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1. INTRODUCTION

Consider a meromorphic linear 2×2 system on the Riemann sphere C, i.e., a system of two linear
ordinary differential equations with singularities a0

1, . . . , a
0
n ∈ C and possibly ∞. By a conformal

mapping one can always arrange that all the singularities are in the complex plane only. This means
that one can reduce the system to the form

dy

dz
= A(z)y, A(z) =

n∑
i=1

ri+1∑
j=1

A0
ij

(z − a0
i )j

, (1)

where y(z) ∈ C2, A0
ij are 2×2 matrices and

∑n
i=1 A0

i1 = 0, to ensure that ∞ is not a singular point.
The non-negative integers r1, . . . , rn are called the Poincaré ranks of the singularities a0

1, . . . , a
0
n,

respectively. One can assume that r1, . . . , rm are positive and rm+1 = . . . = rn = 0 (that is, the
singular points a0

m+1, . . . , a
0
n are Fuchsian) for some 0 ≤ m ≤ n.

We consider the non-resonant case (the generic case). This means that the leading term A0
i,ri+1

of each non-Fuchsian singularity a0
i , i = 1, . . . ,m, has two distinct eigenvalues (thus, the singular

points a0
1, . . . , a

0
m are irregular).

System (1) can be thought of as a meromorphic connection ∇0 (more precisely, as an equation for
horizontal sections with respect to this connection) on a holomorphically trivial vector bundle E0

of rank 2 over C. As known (see [9, § 21]), in a neighbourhood of each (non-resonant) irregular
singularity a0

i the local connection form ω0 = A(z) dz of ∇0 is formally equivalent to the 1-form

ωΛ0
i

=
ri+1∑
j=1

Λ0
ij

(z − a0
i )j

dz,

where Λ0
i1, . . . ,Λ

0
i,ri+1 are diagonal matrices and the leading term Λ0

i,ri+1 is conjugate to A0
i,ri+1.

This means that there is an invertible formal matrix Taylor series F̂ (z) in z − a0
i such that the

transformation ỹ = F̂−1(z)y takes the 1-form ω0 to ωΛ0
i
:

ωΛ0
i

= F̂−1ω0F̂ − F̂−1(dF̂ ).
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SOME PROPERTIES OF MALGRANGE ISOMONODROMIC DEFORMATIONS 17

One should note that formally equivalent systems in a neighbourhood Oa0
i

of an irregular singu-
larity a0

i are not necessary holomorphically or meromorphically equivalent. System (1) has in Oa0
i

a formal fundamental matrix of the form

Ŷ (z) = F̂ (z)(z − a0
i )

Λ0
i1eQ(z), Q(z) = −

ri∑
j=1

Λ0
i,j+1

j
(z − a0

i )
−j . (2)

One can cover Oa0
i

by a set of sufficiently small sectors S1, . . . , SN with a vertex at a0
i such that

in each Sk there exists a unique fundamental matrix Yk(z) = Fk(z)(z − a0
i )

Λ0
i1eQ(z) of the system

with Fk(z) having F̂ (z) as an asymptotic series in Sk (see [9, § 21]). In every intersection Sk ∩Sk+1

the fundamental matrices Yk(z) and Yk+1(z) are connected by a non-singular constant matrix Ck:
Yk+1(z) = Yk(z)Ck, which is called a Stokes matrix. If a0

i is a non-resonant singularity, then two
formally equivalent systems are holomorphically equivalent in Oa0

i
if and only if they have the same

sets of Stokes matrices (see [9, § 21]).
Further we will focus on deformations of system (1) (of the pair (E0, ∇0)) that allow the local

formal equivalence class

ωΛi =
ri+1∑
j=2

Λij

(z − ai)j
dz +

Λ0
i1

z − ai
dz, i = 1, . . . ,m,

to vary in the sense that the diagonal matrices Λi2, . . . ,Λi,ri+1 vary in a neighbourhood of the
initial data Λ0

i2, . . . ,Λ
0
i,ri+1 with Λ0

i1 held fixed. Thus for the set Λi = {Λi2, . . . ,Λi,ri+1} of ri

diagonal matrices we denote by ∇Λi the meromorphic connection (on the holomorphically trivial
vector bundle of rank 2 over Oai) whose 1-form is ωΛi . To describe the required deformations in
more detail, let us begin with a deformation space.

For k ∈ N we denote by Zk the subset of the space C
k whose points have pairwise distinct

coordinates. Then Zn will be the space of pole locations and

Ci = C
2 × . . . × C

2︸ ︷︷ ︸
ri−1

×Z2, i = 1, . . . ,m,

will be the space of parameters determining a local formal equivalence class of 1-forms near the
singular point ai (any class is determined by ri − 1 diagonal matrices Λi2, . . . ,Λi,ri and a diagonal
matrix Λi,ri+1 whose eigenvalues are distinct). Define the deformation space D as the universal
cover of the Cartesian product Zn × C1 × . . . × Cm, that is,

D = Z̃n × C̃1 × . . . × C̃m.

On the set D one has the standard projections

a = (a1, . . . , an) : D → Zn, Λi = (Λi2, . . . ,Λi,ri+1) : D → Ci, i = 1, . . . ,m.

For every t ∈ D we denote by ai(t) the ith coordinate of the image of t under the first projection and
by Λi(t) the image of t under the second one. Denote then by t0 the base point of the deformation
space D corresponding to system (1), i.e., a(t0) = (a0

1, . . . , a
0
n) and Λi(t0) = (Λ0

i2, . . . ,Λ
0
i,ri+1).

Consider also the singular hypersurfaces

Xi =
{
(z, t) ∈ C ×D | z = ai(t)

}
⊂ C ×D, i = 1, . . . , n.

Now for i = 1, . . . ,m, consider the fibre bundle Mi → Ci whose fibre over each point Λi ∈ Ci is
the space of parameters determining a local holomorphic equivalence class of connections that are
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18 Yu.P. BIBILO, R.R. GONTSOV

all formally equivalent to the connection ∇Λi . Every point of this fibre (every local holomorphic
equivalence class of connections) is determined by a corresponding set of Stokes matrices. Let
σ0

i ∈ Mi denote the holomorphic equivalence class of the connection ∇0|O
a0

i

∼ ∇Λ0
i
, and let σi

denote the unique horizontal section of the fibre bundle Mi → Ci such that σi(Λ0
i ) = σ0

i .
Due to B. Malgrange [12, Theorem 3.1] (see also [14, Theorem 2.9]) the following statement

holds.
Theorem 1. There exists a unique1 isomonodromic deformation (E,∇) of the pair (E0,∇0),

that is, a rank 2 holomorphic vector bundle E over C×D and integrable meromorphic connection ∇
with simple type ri singularities along Xi, i = 1, . . . , n, satisfying the following properties :

• the restriction of (E,∇) to C × {t0} is isomorphic to (E0,∇0);
• for any t ∈ D the restriction of ∇ to C × {t} is formally equivalent to the local connec-

tion ∇Λi(t) near z = ai(t), i = 1, . . . ,m, and belongs to the local holomorphic equivalence class
σi(Λi(t)) ∈ Mi.

The requirement for ∇ to have simple type ri singularities along Xi means that near Xi the
local connection 1-form Ω of ∇ looks like

Ω =
Ai(z, t)

(z − ai(t))ri+1
d(z − ai(t)) +

∑
k

Ãik(z, t)
(z − ai(t))ri

dtk,

where the matrices Ai and Ãik are holomorphic and the eigenvalues of the matrix Ai(ai(t), t) are
distinct (i = 1, . . . ,m).

According to the Malgrange–Helminck–Palmer theorem (see [14, § 3] or [12, § 3]), either the set

Θ =
{
t ∈ D

∣∣ E|
C×{t} is non-trivial

}
is empty or Θ ⊂ D is an analytic subset of codimension 1. If the latter holds, there exists a
function τ holomorphic on the whole space D whose zero set coincides with Θ. The set Θ is
called the Malgrange Θ-divisor, and the function τ is called the τ -function of the isomonodromic
deformation.

Thus the Malgrange isomonodromic deformation of the pair (E0,∇0) determines an isomon-
odromic deformation

dy

dz
=

(
n∑

i=1

ri+1∑
j=1

Aij(t)
(z − ai(t))j

)
y, Aij(t0) = A0

ij , (3)

of system (1) for t ∈ D(t0), where D(t0) is a neighbourhood of the point t0 in the space D. The
matrix functions Aij(t), holomorphic in D(t0), can be extended meromorphically to the whole
space D and have Θ as a polar locus.

In the case of a Fuchsian system (m = 0)

dy

dz
=

(
n∑

i=1

A0
i

z − a0
i

)
y (4)

the best known isomonodromic deformations are the Schlesinger ones [16, 17]. Starting from the
initial conditions Ai(a0) = A0

i , a0 = (a0
1, . . . , a

0
n), the residue matrices Ai(a) vary according to the

Schlesinger equation

dAi(a) = −
n∑

j=1, j �=i

[Ai(a), Aj(a)]
ai − aj

d(ai − aj), i = 1, . . . , n,

1Under some additional assumption that will be discussed later on.
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SOME PROPERTIES OF MALGRANGE ISOMONODROMIC DEFORMATIONS 19

and they are extended as meromorphic matrix functions to the deformation space Z̃n from a neigh-
bourhood D(a0) of the initial point a0.

A.A. Bolibruch [2; 4, Theorem 16.2] obtained the following result concerning the pole orders of
the matrices Ai(a).

Theorem 2. Let the monodromy of the 2 × 2 system (4) be irreducible, and let a∗ ∈ Θ be a
point of the Θ-divisor such that the restriction E|

C×{a∗} is of the form

E|
C×{a∗}

∼= O(−1) ⊕O(1).

Then in a neighbourhood D(a∗) of a∗ the Θ-divisor is an analytic submanifold and the matrix
functions Ai(a) have poles of at most second order along D(a∗) ∩ Θ.

In other words, one asserts that the products τ2(a)Ai(a) are holomorphic matrix functions
in D(a∗). The proof of Theorem 2 (formulated in a more general setting) is also contained in [7].

Adapting Bolibruch’s ideas to the case of linear systems with irregular singularities, we propose a
local description of the Θ-divisor of the Malgrange isomonodromic deformation and a generalization
of Theorem 2 to the case when the initial system has at most two irregular singularities and their
Poincaré ranks are equal to 1 (Theorem 3).

2. HOLOMORPHIC VECTOR BUNDLES AND THE RIEMANN–HILBERT PROBLEM

The fact t∗ ∈ Θ means that the restriction E|
C×{t∗} of the holomorphic vector bundle E described

in Theorem 1 is not holomorphically trivial. This restriction belongs to the family F of holomorphic
vector bundles over the Riemann sphere endowed with meromorphic connections. The family F
occurs in the investigation of the corresponding Riemann–Hilbert problem, the question on existence
of a global meromorphic linear system with the singular points a∗1 = a1(t∗), . . . , a∗n = an(t∗) of
Poincaré ranks r1, . . . , rn, respectively, that

(i) has the same monodromy as the initial system and
(ii) is meromorphically equivalent to the local system

dy = ω∗
i y (5)

determined by the local holomorphic equivalence class σi(Λi(t∗)) near each irregular singular
point a∗i .

The Riemann–Hilbert problem under consideration has a positive answer (it is sufficient that
one of the irregular singularities be non-resonant for the positive solution in the two-dimensional
case, see [5]). This means that there is a holomorphically trivial holomorphic vector bundle in the
family F . Thus we are coming to the point where it is natural to recall briefly the construction of
the family F (see details in [5]).

By the monodromy representation (generated by the monodromy matrices G1, . . . , Gn) of the
initial system (1) one constructs a rank 2 holomorphic vector bundle F̃ over the punctured Riemann
sphere C \ {a∗1, . . . , a∗n} with a holomorphic connection ∇̃ having the prescribed monodromy. This
bundle is defined by a set {Uα} of sufficiently small discs covering C\{a∗1, . . . , a∗n} and a set {gαβ} of
constant matrices defining a gluing cocycle which corresponds to this covering. The connection ∇̃
is defined by a set {ωα} of matrix differential 1-forms ωα ≡ 0. So in the intersections Uα ∩ Uβ �= ∅

the gluing conditions

ωα = (dgαβ)g−1
αβ + gαβωβg−1

αβ

hold.
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20 Yu.P. BIBILO, R.R. GONTSOV

Further one extends the pair (F̃ , ∇̃) to the whole Riemann sphere. In neighbourhoods Oa∗
i

of
the irregular singular points a∗i , i = 1, . . . ,m, the extension of ∇̃ is determined by the corresponding
local matrix differential 1-forms ω∗

i of the coefficients of systems (5), while in neighbourhoods Oa∗
i

of the Fuchsian singular points a∗i , i = m+1, . . . , n, the extension of ∇̃ is determined by the matrix
differential 1-forms Ei dz/(z − a∗i ). Here Ei = (2π

√
−1)−1 ln Gi is a normalized logarithm of the

monodromy matrix Gi and its branch is chosen so that the eigenvalues ρk
i of Ei satisfy the condition

0 ≤ Re ρk
i < 1. (6)

This is the so-called canonical extension (F̃ 0, ∇̃0) of the pair (F̃ , ∇̃) in the sense of Malgrange [13]
(and in the sense of Deligne [8] for the Fuchsian case).

Finally, consider a formal fundamental matrix (see (2))

Ŷi(z) = F̂i(z)(z − a∗i )
Λ0

i1eQi(z), Qi(z) = −
ri∑

j=1

Λ∗
i,j+1

j
(z − a∗i )

−j , Λ∗
i,j+1 = Λi,j+1(t∗),

of each local irregular system (5), i = 1, . . . ,m, and write it in the form

Ŷi(z) = F̂i(z)(z − a∗i )
D0

i (z − a∗i )
ÊieQi(z), D0

i = [Re Λ0
i1]. (7)

The diagonal elements of the integer matrix D0
i are referred to as the formal valuations of the

system. As follows, the diagonal elements ρk
i of the matrix Êi satisfy condition (6). By an analogue of

Sauvage’s lemma (see [15, Lemma 11.2]) for formal matrix series, for any diagonal integer matrix Di

there exists a matrix Γ′
i(z) meromorphically invertible in Oa∗

i
such that

Γ′
i(z)F̂i(z)(z − a∗i )

D0
i −Di = (z − a∗i )

D̃iĤi(z), (8)

where D̃i is a diagonal integer matrix and Ĥi(z) is an invertible formal (matrix) Taylor series
in z − a∗i .

Now one constructs the family F of extensions of the pair (F̃ , ∇̃) by replacing the 1-form ω∗
i in

the construction of (F̃ 0, ∇̃0) with the 1-form

ωDi = (dΓi)Γ−1
i + Γiω

∗
i Γ

−1
i , Γi(z) = (z − a∗i )

−D̃iΓ′
i(z), i = 1, . . . ,m,

and the 1-form Ei dz/(z − a∗i ) with the 1-form

ωDi = (dΓi)Γ−1
i + Γi

Ei dz

z − a∗i
Γ−1

i , Γi(z) = (z − a∗i )
DiCi, i = m + 1, . . . , n,

where Di is a diagonal integer matrix whose diagonal elements (for i = m + 1, . . . , n) form a non-
increasing sequence, and Ci is a non-singular matrix reducing the matrix Ei to an upper triangular
form E′

i = CiEi(Ci)−1. As follows from (7), (8), a formal fundamental matrix of the local irregular
system dy = ωDiy, i = 1, . . . ,m, is of the form

Ŷ ′
i (z) = Γi(z)Ŷi(z) = Ĥi(z)(z − a∗i )

Di(z − a∗i )
ÊieQi(z). (9)

Its singular point z = a∗i is of Poincaré rank ri again. At the same time, the local system dy = ωDiy,
i = m + 1, . . . , n, is Fuchsian:

ωDi =
(

Di

z − a∗i
+ (z − a∗i )

Di
E′

i

z − a∗i
(z − a∗i )

−Di

)
dz.
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SOME PROPERTIES OF MALGRANGE ISOMONODROMIC DEFORMATIONS 21

Let us call the matrices D1, . . . ,Dn and Cm+1, . . . , Cn involved in the construction above
the admissible matrices. Thus the family F consists of the pairs (FD,C ,∇D,C) obtained by us-
ing all sets (D,C) = {D1, . . . ,Dn, Cm+1, . . . , Cn} of admissible matrices. Though the matrices
Γ′

1(z), . . . ,Γ′
m(z) (see (8)) are also involved in the construction of the pair (FD,C ,∇D,C), one

should note that in our (non-resonant) case the bundle FD,C does not depend on them (for a fixed
set (D,C)).

Now the restriction (E,∇)|
C×{t∗} can be thought of as an element of the family F :

(E,∇)|
C×{t∗}

∼=
(
FD0,C0

,∇D0,C0)
, D0 = {D0

1 , . . . ,D
0
n}, C0 = {C0

m+1, . . . , C
0
n},

where the matrices D0
1 , . . . ,D

0
m are defined in (7), and the sets of the (admissible) matrices

D0
m+1, . . . ,D

0
n and C0

m+1, . . . , C
0
n come from the Levelt decompositions [11] of a fundamental matrix

Y (z) of the initial system (1) at the corresponding Fuchsian singularities a0
m+1, . . . , a

0
n:

Y (z) = Ui(z)(z − a0
i )

D0
i C0

i (z − a0
i )

Ei , i = m + 1, . . . , n,

where the matrix Ui(z) is holomorphically invertible at the point a0
i . The matrices D0

m+1, . . . ,D
0
n

are preserved along the deformation (see [3]). One usually requires the matrices C0
m+1, . . . , C

0
n to be

also preserved, to ensure that the Malgrange deformation is a unique isomonodromic deformation
of the pair (E0,∇0) (see Theorem 1).

3. THEOREM ON Θ-DIVISOR

Now let us consider a linear meromorphic 2 × 2 system with n singular points such that m ≤ 2
of them are irregular and their Poincaré ranks are equal to 1, i.e., a system of the form (1) with
r1,2 ≤ 1 and r3 = . . . = rn = 0:

dy

dz
=

(
A0

12

(z − a0
1)2

+
A0

22

(z − a0
2)2

+
n∑

i=1

A0
i1

z − a0
i

)
y. (10)

The Θ-divisor and the coefficient matrices Aij(t) of the Malgrange isomonodromic deformation (3)
of such a system possess the following properties.

Theorem 3. Let the monodromy representation of the 2 × 2 system (10) be irreducible, and
let t∗ ∈ Θ be a point of the Θ-divisor such that

E|
C×{t∗}

∼= O(−1) ⊕O(1).

Then in a neighbourhood D(t∗) of t∗ the Θ-divisor is an analytic submanifold and the matrix
functions Aij(t) have poles of at most second order along D(t∗) ∩ Θ.

Before proving Theorem 3 let us recall a calculation algorithm for the local τ -function of the
Malgrange isomonodromic deformation (E,∇) of system (10).

Consider a point t∗ ∈ Θ. Though the corresponding pair (E,∇)|
C×{t∗}

∼= (FD0,C0
,∇D0,C0

) is
such that the bundle

FD0,C0 ∼= O(−1) ⊕O(1)

is not holomorphically trivial, one can construct an auxiliary linear meromorphic system

dy

dz
=

(
B0

12

(z − a∗1)2
+

B0
22

(z − a∗2)2
+

n∑
i=1

B0
i1

z − a∗i

)
y (11)
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22 Yu.P. BIBILO, R.R. GONTSOV

with irregular non-resonant singular points a∗1 = a1(t∗), a∗2 = a2(t∗) of Poincaré rank 1 and Fuchsian
singular points a∗3 = a3(t∗), . . . , a∗n = an(t∗). This system is holomorphically equivalent to the local
system determined by the connection ∇D0,C0 in a neighbourhood of each singular point, but it
has an apparent Fuchsian singularity at infinity (i.e., the monodromy at this point is trivial). Its
fundamental matrix is of the form Y ∗(z) = U(z)zK near infinity, where

U(z) = I + U1
1
z

+ U2
1
z2

+ . . . , K = diag(−1, 1). (12)

Therefore, the residue matrix at infinity is equal to −K, and
∑n

i=1 B0
i1 = K (the existence of such

a system in the Fuchsian case is explained, for example, in the proof of Theorem 2 from [6]; an
explanation here is the same).

The columns of the fundamental matrix Y ∗(z) of system (11) determine a basis of horizontal
(with respect to ∇D0,C0) sections of the bundle FD0,C0 over C. Consider a matrix V (z) holomor-
phically invertible in a neighbourhood O∞ of infinity whose columns determine this basis over O∞.
Then the quotient Y ∗(z)V −1(z) = g0∞ is a cocycle of the bundle FD0,C0 . On the other hand, the
cocycle of the bundle FD0,C0 is zK ; hence

U(z)zK = zKV (z). (13)

Let us include the auxiliary system (11) in the Malgrange isomonodromic family

dy

dz
=

(
B12(t)

(z − a1(t))2
+

B22(t)
(z − a2(t))2

+
n∑

i=1

Bi1(t)
z − ai(t)

)
y, Bij(t∗) = B0

ij . (14)

An appropriate matrix meromorphic differential 1-form determining this family (see [10, Ch. 4, § 1])
has the form

ω =
2∑

i=1

Bi2(t)
(z − ai(t))2

d(z − ai(t)) +
n∑

i=1

Bi1(t)
z − ai(t)

d(z − ai(t)) + (dΛ)-part. (15)

Observe that the equality
∑n

i=1 Bi1(t) = K holds. Indeed, the differential 1-form ω satisfies the
Frobenius integrability condition (dω = ω ∧ ω). One can directly check that the residue (in the
sense of Leray) of ω ∧ ω along {z = ∞} is equal to zero and the residue of the 2-form dω along
{z = ∞} is equal to d

∑n
i=1 Bi1(t).

Let Y (z, t) be the fundamental matrix of the Pfaffian system dy = ωy of the form

Y (z, t) = U(z, t)zK , U(z, t) = I + U1(t)
1
z

+ U2(t)
1
z2

+ . . . , (16)

at infinity, and Y (z, t∗) = Y ∗(z) (by analogy with the Fuchsian case [1]).
As follows from (15),

∂Y

∂ai
Y −1 = −

ri+1∑
j=1

Bij(t)
(z − ai)j

= −
ri+1∑
j=1

Bij(t)

zj
(
1 − ai

z

)j
. (17)

Expanding the left- and the right-hand sides of (17) in Taylor series near infinity, one gets

∂U1(t)
∂ai

1
z

+ o(z−1) =
(
−Bi1(t)

1
z

+ o(z−1)
)(

I + U1(t)
1
z

+ o(z−1)
)

;
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therefore,
∂U1(t)

∂ai
= −Bi1(t), i = 1, . . . , n. (18)

Further the relation

∂Y

∂z
Y −1 =

n∑
i=1

ri+1∑
j=1

Bij(t)

zj
(
1 − ai

z

)j

implies

− U1(t)
1
z2

+ o(z−2) +
(

I + U1(t)
1
z

+ o(z−1)
)

K

z

=

(
K

z
+

(
n∑

i=1

Bi1(t)ai + B12(t) + B22(t)

)
1
z2

+ o(z−2)

)(
I + U1(t)

1
z

+ o(z−1)
)

;

hence

−U1 + [U1,K] =
n∑

i=1

Bi1(t)ai + B12(t) + B22(t).

Thus the upper right element u1(t) of the matrix U1(t) coincides with the same element of the
matrix

∑n
i=1 Bi1(t)ai + B12(t) + B22(t).

Lemma 1. The function u1(t) is not equal to zero identically and vanishes at the point t = t∗.

Proof. Since the matrix U1(t∗) is the matrix U1 from (12), the vanishing of u1(t) at the point t∗

follows from relation (13).
Now let us explain that the function u1(t) is not equal to zero identically. We denote by bij(t)

the upper right elements of the matrices Bij(t). Then

u1(t) = b12(t) + b22(t) +
n∑

i=1

bi1(t)ai

and, as follows from (18),
∂u1(t)
∂ai

= −bi1(t), i = 1, . . . , n.

Thus the equality u1(t) ≡ 0 implies

bi1(t) ≡ 0, i = 1, . . . , n, b12(t) + b22(t) ≡ 0.

We will show that b12(t) = b22(t) ≡ 0 as well, which contradicts the irreducibility of the monodromy
of the family (14).

Let us turn to a new independent variable ξ = z−1 to examine the matrix differential 1-form
B(z, t) dz of the coefficients of the family (14) near the apparent singularity z = ∞ (respectively,
near the apparent singularity ξ = 0 after the change of the variable):

B(z, t) dz = −B(ξ−1, t)
ξ2

dξ,
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−B(ξ−1, t)
ξ2

= −
2∑

i=1

Bi2(t)
(1 − aiξ)2

−
n∑

i=1

Bi1(t)
ξ(1 − aiξ)

= −1
ξ

(
K +

n∑
i=1

Bi1(t)aiξ +
n∑

i=1

Bi1(t)a2
i ξ

2 + o(ξ2)

)
−

(
2∑

i=1

Bi2(t) + 2
2∑

i=1

Bi2(t)aiξ + o(ξ)

)

= −1
ξ
K −

(
n∑

i=1

Bi1(t)ai +
2∑

i=1

Bi2(t)

)
−

(
n∑

i=1

Bi1(t)a2
i + 2

2∑
i=1

Bi2(t)ai

)
ξ + o(ξ)

=
(

1 0
0 −1

)
1
ξ

+
(
∗ 0
∗ ∗

)
+

(
∗ −2

∑2
i=1 bi2(t)ai

∗ ∗

)
ξ + o(ξ).

The gauge transformation ỹ = ξKy changes the latter matrix into a new one of the form

1
ξ

(
0 −2

∑2
i=1 bi2(t)ai

0 0

)
+ O(1).

The monodromy matrix of the Fuchsian singular point ξ = 0 of the transformed system is the
identity matrix. On the other hand, both eigenvalues of its residue matrix are zeros. Thus the
monodromy matrix is equal to the exponential of the residue matrix, i.e.,

exp

{
2π

√
−1

(
0 −2

∑2
i=1 bi2(t)ai

0 0

)}
= I.

Then the equality b12(t)a1+b22(t)a2 ≡ 0 holds, which (together with the equality b12(t)+b22(t) ≡ 0)
implies b12(t) = b22(t) ≡ 0. �

Lemma 2. The function u1(t) is a local τ -function of the Malgrange isomonodromic deforma-
tion of system (10); i.e., it locally determines the Θ-divisor near the point t∗ ∈ Θ.

Proof. If u1(t) �= 0, then we can consider a matrix

Γ′
1(z, t) =

(
1 0

− z
u1(t)

1

)
,

which is holomorphically invertible (with respect to z) in C. By construction the matrix U ′(z, t) =
Γ′

1(z, t)U(z, t) is of the form

U ′(z, t) =
(

U ′
0(t) + U ′

1(t)
1
z

+ . . .

)
z−K , U ′

0(t) =

(
0 u1(t)

− 1
u1(t)

f(t)
u1(t)

)
,

where f(t) is a holomorphic function at the point t = t∗.
The gauge transformation

y1 = Γ1(z, t)y, Γ1(z, t) = U ′
0(t)

−1Γ′
1(z, t), (19)

transforms system (14) into a new one, with a fundamental matrix Y 1(z, t) = Γ1(z, t)Y (z, t), which
is holomorphically invertible at infinity. Since the columns of the matrix Y (z, t) form a basis of
horizontal (with respect to the restriction of the connection ∇ to C × {t}) sections of the bundle
E

C×{t} over C, the last relation implies the holomorphic triviality of this bundle.
If u1(t) = 0, then the matrix

V∞(z) = z−KU(z, t)zK = z−K

(
I +

(
∗ 0
∗ ∗

)
1
z

+ . . .

)
zK

is holomorphically invertible at infinity; hence Y (z, t) = zKV∞(z) and E|
C×{t}

∼= O(−1)⊕O(1). �
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Proof of Theorem 3. First we explain that du1(t∗) �≡ 0. Indeed, in the opposite case the
following equalities should be true:

bi1(t∗) = 0, i = 1, . . . , n, b12(t∗) + b22(t∗) = 0.

Then similarly to the proof of Lemma 1 one gets the relations b12(t∗) = b22(t∗) = 0, which contradict
the irreducibility of the monodromy representation of the family (14). Thus the Θ-divisor of the
Malgrange isomonodromic deformation of system (10) is an analytic submanifold in a neighbourhood
D(t∗) of the point t∗.

Now let us estimate the pole orders of the matrices Ai1(t), A12(t) and A22(t) along Θ ∩ D(t∗).
Return to the proof of Lemma 2. The family obtained from (14) via the gauge transformation (19)
coincides with the Malgrange isomonodromic deformation (for t ∈ D(t∗) \ Θ) of the initial sys-
tem (10). (Indeed, this transformation does not change the connection matrices at the Fuchsian
singular points, and nor does it change the holomorphic equivalence classes of the family at the irreg-
ular singularities.) Therefore, the coefficient matrix of the Malgrange isomonodromic deformation
of the initial system (10) has the form

∂Γ1

∂z
Γ−1

1 + Γ1

(
B12(t)

(z − a1(t))2
+

B22(t)
(z − a2(t))2

+
n∑

i=1

Bi1(t)
z − ai(t)

)
Γ−1

1 .

As the matrix Γ1(z, t) is holomorphically invertible (with respect to z) in C, one has

Ai1(t) = Γ1(ai(t), t)Bi1(t)Γ−1
1 (ai(t), t), i = 3, . . . , n,

and for i = 1, 2 one has

Ai2(t) = Γ1(ai(t), t)Bi2(t)Γ−1
1 (ai(t), t),

Ai1(t) =
∂Γ1

∂z
(ai(t), t)Bi2(t)Γ−1

1 (ai(t), t) + Γ1(ai(t), t)Bi1(t)Γ−1
1 (ai(t), t)

+ Γ1(ai(t), t)Bi2(t)
∂Γ−1

1

∂z
(ai(t), t).

Since

Γ1(z, t) = U ′
0(t)

−1Γ′
1(z, t) =

(
f(t)
u1(t) −u1(t)

1
u1(t) 0

)(
1 0

− z
u1(t)

1

)
=

(
z + f(t)

u1(t) −u1(t)
1

u1(t)
0

)

and the matrices Bij(t) are holomorphic near the point t = t∗, one sees that the same holds for all
the matrices (u1(t))2Aij(t). �

Remark. Recall that the Painlevé III and V equations can be described in terms of isomon-
odromic deformations satisfying Theorem 3 (see details in [10, Ch. 5, § 4, 5]): for PIII one has
m = n = 2, and for PV one has m = 1 and n = 3. If t∗ ∈ Θ and E|

C×{t∗}
∼= O(−k) ⊕O(k), then

the estimate 2k ≤ m + n − 2 holds [5] (when the monodromy of a connection is irreducible). Thus
2k ≤ 2 and hence k = 1 in both cases.
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17. L. Schlesinger, “Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten,”

J. Reine Angew. Math. 141, 96–145 (1912).

Translated by the authors

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 277 2012


