

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

- Step 1: Additive Reformulation Step 2: Linearization Step 3: Dimensionality Reduction Step 4: Matrix Representation
- Step 5: Further Dimensionality Reduction
- Step 6: Final Implications
- Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

One Idea of Pokrovskii

How to Link Economic Problems with Asynchronous Systems?

VICTOR KOZYAKIN

Institute for Information Transmission Problems Russian Academy of Sciences

Nonlinear Dynamics Conference in Memory of Alexei Pokrovskii University College Cork, Ireland September 5–9, 2011

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

Step 1: Additive Reformulation

Step 2: Linearization

Step 3: Dimensionality Reduction

Step 4: Matrix Representation

Step 5: Further Dimensionality Reduction

Step 6: Final Implications

Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

Being in the summer of 2009 in Moscow, Alexei has asked me *to think a bit* about one problem.

He added: It seems, it is a kind of problems you like.¹

Indeed, the formulation of the problem was so simple that I was not able to get rid of it...

¹Everybody knows that Alexei was a great master in *Posing the Right Question to the Right Person at the Right Time.*

VICTOR KOZYAKIN

Introduction

Problem Formulation

Economic Background

Problem Solving

Step 1: Additive Reformulation Step 2: Linearization

- Step 3: Dimensionality Reduction
- Step 4: Matrix Representation

Step 5: Further Dimensionality Reduction

Step 6: Final Implications

Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

Problem: consider a full, weighted, oriented graph...

Given a triplet $\omega = (i, j, k)$ with $i \neq j$, $k \neq i, j$, let us update the weights in accordance with the following rule:

$$r_{ij}^{\text{new}} = \max\left\{r_{ij}, r_{ik} \cdot r_{kj}\right\}, \qquad r_{ji}^{\text{new}} = 1/r_{ij}^{\text{new}}$$

Conjecture

For any sequence of triplets $\{\omega_n\}$, the updated wights *converge to an equilibrium*.

Economic support for transform rules

Pokrovskii: Economics via Asynchronous Systems

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

- Step 1: Additive Reformulation
- Step 2: Linearization
- Step 3: Dimensionality Reduction
- Step 4: Matrix Representation
- Step 5: Further Dimensionality Reduction
- Step 6: Final Implications
- Step 7: Disproof of Conjecture

Conclusion

A Question Further Work

WIKIPEDIA The Free Encyclopedia

- Main page Contents Featured content Current events
- Random article Donate to Wikipedia
- Interaction Help About Wikipedia Community portal Recent changes
 - Contact Wikipedia
- Toolbox
- Print/export

From Wikipedia, the free encyclopedia (Redirected from Triangle arbitrage)

Triangular arbitrage (also referred to as cross currency arbitrage or threepoint arbitrage) is the act of exploiting an arbitrage opportunity resulting from a pricing discrepancy among three different currencies in the foreign exchange market.^{[11]2[2]} A triangular arbitrage strategy involves three trades, exchanging the

Cross exchange rate discrepancies

[edit]

Triangular arbitrage opportunities may only exist when a bank's quoted exchange rate is not equal to the market's implicit cross exchange rate. The following equation represents the calculation of an implicit cross exchange rate, the exchange rate one would expect in the market as implied from the ratio of two curreprise-ther than the base currency.^{[0][7]}

 $S_{a/8}$ is the implicit cross exchange rate for dollars in terms of currency a $S_{a/8}$ is the quoted market cross exchange rate for b in terms of currency a $S_{b/8}$ is the quoted market cross exchange rate for dollars in terms of currency b $S_{5/6}$ is merely the reciprocal exchange rate for currency b in dollar terms, in

Figure: Transform rules $r_{ij}^{\text{new}} = \max\{r_{ij}, r_{ik} \cdot r_{kj}\}$ are motivated by economic reasons.

and the second second

Example of a realistic triangular arbitrage scenario

Pokrovskii: Economics via Asynchronous Systems

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

Step 1: Additive Reformulation

Step 2: Linearization

Step 3: Dimensionality Reduction

Step 4: Matrix Representation

Step 5: Further Dimensionality Reduction

Step 6: Final Implications

Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

Figure: A visual representation of a realistic triangular arbitrage scenario, using sample bid and ask prices quoted by international banks

Economic support for Pokrovskii's Conjecture

Pokrovskii: Economics via Asynchronous Systems

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

- Step 1: Additive Reformulation
- Step 2: Linearization
- Step 3: Dimensionality Reduction
- Step 4: Matrix Representation
- Step 5: Further Dimensionality Reduction
- Step 6: Final Implications
- Step 7: Disproof of Conjecture

Conclusion

- A Question
- Further Work

Featured content

Current events Random article

- Donate to Wikipedia
- Interaction Help About Wikipedia Community porta Recent changes
 - Contact Wikipedi
 - Toolbox
- Print/export
- Languages
 العربية
 Českv

Article	Discussion	Read	Edit	View history	Search		(
Ar	bitrage						
From	Wikipedia, the	free ency	cloped	dia			
	For the upcom	ina film	see A	rbitrage (film)			
	apoon						
In eo of a	Not to be confu conomics and fi price difference	<i>used with</i> nance, a betwee	n Arbiti Irbitra In two	ration. ge (IPA: /ˈɑrbɨtro or more marke	1:3/) is the p ts: striking a	ractice of takin combination o	ng advantage of matching
In ec of a deal mark nega	Not to be confu conomics and fi price difference s that capitalize tet prices. Whe tive cash flow	nance, a betwee upon th n used b at any pr	n Arbiti arbitra en two e imba oy acad robabil	ration. ge (IPA: /'orbitro or more marke alance, the prof demics, an arb listic or tempor	a:3/) is the p ts: striking a it being the trage is a tra al state and	ractice of takin combination of difference betw ansaction that a positive cas	ng advantage of matching veen the involves no h flow in at
In ec of a deal mark nega	Not to be confu conomics and fi price difference s that capitalize tet prices. Whe tive cash flow	nance, a betwee upon th n used b at any pr	n Arbiti n two e imba ny acao robabil	ration. ge (IPA: /'orbitro or more marke alance, the prof demics, an arb listic or tempor	a:3/) is the p ts: striking a it being the o trage is a tr al state and	ractice of takin combination of difference betw ansaction that a positive cas	ng advantage of matching veen the involves no h flow in at
In eco of a deal mark nega	Not to be confu conomics and fi price differences is that capitalize tet prices. Whe titive cash flow	nance, a betwee upon th n used b at any pr	n Arbitra In two e imba in two in two robabil	ration. ge (IPA: l'arbitrr or more marke alance, the prof demics, an arb listic or tempor	a:3/) is the p ts: striking a it being the o trage is a tra- al state and	ractice of takii combination o difference betw ansaction that a positive cas	ng advantage of matching veen the involves no h flow in at [edi
In ec of a deal nega Pri Arbit	Not to be confu conomics and fi price difference s that capitalize tet prices. Whe titive cash flow	nance, a e betwee e upon th n used b at any pr gence	a Arbiti arbitra en two e imba y acado robabil	ration. ge (IPA: /'orbitro or more marke alance, the prof demics, an arb listic or tempor	a:3/) is the p ts: striking a it being the o trage is a tri al state and	ractice of takin combination of difference betu ansaction that a positive cas offi at a to converge.	ng advantage of matching veen the involves no h flow in at [edi As a result o
In eco of a deal mark nega Pri Arbit	Not to be confu conomics and fi price differences is that capitalize tet prices. Whe titive cash flow	used with nance, a betwee upon th n used b at any pr gence ffect of c ncy exch	n Arbiti arbitra en two e imba y acad robabil	ration. ge (IPA: /'orbitro or more marke alance, the prof demics, an arb listic or tempor g prices in diffe rates, the price	a:3/) is the p ts: striking a it being the o trage is a tri al state and rent markets of commod	ractice of takin combination of difference betwansaction that a positive cas offi at are to converge, tties, and the p	ng advantage of matching veen the involves no h flow in at [edi As a result o vrice of

Figure: Arbitrage has the effect of *causing prices to converge*

Additive Reformulation

Pokrovskii: Economics via Asynchronous Systems

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

- Step 1: Additive Reformulation
- Step 2: Linearization
- Step 3: Dimensionality Reduction
- Step 4: Matrix Representation
- Step 5: Further Dimensionality Reduction
- Step 6: Final Implications
- Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

We have the graph

and the set of multiplicative updating rules:

$$r_{ij}^{\text{new}} = \max\{r_{ij}, r_{ik} \cdot r_{kj}\}, \qquad r_{ji}^{\text{new}} = 1/r_{ij}^{\text{new}}.$$

To simplify Problem, let us set

 $a_{ij} := \log r_{ij} \quad \forall i, j.$

Additive Reformulation

Pokrovskii: Economics via Asynchronous Systems

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

- Step 1: Additive Reformulation
- Step 2: Linearization
- Step 3: Dimensionality Reduction
- Step 4: Matrix Representation
- Step 5: Further Dimensionality Reduction
- Step 6: Final Implications
- Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

We obtain the graph

$$a_{ij} = -a_{ji}$$

and the set of additive updating rules:

$$a_{ij}^{\text{new}} = \max\left\{a_{ij}, a_{ik} + a_{kj}\right\}, \qquad a_{ji}^{\text{new}} = -a_{ij}^{\text{new}}.$$

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

Step 1: Additive Reformulation

Step 2: Linearization

Step 3: Dimensionality Reduction

Step 4: Matrix Representation

Step 5: Further Dimensionality Reduction

Step 6: Final Implications

Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

'Linearization' of Problem

Each updating rule

$$a_{ij}^{\text{new}} = \max\{a_{ij}, a_{ik} + a_{kj}\}, \qquad a_{ji}^{\text{new}} = -a_{ij}^{\text{new}}.$$

means the following 'timing' operations:

- given indices *i* and *j* we first update a_{ij} to a_{ij}^{new} ;
- 2 then, knowing a_{ii}^{new} we update a_{ji} to a_{ii}^{new} ;
- **③** as a result, we obtain the updated pair $(a_{ii}^{\text{new}}, a_{ii}^{\text{new}})$.

Question

How will look updating rules if we start updating from the pair of indices (j, i) ?

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

Step 1: Additive Reformulation

Step 2: Linearization

Step 3: Dimensionality Reduction

Step 4: Matrix Representation

Step 5: Further Dimensionality Reduction

Step 6: Final Implications

Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

'Linearization' of Problem (cont.)

$$a_{ji}^{\text{new}} = \max\{a_{ji}, a_{jk} + a_{ki}\}$$

$$\downarrow$$

$$-a_{ij}^{\text{new}} = \max\{-a_{ij}, -a_{kj} - a_{ik}\}$$

$$\downarrow$$

$$-a_{ij}^{\text{new}} = -\min\{a_{ij}, a_{ik} + a_{kj}\}$$

$$\downarrow$$

$$a_{ij}^{\text{new}} = \min\{a_{ij}, a_{ik} + a_{kj}\}$$

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

Step 1: Additive Reformulation

Step 2: Linearization

Step 3: Dimensionality Reduction

Step 4: Matrix Representation

Step 5: Further Dimensionality Reduction

Step 6: Final Implications

Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

'Linearization' of Problem (cont.)

If we don't care which of the weights a_{ij} or a_{ji} is updated first, then we obtain that *there are valid both of the following updating rules:*

$$a_{ij}^{\text{new}} = \max\{a_{ij}, a_{ik} + a_{kj}\}, \quad a_{ji}^{\text{new}} = -a_{ij}^{\text{new}}.$$

 $a_{ij}^{\text{new}} = \min\{a_{ij}, a_{ik} + a_{kj}\}, \quad a_{ji}^{\text{new}} = -a_{ij}^{\text{new}}.$

Conclusion

or

max and **min** in the above updating rules are irrelevant and *may be discarded.*

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

Step 1: Additive Reformulation

Step 2: Linearization

Step 3: Dimensionality Reduction

Step 4: Matrix Representation

Step 5: Further Dimensionality Reduction

Step 6: Final Implications

Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

The rule of updating may be rewritten as follows:

Either a_{ij} is not changed during update or it is changed and then it is updated as follows:

$$a_{ij}^{\text{new}} = a_{ik} + a_{kj},$$

Wow! dating rules became **linear**

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

Step 1: Additive Reformulation

Step 2: Linearization

Step 3: Dimensionality Reduction

Step 4: Matrix Representation

Step 5: Further Dimensionality Reduction

Step 6: Final Implications

Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

'Linearization' of Problem (cont.)

The rule of updating may be rewritten as follows:

Either a_{ij} is not changed during update or it is changed and then it is updated as follows:

$$a_{ij}^{\text{new}} = a_{ik} + a_{kj},$$

Wow! Updating rules became **linear**!

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

Step 1: Additive Reformulation

Step 2: Linearization

Step 3: Dimensionality Reduction

Step 4: Matrix Representation

Step 5: Further Dimensionality Reduction

Step 6: Final Implications

Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

Dimensionality Reduction

0

Remark

Weights a_{ji} 'mimic' a_{ij} in the skew-symmetric way.

Then instead of the full set of weights $\{a_{ij}\}$ it suffices to consider the set of weights $\{a_{ij}\}$ with i < j.

As a result, the updating rules $a_{ij}^{\text{new}} = a_{ik} + a_{kj}$ take the following form:

$$_{ij}^{\text{new}} = \begin{cases} -a_{ki} + a_{kj} & \text{if } k < i < j, \\ a_{ik} + a_{kj} & \text{if } i < k < j, \\ a_{ik} - a_{jk} & \text{if } i < j < k. \end{cases}$$

It is convenient to represent these last relations in matrix form.

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

Step 1: Additive Reformulation

Step 2: Linearization

Step 3: Dimensionality Reduction

Step 4: Matrix Representation

Step 5: Further Dimensionality Reduction

Step 6: Final Implications

Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

Dimensionality Reduction

0

Remark

Weights a_{ji} 'mimic' a_{ij} in the skew-symmetric way.

Then instead of the full set of weights $\{a_{ij}\}$ it suffices to consider the set of weights $\{a_{ij}\}$ with i < j.

As a result, the updating rules $a_{ij}^{\text{new}} = a_{ik} + a_{kj}$ take the following form:

$$_{ij}^{\text{new}} = \begin{cases} -a_{ki} + a_{kj} & \text{if } k < i < j, \\ a_{ik} + a_{kj} & \text{if } i < k < j, \\ a_{ik} - a_{jk} & \text{if } i < j < k. \end{cases}$$

It is convenient to represent these last relations in matrix form.

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

Step 1: Additive Reformulation

Step 2: Linearization

Step 3: Dimensionality Reduction

Step 4: Matrix Representation

Step 5: Further Dimensionality Reduction

Step 6: Final Implications

Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

By introducing the column-vector

Matrix Representation

$$\overrightarrow{a} = \{a_{12}, a_{23}, a_{34}, a_{13}, a_{24}, a_{14}\}^T$$

the update rules take the 'matrix' form:

$$\vec{a}^{\text{new}} = A_{(ijk)} \vec{a}, \qquad i < j, \ k \neq i, j,$$

where twelve (6×6) -matrices $A_{(ijk)}$ are as follows:

$A_{(123)} = \left(\begin{array}{c} \\ \end{array} \right)$	$\begin{array}{ccc} 0 & -1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	0 0 1 0 0 0	1 0 0 1 0 0	0 0 0 0 1 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$,	$A_{(124)} =$	$ \left(\begin{array}{c} 0\\0\\0\\0\\0\\0\\0\end{array}\right) $	0 1 0 0 0 0	0 0 1 0 0 0	0 - 0 1 0 0	-1 0 0 0 1 0	$\begin{pmatrix} 1\\ 0\\ 0\\ 0\\ 0\\ 1 \end{pmatrix}$,
$A_{(231)} = \left(\begin{array}{c} \\ \end{array} \right)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 1 0 0 0	0 1 0 1 0 0	0 0 0 1 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$,	$A_{(234)} =$	$ \left(\begin{array}{c} 1\\0\\0\\0\\0\\0\\0\end{array}\right) $	0 0 0 0 0	0 -1 0 0 0	0 0 1 0 0	0 1 0 0 1 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$,

etc.

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

Step 1: Additive Reformulation

Step 2: Linearization

Step 3: Dimensionality Reduction

Step 4: Matrix Representation

Step 5: Further Dimensionality Reduction

Step 6: Final Implications

Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

Matrix Representation (cont.)

Now the problem of investigation of the *weights dynamics* may be posed in the following form:

Given an initial vector $\vec{a}(0) = \vec{a}_0$ and a sequence $\{\omega_n\}$ of triplets $\omega_n = (i_n j_n k_n)$ such that $i_n < j_n$, $k_n \neq i_n$, j_n , we need to study the dynamics of the sequence

$$\vec{a}(n+1) = A_{\omega_n} \vec{a}(n)$$

or, what is the same, behavior of the vectors

$$\vec{a}(n+1) = A_{\omega_n} A_{\omega_{n-1}} \cdots A_{\omega_0} \vec{a}_0$$

Conjecture (Matrix Reformulation)

For any sequence of triplets $\{\omega_n\}$, the sequence of matrix products $A_{\omega_n}A_{\omega_{n-1}}\cdots A_{\omega_0}$ is convergent.

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

Step 1: Additive Reformulation

Step 2: Linearization

Step 3: Dimensionality Reduction

Step 4: Matrix Representation

Step 5: Further Dimensionality Reduction

Step 6: Final Implications

Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

Matrix Representation (cont.)

Now the problem of investigation of the *weights dynamics* may be posed in the following form:

Given an initial vector $\vec{a}(0) = \vec{a}_0$ and a sequence $\{\omega_n\}$ of triplets $\omega_n = (i_n j_n k_n)$ such that $i_n < j_n$, $k_n \neq i_n$, j_n , we need to study the dynamics of the sequence

$$\vec{a}(n+1) = A_{\omega_n} \vec{a}(n)$$

or, what is the same, behavior of the vectors

$$\vec{a}(n+1) = A_{\omega_n} A_{\omega_{n-1}} \cdots A_{\omega_0} \vec{a}_0$$

Conjecture (Matrix Reformulation)

For any sequence of triplets $\{\omega_n\}$, the sequence of matrix products $A_{\omega_n}A_{\omega_{n-1}}\cdots A_{\omega_0}$ is convergent.

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

Step 1: Additive Reformulation Step 2: Linearization

Step 3: Dimensionality Reduction

Step 4: Matrix Representation

Step 5: Further Dimensionality Reduction

Step 6: Final Implications

Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

Further Dimensionality Reduction

Observation

All the matrices $\{A_{(ijk)}\}$ have a **common invariant subspace of fixed points** determined by the relations

$$\begin{array}{rcl} a_{13} &=& a_{12}+a_{23}, \\ a_{14} &=& a_{13}+a_{34}, \\ a_{24} &=& a_{23}+a_{34}. \end{array}$$

Corollary

There exists a change of variables Q such that each of the matrices $Q^{-1}A_{(ijk)}Q$ takes the block-triangle form:

$$B_{(ijk)} := Q^{-1} A_{(ijk)} Q = \left\| \begin{array}{cc} I & C_{(ijk)} \\ 0 & D_{(ijk)} \end{array} \right\|,$$

where $C_{(ijk)}$ and $D_{(ijk)}$ are (3×3) -matrices.

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

Step 1: Additive Reformulation Step 2: Linearization Step 3: Dimensionality Reduction Step 4: Matrix Representation

Step 5: Further Dimensionality Reduction

Step 6: Final Implications

Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

Final Implications

Observation

Each matrix product $B_{\omega_n}B_{\omega_{n-1}}\cdots B_{\omega_0}$ has the following form

$$B_{\omega_n}B_{\omega_{n-1}}\cdots B_{\omega_0} = \left\| \begin{array}{cc} I & * \\ 0 & D_{\omega_n}D_{\omega_{n-1}}\cdots D_{\omega_0} \end{array} \right\|$$

Corollary

The matrix product $B_{\omega_n}B_{\omega_{n-1}}\cdots B_{\omega_0}$ is convergent **only if** the matrix product $D_{\omega_n}D_{\omega_{n-1}}\cdots D_{\omega_0}$ is convergent.

We need to investigate the convergence of infinite products of (3×3) -matrices $\{D_{(ijk)}\}$.

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

Step 1: Additive Reformulation Step 2: Linearization Step 3: Dimensionality Reduction Step 4: Matrix Representation

Step 5: Further Dimensionality Reduction

Step 6: Final Implications

Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

Final Implications

Observation

Each matrix product $B_{\omega_n}B_{\omega_{n-1}}\cdots B_{\omega_0}$ has the following form

$$B_{\omega_n}B_{\omega_{n-1}}\cdots B_{\omega_0} = \left\| \begin{array}{cc} I & * \\ 0 & D_{\omega_n}D_{\omega_{n-1}}\cdots D_{\omega_0} \end{array} \right\|$$

Corollary

The matrix product $B_{\omega_n}B_{\omega_{n-1}}\cdots B_{\omega_0}$ is convergent **only if** the matrix product $D_{\omega_n}D_{\omega_{n-1}}\cdots D_{\omega_0}$ is convergent.

We need to investigate the convergence of infinite products of (3×3) -matrices $\{D_{(ijk)}\}$.

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

Step 1: Additive Reformulation Step 2: Linearization Step 3: Dimensionality Reduction Step 4: Matrix Representation Step 5: Further Dimensionality Reduction

Step 6: Final Implications

Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

Matrices $\{D_{(ijk)}\}$ are of the form:

$$D_{(123)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}, \quad D_{(124)} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad D_{(132)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
$$D_{(134)} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad D_{(142)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad D_{(143)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$
$$D_{(231)} = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}, \quad D_{(234)} = \begin{pmatrix} 1 - 1 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 1 \end{pmatrix}, \quad D_{(241)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix},$$
$$D_{(243)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad D_{(341)} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & -1 \\ 1 & 0 & 0 \end{pmatrix}, \quad D_{(342)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 1 \end{pmatrix},$$

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

Step 1: Additive Reformulation Step 2: Linearization

Step 3: Dimensionality Reduction

Step 4: Matrix Representation

Step 5: Further Dimensionality Reduction

Step 6: Final Implications

Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

Final Implications (cont.)

Observation

All the matrices $\{D_{(ijk)}\}$

- have a **common invariant symmetric body set P** (an elongated *cubeoctahedron*),
- transform the vertices of P either to other vertices of P or to the origin.

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

- Step 1: Additive Reformulation
- Step 2: Linearization
- Step 3: Dimensionality Reduction
- Step 4: Matrix Representation
- Step 5: Further Dimensionality Reduction
- Step 6: Final Implications
- Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

Disproof of Conjecture

Observation

Let $\{\omega_n\}$ be the 12-periodic sequence such that

$\omega_0 = (1, 4, 3),$	$\omega_1 = (3, 4, 1),$	$\omega_2 = (3, 4, 2),$	$\omega_3 = (1, 4, 2),$
$\omega_4 = (1, 2, 4),$	$\omega_5 = (2, 3, 1),$	$\omega_6 = (1, 3, 2),$	$\omega_6 = (2, 4, 3),$
$\omega_8 = (1, 3, 4),$	$\omega_9 = (2, 4, 1),$	$\omega_{10} = (1, 2, 3),$	$\omega_{11} = (2, 3, 4),$

then the sequence of matrix products

$$D_{\omega_n}D_{\omega_{n-1}}\cdots D_{\omega_0}, \qquad n=0,1,\ldots,$$

is 12-periodic while the sequence of matrix products

$$A_{\omega_n}A_{\omega_{n-1}}\cdots A_{\omega_0}, \qquad n=0,1,\ldots,$$

is divergent!

Conjecture of Pokrovskii is false!

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

- Step 1: Additive Reformulation
- Step 2: Linearization
- Step 3: Dimensionality Reduction
- Step 4: Matrix Representation
- Step 5: Further Dimensionality Reduction
- Step 6: Final Implications
- Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

Disproof of Conjecture

Observation

Let $\{\omega_n\}$ be the 12-periodic sequence such that

$\omega_0 = (1, 4, 3),$	$\omega_1 = (3, 4, 1),$	$\omega_2 = (3, 4, 2),$	$\omega_3 = (1, 4, 2),$
$\omega_4 = (1, 2, 4),$	$\omega_5 = (2, 3, 1),$	$\omega_6 = (1, 3, 2),$	$\omega_6 = (2, 4, 3),$
$\omega_8 = (1, 3, 4),$	$\omega_9 = (2, 4, 1),$	$\omega_{10} = (1, 2, 3),$	$\omega_{11} = (2, 3, 4),$

then the sequence of matrix products

$$D_{\omega_n}D_{\omega_{n-1}}\cdots D_{\omega_0}, \qquad n=0,1,\ldots,$$

is 12-periodic while the sequence of matrix products

$$A_{\omega_n}A_{\omega_{n-1}}\cdots A_{\omega_0}, \qquad n=0,1,\ldots,$$

is divergent!

Conjecture of Pokrovskii is false!

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

Step 1: Additive Reformulation Step 2: Linearization Step 3: Dimensionality Reduction Step 4: Matrix Representation

Step 5: Further Dimensionality Reduction

Step 6: Final Implications

Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

Observation 2

Let $\{\omega_n\}$ be the 16-periodic sequence such that

$\omega_0 = (1, 4, 2),$	$\omega_1 = (1, 2, 3),$	$\omega_2 = (3, 4, 1),$	$\omega_3 = (1, 4, 2),$
$\omega_4 = (1, 3, 4),$	$\omega_5 = (2, 4, 3),$	$\omega_6 = (2, 3, 1),$	$\omega_7 = (3, 4, 2),$
$\omega_8 = (2, 4, 1),$	$\omega_9 = (1, 3, 4),$	$\omega_{10} = (3, 4, 2),$	$\omega_{11} = (1, 4, 3),$
$\omega_{12} = (2, 3, 4),$	$\omega_{13} = (1, 3, 2),$	$\omega_{14} = (1, 2, 4),$	$\omega_{15} = (1, 4, 3),$

then both sequences of matrix products

$$D_{\omega_n}D_{\omega_{n-1}}\cdots D_{\omega_0}, \qquad n=0,1,\ldots,$$

and

$$A_{\omega_n}A_{\omega_{n-1}}\cdots A_{\omega_0}, \qquad n=0,1,\ldots,$$

are 16-periodic!

Question

Pokrovskii: Economics via Asynchronous Systems

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

- Step 1: Additive Reformulation
- Step 2: Linearization
- Step 3: Dimensionality Reduction
- Step 4: Matrix Representation
- Step 5: Further Dimensionality Reduction
- Step 6: Final Implications
- Step 7: Disproof of Conjecture

Conclusion

A Question Further Work Any trajectory $\{\vec{a}(n)\}$ belongs to a *tube* around the space of common fixed points of the matrices $A_{(ijk)}$.

Does this make any economic sense?

VICTOR KOZYAKIN

Introduction

Problem Formulation Economic Background

Problem Solving

Step 1: Additive Reformulation

Step 2: Linearization

Step 3: Dimensionality Reduction

Step 4: Matrix Representation

Step 5: Further Dimensionality Reduction

Step 6: Final Implications

Step 7: Disproof of Conjecture

Conclusion

A Question

Further Work

On returning to Cork in 2009, Alexei brought to this work Rod Cross, Brian O'Callaghan and Alexey Pokrovskiy...

Kozyakin V., A. Pokrovskii, and B. O'Callaghan,

Sequences of Arbitrages,

Further Work

ArXiv.org e-Print archive, 1004.0561, Apr. 2010, 18p.

Cross R., V. Kozyakin, B. O'Callaghan, A. Pokrovskii, and A. Pokrovskiy,

Periodic Sequences of Arbitrage: A Tale of Four Currencies,

University of Strathclyde Business School, Department of Economics in its series Working Papers, 2010, No. 10–19 (to be published in Metroeconomica).

Cross R., V. Kozyakin, D. Lang, B. O'Callaghan, A. Pokrovskii, and A. Pokrovskiy,

Arbitrage sequences and Leijonhufvud's corridor hypothesis,

Centre d'Economie de l'Universite Paris Nord, March 2011 (submitted to Cambridge Journal of Economics)