kozyakin

Introduction

Problem Formulation
Economic Background
Problem Solving
Step 1: Additive Reformulation Step 2: Linearization
Step 3: Dimensionality Reduction Step 4: Matrix Representation Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture
Conclusion
A Question
Further Work

The rule of updating may be rewritten as follows:

Either $a_{i j}$ is not changed during update or it is changed and then it is updated as follows:

$$
a_{i j}^{\mathrm{new}}=a_{i k}+a_{k j}
$$

‘Linearization’ of Problem (cont.)

Pokrovskii: Economics via Asynchronous

Systems
Victor Kozyakin

Introduction

Problem Formulation

Economic Background
Problem Solving
Step 1: Additive Reformulation Step 2: Linearization

Step 3: Dimensionality Reduction Step 4: Matrix Representation Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture
Conclusion
A Question
Further Work

The rule of updating may be rewritten as follows:

Either $a_{i j}$ is not changed during update or it is changed and then it is updated as follows:

$$
a_{i j}^{\mathrm{new}}=a_{i k}+a_{k j}
$$

Wow!

Updating rules became linear!

Dimensionality Reduction

Pokrovskii: Economics

 via AsynchronousSystems
Victor Kozyakin

Introduction

Problem Formulation
Economic Background
Problem Solving
Step 1: Additive Reformulation Step 2: Linearization Step 3: Dimensionality Reduction Step 4: Matrix Representation Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

Remark

Weights $a_{j i}$ 'mimic' $a_{i j}$ in the skew-symmetric way.
Then instead of the full set of weights $\left\{a_{i j}\right\}$ it suffices to consider the set of weights $\left\{a_{i j}\right\}$ with $i<j$.

As a result, the updating rules $a_{i j}^{\text {new }}=a_{i k}+a_{k j}$ take the following form:

$$
a_{i j}^{\text {new }}=\left\{\begin{array}{rll}
-a_{k i}+a_{k j} & \text { if } \quad k<i<j, \\
a_{i k}+a_{k j} & \text { if } \quad i<k<j, \\
a_{i k}-a_{j k} & \text { if } \quad i<j<k .
\end{array}\right.
$$

Dimensionality Reduction

Pokrovskii: Economics via Asynchronous

Systems
Victor Kozyakin

Introduction

Problem Formulation
Economic Background
Problem Solving
Step 1: Additive Reformulation Step 2: Linearization Step 3: Dimensionality Reduction Step 4: Matrix Representation Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

Remark

Weights $a_{j i}$ 'mimic' $a_{i j}$ in the skew-symmetric way.
Then instead of the full set of weights $\left\{a_{i j}\right\}$ it suffices to consider the set of weights $\left\{a_{i j}\right\}$ with $i<j$.

As a result, the updating rules $a_{i j}^{\text {new }}=a_{i k}+a_{k j}$ take the following form:

$$
a_{i j}^{\text {new }}=\left\{\begin{array}{rll}
-a_{k i}+a_{k j} & \text { if } \quad k<i<j, \\
a_{i k}+a_{k j} & \text { if } \quad i<k<j, \\
a_{i k}-a_{j k} & \text { if } \quad i<j<k .
\end{array}\right.
$$

It is convenient to represent these last relations in matrix form.

Matrix Representation

Pokrovskii: Economics

 via Asynchronous SystemsVictor Kozyakin

Introduction

Problem Formulation

Economic Background
Problem Solving
Step 1: Additive Reformulation Step 2: Linearization
Step 3: Dimensionality Reduction Step 4: Matrix Representation

Step 5: Further Dimensionality Reduction
Step 6: Final Implications Step 7: Disproof of Conjecture Conclusion

A Question

Further Work

By introducing the column-vector

$$
\vec{a}=\left\{a_{12}, a_{23}, a_{34}, a_{13}, a_{24}, a_{14}\right\}^{T}
$$

the update rules take the 'matrix' form:

$$
\vec{a}^{\text {new }}=A_{(i j k)} \vec{a}, \quad i<j, k \neq i, j,
$$

where twelve (6×6)-matrices $A_{(i j k)}$ are as follows:

$$
\begin{array}{ll}
A_{(123)}=\left(\begin{array}{rrrrrr}
0 & -1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \quad A_{(124)}=\left(\begin{array}{llllrl}
0 & 0 & 0 & 0 & -1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \\
A_{(231)}=\left(\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \quad A_{(234)}=\left(\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right),
\end{array}
$$

etc.

via Asynchronous
Systems
Victor Kozyakin

Introduction

Problem Formulation

Economic Background
Problem Solving
Step 1: Additive Reformulation Step 2: Linearization Step 3: Dimensionality Reduction Step 4: Matrix Representation
Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

Now the problem of investigation of the weights dynamics may be posed in the following form:

Given an initial vector $\vec{a}(0)=\vec{a}_{0}$ and a sequence $\left\{\omega_{n}\right\}$ of triplets $\omega_{n}=\left(i_{n} j_{n} k_{n}\right)$ such that $i_{n}<j_{n}, k_{n} \neq i_{n}, j_{n}$, we need to study the dynamics of the sequence

$$
\vec{a}(n+1)=A_{\omega_{n}} \vec{a}(n)
$$

or, what is the same, behavior of the vectors

$$
\vec{a}(n+1)=A_{\omega_{n}} A_{\omega_{n-1}} \cdots A_{\omega_{0}} \vec{a}_{0}
$$

Pokrovskii: Economics via Asynchronous Systems

Victor Kozyakin

Introduction

Problem Formulation
Economic Background
Problem Solving
Step 1: Additive Reformulation Step 2: Linearization Step 3: Dimensionality Reduction Step 4: Matrix Representation

Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture

Conclusion

A Question
Further Work

Now the problem of investigation of the weights dynamics may be posed in the following form:

Given an initial vector $\vec{a}(0)=\vec{a}_{0}$ and a sequence $\left\{\omega_{n}\right\}$ of triplets $\omega_{n}=\left(i_{n} j_{n} k_{n}\right)$ such that $i_{n}<j_{n}, k_{n} \neq i_{n}, j_{n}$, we need to study the dynamics of the sequence

$$
\vec{a}(n+1)=A_{\omega_{n}} \vec{a}(n)
$$

or, what is the same, behavior of the vectors

$$
\vec{a}(n+1)=A_{\omega_{n}} A_{\omega_{n-1}} \cdots A_{\omega_{0}} \vec{a}_{0}
$$

Conjecture (Matrix Reformulation)

For any sequence of triplets $\left\{\omega_{n}\right\}$, the sequence of matrix products $A_{\omega_{n}} A_{\omega_{n-1}} \cdots A_{\omega_{0}}$ is convergent.

via Asynchronous
Systems
Victor Kozyakin

Introduction

Problem Formulation

Economic Background
Problem Solving
Step 1: Additive Reformulation Step 2: Linearization Step 3: Dimensionality Reduction Step 4: Matrix Representation Step 5: Further Dimensionality
Reduction Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture

Conclusion

A Question
Further Work

Observation

All the matrices $\left\{A_{(i j k)}\right\}$ have a common invariant subspace of fixed points determined by the relations

$$
\left\{\begin{array}{l}
a_{13}=a_{12}+a_{23} \\
a_{14}=a_{13}+a_{34} \\
a_{24}=a_{23}+a_{34}
\end{array}\right.
$$

Corollary

There exists a change of variables Q such that each of the matrices $Q^{-1} A_{(i j k)} Q$ takes the block-triangle form:

$$
B_{(i j k)}:=Q^{-1} A_{(i j k)} Q=\left\|\begin{array}{cc}
I & C_{(i j k)} \\
0 & D_{(i j k)}
\end{array}\right\|
$$

where $C_{(i j k)}$ and $D_{(i j k)}$ are (3×3)-matrices.

Pokrovskii: Economics

 via AsynchronousSystems
Victor Kozyakin

Introduction

Problem Formulation

Economic Background
Problem Solving
Step 1: Additive Reformulation Step 2: Linearization Step 3: Dimensionality Reduction Step 4: Matrix Representation Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture Conclusion

A Question

Further Work

Observation

Each matrix product $B_{\omega_{n}} B_{\omega_{n-1}} \cdots B_{\omega_{0}}$ has the following form

$$
B_{\omega_{n}} B_{\omega_{n-1}} \cdots B_{\omega_{0}}=\left\|\begin{array}{cc}
I & * \\
0 & D_{\omega_{n}} D_{\omega_{n-1}} \cdots D_{\omega_{0}}
\end{array}\right\|
$$

Corollary

The matrix product $B_{\omega_{n}} B_{\omega_{n-1}} \cdots B_{\omega_{0}}$ is convergent only if the matrix product $D_{\omega_{n}} D_{\omega_{n-1}} \cdots D_{\omega_{0}}$ is convergent.

Final Implications

Pokrovskii: Economics via Asynchronous

Systems
Victor Kozyakin

Introduction

Problem Formulation

Economic Background
Problem Solving
Step 1: Additive Reformulation Step 2: Linearization Step 3: Dimensionality Reduction Step 4: Matrix Representation Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture Conclusion

A Question

Further Work

Observation

Each matrix product $B_{\omega_{n}} B_{\omega_{n-1}} \cdots B_{\omega_{0}}$ has the following form

$$
B_{\omega_{n}} B_{\omega_{n-1}} \cdots B_{\omega_{0}}=\left\|\begin{array}{cc}
I & * \\
0 & D_{\omega_{n}} D_{\omega_{n-1}} \cdots D_{\omega_{0}}
\end{array}\right\|
$$

Corollary

The matrix product $B_{\omega_{n}} B_{\omega_{n-1}} \cdots B_{\omega_{0}}$ is convergent only if the matrix product $D_{\omega_{n}} D_{\omega_{n-1}} \cdots D_{\omega_{0}}$ is convergent.

We need to investigate the convergence of infinite products of (3×3)-matrices $\left\{D_{(i j k)}\right\}$.

Final Implications (cont.)

Pokrovskii: Economics via Asynchronous Systems
 Victor Kozyakin

Introduction

Problem Formulation
Economic Background
Problem Solving
Step 1: Additive Reformulation Step 2: Linearization

Step 3: Dimensionality Reduction Step 4: Matrix Representation Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture

Conclusion

A Question
Further Work

Matrices $\left\{D_{(i j k)}\right\}$ are of the form:

$$
\begin{aligned}
& D_{(123)}=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right), \quad D_{(124)}=\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right), \quad D_{(132)}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \\
& D_{(134)}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad D_{(142)}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right), \quad D_{(143)}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \\
& D_{(231)}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right), \quad D_{(234)}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 0 \\
0 & -1 & 1
\end{array}\right), \quad D_{(241)}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right), \\
& D_{(243)}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad D_{(341)}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & -1 \\
1 & 0 & 0
\end{array}\right), \quad D_{(342)}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & -1 & 1
\end{array}\right),
\end{aligned}
$$

Pokrovskii: Economics

 via AsynchronousSystems
Victor Kozyakin

Introduction

Problem Formulation

Economic Background
Problem Solving
Step 1: Additive Reformulation Step 2: Linearization Step 3: Dimensionality Reduction Step 4: Matrix Representation Step 5: Further Dimensionality Reduction

Step 6: Final Implications

Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

Observation

All the matrices $\left\{D_{(i j k)}\right\}$

- have a common invariant symmetric body set \mathbf{P} (an elongated cubeoctahedron),
- transform the vertices of P either to other vertices of P or to the origin.

Disproof of Conjecture

Pokrovskii: Economics via Asynchronous

Systems
Victor Kozyakin

Introduction

Problem Formulation

Economic Background
Problem Solving
Step 1: Additive Reformulation Step 2: Linearization Step 3: Dimensionality Reduction Step 4: Matrix Representation Step 5: Further Dimensionality Reduction
Step 6: Final Implications

Conclusion

A Question

Further Work

Observation

Let $\left\{\omega_{n}\right\}$ be the 12-periodic sequence such that

$$
\begin{array}{llll}
\omega_{0}=(1,4,3), & \omega_{1}=(3,4,1), & \omega_{2}=(3,4,2), & \omega_{3}=(1,4,2), \\
\omega_{4}=(1,2,4), & \omega_{5}=(2,3,1), & \omega_{6}=(1,3,2), & \omega_{6}=(2,4,3), \\
\omega_{8}=(1,3,4), & \omega_{9}=(2,4,1), & \omega_{10}=(1,2,3), & \omega_{11}=(2,3,4),
\end{array}
$$

then the sequence of matrix products

$$
D_{\omega_{n}} D_{\omega_{n-1}} \cdots D_{\omega_{0}}, \quad n=0,1, \ldots
$$

is 12-periodic while the sequence of matrix products

$$
A_{\omega_{n}} A_{\omega_{n-1}} \cdots A_{\omega_{0}}, \quad n=0,1, \ldots,
$$

is divergent!

Disproof of Conjecture

Pokrovskii: Economics via Asynchronous

Systems
Victor Kozyakin

Introduction

Problem Formulation

Economic Background
Problem Solving
Step 1: Additive Reformulation Step 2: Linearization Step 3: Dimensionality Reduction Step 4: Matrix Representation Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture
Conclusion

A Question

Further Work

Observation

Let $\left\{\omega_{n}\right\}$ be the 12-periodic sequence such that

$$
\begin{array}{llrl}
\omega_{0}=(1,4,3), & \omega_{1}=(3,4,1), & \omega_{2}=(3,4,2), & \omega_{3}=(1,4,2), \\
\omega_{4}=(1,2,4), & \omega_{5}=(2,3,1), & \omega_{6}=(1,3,2), & \omega_{6}=(2,4,3), \\
\omega_{8}=(1,3,4), & \omega_{9}=(2,4,1), & \omega_{10}=(1,2,3), & \omega_{11}=(2,3,4),
\end{array}
$$

then the sequence of matrix products

$$
D_{\omega_{n}} D_{\omega_{n-1}} \cdots D_{\omega_{0}}, \quad n=0,1, \ldots
$$

is 12-periodic while the sequence of matrix products

$$
A_{\omega_{n}} A_{\omega_{n-1}} \cdots A_{\omega_{0}}, \quad n=0,1, \ldots,
$$

is divergent!

Conjecture of Pokrovskii is false !

Disproof of Conjecture (cont.)

Pokrovskii: Economics

 via AsynchronousSystems
VICTOR KOZYAKIN

Introduction

Problem Formulation

Economic Background
Problem Solving
Step 1: Additive Reformulation Step 2: Linearization Step 3: Dimensionality Reduction Step 4: Matrix Representation Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture
Conclusion
A Question
Further Work

Observation 2

Let $\left\{\omega_{n}\right\}$ be the 16-periodic sequence such that

$$
\begin{aligned}
\omega_{0}=(1,4,2), & \omega_{1}=(1,2,3), & \omega_{2}=(3,4,1), & \omega_{3}=(1,4,2), \\
\omega_{4}=(1,3,4), & \omega_{5}=(2,4,3), & \omega_{6}=(2,3,1), & \omega_{7}=(3,4,2), \\
\omega_{8}=(2,4,1), & \omega_{9}=(1,3,4), & \omega_{10}=(3,4,2), & \omega_{11}=(1,4,3), \\
\omega_{12}=(2,3,4), & \omega_{13}=(1,3,2), & \omega_{14}=(1,2,4), & \omega_{15}=(1,4,3),
\end{aligned}
$$

then both sequences of matrix products

$$
D_{\omega_{n}} D_{\omega_{n-1}} \cdots D_{\omega_{0}}, \quad n=0,1, \ldots,
$$

and

$$
A_{\omega_{n}} A_{\omega_{n-1}} \cdots A_{\omega_{0}}, \quad n=0,1, \ldots,
$$

are 16-periodic!

Fantr.

Pokrovskii: Economics

via Asynchronous
Systems
Victor Kozyakin

Introduction

Problem Formulation
Economic Background
Problem Solving
Step 1: Additive Reformulation Step 2: Linearization

Step 3: Dimensionality Reduction Step 4: Matrix Representation Step 5: Further Dimensionality Reduction
Step 6: Final Implications
Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

Any trajectory $\{\vec{a}(n)\}$ belongs to a tube around the space of common fixed points of the matrices $A_{(i j k)}$.

Does this make any economic sense?

Pokrovskii：Economics

 via Asynchronous SystemsVictor Kozyakin

Introduction

Problem Formulation

Economic Background
Problem Solving
Step 1：Additive Reformulation Step 2：Linearization Step 3：Dimensionality Reduction Step 4：Matrix Representation Step 5：Further Dimensionality Reduction
Step 6：Final Implications
Step 7：Disproof of Conjecture Conclusion

A Question

Further Work

On returning to Cork in 2009，Alexei brought to this work Rod Cross，Brian O＇Callaghan and Alexey Pokrovskiy．．．

圊 Kozyakin V．，A．Pokrovskii，and B．O＇Callaghan， Sequences of Arbitrages，
ArXiv．org e－Print archive，1004．0561，Apr．2010，18p．
圊 Cross R．，V．Kozyakin，B．O＇Callaghan，A．Pokrovskii，and A． Pokrovskiy，
Periodic Sequences of Arbitrage：A Tale of Four Currencies， University of Strathclyde Business School，Department of Economics in its series Working Papers，2010，No．10－19（to be published in Metroeconomica）．

國
Cross R．，V．Kozyakin，D．Lang，B．O＇Callaghan，A．Pokrovskii，and A． Pokrovskiy，
Arbitrage sequences and Leijonhufvud＇s corridor hypothesis，
Centre d＇Economie de l＇Universite Paris Nord，March 2011 （submitted to Cambridge Journal of Economics）

[^0]: ${ }^{1}$ Everybody knows that Alexei was a great master in Posing the Right Question to the Right Person at the Right Time.

