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Abstract. For a semigroup S(t) : X → X acting on a metric space (X, d), we
give a notion of global attractor based only on the minimality with respect to

the attraction property. Such an attractor is shown to be invariant whenever

S(t) is asymptotically closed. As a byproduct, we generalize earlier results on
the existence of global attractors in the classical sense.

1. Introduction. Let (X,d) be a metric space, not necessarily complete. A family
of maps S(t) : X → X depending on a parameter t ≥ 0 (conventionally called time)
is said to be a semigroup or dynamical system on X whenever

• S(0) = idX (the identity map in X);

• S(t+ τ) = S(t)S(τ) for all t, τ ≥ 0.

The semigroup turns out to be a useful tool in the study of (autonomous) differential
equations in normed spaces. Indeed, whenever a Cauchy problem is well-posed for
all positive times t and all initial data u0 taken at t = 0, the corresponding solutions
u(t) read

u(t) = S(t)u0,

where S(t) is uniquely determined by the equation.
A common feature of differential models arising from concrete evolutionary phe-

nomena is the presence of some dissipation mechanism. Mathematically, this trans-
lates into the existence of suitably small regions of the phase space which capture
all the trajectories at large times. In the standard terminology, these regions are
called attracting sets. Besides, it is often possible to locate the smallest attracting
set where, roughly speaking, the whole asymptotic dynamics is eventually confined:
this is the global attractor.

The theory of dynamical systems, although relatively recent, is nowadays consid-
ered a well-established branch of Mathematics, which opened unexplored horizons
shedding a new light on the comprehension of evolutionary systems, especially with
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regard to their asymptotic properties, both qualitative and quantitative. For a de-
tailed presentation, we address the reader to the classical textbooks [1, 3, 4, 8] and
the subsequent treatises [2, 5], but there are many more.

Developing some insights already present in [2, Chapter XI], the aim of this note
is revisiting the basic objects of the theory (such as absorbing and attracting sets,
global attractors) only in terms of their attraction properties, and without further
assumptions on S(t) other than being a semigroup. As we will see, this is enough
to give a sensible definition of global attractor. Hence, the “minimality” we refer
to in the title is twofold:

• minimality with respect to the hypotheses;
• minimality with respect to attraction, as the sole characterizing property of

the global attractor.

Remark. The minimality property has been shown to play a key role in the study
of nonautonomous dynamical systems, where the only way to construct the unique
global attractor is finding the smallest attracting set, since there exists no natural
notion of invariance under the action of a process (the generalization of the semi-
group to nonautonomous evolutions). This strategy has been devised by Haraux
in his pioneering works (see [4]), and further enhanced by Chepyzhov and Vishik,
with applications to several important nonautonomous equations of Mathematical
Physics (see [2]).

Only in a second moment we discuss the invariance of the attractor, which gen-
erally requires some kind of continuity of the semigroup. In particular, the global
attractor is shown to be invariant provided that S(t) is asymptotically closed, a
much weaker condition than strong continuity (see Definition 16). As a byproduct,
we improve the known results of existence of global attractors in the classical sense
(invariant by definition).

Notation. For every ε > 0, the ε-neighborhood of a set B ⊂ X is defined as

Oε(B) =
⋃
x∈B

{
y ∈ X : d(x, y) < ε

}
.

We denote the standard Hausdorff semidistance of two (nonempty) sets B,C ⊂ X
by

δ(B,C) = sup
x∈B

d(x,C) = sup
x∈B

inf
y∈C

d(x, y).

In a completely equivalent manner, we can write

δ(B,C) = inf
{
ε > 0 : B ⊂ Oε(C)

}
.

2. Dissipative semigroups. There are several possibilities to render the concept
of dissipation in mathematical terms. Here, in the spirit of the theory of dynamical
systems, we adopt a definition of global-geometric flavor, based on the notion of
absorbtion.

Definition 1. A set B ⊂ X is an absorbing set if for every bounded set C ⊂ X
there is an entering time τ = τ(C) such that

S(t)C ⊂ B, ∀t ≥ τ.

Definition 2. We agree to call S(t) a dissipative semigroup whenever there exists
a bounded absorbing set.
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When a system is characterized by the presence of a sufficiently strong dissipation
mechanism, the asymptotic dynamics is generally expected to undergo a substantial
loss of degrees of freedom, becoming in a sense much simpler. Unfortunately, since
we are mainly interested in subsets of infinite-dimensional normed spaces, bounded
sets (e.g. balls) can be to some respect huge objects: independently of their size,
they may reflect the structure of the whole space. Therefore, knowing that S(t) is
dissipative turns into little information on its longterm behavior. The hope is then
proving the existence of suitably small absorbing sets. A good notion of smallness
is the one of compactness. Indeed, compact sets are totally bounded and their
fractal measure can be finite. Moreover, compact subsets of (infinite-dimensional)
normed spaces are thin (nowhere dense), hence negligible in the sense of Baire. In
particular, they do not contain balls. At the same time, compactness is a purely
topological notion of smallness, and makes perfectly sense when no linear structure
is available.

For semigroups generated by differential equations, a natural strategy is looking
for absorbing sets which are also bounded (say, balls) in another space Y compactly
embedded into X. However, this translates into a regularizing effect on the trajec-
tories, namely, the solution u(t) of the equation becomes smoother than the initial
datum u(0) after some time t > 0. A quite concrete possibility when dealing with
parabolic equations, but completely hopeless for evolutions of hyperbolic type.

In conclusion, aiming to find reasonably good (e.g. compact) sets able to capture
and fully describe the asymptotic dynamics, we must be less demanding and rather
consider a weaker notion of absorbtion.

Definition 3. A set K ⊂ X is said to be attracting if every ε-neighborhood Oε(K)
is an absorbing set.

Remark. The attracting property can be equivalently stated in terms of Hausdorff
semidistance: K is an attracting set if the limit

lim
t→∞

δ(S(t)C,K) = 0

holds whenever C ⊂ X is bounded.

Loosely speaking, attracting sets are in a fact asymptotically absorbing sets. And
so is attraction, much more than absorbtion, the correct notion of confinement of the
longterm dynamics. Reason why attracting sets play a crucial role in the asymptotic
analysis of semigroups. Accordingly, it is convenient to lean on a different (and
actually stronger) concept of dissipation.

Definition 4. A semigroup S(t) is said to be ε-dissipative if there is a finite set
F = {x1, . . . , xN} such that Oε(F ) is absorbing. The semigroup is called totally
dissipative whenever is ε-dissipative for all ε > 0.

As a matter of fact, there is a less direct (albeit equivalent) characterization of a
totally dissipative semigroup, based on the Kuratowski measure of noncompactness

α(B) = inf
{
d : B has a finite cover of balls of X of diameter less than d

}
of a bounded set B ⊂ X (see [3]).

Definition 5. A semigroup S(t) fulfills the Kuratowski property if there is a bounded
absorbing set B for which

lim
t→∞

α(S(t)B) = 0.
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Indeed, we can state a straightforward proposition.

Proposition 6. S(t) is totally dissipative if and only if it fulfills the Kuratowski
property.

Remark. If S(t) is a (dissipative) semigroup on a Banach space X with a bounded
absorbing set B, a sufficient condition for S(t) to be totally dissipative is the fol-
lowing: for every fixed ε > 0 there exist a decomposition X = X1 ⊕ X2 with
dim(X1) <∞ and a time τ > 0 such that

sup
x∈B
‖S(t)x− PS(t)x‖ < ε, ∀t ≥ τ,

where P is the canonical projection of X onto X1. The result, although referred
to as “alternative” by some authors, is just an immediate consequence of either
Definition 4 or Definition 5.

3. The global attractor. Moving from the above discussion, we focus on the
family of sets

K =
{
K ⊂ X : K is compact and attracting

}
.

Definition 7. The semigroup S(t) is called asymptotically compact if K is nonempty.

Remark. It is apparent that an asymptotically compact semigroup is in particular
totally dissipative.

With the aim of providing a necessary and sufficient condition in order for a compact
set to be in K, let C be the collection of all possible sequences of the form

yn = S(tn)xn,

where xn is a bounded sequence in X and tn →∞. For any yn ∈ C we denote

L(yn) =
{
x ∈ X : yn → x up to a subsequence

}
,

and we define the set
A? =

⋃
yn∈C

L(yn).

Proposition 8. The following hold:

(i) A set K ⊂ X is attracting if and only if

d(yn,K)→ 0, ∀yn ∈ C.

(ii) A? is contained in any closed attracting set.

(iii) If S(t) is dissipative, then A? coincides with the ω-limit of any bounded ab-
sorbing set B, defined as 1

ω(B) =
⋂
t≥0

⋃
τ≥t

S(τ)B.

In which case, A? is closed.

Proof. Assertions (i) and (iii) are direct consequences of the definitions. In partic-
ular, (i) implies that each L(yn) belongs to the closure of any attracting K. If K is
also closed, this is exactly (ii).

Proposition 9. Let K ⊂ X be a compact set. Then K ∈ K if and only if

∅ 6= L(yn) ⊂ K, ∀yn ∈ C.

1All bounded absorbing sets share the same ω-limit.
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Proof. Let K ∈ K. Given yn ∈ C, assertions (i)-(ii) above imply

L(yn) ⊂ K and d(yn, ξn)→ 0,

for some ξn ∈ K. SinceK is compact, there is ξ ∈ K such that (up to a subsequence)

ξn → ξ ∈ K ⇒ yn → ξ ⇒ L(yn) 6= ∅.
Conversely, if K is not attracting, we deduce from (i) that

d(yn,K) > ε,

for some ε > 0 and yn ∈ C. Therefore, L(yn) ∩K = ∅.

This simple characterization of K leads quite naturally to a notion of attractor,
different from the classical one [1, 3, 4, 8], based only on the minimality with respect
to the attraction property (cf. [2]).

Definition 10. We call (global) attractor of S(t) the smallest set A ∈ K, namely,
the compact attracting set A contained in every compact attracting set.

The definition is clearly meaningless if K is empty. On the contrary, when K 6= ∅,
Proposition 9 tells that A? (closed and contained in every closed attracting set)
belongs to K. In summary, we proved

Theorem 11. The global attractor A exists if and only if S(t) is asymptotically
compact. In which case, A coincides with the set A? (hence is unique).

The main task is then showing the existence of sets K ∈ K. In complete metric
spaces, total dissipation turns out to be a sufficient condition as well.

Theorem 12. Let X be a complete metric space. Then S(t) is asymptotically
compact if and only if is totally dissipative.

Proof. We prove the nontrivial implication, i.e. totally dissipative implies asymptot-
ically compact. For every ε > 0, let Fε be a finite set such that Oε(Fε) is absorbing.
Define

K =
⋂
ε>0

Bε where Bε = Oε(Fε),

and select any yn ∈ C. For an arbitrarily fixed ε > 0, the sequence yn eventually falls
in Bε (which is obviously absorbing), whereas K ⊂ Bε by construction. Accord-
ingly, both K and {yn} are totally bounded, i.e. coverable by finitely many balls of
arbitrarily small radius. In complete metric spaces, this means precompactness. In
particular, K is compact (being closed), while L(yn) is nonempty and contained in
every (closed) set Bε, hence in their intersection K. By Proposition 9, we conclude
that K ∈ K.

After Proposition 6, the theorem can be equivalently stated in terms of Kura-
towski measure of noncompactness (see [3]). Summarizing, if X is a complete metric
space, the following statements imply each other:

• there exists the global attractor A;
• S(t) is asymptotically compact;
• S(t) is totally dissipative;
• S(t) fulfills the Kuratowski property.

Anyway, the key point is that nothing more than (enough) dissipation is invoked. In
other words, no continuity or continuity-like assumptions at all on S(t) are needed
for the existence of the global attractor.
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4. Invariance of the attractor. Having the attractor A of S(t), it is interesting
to see whether or not the following situations occur:

• A is positively invariant: S(t)A ⊂ A, ∀t ≥ 0;
• A is negatively invariant: S(t)A ⊃ A, ∀t ≥ 0;
• A is invariant: S(t)A = A, ∀t ≥ 0.

4.1. A sufficient condition. We preliminarily observe that negative invariance
implies invariance. In fact, a stronger result holds.

Proposition 13. If S(τ)A ⊃ A for some τ > 0, then A is invariant.

Proof. Let t ≥ 0 be arbitrarily fixed. For any integer n, we obtain by recursion

S(t)A ⊂ S(t+ τ)A ⊂ S(t+ 2τ)A ⊂ · · · ⊂ S(t+ nτ)A.

Consequently,

δ(S(t)A,A) ≤ δ(S(t+ nτ)A,A).

Since A is attracting and closed, letting n→∞ we deduce that

δ(S(t)A,A) = 0 ⇒ S(t)A ⊂ A.

Once A is shown to be positively invariant, the former inclusion for t = 0 entails

A ⊂ S(nτ)A ⊂ A ⇒ A = S(nτ)A.

Setting then tn = nτ − t > 0 (for n large enough), we end up with

A = S(nτ)A = S(t+ tn)A = S(t)S(tn)A ⊂ S(t)A ⊂ A,

proving the equality S(t)A = A.

4.2. The classical definition of attractor. In the literature, invariance is actu-
ally postulated: the global attractor of S(t) is by definition a compact set Acl ⊂ X
which is at the same time attracting and invariant. In particular, being invariant,
Acl belongs to any closed attracting set, and therefore is unique. More precisely,
whenever exists,

• Acl is the smallest closed attracting set;
• Acl is the largest invariant bounded set.

Assuming the strong continuity of S(t), that is,

S(t) ∈ C(X,X), ∀t ≥ 0,

the existence of Acl can be established by means of a classical criterion.

Theorem 14 (see [1, 3, 4, 8]). Any asymptotically compact strongly continuous
semigroup on a complete metric space X possesses the global attractor Acl.

In a Banach space setting, the strong continuity assumption has been recently
relaxed by requiring S(t) to be only weakly continuous, i.e. continuous from X into
Xw (see [9]). In more generality, Theorem 14 in metric spaces has also been proved
under the weaker assumption that S(t) be a closed map 2 for every t (see [6]).

2A map f : X → X is closed if f(ξ) = η whenever xn → ξ and f(xn) → η.
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4.3. Lack of invariance. Without additional hypotheses on S(t) (e.g. strong con-
tinuity), the attractor A may not fulfill any invariance, even if X is compact. To
see that, we define the semigroups U(t) and V (t) on the metric subspaces of the
complex plane C

U =
{
u(ϑ) = eiϑ, ϑ ∈ [0, 2π)

}
and V =

{
v(r) = 2+r

1+r eir, r ∈ [0,∞)
}
,

respectively, acting as (for t > 0)

U(t)u(ϑ) = u(2−t(ϑ− 2π) + 2π),

V (t)v(r) = v(r + t).

Example I. Choose X = U (complete metric space) and S(t) = U(t). Then
A = {u(0)} is the global (and exponential) attractor. Indeed, for t� 0,

δ(S(t)X,A) = d(S(t)u(0), u(0)) =
∣∣ei21−tπ − 1

∣∣ ≤ 21−tπ.

At the same time, A dramatically fails to be positively invariant, for

S(t)A ∩ S(τ)A = ∅, ∀t > τ ≥ 0.

Example II. Choose X = U ∪ V and

S(t)x =

{
U(t)x if x ∈ U,
V (t)x if x ∈ V.

Observe that U ∩ V = ∅ and V = X (in particular, X is compact). One can easily
prove that A exists and coincides with U. On the other hand,

S(t)A =
{
u(ϑ) : ϑ ∈ [2π(1− 2−t), 2π)

}
, ∀t > 0.

We deduce the strict inclusions

S(t)A ⊂ S(t)A = {u(0)} ∪ S(t)A ⊂ A, ∀t > 0.

Thus A is positively invariant but not invariant.

Remark. In both examples, the semigroup S(t) is continuous in time, that is,

t 7→ S(t)x ∈ C([0,∞), X), ∀x ∈ X.

5. Recovering Invariance. The invariance of the attractor (in the sense of Def-
inition 10) is attained whenever S(t) fulfills a suitable continuity-like assumption,
actually weaker than those considered in the literature.

5.1. Recursively closed maps. We begin with a definition, denoting as usual

f0 = idX and fk = f ◦ · · · ◦ f (k-times).

Definition 15. A map f : X → X is recursively closed if, whenever fk(xn) → ξk

occurs for every k ∈ N, we have the equalities f(ξk) = ξk+1.

Any closed map is evidently recursively closed, but not the other way around.
For instance, f : R→ R given by

f(x) = −xχ(−∞,0)(x) + χ{0}(x) +
1

x
χ(0,∞)(x)

is recursively closed but not closed: we cannot exhibit any (nontrivial) sequence
xn → 0 such that fk(xn) converges for every k ∈ N, whereas

xn ↑ 0 ⇒ f(xn) = |xn| → 0 6= f(0).
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Remark. In a metric space X, the three continuity-like notions encountered so far
can be reformulated in terms of the property

f(C) ⊂ f(C), C ⊂ X. (P)

It is indeed standard matter verifying the mutual implications:

• f is continuous ⇔ (P) holds whenever C is precompact;
• f is closed ⇔ (P) holds whenever fk(C) are precompact for k = 0, 1;
• f is recursively closed ⇔ (P) holds whenever fk(C) are precompact for all
k ∈ N.

In particular, the three notions coincide when X is a compact space.

5.2. Asymptotically closed semigroups. Dealing with semigroups, we can give
a more general definition.

Definition 16. A semigroup S(t) on X is said to be asymptotically closed if there
exists a sequence of times 0 = τ0 < τ1 < τ2 < τ3 . . . with the following prop-
erty: whenever the convergence S(τk)xn → ξk occurs for every k ∈ N we have the
equalities S(τk)ξ0 = ξk.

Remark. If for some fixed τ > 0 the map S(τ) is recursively closed, then S(t)
is an asymptotically closed semigroup. Simply observe that the sequence τk = kτ
complies with Definition 16.

We are now in a position to state our invariance criterion.

Theorem 17. Let S(t) have the attractor A. If S(t) is asymptotically closed, then
A is invariant (hence an attractor in the classical sense).

Proof. Let τk be any sequence complying with Definition 16. In light of Propo-
sition 13, it is enough showing the inclusion A ⊂ S(τ1)A. To this end, select an
arbitrary x ∈ A. Then, we learn from Theorem 11 that

yn → x for some yn = S(tn)xn ∈ C.

Define the family of sequences depending on k ∈ N (with n� 1 to ensure tn ≥ τ1)

ηkn = S(tn + τk − τ1)xn ∈ C.

By Proposition 9, for every k ∈ N there is ξk ∈ A such that ηkn → ξk up to a
subsequence. Applying a standard diagonalization method, we extract from each
ηkn a subsequence (that we keep calling ηkn) so to have

S(τk)η0
n = ηkn → ξk.

Since S(t) is asymptotically closed, we draw the equalities

S(τk)ξ0 = ξk.

At this point, we merely observe that η1
n is a subsequence of the original yn. Thus,

for k = 1,
x = ξ1 = S(τ1)ξ0 ∈ S(τ1)A,

yielding the desired inclusion.

One may wonder if in the hypotheses of Theorem 17 the restriction S(t) : A→ A
becomes continuous.

Proposition 18. Let S(t) be an asymptotically closed semigroup possessing the
attractor A. Then the map S(τ) is continuous on A whenever τ is a finite sum of
terms of the sequence τk.
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Proof. We can clearly assume τ = τk. Given x ∈ A, let xn ∈ A be any sequence
converging to x. Then, by the same argument of the previous proof, for every fixed
k ∈ N there is ξk ∈ A such that (up to a subsequence)

S(τk)xn → ξk ⇒ S(τk)ξ0 = ξk,

as S(t) is asymptotically closed. Since ξ0 = x, we deduce by compactness the
convergence of the whole sequence S(τk)xn to S(τk)x, establishing the continuity
of S(τk).

However, the result is generally false for t arbitrary.

Example. Let ψ : R → R be the periodic extension of the identity map on (0, 1].
Consider the semigroup S(t) on X = [0, 1] given by

S(t)x =

{
ψ(x+ t) if x > 0,

0 if x = 0.

It is readily seen that the global attractor A exists and coincides with the entire
space X. Moreover, S(k) = idX for every k ∈ N. In particular, the semigroup fits
Definition 16 with τk = k, and so is asymptotically closed. At the same time, for
any t 6∈ N and any strictly positive sequence xn → 0, we have

S(t)xn = ψ(xn + t)→ ψ(t) 6= 0 = S(t)0.

Hence S(t) fails to be continuous at x = 0.

6. An Application to PDE. Let Ω ⊂ R2 be a bounded domain with smooth
boundary ∂Ω, and consider the wave equation with nonlinear damping

utt + σ(u)ut −∆u+ ϕ(u) = 0,

u|∂Ω = 0,

u(0) = u0,

ut(0) = u1,

modeling a vibrating membrane in a stratified viscous medium. For simplicity, we
assume here the nonlinearity ϕ and the displacement-dependent damping coefficient
σ of the forms

ϕ(u) = u3 − u and σ(u) = 1 + u2.

As shown in [7], for every T > 0 and every initial data x = (u0, u1) in the weak
energy space

X = H1
0 (Ω)× L2(Ω),

there is a unique variational solution

u ∈ C([0, T ], H1
0 (Ω)) ∩ C1([0, T ], L2(Ω)).

Accordingly, the equation generates a semigroup S(t) : X → X. The same paper
shows the existence of a (compact) attracting set for S(t), which is bounded in the
more regular space

Y =
[
H2(Ω) ∩H1

0 (Ω)
]
×H1

0 (Ω) b X.

Hence, the semigroup is asymptotically compact, and by Theorem 11 we infer the
existence of the global attractor A (in the sense of Definition 10) bounded in Y .
Nonetheless, calling

W = L2(Ω)×H−1(Ω),
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we can only prove the following continuous dependence estimate with respect to the
initial data (see [7, Proposition 2.5]).

Proposition 19. Given any % ≥ 0 there is κ = κ(%) ≥ 0 such that

‖S(t)x1 − S(t)x2‖W ≤ κeκt‖x1 − x2‖X , ∀t > 0,

for all x1, x2 ∈ X of norm not exceeding %.

In other words, for every fixed t > 0, the semigroup fulfills the weaker continuity
property

S(t) ∈ C(X,W ),

not enough to apply the classical Theorem 14, yielding the invariant global attractor.
For any t > 0, it is however apparent that the simultaneous occurrences

xn
X→ ξ and S(t)xn

X→ η

imply the equality
S(t)ξ = η.

Indeed, by the continuity of S(t), we know that

xn
X→ ξ ⇒ S(t)xn

W→ S(t)ξ,

allowing us to identify the limit. Therefore, S(t) is a closed (hence recursively
closed) semigroup, and the invariance of A follows from Theorem 17.
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