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Abstract. The close connection is established between the DCP theory and
the absolute stability theory of collections of matrices. The stability methods
are implemented to obtain some new results in DCP theory.

Introduction

The Dynamic Complementarity Problem (DCP) is a dynamic version of the
Linear Complementarity Problem (LCP), see [6]. The formulation of DCP
is due to Harrison and Reiman [8]. DCP arose as a unifying framework for
fluid and diffusion approximations of stochastic flow networks. Such networks
encompass open queueing networks, closed queueing networks, finite-buffer
networks, assembly networks, dynamic stochastic Leontief systems, and net-
works with heterogenous population (see [5, 14] for the bibliography).

One of the main mathematical problems in DCP theory is to derive neces-
sary and sufficient conditions for the uniqueness of a solution (such conditions
for the existense of solutions are quite well developed). To this end we should
implement here a new technique developed in recent years, namely, the so
called desynchronization theory, or more specifically, the theory of absolute
stability of the matrix collections (see [1, 2, 9]).

We derive some new results in DCP theory by means of this techniques
and also give some reasonable conjectures (still unproved) that there can be
no “well-formulated” necessary and sufficient conditions for the uniqueness
of the DCP solution.



In this paper we consider a DCP on the positive orthant in RN . This
is a convenient model case demonstrating the main features of the problem.
More general situations (polyhedrons, general convex sets, etc.) can be of-
ten reduced to this one. When this is not the case, we can, nevertheless,
sometimes prove the counterparts of the results introduced here.

1 Dynamic complementarity problem

Denote by RN a N -dimensional euclidean space with a scalar product 〈·, ·〉
and let RN

+ be the non-negative orthant of RN .
Denote by DN the space of N -dimensional functions on [0,∞) that are

right continuous on [0,∞) with finite left limits on (0,∞). We distinguish in
DN the following subsets:

DN
0 = {x ∈ DN : x(0) ≥ 0};

DN
+ = {x ∈ DN : x(t) ≥ 0 for all t ≥ 0};

DN
∧ = {x ∈ DN : x(0) = 0, x(t) is nondecreasing in t ≥ 0}.

For any x ∈ DN , we shall denote by x−(t) the left limit of the function x at
the point t.

Introduce a notion of continuous dynamic complementarity problem (DCP).

Definition 1.1. Let x = {x(t), t ≥ 0} be a function in DN . Assume that
x(0) ≥ 0. The DCP with matrix R is the following:

given x(t), find functions y(t) and z(t) such that

z = x+Ry,

z ∈ DN
+ (nonnegativity)

y ∈ DN
∧ (monotonicity)

〈z′, dy〉 = 0 (complementarity).(1)

Here z′ is the derivative of z in t and (1) is an abbreviation of

N∑
j=1

∫ ∞
0

zjdyj = 0,

where the summands are Lebesgue-Stieltjes integrals of components of z with
respect to components of y (Rieman-Stieltjes integral are not appropriate here
because y and z are allowed to have common points t > 0 of discontinuity).
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A square matrix R is called a S-matrix if there exists a vector η ≥ 0 such
that Rη > 0; R is completely-S if all its principle submatrices are S-matrices.
Finally, R is a P-matrix if all its principal minors are strictly positive.

Lemma 1.2 (see [7]). Matrix R is not a P-matrix if and only if there exists
a non-zero x ∈ RN such that (Rx)ixi ≤ 0, 1 ≤ i ≤ N .

Introduce next two fundumental results in DCP theory (see [14] for the
bibliography).

Theorem 1.3. The continuous DCP has a solution for all x ∈ DN
0 if and

only if the matrix R is completely-S.

Theorem 1.4. The continuous DCP has a unique solution for all piecewise-
constant x ∈ DN

0 if and only if R is a P-matrix.

Uniqueness of a solution of DCP fails to hold for some general x ∈ DN
0 ,

even with R being a P-matrix. For example, the DCP with the P-matrix

R =

(
1 −2
1 1

)
has multiple solutions [14].

An implicit characterization of the matrices R for which the DCP has a
unique solution, for all x ∈ DN

0 , is given by the following

Theorem 1.5 (see [14]). The continuous DCP has a unique solution for all
x ∈ DN

0 if and only if the system of differential inequalities

(2) (Ru)jduj ≤ 0, j = 1, . . . , N,

subject to

(3) u ∈ DN is locally of bounded variation with u(0) = 0,

has the unique solution u ≡ 0.

In full detail, (2) stands for

(4)

∫
B

(Ru)jduj ≤ 0, ∀B ∈ B, j = 1, . . . , N,

where the integrals are Lebesgue-Stieltjes integrals, and B is the Borel σ-field
in R1

+.

3



2 Absolute stability theory

We shall consider here the finite collections of N×N -matrices with real en-
tries. Our aim in the present section is to give an outline of a small part
of the so called desynchronization theory developed in recent years (see, for
example, [9]).

Definition 2.1. Let us call the collection {A1, . . . , Ak} of real N×N-matrices
absolutely stable if there exists a M > 0 such that

‖Ai1 . . . Aim‖ ≤M

for any m > 0 and 1 ≤ ij ≤ k, j = 1, . . . ,m. (here ‖ · ‖ is some matrix
norm).

We should also say in this case that the difference equation

(5) x(n+ 1) = A(n)x(n)

is absolutely stable for the class of matrices

A = {A1, A2, . . . , Ak}

The meaning of the above definition is the following. Suppose we deal
with a discrete-time dynamical system in RN , governed by the collection
of matrices A = {A1, A2, . . . , Ak} as in (5) and the order of appearance
of elements from A in (5) is undetermined. The absolute stability of this
collection means that the state of such a system is guaranteed to stay in
some bounded set whenever x(0) is contained in S(1) (the zero-centered ball
of radius 1).

In the theory of desynchronized systems some more restrictive cases are
considered. For instance, the sequence of matrices A(n) in (5) may be allowed
to be only quasi-periodic, etc.

Lemma 2.2. The absolute stability of the collection A = {A1, . . . , Ak} is
equivalent to the existence of a norm ‖ · ‖a in RN such that ‖Aix‖a ≤ ‖x‖a
for any x ∈ RN and 1 ≤ i ≤ k.

Proof. Given an arbitrary matrix norm ‖·‖ and an absolutely stable collection
A we may construct a “canonical” norm ‖ · ‖a as follows:

(6) ‖x‖a = sup
1≤m

sup
0≤i1,...,im≤k

‖Ai1 . . . Aimx‖,

where A0 = I. We shall assume further that the norm ‖ · ‖a is always of the
form (6) and call it an a-norm produced by the collection A.
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Closely related results can be found in [3, 4].
Next we shall need some technical definitions.

Definition 2.3. Let R = {rij} be a N×N-matrix with nonzero diagonal ele-
ments. Consider the N×N-matrix R̃ with entries r̃ij = rij/rii. We shall call
this matrix a row normalization of the matrix R. Introduce a K-normalization
of R as A = I − R̃, where I is the identity N×N-matrix.

Clearly, aii = 0 for each i = 1, . . . , N .

Definition 2.4. Let A = {aij} be a N×N-matrix. Consider the collection
of N matrices Ai of the following form:

Ai =


1 0 · 0 · 0
0 1 · 0 · 0
· · · · · ·
ai1 ai2 · aii · aiN
· · · · · ·
0 0 · 0 · 1

 .

We call this collection a row-decomposition of matrix A.

Definition 2.5. We shall call the collection A = {A1, . . . , AN} from above
definition a projection decomposition of matrix R if A is the K-normalization
of R.

Definition 2.6. A N×N-matrix R = {rij} is called K-stable if its diagonal
elements are strictly positive and its projection decomposition is absolutely
stable (see Definition 2.1).

The projection decomposition of matrix R is the collection of matrices
Ai of the oblique projection mappings onto the planes Li = {x : (Rx)i = 0}
along i-th coordinate vector ei. The interpretation of the K-stability of the
matrix R with strictly positive diagonal elements is the following. Consider
the system of N oblique projection operators Ai determined by R as was
specified above. We call a sequence of N -vectors xk, k = 0, 1, . . . , a path
of this system if xk+1 = Ai(k)x

k, 0 ≤ i(k) ≤ N for any k ≥ 0. Matrix R is
K-stable if and only if all the paths starting from the unit zero-centered ball
(‖x0‖ ≤ 1) are uniformly bounded.

Define finally an auxiliary norm in RN (we shall need it in the next
section).
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Definition 2.7. Let R be a K-stable matrix. Denote by ‖ · ‖R the a-norm
produced by the collection A = {A1, . . . , AN}, where A is the projection de-
composition of R.

3 Sufficient conditions for the uniqueness

The aim of this and the next sections is to establish the equivalence of the
uniqueness criterion (Theorem 1.5) to the new criterion formulated in terms
of the absolute stability of some collection of matrices.

Lemma 3.1. Consider a K-stable N×N-matrix R, a vector x ∈ RN and an
index i, 1 ≤ i ≤ N , such that (Rx)i 6= 0. Then for any y = x+βei such that
(Ry)i(Rx)i ≥ 0, the following inequality holds:

(‖y‖R − ‖x‖R)(Rx)iβ ≥ 0.

In other words, if the points x and y lie to one side of the plane Li = {x ∈
RN : (Rx)i = 0} and differ only in i-th coordinate, then that one of these
points has lesser norm ‖ · ‖R which lies closer to Li.

Proof. LetA = {A1, . . . , An} be the projection decomposition of R. Consider
first the point z = Aix, the oblique projection of x on Li along ei. By
definition, (Rz)i = 0 and, clearly, ‖z‖R ≤ ‖x‖R (this follows immediately
from the definition of ‖·‖R). Furthermore, z = Aiy, hence ‖z‖R ≤ ‖y‖R. The
convex function ‖·‖R considered on the line x+αei attains its minimum at the
point z. Since x and y lie to one side from z on this line, then ‖x−z‖ ≤ ‖y−z‖
implies ‖x‖R ≤ ‖y‖R and |x−z| ≥ |y−z| implies ‖x‖R ≥ ‖y‖R. If the values
(Rx)i and β are of the same sign, then ‖x− z‖ ≤ ‖y − z‖ which finishes the
proof.

Theorem 3.2. If R is a K-stable matrix without singular principal subma-
trices, then R is a P-matrix.

Proof. Suppose the contrary. Without loss of generality we can assume that
det(R1) < 0 for some submatrix

R1 = {rij|1≤i,j≤l}, l ≤ N.

Then matrix R has a real negative eigenvalue and a real eigenvector belonging
to it, i.e. there exist a y ∈ RN , y 6= 0, yi = 0 for i = l + 1, . . . , N , and a

6



α > 0 such that R1y = −αy. Denote by J the set of all indices i such that
|yi| 6= 0. Due to Lemma 3.1 the norm ‖ · ‖R does not increase along any
direction yiei, i ∈ J in some neighbourhood of y. Hence there exists a β > 0
such that for any z from this neighbourhood and any i, 1 ≤ i ≤ N , the norm
‖ · ‖R of the vector z̃i = (z1, . . . , (1 + β)zi, . . . , zN) is less or equal to ‖z‖R.
Thus

‖y + βy‖R ≤ ‖y‖R,

and that implies ‖y‖R = 0.

Lemma 3.3. For any P-matrix R, there exists a δ > 0 such that, for any
x ∈ RN , ‖x‖ = 1, the inequalities

|xi| > δ, |(Rx)i| > δ, xi(Rx)i > 0

hold for some i, 1 ≤ i ≤ N .

Proof. Suppose the contrary. We can choose a sequence of vectors xj, 1 ≤
j <∞, ‖xj‖ = 1, such that

lim
j→∞
‖xj − x∗‖ = 0 for some x∗, ‖x∗‖ = 1.

and for any i the following condition is fulfilled: if xji (Rx
j)i > 0 then

|xji | ≤ αj or |Rxj|i ≤ αj for αj > 0, lim
j→∞

αj = 0.

Thus for x∗ the situation x∗i (Rx
∗)i > 0 is impossible, hence

x∗i (Rx
∗)i > 0, 1 ≤ i ≤ N and x∗ 6= 0.

Applying Lemma 1.2 we show that R is not a P-matrix. The contradiction
proves the lemma.

Remark 3.4. We can deduce from the above lemma the existense of a ε > 0
with the following property: for any x ∈ RN , ‖x‖ = 1, an index i can be
chosen such that |xi| > ε, xi(Rx)i > 0 and for any y under restriction
‖x− y‖ ≤ ε, the inequality

yi(Ry)i ≥ 0

holds.
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Definition 3.5. Call an ordered pair (x, y) of vectors M-admissible if

(Rx)i(yi − xi) ≥ 0, 1 ≤ i ≤ N,

and K-admissible if y differs from x at most in one coordinate and

(Ry)i(yi − xi) ≥ 0 and rii(Rx)i(yi − xi) ≥ 0

for 1 ≤ i ≤ N .

Remark 3.6. The interpretation of M-admissibility is the following. Con-
sider a solution u(t) of (2), (3) in the statement of Theorem 1.5. If, say, the
function u jumps at moment t, then the pair (u(t), u−(t)) is M-admissible.
Also if u has a derivative u′(t) at the point t then the pair (u(t), u(t)−αu′(t))
is also M-admissible for any α > 0. We shall use this interpretation in the
proof of Theorem 3.10.

Lemma 3.7. For any K-admissible pair (x, y) the inequality

‖x‖R ≤ ‖y‖R

holds.

This statement follows directly from Lemma 3.1.

Lemma 3.8. Let R be a K-stable P-matrix. Then we can choose a α > 0
such that for any M-admissible pair (x, y) there exists a z ∈ RN such that
the pair (x, z) is M-admissible, the pair (z, y) is K-admissible and

(7) ‖x− z‖ ≤ (1− α)‖x− y‖.

Proof. Due to Remark 3.4 there exist a ε = ε(R) > 0 and an index i such
that

|yi − xi| > ε/‖y − x‖

and for any p satisfying ‖p− (x− y)‖ ≤ ε/‖y−x‖ the inequality zi(Az)i ≥ 0
also holds. Due to the M -admissibility of (x, y) we get (Rx)i ≥ 0. Suppose
without loss of generality that both yi − xi and R(y − x)i are positive. We
can now put z = y − εei/‖y − x‖ and the lemma is proved.

Lemma 3.9. If matrix R is an absolutely stable P-matrix and the pair (x, y)
is M-admissible, then ‖x‖R ≤ ‖y‖R.
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Proof. We can easily prove this lemma by infinitely repeating the process of
vector z choice from Lemma 3.8 and taking it as y on the next step. At each
step of this process the distance ‖y−x‖ is multiplied by the coefficient which
does not exceed (1 − α) < 1 and the value ‖y‖R does not increase. Passing
to the limit we get the required inequality.

Theorem 3.10. Let R be a K-stable P-matrix. Then the norm ‖ · ‖R does
not increase along any path u(t) which satisfy conditions (2) and (3).

Proof. For any discontinuity point t∗ of u(t) we can build a linear ”bridge”
between left and right limits u−(t∗) and u(t∗) of u(t) at this point, along
which the norm ‖ · ‖R does not increase due to Lemma 3.9 and Remark 3.6;
thus we may suppose u(t) to be continuous. Moreover, it may be supposed
absolutely continuous because we can use an isometric parametrization

τ(t) = var(u(·); 0, t)

and consider τ as a new time (u as a function of τ is even Lipschitz continuous
with constant 1). Hence ‖u(t)‖R is also absolutely continuous function. Its
derivative exists a.e. and equals to minus directional derivative of ‖ ·‖R along
the vector −u′(t) and this one is nonpositive also due to Lemma 3.9 and the
same remark.

Theorem 3.11. The K-stability of the matrix R without singular principal
submatrices is sufficient for the uniqueness of a continuous DCP solution.

This theorem easily follows from Theorems 3.2 and 3.10. In the next
section the reverse statement is proved.

4 Necessary conditions for the uniqueness

Definition 4.1. Matrix R is called irreducible if it cannot be presented as
a block-triangular matrix by some replacement of its rows and corresponding
columns.

The irreducibility of matrix R is equivalent to the nonexistence of non-
trivial invariant subspace for this matrix which is simultaneously a linear hull
of some subset of basis vectors ei, i = 1, 2, ..., N .
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Theorem 4.2 (reduction principle). Let R be a reducible matrix, i.e. it can
be presented as

(8) R =

(
B C
0 D

)
by some replacement of rows and corresponding columns. Then DCP with
matrix R has a unique solution if and only if DCP’s with matrices B and D
are uniquely solvable.

Proof. Due to Theorem 1.5 the DCP has multiple solutions if and only if a
nonzero function x(t) ∈ RN(t ≥ 0, x(0) = 0) of bounded variation can be
found such that

(9) (Rx(t))i (dx(t))i ≤ 0 (i = 1, 2, . . . , N);

Let us show first that the uniqueness of DCP solution with matrices B
and D implies the uniqueness of DCP solution with matrix R. We must
demonstrate that if the DCP with R has multiple solutions, then at least
one of the DCP’s with matrices B or D also has multiple solutions. Let
the DCP for matrix R have multiple solutions. Then a nonzero function
x(t) of bounded variation can be found such that (9) holds. Denote by K
the order of matrix B (then the order of D is L = N − K); by definition,
0 < K, L < N . Next denote by y(t) a vector-function with values in RK

such that its coordinates coincide with the first K coordinates of the function
x(t). Let also z(t) be the RL-valued function with the same coordinates as
the last L coordinates of the function x(t). The functions y(t) and z(t) are
uniquely determined for t ≥ 0 and are of bounded variation. Furthermore,
the relations

(z(t))i = (x(t))i+K , (dz(t))i = (dx(t))i+K , (Dz(t))i = (Rx(t))i+K

hold for 1 ≤ i ≤ L and hence relations (9) with matrix D hold for z(t). Due
to (9) the DCP for matrix D has multiple solutions provided z(t) is nonzero.
Hence we must only consider the case z(t) = 0 for all t ≥ 0. In this case the
function y(t) is not identically zero and satisfies the following conditions:

(y(t))i = (x(t))i+K , (dy(t))i = (dx(t))i+K , (By(t))i = (Rx(t))i+K ,

for 1 ≤ i ≤ L. Thus for the function y(t) the relations (9) hold with the
matrix B instead of R and hence the DCP with matrix B has multiple
solutions.
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We have proved the first part of Theorem 4.2. Let us show next that the
uniqueness of the DCP solution with the matrix R implies the uniqueness of
the DCP solutions with the matrices B and D. Suppose the contrary. Then
there exist functions y(t) ∈ RK and z(t) ∈ RL of bounded variation such
that (9) holds with the matrices B and D correspondingly and at least one
of these functions is not identically zero for t ≥ 0. Denote

y∗(t) = {(y(t))1, (y(t))2, . . . , (y(t))K , 0, . . . , 0} ∈ RN ,

z∗(t) = {0, . . . , 0, (z(t))1, (z(t))2, . . . , (z(t))L} ∈ RN .

For the functions y∗(t) and z∗(t) of bounded variation the conditions (9) hold
with the matrix R and at least one of these functions is not identically zero.
Hence the DCP with matrix R has multiple solutions.

Definition 4.3. Let A = {A1, A2, . . . , Ak} be a finite collection of real-valued
N×N-matrices. We say that this collection is quasi-controllable if there is
no nontrivial proper subspace of RN invariant for each matrix from A. We
denote by Am (m = 1, 2, . . . ) the set of all finite products of matrices of the
set A ∪ {I} comprizing at most m multipliers. The set Am(x) is the set of
all vectors Lx, L ∈ Am.

Denote by co(W ), absco(W ) and span(W ), correspondingly, the convex
hull, the absolute convex hull, and the linear hull of the vector set W ⊆ RN .
Recall that the set W is absolutely convex if it is convex and together with
any point x it contains also the point −x. Absolute convex hull of W is the
intersection of all absolutely convex sets containing W . Let ‖ · ‖ be a norm
in RN and let S(t) be the zero-centered ball of the radius t in this norm.

Lemma 4.4. Let p ≥ N−1. The collection of matrices A is quasi-controllable
if and only if for any nonzero x ∈ RN the relation

span{Ap(x)} = RN

holds.

Proof. Let the collection A be quasi-controllable. Take an arbitrary nonzero
x ∈ RN and let L0 = span{x}, Lk = span{Ak(x)} (k ≥ 1). Then the
relations

(10) L0 ⊆ L1 ⊆ · · · ⊆ Lp ⊆ RN
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hold and hence

(11) 1 ≤ dimL0 ≤ dimL1 ≤ · · · ≤ dimLp ≤ N,

is also fullfilled. Furtheremore,

(12) AiLj ⊆ Lj+1 (Ai ∈ A, 0 ≤ j ≤ p− 1).

If dimLp = N , then Lp = span{Ap(x)} = RN . If, in contrary, dimLp <
N , then owing to (11) and the inequality p > N−1 one has dimLj = dimLj+1

for some j ∈ [0, p − 1]. Then by virtue of (10) we get Lj = Lj+1 and (12)
implies that Lj is a nontrivial subspace, invariant for any matrix from A.
The quasi-controllability of A implies now that this subspace is RN itself.
Hence

Lj = Lj+1 = · · · = Lp = span{A(x)} = RN .

Suppose next span{Ap(x)} = RN but the collection A is not quasi-
controllable. Then there exists a A-invariant nontrivial subspace L of RN .
In this case, for any vector x ∈ L, the inclusion span{A(x)} ⊆ L holds and
hence span{A(x)} 6= RN . The contradiction proves the quasi-controllability
of the collection A.

Definition 4.5. The value

qcm(A) = inf
x∈RN ,‖x‖=1

sup {t : S(t) ⊆ absco[AN−1(x)]}

is called a quasi-controllability measure of the collection of matrices A.

Lemma 4.6. The collection of matrices A is quasi-controllable if and only
if qcm(A) 6= 0.

Proof. Let qcm(A) 6= 0. Then for any nonzero vector x ∈ RN the inclusion

S(‖x‖ qcm(A)) ⊆ absco[AN−1(x)]

holds, and hence also the equality RN = span{AN−1(x)} is valid. Thus, due
to Lemma 4.4 the collection A is quasi-controllable.

Let now the collection A be quasi-controllable and qcm(A) = 0. Then
we can choose

xn ∈ RN (‖xn‖ = 1) and yn ∈ absco[AN−1(xn)]
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such that
yn → 0, tyn 6∈ absco[AN−1(xn)] for t > 1.

Without loss of generality we may consider the sequences {xn} and {yn/‖yn‖}
converging: xn → x, yn/‖yn‖ → z.

Due to Lemma 4.4 the linear hull of vector set {AN−1(x)} coincides with
RN . Therefore matrices L1, L2, . . . , LN ∈ AN−1 exist such that the vectors
L1x, . . . , LNx are linearly independent. Then for any n large enough the
vectors L1xn, . . . , LNxn are also linearly independent. Hence for any n there
exist numbers

α
(n)
1 , α

(n)
2 , . . . , α

(n)
N ,

N∑
i=1

|α(n)
i | = 1,

such that the vector

(13) zn =
N∑
i=1

α
(n)
i Lixn

is collinear to the vector yn, i.e. zn = βnyn (βn > 0). Taking into account
that

zn ∈ absco {L1xn, L2xn, . . . , LNxn} ⊆ absco{AN−1(xn)},
and tyn by definition is not contained in the set AN−1(xn) for t > 1, we find
that βn ≤ 1. Thus the condition yn → 0 implies zn → 0 as well. Pass-
ing to limit in (13) (we can consider the sequences {α(n)

1 }, {α
(n)
2 }, . . . , {α

(n)
N }

convergent to some limits α1, α2, . . . , αN , correspondingly) we get:

N∑
i=1

αiLix = 0,
N∑
i=1

|αi| = 1,

which is impossible due to the linear independence of the vectors L1x, L2,
. . . , LNx. The contradiction completes the proof of Lemma 4.6.

Theorem 4.7. Let a collection of N×N-matrices A = {A1, A2, . . . , Ak} be
quasi-controllable. If the difference equation

(14) x(n+ 1) = A(n)x(n)

is not absolutely stable for the class of matrices

A(λ) = {λA1, λA2, . . . , λAk} for λ = 1,

then it is not absolutely stable for this class also for any value of λ close
enough to 1.
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Proof. Suppose equation (14) is not absolutely stable for the class of matrices
A(1). Then there exist matrices A(n) ∈ A(1) (n = 0, 1, . . . ) and a solution
x(·) of (14) such that for some n0 > 0 the inequality

‖x(n0)‖ >
1

qcm[A(1)]
‖x(0)‖

holds.
Denote by R(λ) the set of all finite products of matrices from the class

A(λ). Then the vector x(n0) can be presented as x(n0) = Rx(0), where R
is some matrix from R(1). Hence a vector x ∈ RN , ‖x‖ = 1, can be found
such that the strict inequality

(15) ‖Rx‖ > 1

qcm[A(1)]

holds. Let matrix R be of the form

R = Ai1Ai2 . . . Aiq .

As follows from the definition of quasi-controllability measure, the vector
qcm[A(1)]· ‖Rx‖x lies in the absolute convex hull of the vectorsAN−1(1, Rx).
Thus numbers α1, α2, . . . , αQ and matrices Li ∈ AN−1(1), (i = 1, . . . , Q),
can be chosen such that

(16)

Q∑
i=1

|αi| ≤ 1,

(17)

Q∑
i=1

αiLiRx = qcm(A)‖Rx‖x.

Hence the matrix

(18) H =

Q∑
i=1

αiLiR

has an eigenvalue µ = qcm(A)‖Rx‖ which corresponds to the eigenvector x.
Due to (15) we get also

(19) µ > 1.
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Suppose matrix R is a product of q matrices from A(1) and each matrix
Li (i = 1, 2, ..., Q) is a product of qi matrices from A(1). Denote

R(λ) = λqR, Li(λ) = λqiLi (i = 1, 2, . . . , Q).

Then
R(λ) ∈ A(λ), Li(λ) ∈ A(λ) (i = 1, 2, . . . , Q).

Due to (18), (19) the matrix

H(λ) =

Q∑
i=1

αiLi(λ)R(λ)

has an eigenvalue

(20) µ(λ) > 1

for all λ close enough to 1. In this case for any r ≥ 1 the matrix Hr(λ) has
µr(λ) as its eigenvalue, hence

‖Hr(λ)‖ ≥ µr(λ).

At the other hand, matrix Hr(λ) is a sum of Qr terms of the form

αi1αi2 . . . αir [Li1(λ)R(λ)] . . . [Lir(λ)R(λ)].

Due to (16) we get ∑
|αi1αi2 . . . αir | ≤ 1,

therefore there exist indices i1, i2, . . . , ir such that

(21) ‖Wr(λ)‖ ≥ µr(λ),

where
Wr(λ) = [Li1(λ)R(λ)] . . . [Lr(λ)R(λ)] ∈ R(λ).

Hence due to (20) and (21) we get

sup
R∈R(λ)

‖R‖ =∞,

which contradicts the assumption of absolute stability of (14). Theorem 4.7
is thus proved.
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Consider now some N×N -matrix A = (aij) and denote by P1(A) its row
decomposition (see Definition 2.4).

Theorem 4.8. The collection of matrices P1(A) is quasi-controllable if and
only if the value 1 is not an eigenvalue of matrix A and A is irreducible.

Proof. Let 1 be an eigenvalue of matrix A and x∗ be a corresponding eigen-
vector. Then x∗ is also an eigenvector belonging to eigenvalue 1 for any
matrices A1, A2, . . . , AN . Hence in this case the collection P1(A) is not quasi-
controllable.

Suppose matrix A is not irreducible. In this case we can assume without
loss of generality that some subspace

Ep = span{e1, e2, . . . , ep}, where p < N,

is invariant for matrix A. Then the subspace Ep is invariant also for each
matix A1, A2, . . . , AN . Hence in this case the collection P1(A) is also not
quasi-controllable.

Prove next that the collection of matrices A = P1(A) is quasi-controllable
provided 1 is not an eigenvalue of matrix A and matrix A is irreducible. In
order to do that due to Lemma 4.4 we must only prove that for any nonzero
vector x ∈ RN the equality

(22) span{AN(x)} = RN

holds.
Choose an arbitrary vector x ∈ RN , ‖x‖ = 1, and consider the vectors

(A1 − I)x, (A2 − I)x, . . . , (AN − I)x ∈ span{A1(x)}.

Due to the equality

(A− I)x = (A1 − I)x+ (A2 − I)x+ · · ·+ (AN − I)x

and the fact that 1 is not an eigenvalue of matrix A, at least one of the
vectors (A1− I)x, (A2− I)x, . . . , (AN − I)x is nonzero. Without loss we can
suppose that (A1 − I)x 6= 0. Nevertheless, due to the equality

(23) (Ai − I)x = 〈ãi, x〉ei, (i = 1, 2, . . . , N),

where vectors ãi are of the form

ãi = {ai1, . . . , aii − 1, . . . , aiN} (i = 1, 2, . . . , N),
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we get 〈ã1, x〉e1 6= 0, 〈ã1, x〉e1 ∈ span{A1(x)}. Hence

(24) e1 ∈ span{A1(x)}.

Due to the irreducibility of matrix A the subspace span{e1} is not in-
variant for A. Hence at least one coordinate of the vector Ae1 with index
not equal to 1 is nonzero; without loss of generality we can assume its sec-
ond coordinate to be nonzero. The second coordinate of the vector Ae1 is
the same as the second coordinate of the vector A2e1, and thus also of the
vector (A2 − I)e1. Hence (A2 − I)e1 6= 0 and due to (24) the inclusion
(A2 − I)e1 ∈ span{A2(x)} holds. Therefore from (23) it follows that

e2 ∈ span{A2(x)}.

By a similar argument we can deduce from the irreducibility of matrix A
the validity of inclusions

ei ∈ span{Ai(x)} (i = 1, 2, . . . , N)

after proper renumeration of the basis vectors e1, e2, . . . , eN . Hence the equal-
ity (22) and also the statement of Theorem 4.8 are completely proved.

Theorem 4.9. If equation (14) is not absolutely stable, then it has a nonzero
solution x(n) defined for all integer n and bounded for n < 0.

Proof. To prove Theorem 4.9 we need the following fact (Theorem 1 in [10]).
If (14) is not absolutely stable then we can choose a sequence of matrices
A(n) ∈ A, a solution x(n) of (14) and a sequence of integer ni → ∞ such
that

‖x(ni)‖ → ∞,

(25) ‖x(n)‖ ≤ ‖x(ni)‖ for (0 ≤ n ≤ ni).

Denote

A(i, n) = A(n+ ni), x(i, n) = x(n+ ni)/‖x(ni)‖.

Then for any i = 1, 2, . . . the sequences of matrices A(i, n) and vectors x(i, n)
are defined for n ≥ −ni and due to (14), for these values of n, the equality

(26) x(i, n+ 1) = A(i, n)x(i, n)
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holds and the following relations are valid:

(27) A(i, n) ∈ A,

(28) ‖x(i, n)‖ ≤ ‖x(i, 0)‖ = 1 (i = 1, 2, . . . ; n ≥ −ni)

(see (25)). The finiteness of the set A and relations (27), (28) together imply
that for any n ≤ 0 the sequences of matrices A(i, n) and of vectors x(i, n)
without loss of generality may be considered convergent in i:

A(i, n)→ B(n) ∈ A, x(i, n)→ y(n) when i→∞.

Passing to limit in (26) we find that the function y(n) is defined for any
n ≤ 0, that for this function the relation

y(n+ 1) = B(n)y(n), B(n) ∈ A

holds and that due to (28) the relations

‖y(n)‖ ≤ ‖y(0)‖ = 1 (n ≤ 0)

are valid. The claim of Theorem 4.9 is proved.

Theorem 4.10. Suppose a matrix A = (aij) is irreducible, 1 is not an eigen-
value of A and equation (14) is not absolutely stable for the class of matrices
P1(A). Then there exist a real number λ < 1, matrices A(n) ∈ P1(A) and a
nonzero solution of (14) such that the estimates

(29) ‖x(n)‖ ≤ λ−n (n ≤ 0)

hold.

Proof. The set of matrices A(λ) = {λA1, . . . , λAN} depends continuosly on
parameter λ. Hence due to Theorem 4.7 and 4.8 a number λ < 1 can be
chosen such that the equation (14) is not absolutely stable for the class
A(λ). Now Theorem 4.9 implies the existence of matrices A(n) ∈ P1(A) and
of a nonzero solution y(n) of the difference equation

y(n+ 1) = λA(n)y(n) (n ≤ 0),
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such that the following estimates hold:

(30) ‖y(n)‖ ≤ ‖y(0)‖ = 1 (n ≤ 0).

Let x(n) = λ−ny(n) (n ≤ 0). Then the function x(n) satisfies the equa-
tion

x(n+ 1) = A(n)x(n) (n ≤ 0)

and due to (30) estimate (29) holds true for it. Theorem 4.10 is proved.

Theorem 4.11. Let R = (rij) be a matrix with nonzero diagonal elements
and suppose matrix A is the K-normalization of R (see Definition 2.3). Sup-
pose the matrix A is irreducible and has not an eigenvalue 1. Let A be the
row decomposition of A. Suppose equation (14) is not absolutely stable for
the class of matrices A. Then the DCP with matrix R has multiple solutions.

Proof. Let x(n) be a function defined in the statement of Theorem 4.10.
Consider the function z(t) determined for t ≥ 0 by the relations

(31) z(t) =


x(0) for t ≥ 1;
x(n) for 1

n+1
≤ t < 1

n

0 for t ≤ 0;
(n = 1, 2, . . . );

Due to Theorem 4.10 the estimate (29) holds for x(n). Thus the function x(n)
is of bounded variation on the interval (−∞, 0] and hence also the function
z(t) is of bounded variation on any interval [0, α).

Let us calculate, for every t ≥ 0, the values

ρi(t) = (Rz(t))i(dz(t))i (i = 1, 2, . . . , N),

assuming that
dz(t) = z(t)− z−(t).

If t 6= 1/n + 1 (n = 0, 1, . . . ), then dz(t) = 0. Therefore at these values
of t all ρi(t) are equal to zero, and hence the condition (9) holds.

Let t = 1/n+ 1 for some n = 0, 1, . . . . Then due to (31) we get

dz(t) = x(n)− x(n− 1), Rz(t) = Rx(n)

We can also choose j (1 ≤ j ≤ N) such that x(n) = Ajx(n− 1). This means
that

(32) (dz(t))i = 0 for i 6= j.

19



If, in contrast, i = j, then, clearly,

(33) (Rz(t))i = (Rx(n))i = (RAjx(n− 1))j = 0.

Hence due to (32), (33) we get ρi(t) = 0 for i = 1, 2, . . . , N .
Thus for any t ≥ 0 the function z(t) of bounded variation satisfies the

condition (9), which implies due to Theorem 1.5 the existence of multiple
solutions of DCP with matrix R. Theorem 4.11 is proved.

5 Main results

In this section we formulate necessary and sufficient conditions for the unique
solvability of DCP in terms of absolute stability theory. We deduce also a
few simple results obtained by means of this criterion.

Theorem 5.1 (Main theorem). The DCP with matrix R has a unique solu-
tion if and only if the following conditions are fulfilled:

C1. All principal minors of matrix R are nonzero.
C2. Matrix R is K-stable (see Definition 2.6).

Proof. The sufficience of these conditions for the uniqueness of the DCP
solution is exactly Theorem 3.11.

In order to prove the reverse implication for irreducible matrices due to
Theorem 4.11 we need only demonstrate that 1 is not an eigenvalue of the
K-normalization of matrix R. This is equivalent (due to Definition 2.3) to the
nondegenerateness of matrix R and the latter, clearly, follows from C1. If, in
contrary, matrix R is reducible (say, (8) holds and matrix D is irreducible)
then due to Theorem 4.2 we must only prove the existence of multiple so-
lutions to the DCP with matrix D. As easily follows from definitions, the
K-stability of R implies the K-stability of D.

Let us employ Theorem 5.1 to prove a few simple results.

Theorem 5.2. The continuous DCP with matrix R has a unique solution
if and only if the continuous DCP with matrix R′ (transposed to R) has a
unique solution.

Proof. Suppose the DCP with matrix R has a unique solution. We must
prove that from the validity of conditions C1 and C2 with matrix R follows
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the validity of these conditions with matrix R′ (let us refer to the latter as
conditions C1′ and C2′).

Clearly, C1′ follows from C1. Let the matrix R be K-stable and non-
degenerate. It means that the collection of matrices A = {α1, . . . , AN} is
absolutely stable, where

Ai = I −Bi/rii, Bi = CiR

and Ci is a N×N -matrix with all zero elements except cii = 1. By definition,
the absolute stability of A is invariant with respect to any linear nondegener-
ate change of coordinates. In other words, if A is absolutely stable and P is
a nondegenerate matrix, then the collection A1 = {PA1P

−1, . . . , PANP
−1}

is also absolutely stable. Let us take for P the matrix R itself. Simple ar-
gument infers that RAiR

−1 = Ãi, where Ãi = I − RCii/rii. Note now that
absolute stability of the collection of matrices is equivalent to absolute stabil-
ity of the collection consisting of the transposed matrices (that follows from
‖A‖ = ‖A′‖). To finish the proof, note that the collection of matrices trans-
posed to the matrices Ãi is exactly the projection decomposition of matrix
R′.

Introduce finally three results easily deducible from the analogous results
of the desynchronization theory (see [12,13]).

Theorem 5.3. The set of all P-matrices R such that the DCP has multiple
solutions, is open.

Theorem 5.4. Let matrix A be the K-normalization of matrix R and A =
B+C, B being symmetric and C antisymmetric matrices. Suppose all eigen-
values of B lie in [−r, r], r < 1 and, for the spectral radius r1 of C, the
following inequality holds:

r1 < r[(1− r)/(1 + r)]1/2{ 1

[1− (1− r2)N ]1/2
− 1}.

Then the DCP with matrix R has a unique solution.

Theorem 5.5. If the DCP with matrix R has a unique solution then all
eigenvalues λ of the matrix A (the K-normalization of R) lie in the circle
|λ+ (N − 1)| ≤ N .
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6 Open problem of algebraic solvability

We have formulated necessary and sufficient conditions for the uniqueness of
the DCP in terms of two kinds of stability of a finite collection of matrices.
That may help to prove some new theorems but that does not help much
to answer the question of the unique solvability of the DCP with a given
matrix R. It would be nice to have some criterion which can be algebraically
verified, say, the finite system of polynomial equalities and inequalities. There
are strong reasons to believe that such criterions do not exist. To clarify it
we shall present here a recent result of the desynchronization theory [11].

Let u = {u1, . . . , uN} be a vector from RN . The finite sum

p(u) =
∑

pi1...iNu
i1
1 . . . u

iN
N

with real coefficients pi1...iN is called a polynomial in u. A set U ⊆ RN

is said to be SA-set if there exists a finite collection of polynomials p1(u),
. . . , pk(u), pk+1(u), . . . , pk+l(u) such that U coincides with the set of all ele-
ments u satisfying the following conditions:

p1(u) > 0, . . . , pk(u) > 0, pk+1(u) = · · · = pk+l(u) = 0.

The set U is called semialgebraic if it is a union of a finite number of SA-sets.
Consider now the finite sequences (A1, . . . , Am) of N×N -matrices as ele-

ments of Rm×N×N . Denote by S(m,N) the class of all elements from Rm×N×N

such that the corresponding collection of matrices A = {A1, . . . , Am} is ab-
solutely stable. We define also the class A(m,N) as a class of all absolutely
r-asymptotically stable collections.

Theorem 6.1 (see [1, 11]). Boths classes S(m,N) and A(m,N) are not
semialgebraic sets if m,N ≥ 2.

This theorem can not be applied directly to the case considered in the
present paper because we deal here only with the collections of matrices which
are projection decompositions of some matrices, namely, with the classes
S(N,N) ∩ P (N,N) and A(N,N) ∩ P (N,N), where P (N,N) is the class of
all projection decompositions of various n×N -matrices. The class P (N,N)
is surely semialgebraic but the intersection of a non-semialgebraic set with a
semialgebraic one may, certainly, be semialgebraic (consider, for example, the
second set to be consisting of one point). So the nonexistence of semialgebraic
criterions for the DCP uniqueness problem is only a hypothesis.
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