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The Right Question to the Right Person at the Right Time

Being in the summer of 2009 in Moscow, Alexei has asked
me to think a bit about one problem.

He added: It seems, it is a kind of problems you like.1

Indeed, the formulation of the problem was so simple that I
was not able to get rid of it. . .

1Everybody knows that Alexei was a great master in Posing the Right
Question to the Right Person at the Right Time.
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Problem: consider a full, weighted, oriented graph. . .

Given a triplet ω= (i, j,k) with i 6= j, k 6= i, j, let us update the
weights in accordance with the following rule:

rnew
ij = max

{
rij, rik · rkj

}
, rnew

ji = 1/rnew
ij .

Conjecture

For any sequence of triplets {ωn}, the updated wights
converge to an equilibrium.
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Economic support for transform rules

Figure: Transform rules rnew
ij = max

{
rij, rik · rkj

}
are motivated by

economic reasons.
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Example of a realistic triangular arbitrage scenario
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Figure: A visual representation of a realistic triangular arbitrage
scenario, using sample bid and ask prices quoted by
international banks
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Economic support for Pokrovskii’s Conjecture

Figure: Arbitrage has the effect of causing prices to converge
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Additive Reformulation

We have the graph

and the set of multiplicative updating rules:

rnew
ij = max

{
rij, rik · rkj

}
, rnew

ji = 1/rnew
ij .

To simplify Problem, let us set

aij := logrij ∀i, j.
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Additive Reformulation

We obtain the graph

and the set of additive updating rules:

anew
ij = max

{
aij, aik +akj

}
, anew

ji =−anew
ij .
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‘Linearization’ of Problem

Each updating rule

anew
ij = max

{
aij, aik +akj

}
, anew

ji =−anew
ij .

means the following ‘timing’ operations:

1 given indices i and j we first update aij to anew
ij ;

2 then, knowing anew
ij we update aji to anew

ji ;

3 as a result, we obtain the updated pair
(
anew

ij ,anew
ji

)
.

Question

How will look updating rules if we start updating from the
pair of indices (j, i) ?
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‘Linearization’ of Problem (cont.)

anew
ji = max

{
aji, ajk +aki

}
⇓

−anew
ij = max

{−aij, −akj −aik
}

⇓
−anew

ij =−min
{
aij, aik +akj

}
⇓

anew
ij = min

{
aij, aik +akj

}
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‘Linearization’ of Problem (cont.)

If we don’t care which of the weights aij or aji is updated
first, then we obtain that there are valid both of the
following updating rules:

anew
ij = max

{
aij, aik +akj

}
, anew

ji =−anew
ij .

or

anew
ij = min

{
aij, aik +akj

}
, anew

ji =−anew
ij .

Conclusion

max and min in the above updating rules are irrelevant and
may be discarded.
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‘Linearization’ of Problem (cont.)

The rule of updating may be rewritten as follows:

Either aij is not changed during update or it is changed and
then it is updated as follows:

anew
ij = aik +akj,

Wow!

Updating rules became linear !
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‘Linearization’ of Problem (cont.)

The rule of updating may be rewritten as follows:

Either aij is not changed during update or it is changed and
then it is updated as follows:

anew
ij = aik +akj,
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Updating rules became linear !
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Dimensionality Reduction

Remark

Weights aji ‘mimic’ aij in the skew-symmetric way.

Then instead of the full set of weights {aij} it suffices to
consider the set of weights {aij} with i < j.

As a result, the updating rules anew
ij = aik +akj take the

following form:

anew
ij =


−aki +akj if k < i < j,

aik +akj if i < k < j,

aik −ajk if i < j < k.

It is convenient to represent these last relations
in matrix form.
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Matrix Representation

By introducing the column-vector

−→a = {a12,a23,a34,a13,a24,a14}T

the update rules take the ‘matrix’ form:
−→a new = A(ijk)

−→a , i < j, k 6= i, j,

where twelve (6×6)-matrices A(ijk) are as follows:

A(123) =


0 −1 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , A(124) =


0 0 0 0 −1 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

A(231) =


1 0 0 0 0 0

−1 0 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , A(234) =


1 0 0 0 0 0
0 0 −1 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

etc.
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Matrix Representation (cont.)

Now the problem of investigation of the weights dynamics
may be posed in the following form:

Given an initial vector −→a (0) = −→a 0 and a sequence {ωn} of
triplets ωn = (injnkn) such that in < jn, kn 6= in, jn, we need
to study the dynamics of the sequence

−→a (n+1) = Aωn

−→a (n)

or, what is the same, behavior of the vectors

−→a (n+1) = Aωn Aωn−1 · · ·Aω0

−→a 0

Conjecture (Matrix Reformulation)

For any sequence of triplets {ωn}, the sequence of matrix
products Aωn Aωn−1 · · ·Aω0 is convergent.
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Matrix Representation (cont.)

Now the problem of investigation of the weights dynamics
may be posed in the following form:

Given an initial vector −→a (0) = −→a 0 and a sequence {ωn} of
triplets ωn = (injnkn) such that in < jn, kn 6= in, jn, we need
to study the dynamics of the sequence

−→a (n+1) = Aωn

−→a (n)

or, what is the same, behavior of the vectors

−→a (n+1) = Aωn Aωn−1 · · ·Aω0

−→a 0

Conjecture (Matrix Reformulation)

For any sequence of triplets {ωn}, the sequence of matrix
products Aωn Aωn−1 · · ·Aω0 is convergent.
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Further Dimensionality Reduction

Observation

All the matrices {A(ijk)} have a common invariant subspace
of fixed points determined by the relations

a13 = a12 +a23,
a14 = a13 +a34,
a24 = a23 +a34.

Corollary

There exists a change of variables Q such that each of the
matrices Q−1A(ijk)Q takes the block-triangle form:

B(ijk) := Q−1A(ijk)Q =
∥∥∥∥ I C(ijk)

0 D(ijk)

∥∥∥∥ ,

where C(ijk) and D(ijk) are (3×3)-matrices.
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Final Implications

Observation

Each matrix product Bωn Bωn−1 · · ·Bω0 has the following form

Bωn Bωn−1 · · ·Bω0 =
∥∥∥∥ I ∗

0 Dωn Dωn−1 · · ·Dω0

∥∥∥∥ .

Corollary

The matrix product Bωn Bωn−1 · · ·Bω0 is convergent only if the
matrix product Dωn Dωn−1 · · ·Dω0 is convergent.

⇓
We need to investigate the convergence

of infinite products of (3×3)-matrices {D(ijk)}.
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Final Implications (cont.)

Matrices {D(ijk)} are of the form:

D(123) =
( 0 0 0

0 1 0
−1 0 1

)
, D(124) =

(1 1 −1
0 1 0
0 1 0

)
, D(132) =

(0 0 0
0 1 0
0 0 1

)
,

D(134) =
( 0 0 1

0 1 0
0 0 1

)
, D(142) =

(1 0 0
0 1 0
0 1 0

)
, D(143) =

(1 0 0
0 1 0
1 0 0

)
,

D(231) =
( 0 0 0
−1 1 0
−1 0 1

)
, D(234) =

(1 −1 0
0 0 0
0 −1 1

)
, D(241) =

(1 0 0
0 0 1
0 0 1

)
,

D(243) =
( 1 0 0

0 0 0
0 0 1

)
, D(341) =

(1 0 0
1 1 −1
1 0 0

)
, D(342) =

(1 0 0
0 0 0
0 −1 1

)
,
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Final Implications (cont.)

Observation

All the matrices {D(ijk)}

have a common invariant symmetric body set P
(an elongated cubeoctahedron),

transform the vertices of P either to other vertices of
P or to the origin.
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Disproof of Conjecture

Observation

Let {ωn} be the 12-periodic sequence such that

ω0 = (1,4,3), ω1 = (3,4,1), ω2 = (3,4,2), ω3 = (1,4,2),
ω4 = (1,2,4), ω5 = (2,3,1), ω6 = (1,3,2), ω6 = (2,4,3),
ω8 = (1,3,4), ω9 = (2,4,1), ω10 = (1,2,3), ω11 = (2,3,4),

then the sequence of matrix products

Dωn Dωn−1 · · ·Dω0 , n = 0,1, . . . ,

is 12-periodic while the sequence of matrix products

Aωn Aωn−1 · · ·Aω0 , n = 0,1, . . . ,

is divergent!

Conjecture of Pokrovskii is false !
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Disproof of Conjecture (cont.)

Observation 2

Let {ωn} be the 16-periodic sequence such that

ω0 = (1,4,2), ω1 = (1,2,3), ω2 = (3,4,1), ω3 = (1,4,2),
ω4 = (1,3,4), ω5 = (2,4,3), ω6 = (2,3,1), ω7 = (3,4,2),
ω8 = (2,4,1), ω9 = (1,3,4), ω10 = (3,4,2), ω11 = (1,4,3),
ω12 = (2,3,4), ω13 = (1,3,2), ω14 = (1,2,4), ω15 = (1,4,3),

then both sequences of matrix products

Dωn Dωn−1 · · ·Dω0 , n = 0,1, . . . ,

and
Aωn Aωn−1 · · ·Aω0 , n = 0,1, . . . ,

are 16-periodic!
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Question

Any trajectory {−→a (n)} belongs to a tube around the space of
common fixed points of the matrices A(ijk).

Subspace of 
fixed points

Does this make any economic sense ?
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Further Work

On returning to Cork in 2009, Alexei brought to this work
Rod Cross, Brian O’Callaghan and Alexey Pokrovskiy. . .

Kozyakin V., A. Pokrovskii, and B. O’Callaghan,

Sequences of Arbitrages,

ArXiv.org e-Print archive, 1004.0561, Apr. 2010, 18p.

Cross R., V. Kozyakin, B. O’Callaghan, A. Pokrovskii, and A.
Pokrovskiy,

Periodic Sequences of Arbitrage: A Tale of Four Currencies,

University of Strathclyde Business School, Department of
Economics in its series Working Papers, 2010, No. 10–19 (to be
published in Metroeconomica).

Cross R., V. Kozyakin, D. Lang, B. O’Callaghan, A. Pokrovskii, and A.
Pokrovskiy,

Arbitrage sequences and Leijonhufvud’s corridor hypothesis,

Centre d’Economie de l’Universite Paris Nord, March 2011
(submitted to Cambridge Journal of Economics)

http://arxiv.org/abs/1004.0561
http://www.strath.ac.uk/media/departments/economics/researchdiscussionpapers/10-19_final.pdf
http://www.iitp.ru/upload/publications/5523/Parisrc v0.7.pdf
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