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Abstract—The problem of minimization of the decoder error probability is considered for shortened codes of
dimension 2m with distance 4 and 6. We prove that shortened Panchenko codes with distance 4 achieve the
minimal probability of decoder error under special form of shortening. This shows that Hamming codes are
not the best. In the paper, the rules for shortening Panchenko codes are defined and a combinatorial method
to minimize the number of words of weight 4 and 5 is developed. There are obtained exact lower bounds on
the probability of decoder error and the full solution of the problem of minimization of the decoder error
probability for  and  codes. For shortened BCH codes with distance 6, upper and lower
bounds on the number of minimal weight codewords are derived. There are constructed  and

 BCH codes with the number of weight 6 codewords close to the lower bound and the decoder error
probabilities are calculated for these codes. The results are intended for use in memory devices.
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1. INTRODUCTION
A nature of electronic memory devices, large and

very large capacity, is a gradual degradation (mono-
tonic deterioration) of their functional characteristics.
Irreversible degradation of the cells is associated with
the degradation (depletion) of insulating material and
conductive microstructures. For example, in a cell of
capacitive type with repeated cycles of read-write its
charge corresponding to a binary (or multi-valued)
state can be eroded. The logical state of the cell is
restored after recording, but rebuilt physical condition
may differ from the standard, which leads to a gradual
increase of the error probability.

The article deals with the problem of constructing
the best code to correct one and two errors in the ran-
dom access memory (RAM) of computer systems.
RAM is not suitable for long time storage and has a
maximal data rate changes. Essentially, each comput-
ing operation ends by recording the result in memory.
Under these conditions, there is no time to accumu-
late errors and the task for coding is correction of rare
errors occurring due to impulse noise (effects) during
recording or reading process of memory cell state.
Typical structure of memory is associated with the

word of standard length 32, 64, 128, 256 bits. Some
check bits are added to the word to ensure the correc-
tion of one (or two) error and detection of the maxi-
mum possible number of error combinations of a
greater weight. Using error-correcting codes in RAM is
reviewed in many publications, for example, in [1–3].
Note that codes of distance 4 and 6 are commonly
used in RAM.

As it is known the probability of decoder error
depends on the code weight spectrum. Asymptotic
estimates of linear code spectrum were considered in
many papers, for example, in [4–6]. The exact values
for individual weights of nonshortened linear codes
and the full spectrum of the nonshortened Hamming
code are considered, for example, in [7–9]. Algo-
rithms to calculate the full range of weights of non-
shortened cyclic codes are proposed in [10], where the
values of small weights are given for BCH codes of
length of 63 and 127.

In this article, the exact values of weights in short-
ened codes are considered.

Two classes of codes: Panchenko codes with dis-
tance 4 and Bose–Chaudhuri–Hocquenghem (BCH)
codes with distance 6 are investigated. For nonshort-
ened Panchenko code it is known only that it has the
least number of words of weight 4 in comparison with

[39,32,4] [72,64,4]
[45,32,6]

[79,64,6]

1 The article was translated by the authors.
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other codes, see [11, 12]. BCH codes are subject of
interest since their decoding algorithms are well devel-
oped [7–9, 13]. For these codes, combinatorial prob-
lems of minimization of the number of small weight
(4, 5, 6) codewords defining, in essence, the decoder
error probability are unresolved until now.

The paper is devoted to the problem of minimiza-
tion of decoder error probability for shortened codes of
dimension . The special rules for shortening codes
are formulated, the estimates of their weight spectrum
are derived, and the results of calculation are given for
the decoder error probability of shortened codes with
the improved weight spectrum. For Panchenko codes,
a combinatorial approach is developed that reduces
the number of weight 5 codewords, under condition
that the number of weight 4 words is minimal. In this
paper, weight spectra of shortened and nonshortened
codes are founded. The exact formula on the number
of weight 5 codewords for the nonshortened code is
obtained. We derive exact and achievable lower
bounds on the decoder error probability for codes with
32 and 64 information bits at a given error probability
in the channel. Thus, for shortened Panchenko codes
the full solution of the problem of minimization of the
decoder error probability is given.

For shortened BCH codes of dimension 32 and 64,
we propose upper and lower estimates on the number
of minimum weight 6 words and themselves shortened
codes in which the number of the weight 6 words is
between these estimates and fairly close to the lower
bound. Such minimization of the decoder error prob-
ability seems to be practically useful.

List of notations: —length of a code; —mini-
mum code distance; —minimum distance of the

dual code; —the number of errors cor-

rected by a code; —the number of codewords of
weight w; —the number of codewords of weight 
in the dual code; — the error probability in the chan-
nel by symbol; —a binary linear code of length

, dimension , and distance ; —a binary
linear code of length , redundancy , and distance ;

—the number of non-zero weights in the code; —
the number of non-zero weights in the dual code;
important constants 

The paper is organized as follows. Section 2
addresses codes with distance . The formulas for
calculating the decoder error probability by code
weight spectrum are given. Weight spectra of non-
shortened and shortened Panchenko code and its dual
code are calculated. Shortening algorithms minimizing
the probability of decoder error are given. Section 3
deals with codes of distance . Estimates of the

2m
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number of minimum weight words and BCH codes
satisfying these estimates are described. In Sections 2
and 3 in a wide range of the probabilities of errors in
the memory cells, for codes with the number of infor-
mation symbols 32 and 64, values of the decoder error
probability are calculated. Appendix rendered proofs
of some theorems.

2. CODES WITH DISTANCE 4
2.1. The Probability of Decoder Error 

for a Code with 
Let us consider decoding of a binary code up to its

constructive distance in the binary symmetric channel
with independent errors.

Let us define the probability  of correct decoding
of an  , code correcting up to  errors as

(2.1)

Let the probability  of decoding error (or decoder
error) be the probability that the result of errors cor-
rection is an erroneous codeword. Let the probability

 of decoding failure (or decoder rejection) be the prob-
ability that decoder does not found a codeword at dis-
tance  from the received word. For any code the fol-
lowing equality holds

(2.2)

Let the probability  of incorrect decoding be the prob-
ability of union of the events: decoder error and
decoder rejection; it is equal to

The probability of decoding error of linear block
codes is considered in papers [8, 13, 14]. In the follow-
ing theorem the exact formulas are given, in a form
convenient for the aims of the present work.

Theorem 2.1. The probability  of decoder error of
a binary  code in the binary symmetric channel
with the probability  of error by symbol is equal to

(2.3)

or, equivalently,
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= 4d

cp
[ , , ],n k d > 2d t t

1= (1 ) (1 )

... (1 ) .

n n
c

t n t

p P nP P
n

P P
t

−

−

− + −
⎛ ⎞+ + −⎜ ⎟
⎝ ⎠

ep

rp

t≤

= 1.c e rp p p+ +

icp

= = 1 .ic e r cp p p p+ −

ep
[ , ,4]n k

P

1 1

=4
1 1

= ( (1 ) (1 )

(1 ) ( ))

n
w n w w n w

e w

w
w n w

p A P P w P P

P P n w

− − + −

+ − −

− + −

+ − −

∑

( )

3 3
4

4 4
4 5

1

=5

1

= (1 ) 4

(1 ) 5

(1 ) (( 1)

( 1) ).

n
e

n

n
h n h

h

h

h h

p P P A

P P A A

P P n h A

A h A

−

−

−
−

+

− ⋅
+ − +

+ − − +

+ + +

∑



1442

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS  Vol. 61  No. 12  2016

AFANASSIEV et al.

Proof. For a linear code with code distance 
formulas (2.3) and (2.4) can be obtained by the direct
combinatorial consideration for the case of the zero
word transmission. In (2.3), the expression in brack-
ets, which is multiplied by , consists of 3 terms
exhausting, for a code with , all situations of
incorrect decoding of the zero word to a weight 
word. Such situations occur in the case when code-
word weight is in the region . In (2.4),
the expression in brackets, which is multiplied by

, consists of 3 terms exhausting all cases of
incorrect decoding of the zero word under condition
that the error multiplicity is equal to . Such situations
occur if multiplicity of error combination is in the
region .

If weight spectrum is unknown, it can be calculated
for relatively small  or small . In the last case we
look for weight spectrum  of the dual code and then
use MacWilliams identities [9].

For codes of , that are used for error correc-
tion in RAM, we have  = 7, 8, 9, 10 and, hence,
it is possible to calculate weight spectrum of the dual
code. Note also that from (2.3), (2.4) it follows that for
estimation of the probability  of decoder error it is
sufficient to consider only the first components of
spectrum  and may be component .

Let  be the ratio of the number of error com-
binations of weight  detected by a code to the total
number of errors of weight . From (2.3), (2.4) it fol-
lows that for an  code the following equa-
tions hold:

(2.5)

From Theorem 2.1 and equations (2.1), (2.2), (2.5)
it follows that minimum of the decoder error probabil-
ity is achieved by minimization of the number of code-
words of small weights 4, 5, and 6.

2.2. The Binary Panchenko Code  
and Its Basic Properties

The code  was proposed by V.I. Panchenko in
paper [11]. The nonshortened  code  has
length , redundancy , and code dis-
tance . In paper [12] the code  is denoted as

. Covering radius of the nonshortened code  is
equal to 2, therefore the nonshortened code  is
quasi-perfect.

Introduce notations. Let  be the
matrix of identical columns , where  is the binary
representation of the integer  with the most signifi-
cant bit (MSB) at the upper position. The number of
rows and columns of matrix  will be clear from the
context. Let us define matrix  as

(2.6)

The parity check  matrix  of the non-
shortened code  has the form

(2.7)

In paper [12], the shortening algorithms of the
code  are proposed. They intend for minimization
of the number  of codewords of weight 4 in the fol-
lowing intervals of code length:

(2.8)

(2.9)

The interval (2.8) includes  and 
codes; the interval (2.9) includes  codes.

Algorithm 1. Shortening the matrix  by  col-
umns: for any  remove  columns strictly in the
following order (from left to right):

(2.10)

where  is the column of the matrix  which coin-
cides with the binary representation of the integer 
with MSB at the upper position; the columns

 are different to each other.
Algorithm 2. Shortening the matrix  by  col-

umns: remove entirely  submatrices , where

  . If , partially

remove one of the  submatrices. Any 3 and 4
columns from the set  must be linear
independent.

In the paper [12, Theorems 2 and 3] with using the
results of paper [15] the following is proved.

= 4,d

wA
= 4d

w

{ 1, , 1}w w w− +

(1 )h n hP P −−

h

{ 1, , 1}h h h− +

k n k−

wA ⊥

= 4d
n k−

ep

4 5,A A 6A

( )h rΔ
h

h
[ , ,4]n n r−

4 54
3 4

54( ) = 1 , ( ) = 1 .

3 4

A AAr r
n n

+Δ − Δ −
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

rΠ

rΠ
[ , ,4]n n r− rΠ

4= 5 2 rn −⋅ 5r ≥
= 4d rΠ

Π rΠ
rΠ

[ ]=k k kB b b…

kb kb
k

kB
G

1 0 0 0 1
0 1 0 0 1

= .
0 0 1 0 1
0 0 0 1 1

G

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

4( 5 2 )rr −× ⋅ rP
rΠ

0 1 2= .D
r

B B B B
P

G G G G
⎡ ⎤
⎢ ⎥
⎣ ⎦

…

…

rΠ
4A

− −

− −

⋅ − ⋅
− ⋅ + ≤ ≤ ⋅

4 5

6 4

max{5 2 8, 9 2

1, 17 2 1} 5 2 ,

r r

r rn
− − −⋅ − ⋅ + ≤ ≤ ⋅4 6 4max{5 2 25, 17 2 1} 5 2 .r r rn

[39,32,4] [72,64,4]
[137,128,4]

rP 8i ≤
8i ≤ i

H

15 8 4 2 1 15 8 4
, , , , , , , ,

b b b b b b b b
g g g g g g g g

γ γ γ γ γ δ ν⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

ug G
u

H, , ,b b b bγ δ ν

rP 25i ≤

( 5)r × uB
G
⎡ ⎤
⎢ ⎥
⎣ ⎦

= ,u kv = 1, , ,fv … =
5
if ⎢ ⎥
⎢ ⎥⎣ ⎦

5i f≠

( 5)r ×

1 2
{ , , , }k k k f
b b b…



JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS  Vol. 61  No. 12  2016

DESIGN AND ANALYSIS OF CODES WITH DISTANCE 4 AND 6 1443

Theorem 2.2. [12]
(i) In the interval (2.8), a shortened by Algorithm 

 code  has the minimal number  of
weight  words and the maximal probability  of
detection of triple independent errors among all existent

 codes including any other (not coinciding
with Algorithm ) shortenings of the code .

(ii) In the interval (2.9), a shortened by Algorithm 
 code  has the minimal number  of

weight  words and the maximal probability  of
detection of triple independent errors among all shorten-
ings of existent codes nonequivalent to the code . In
principle, shortenings, better than these produced by
Algorithm , are possible for the code .

Algorithm 1 can produce different variants
depending on the choice of the columns  .
For all variants of shortening by Algorithm 1 the num-
ber of weight 4 words is the same while for other
weights (5, 6 etc.) the number of words can be
changed.

Algorithm 2 also has variability, but in this case the
number of weight 4 words can be different for distinct
variants of shortening.

2.3. Weight Spectrum of the Nonshortened Code 

Theorem 2.3. The number  of weight  words of
the nonshortened code  is equal to

(2.11)

Proof. From [12, equations (8),(10)] it follows that

 =  whence (2.11) can be

obtained by simple transformations.

Theorem 2.4. The number  of weight  words of
the nonshortened code  is equal to

(2.12)
Proof. The proof is presented in Appendix A.

Theorem 2.5. Weight spectrum of the code , dual
to the nonshortened code , is the following

(2.13)

Proof. Consider the parity check matrix  of the
code  as a generator matrix of the dual code . It
is easy to see that linear combinations of four bottom
rows of this matrix has weight either  (10 com-
binations of one or two rows) or  (combinations
of 3 or 4 rows). All linear combinations, which include

1
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at least one from upper  rows, have weight .
The number of such combinations is equal to

.
Example 1. From Theorem 2.5 we see that weight

spectrum of the nonshortened code  has the form

(2.14)

and weight spectrum of the nonshortened code  is

(2.15)

Now weight spectrum of the nonshortened code 
can be calculated using MacWilliams equations [9].

Corollary 2.1. The words of any given weight in the
nonshortened codes  and  form a -design with

.

Proof. According [9, Chapter 6], if  or
, then codewords of any given weight form a

-design with  not less than  or . From
Theorem 2.5 for the nonshortened code  it holds
that  = 

2.4. Weight Spectrum of the Code , Shortened 
by One Symbol

The matrix , see. (2.6), after removing the col-
umn that is the binary representation of the integer 
with MSB in the upper row, is denoted as . For
example,

(2.16)

Let  and  be the codes  and , respec-
tively, shortened by one symbol.

Theorem 2.6. Weight spectrum of a code , dual to
the code  shortened by one symbol, is independent of
the position of the removed symbol and has the form

(2.17)
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Proof. According to Corollary 2.1, after removing
of any symbol, the number of “destroyed” and
“saved” words of any given weight is independent of
the removed position. Let us consider the variant of
shortening defined by the parity check matrix

(2.18)

Let us consider three types of linear combinations
of rows.

(a) Linear combination of  upper rows of the
matrix .

(b) Linear combination of  lower rows of the
matrix .

(с) Linear combination of  upper rows and
lower rows of the matrix .

Denote by  the number of linear combinations
of rows of type  (u is a or b, or c) with weight . From

the direct consideration of matrix (2.18) it is easy to see
that all possible variants of weights are given by the fol-
lowing list:

whence the relation (2.17) follows.
Now weight spectrum of the shortened code 

may be calculated using MacWilliams equations [9].
Example 2. According to (2.17), weight spectrum of

a code , dual to the code  shortened by one
symbol, is

Weight spectrum of the shortened code , calcu-
lated by MacWilliams identities, has the form

2.5. Weight Spectrum of the Code , 
Shortened by 8 Symbols with Algorithm 1

Let  be the -th variant of the code , short-
ened by 8 symbols with Algorithm 1. Let us denote the
corresponding parity check matrix by .

Theorem 2.7. (i) The weight spectrum of the code ,
shortened by 8 symbols with Algorithm 1, depends only on
the number of linear independent columns among the
columns .

(ii) The code, dual to a code obtained by shortening
the code  by 8 symbols with Algorithm 1, has weight
spectrum of one of three types presented in Table 1.

Proof. The proof is presented in Appendix B. Let us
mention here that all columns  are differ-
ent to each other and one of them may be all-zero.
Therefore, among these columns can be 2, 3 or 4 lin-
early independent. All these cases are presented in
Table 1: codes of type I (3 linear independent columns);
codes of type II (2 linear independent columns); codes of
type III (4 linear independent columns).

Corollary 2.2. (i) A code, obtained by shortening the
code  by 8 symbols with Algorithm 1, has one of three
weight spectra the first components of which are presented
in Table 2.

(ii) Among codes, obtained by shortening the code 
by 8 symbols with Algorithm 1, the smallest number of
weight 5 words is provided by a code for which the column
set  contains one the zero column and exactly
two columns of the rest are linear independent.

Proof. Table 2 is obtained from Table 1 with the
help of MacWilliams formulas [9]. By Table 2, a code
of type II has the smallest number of weight 5 words.
The structure of such code is given in the proof of
Theorem 2.7 in Appendix B.

Remark. The approach applied for investigation of
the code , shortened by 8 symbols with Algorithm 1,
can be used for studying of shortening the code  by
Algorithm 2.

2.6. The Probability of Decoder Error 
of a Shortened Code 

In Tables 3 and 4, the results of calculations by for-
mula (2.4) for the  code  and the 

code , respectively, are given. For the calculations,

weight spectra of the code  of Example 2 and the

code  of Table 2 (spectrum of type II) are used.
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input probabilities  this estimate is reasonable. An
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For input error probabilities  from

Tables 3 and 4 one can see that the sum  is
essentially smaller than . Moreover, for the 
code  the following holds.

(2.19)

0.0001P ≤
8

=3
( )eh

p h∑
P [39,32]

(1)
7,1Π

8
(6 3 ) 3 3

=3
(3 ) 4

( ) < 4.3 10 = 4.3 10

for = 10 10 ,  = 1, ,7.

j
e

h
j

p h P

P j

− +

− + −

× ×

≤

∑

…

For the  code  the relations hold

(2.20)

It is important to note that in case , the
summand  gives the main contribution to the

[72, 64] (7)
8,8Π

8
(5 3 ) 3 4

=3
(3 ) 4

( ) < 2.7 10 = 2.7 10

for = 10 10 , = 1, ,7.

j
e

h
j

p h P

P j

− +

− + −

× ×

≤

∑

…

0.0001P ≤
(3)ep

Table 1. Weight spectrum of codes , dual to codes 

Weight
(general

case)

The number
of words,
spectrum
of type I

The number
of words,
spectrum
of type II

The number
of words,
spectrum
of type III

Weight
( )

The number
of words,
spectrum
of type I

The number
of words,
spectrum
of type II

The number
of words,
spectrum
of type III

3 3 3 28 3 3 3

6 6 6 29 6 6 6

1 1 1 30 1 1 1

0 0 32 0 0 1

33 8 6 6

34 27 33 25

35 50 48 56

36 67 57 67

37 56 66 50

38 25 27 27

0 39 6 0 8

40 1 3 0

2 2 2 57 2 2 2

3 3 3 58 3 3 3

( )
,8
i

r
⊥Π ( )

,8
i

rΠ

= 8r

32 4r − −
32 3r − −
32 2r − −

8E − 82r −

7E − 75 2 2r −⋅ − 62 2 2r −⋅ − 88 2 2r −⋅ −

6E − 715 2 3r −⋅ − 69 2 3r −⋅ − 828 2 3r −⋅ −

5E − 725 2r −⋅ 612 2r −⋅ 856 2r −⋅

4E − 735 2 3r −⋅ − 615 2 3r −⋅ − 870 2 3r −⋅ −

3E − 731 2 6r −⋅ − 618 2 6r −⋅ − 856 2 6r −⋅ −

2E − 713 2 1r −⋅ − 67 2 1r −⋅ − 828 2 1r −⋅ −

1E − 73 2r −⋅ 88 2r −⋅

E 71 2 1r −⋅ − 62 1r − − 81 2 1r −⋅ −
22 7r − −
22 6r − −

Table 2. Weight spectra of codes 

Weight The number of words,
spectrum of type I

The number of words,
spectrum of type II

The number of words,
spectrum of type III

4 6654 6654 6654
5 38587 38586 38588
6 695798 695799 695798
7 5350816 5350848 5350784
8 48245552 48245520 48245552
9 328360512 328360016 328361008

10 2102899 496 2102899992 2102899 496
11 11795458880 11795463840 11795453920

( )
8,8
iΠ
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sum . For the  code  and

 code  the following holds.

(2.21)

We point out that for the codes  and , weight
distribution of which is given in Table 2 (spectra of
type I and III), the probabilities of decoder error prac-
tically coincide with those for the code  in Table 4.

Hence, among possible variants of shortening 
one should choose a variant more convenient for
implementation.

8

=3
( )eh

p h∑ [39,32] (1)
7,1Π

[72,64] (7)
8,8Π

( 2)( 3)

(3 ) 4

(3) 10
( )

for = 10 10 , = 1, ,7.

j he

e
j

p
p h

P j

+ −

− + −

≈

≤ …

(1)
8,8Π (10)

8,8Π

(7)
8,8Π

( )
8,8
iΠ

3. CODES WITH DISTANCE 6
3.1. Estimates of the Minimum Number 

of Fixed Weight Words in a Shortened BCH Code 
with 

Basing on the approaches of work [16], we consider
upper estimates of the number of codewords

Theorem 3.1. Let a binary linear  code
 of length  contain  words of weight . Then

there exists a shortened  code  of length
 containing  words of weight , where

(3.1)

= 6d

0 0[ , , ]n n r d−
0nC 0n 0( )wA n w

[ , , ]n n r d− nC
0<n n ( )wA n w

0

0
0

( ) ( ) .w w

n w
n w

A n A n
n
n

−⎛ ⎞
⎜ ⎟−⎝ ⎠≤
⎛ ⎞
⎜ ⎟
⎝ ⎠

Table 3. The probability of decoder error of the  code  at the error probability 

0.0001 1.0e-05 1.0e-06 1.0e-07 1.0e-08 1.0e-09 1.0e-10

4.27e-09 4.28e-12 4.28e-15 4.28e-18 4.28e-21 4.28e-24 4.28e-27

1.89e-12 1.90e-16 1.90e-20 1.90e-24 1.90e-28 1.90e-32 1.90e-36

2.00e-15 2.01e-20 2.01e-25 2.01e-30 2.01e-35 2.01e-40 2.01e-45

9.73e-19 9.76e-25 9.76e-31 9.76e-37 9.76e-43 9.76e-49 9.76e-55

4.84e-22 4.75e-29 4.85e-36 4.85e-43 4.85e-50 4.85e-57 4.85e-64

1.92e-25 1.92e-33 1.93e-41 1.93e-49 1.93e-57 1.93e-65 1.93e-73

4.27e-09 4.28e-12 4.28e-15 4.28e-18 4.28e-21 4.28e-24 4.28e-27

[39,32] (1)
7,1Π P

P

(3)ep

(4)ep

(5)ep

(6)ep

(7)ep

(8)ep

8

3

( )e
h

p h
=
∑

Table 4. The probability of decoder error of the  code  at the error probability 

0.0001 1.0e-05 1.0e-06 1.0e-07 1.0e-08 1.0e-09 1.0e-10

2.64e-08 2.66e-11 2.66e-14 2.66e-17 2.66e-20 2.66e-23 2.66e-26

1.98e-11 1.99e-15 2.00e-19 2.00e-23 2.00e-27 2.00e-31 2.00e-35

4.63e-14 4.66e-19 4.66e-24 4.67e-29 4.67e-34 4.67e-39 4.67e-44

4.05e-17 4.07e-23 4.07e-29 4.07e-35 4.07e-41 4.07e-47 4.07e-53

4.34e-20 4.37e-27 4.37e-34 4.37e-41 4.37e-48 4.37e-55 4.37e-62

3.33e-23 3.35e-31 3.35e-39 3.35e-47 3.35e-55 3.35e-63 3.35e-71

2.64e-08 2.66e-11 2.66e-14 2.66e-17 2.66e-20 2.66e-23 2.66e-26

[72,64] (7)
8,8Π P

P

(3)ep

(4)ep

(5)ep

(6)ep

(7)ep

(8)ep

8

=3

( )e
h

p h∑
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Proof. We perform shortening by removing col-
umns from a parity check matrix  of the code .
As a result, we obtain a parity check matrix  of the
code . Every word of weight  of the code  cor-
responds to some set of  linear dependent columns of
the nonshortened parity check matrix . This set is

saved without changes in  shortened matrices

. Hence, the total number of weight  words over

all shortened codes  is equal to .

There are  shortened codes. By averaging over all

the shortened codes we obtain (3.1).

Denote by  the minimum possible number of
weight  words in a code BCH with  of length .

Corollary 3.1. The upper bound on the minimum
number of weight 6 words in an  code BCH

with  of length , where , is as

follows

(3.2)

Proof. In [7], it is shown that for nonshortened BCH codes of length  we have

(3.3)

Relation (3.2) follows from (3.1) and (3.3).
In work [16], with using the results of [17], a lower bound on the value  is obtained by linear programming

methods.
Theorem 3.2. [16] For binary  codes with distance  and even distances between codewords the

following estimate holds.

(3.4)

3.2. Parity Check Matrices of Shortened BCH Codes 
with Distance 

For error correction in a memory the following
shortened codes have the most importance:

 codes of length

(3.5)

The number of information symbols  of such
code is equal to a power of two:

Denote by  the locator of the -th position of a
codeword. Let  be the Galois field of  elements.

A parity check matrix of an  BCH code
with  can be written in the form

(3.6)

In common manner, we represent the elements of the
field  in the form of a polynomial of degree 
with binary coefficients, using degrees of a field prim-
itive element.

In Table 5, decimal equivalents of binary columns
of the matrix  for  and the corresponding

0nH
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 and  BCH codes are given. The
matrices are obtained by computer search. The codes
under consideration have 2170 and 17375 weight
6 words, respectively; these values are smaller than the
upper bound and greater than the lower bound, see
(3.2), (3.4).

3.3. The Probability of Decoder Error for a Binary Code 
with Distance 

Theorem 3.3. The probability  of decoder error for
a binary  code in the binary symmetric channel
with the probability  of error by symbol is equal to

(3.7)

or, equivalently,

(3.8)

Proof. For a linear code,  formulas (3.7) and (3.8)
can be obtained by the direct combinatorial consider-
ation for the zero word transmission. In (3.7), the
expression in brackets, which is multiplied by , con-
tains 5 summands exhausting all situations of incorrect
decoding of the zero word to a weight  word. Such
situations occur if codeword weights are in the interval

. In (3.8), the expression in brackets,
which is multiplied by , contains 5 sum-
mands exhausting all situations of incorrect decoding
of the zero word under condition that the error multi-
plicity is equal to . Such situations occur if error mul-
tiplicity is in the interval .

Corollary 3.2. The probability  of decoder error for
a binary  code with even weights in the binary
symmetric channel with the probability  of error by
symbol is equal to

(3.9)

or, equivalently,

(3.10)

[45,32,6] [79,64,6]
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Table 5. Parity check matrices of shortened BCH codes

Lower bound Upper bound 

6 45 13 32 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 
21, 23, 24, 25, 26, 27, 30, 31, 34, 35, 36, 37, 40, 41, 46, 
47, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63

1894 2170

7 79 15 64 1, 2, 3, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 
36, 37, 38, 39, 40, 41, 42, 43, 48, 49, 50, 51, 52, 53, 
54, 55, 58, 59, 62, 63, 68, 69, 84, 85, 86, 87, 92, 93, 
94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 108, 109, 
110, 111, 122, 123, 124, 125, 126, 127

16452 17375

m n r k 1H min
6 ( )A n ≥ 6A min

6 ( )A n ≤

2190

17495
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3.4. The Probability of Decoder Error 
of Shortened BCH Codes with Distance 

The results of calculations by formula (3.10) for the
 and  BCH codes are given in Tables 6

and 7, respectively. The number  of weight 6 words
is taken from Table 5. The notations  =

,  = 

are used. The sum  is a lower estimate of the
probability  of decoder error. In the considered range
of input probabilities  this estimate is reasonable.

For the input error probabilities  from

Tables 6 and 7 one can see that the sum  is
essentially smaller than . Moreover, for the 
code the following relations hold

(3.11)

whereas for the  code we have

(3.12)

It is important to note that for case , the
summand  gives the main contribution to the

= 6d
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sum . For the  code the relation
holds

(3.13)

For the  code it holds that

(3.14)

4. CONCLUSIONS
Usually the problem of ensuring a high reliability of

computer system memory is provided by applying error-
correcting coding with correction of one or two errors in
words, having 32, 64, or 128 information bits and from 6
to 14 check bits, via shortened Hamming codes and
Bose-Chaudhuri-Hocquenghem (BCH) codes.

In this paper it is proved that shortened Panchenko
codes with distance 4 provide the smallest probability
of decoder errors under the special shortening. This
shows that the Hamming codes are not the best for
minimization of the decoder error probability. In the
paper, the rules of shortening Panchenko codes are
defined and the exact probabilities of decoder error are
calculated. To obtain these results, we developed a
special combinatorial approach minimizing the num-
ber of words of weight 4 as well as the number of weight
5 words. Weight spectra of nonshortened and short-

5

=4
( )eh
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3 (3 ) 3(4) 10 for = 10 10 ,
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Table 6. The probability of decodser error for the  code

0.001 0.0001 0.00001 0.000001 1.0 e-7 1.0 e-8 1.0 e-9 1.0 e-10

3.124e-08 3.241e-12 3.253e-16 3.254e-20 3.254e-24 3.254e-28 3.254e-32 3.254e-36

8.130e-11 8.429e-16 8.459e-21 8.462e-26 8.462e-31 8.462e-36 8.462e-41 8.462e-46

3.132e-08 3.242e-12 3.253e-16 3.254e-20 3.254e-24 3.254e-28 3.254e-32 3.254e-36

[45,32]

P

(4)ep

(5)ep

5

=4

( )e
h

p h∑

Table 7. The probability of decodser error for the  code

0.001 0.0001 0.00001 0.000001 1.0e-7 1.0 e-8 1.0 e-9 1.0 e-10

2.417e-07 2.588e-11 2.604e-15 2.606e-19 2.606e-23 2.606e-27 2.606e-31 2.606e-35

1.177e-09 1.259e-14 1.267e-19 1.268e-24 1.268e-29 1.268e-34 1.268e-39 1.268e-44

2.429e-07 2.588e-11 2.604e-15 2.606e-19 2.606e-23 2.606e-27 2.606e-31 2.606e-35

[79,64]

P

(4)ep

(5)ep

5

=4

( )e
h

p h∑



1450

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS  Vol. 61  No. 12  2016

AFANASSIEV et al.

ened codes are obtained. The exact formula of the
number of weight 5 words in the nonshortened code is
developed. The proposed approach is applied to

 and  codes. For these codes, exact
lower bounds of the probability of decoder error are
obtained and the problem of minimization of the
decoder error probability is completely solved. The
approach developed here seems to be perspective for
further investigation of Panchenko codes, in particu-
lar, for obtaining effective shortening the 
code  up to a  code.

For the BCH codes with distance 6, upper and
lower bounds of the number of the minimum weight
codewords are derived. Codes  and

 are constructed for which the number of
weight 6 words is between these estimates sufficiently
close to the lower bound. The values of the decoder
error probability for the constructed codes are calcu-
lated. The results are practically useful.

APPENDIX
A. Proof of Theorem 2.4

Consider some useful properties of the binary
 Hamming code. Denote by

 the number of weight  words in this code. It
is known [9] that

(A.1)

Denote by  the number of weight  words in
the binary  Hamming code
shortened by one symbol by removing a column of a
parity check matrix.

Lemma 1. The value  does not depend on the
removed column. It holds that

(A.2)

Proof. In accordance with [9, Section 6.5, Exam-
ple (E.2) (continue)], the words of every given weight

 of the nonshortened  Ham-
ming code form a  design of  blocks. Just
note that by definition of design parameters, we have

, , . According to [9, Sec-
tion 2.5, Corollary (10)], in a  design, con-
sisting from  blocks, every element appears exactly in

 blocks. Hence, every column of a parity check

matrix is involved in forming of exactly 
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weight  words which will be corrupted if this column
is removed. So, the value  does not depend on
the removed column. Moreover,  =

 = 

Corollary 1. It holds that the following:

(A.3)

Proof. The validity of the formulas in (A.3) follows
from (A.1), (A.2).

Lemma 2. The last four rows of every five linear
dependent columns of the parity check matrix  are
(up to a permutation of columns) the matrix .

Proof. The validity of the lemma follows directly
from (2.6), (2.7).

We introduce notations: —the number of
weight 5 words in the nonshortened code ; —
the number of weight 5 words of the code  with the
-th structure, where  is number of the word struc-

ture; —an  submatrix of the  matrix

, ; —the number of possible variants

of submatrix  under condition that the previous
submatrices of the structure are given;

—the number of possible variants of

submatrix  under condition that the pre-
vious submatrices of the structure are given; —the
sign of binary bitwise addition of columns modulo 2.

Now we consider all possible structures of weight
5 words of the nonshortened code  and find the
number of words of every structure. All the arguments
and calculations follow directly from (2.6), (2.7). Put

.

Structure 1. The word of the form . .

Structure 2. Words of the form , . Here

, , . Therefore

.

Structure 3. Words of the form ,

. Here . For the given

w
( )H

wA m�

( )H
wA m�

( )( )
2 1

H
H w
w m

A m wA m ⋅−
−

2 1( ) .
2 1

m
H
w m

wA m − −
−

( )

1

3

4

5 4 3

(2 4)(2 1)( ) = ;
3

(2 2)(2 4)(2 5)( ) = ;
2 3 4

(2 4)(2 6)( ) = ( ) ( ) .
5(2 1)

m m
H

m m m
H

m m
H H H

m

A m

A m

A m A m A m

−− −

− − −
⋅ ⋅

− −−
−

�

�

�

rP
G

5 ( )A rΠ

rΠ ( )iT r
rΠ

i i
( )i
kB ( )r i× ( 5)r ×

kB
G

⎡ ⎤
⎢ ⎥
⎣ ⎦

1 5i≤ ≤ ( )# i
kB

( )i
kB

1

( ) ( )#
u

i j
k kB B⎡ ⎤

⎣ ⎦…

1

( ) ( )
u

i j
k kB B⎡ ⎤

⎣ ⎦…

⊕

rΠ

, > 0ik k
5
0B 1( ) = 1T r

(3) (2)
0 kB B⎡ ⎤

⎣ ⎦ k∀

(3)
0

5
# =

3
B ⎛ ⎞

⎜ ⎟
⎝ ⎠

(2)# = 1kB #{ } =k D

2( ) = 10T r D

1 2 3

(2) (1) (1) (1)
0 k k kB B B B⎡ ⎤

⎣ ⎦

1 2 3 = 0k k k⊕ ⊕ (2)
0

5
# =

2
B ⎛ ⎞

⎜ ⎟
⎝ ⎠
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triple  and the given pair of columns in 
it holds that . The number of dis-
tinct triples  such that 

is equal to . Therefore

.

Structure 4. Words of the form , . Here

, , . Therefore

.

Structure 5. Words of the form ,

. Here  Also, for the given pair

 and the given column in  it holds that

. The number of distinct pairs

 is equal to . Therefore

.

Structure 6. Words of the form ,

. Here . Also, for the

given quadruple  and the given column in
 it holds that . The number

of distinct quadruples  such that

 is equal to  =

. Therefore  =  =

 = 

Structure 7. Words of the form ,
. Here for the given triple 

it holds that  = . The number

of distinct triples  such that

 is equal to .

Therefore  =  = 

1 2 3( , , )k k k 0B

1 2 3

(1) (1) (1)# = 3!k k kB B B⎡ ⎤
⎣ ⎦

( , , )i j mk k k = 0i j mk k k⊕ ⊕

3
1( 4) =

23
H D

A r
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

3
5 3!( ) = = 20
2 2 23

D D
T r

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
(1) (4)
0 kB B⎡ ⎤

⎣ ⎦ k∀

(1)
0

5
# =

1
B ⎛ ⎞

⎜ ⎟
⎝ ⎠

(4)# = 1kB #{ } =k D

4
5

( ) = 1 = 5
1

T r D D⎛ ⎞ ⋅ ⋅⎜ ⎟
⎝ ⎠

1 2

(1) (2) (2)
0 k kB B B⎡ ⎤

⎣ ⎦

1 2,k k∀ (1)
0

5
# = .

1
B ⎛ ⎞

⎜ ⎟
⎝ ⎠

1 2( , )k k 0B
(2) (2)

1 2

4
# =

2k kB B ⎛ ⎞⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎝ ⎠

1 2( , )k k
2
D⎛ ⎞
⎜ ⎟
⎝ ⎠

5
5 4

( ) = = 30
1 2 2 2

D D
T r

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1 2 3 4

(1) (1) (1) (1) (1)
0 k k k kB B B B B⎡ ⎤

⎣ ⎦

1 2 3 4 = 0k k k k⊕ ⊕ ⊕ (1)
0

5
# =

1
B ⎛ ⎞

⎜ ⎟
⎝ ⎠

1 2 3 4( , , , )k k k k

0B
1 2 3 4

(1) (1) (1) (1)# = 4!k k k kB B B B⎡ ⎤
⎣ ⎦

( , , , )i j m uk k k k

= 0i j m uk k k k⊕ ⊕ ⊕ 4 ( 4)HA r −
1

42
D

D
⎛ ⎞
⎜ ⎟− ⎝ ⎠

6( )T r 4
5

4! ( 4)
1

HA r⎛ ⎞ −⎜ ⎟
⎝ ⎠

5 4!
1 42

D
D

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠

120 .
42
D

D
⎛ ⎞
⎜ ⎟− ⎝ ⎠

1 2 3

(3) (1) (1)
k k kB B B⎡ ⎤

⎣ ⎦
1 2 3 = 0k k k⊕ ⊕ 1 2 3( , , )k k k

(3) (1) (1)#
i jk k kB B B⎡ ⎤

⎣ ⎦v

5
3 2!

3
⎛ ⎞⋅ ⋅⎜ ⎟
⎝ ⎠

1 2 3( , , )k k k

1 2 3 = 0k k k⊕ ⊕ 3
1( 4) =

23
H D

A r
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

7( )T r
5 16
3 23

D⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
20 .

2
D⎛ ⎞
⎜ ⎟
⎝ ⎠

Structure 8. Words of the form ,
, . Here for the given quadruple

 it holds that  =

. Also, . The number of distinct

triples  for a chosen  is equal to
. Hence, the number of distinct quadruples is

. As the result,  =  =
.

Structure 9. Words of the form
,   .

Here for the given quintuple  it holds
that . The number of dis-
tinct quintuples  such that

 is equal to .
Therefore .

Now relation (2.12) can be obtained by addition of
the values  and simple transformations. Theo-
rem 2.4 is proved.

B. Proof of Theorem 2.7

From the structure of the parity check matrix 
of (2.7) one can see that for shortening by Algorithm 1,
weight spectrum of the dual code depends on the fol-
lowing facts: if columns  are zero or non-
zero and if linear dependent column triples present
among them. Below we write the list of variants of
shortening by Algorithm 1 that, in principle, could
give distinct spectra of the dual code. Number of a
variant is denoted by .

From (2.6)–(2.10) one can see that for  this
list is exhaustive.

1 2 3 4

(2) (1) (1) (1)
k k k kB B B B⎡ ⎤

⎣ ⎦
1k∀ 2 3 4 = 0k k k⊕ ⊕

1 2 3 4( , , , )k k k k
1 2 3 4

(2) (1) (1) (1)# k k k kB B B B⎡ ⎤
⎣ ⎦

5
3! = 60

2
⎛ ⎞ ⋅⎜ ⎟
⎝ ⎠

1#{ } =k D

2 3 4 = 0k k k⊕ ⊕ 1k

3 ( 4)HA r −�

3 ( 4)HD A r⋅ −�

8( )T r 360 ( 4)HD A r⋅ −�

4 520 (2 4)(2 1)r rD − −− −

1 2 3 4 5

(1) (1) (1) (1) (1)
k k k k kB B B B B⎡ ⎤

⎣ ⎦ 1 2 3k k k⊕ ⊕ ⊕ 4 5 = 0k k⊕

1 2 3 4 5( , , , , )k k k k k

1 2 3 4 5

(1) (1) (1) (1) (1)# = 5!k k k k kB B B B B⎡ ⎤
⎣ ⎦

1 2 3 4 5( , , , , )k k k k k

1 2 3 4 5 = 0k k k k k⊕ ⊕ ⊕ ⊕ 5 ( 4)HA r −

9 5( ) = 120 ( 4)HT r A r −

( )iT r

rP

, , , Hb b b bγ δ ν

i

= 1.  = 0, 0.Hi b b b bγ δ ν⊕ ⊕ ≠

= 2.  0, = 0, 0.Hi b b b b bγ δ γ ν≠ ⊕ ⊕ ≠

= 3.  0, = 0, 0.Hi b b b b bγ ν γ δ≠ ⊕ ⊕ ≠

= 4.  , , , 0, = 0.H Hi b b b b b b bγ δ ν δ ν≠ ⊕ ⊕

= 5.  , , , 0, = 0.Hi b b b b b b bγ δ ν γ δ ν≠ ⊕ ⊕

= 6.  , , , 0, = 0.H Hi b b b b b b bγ δ ν γ ν≠ ⊕ ⊕

= 7.  = 0, = 0.Hi b b b bγ δ ν⊕ ⊕

= 8.  0, = 0, = 0.Hi b b b b bγ δ γ ν≠ ⊕ ⊕

= 9.  0, = 0, = 0.Hi b b b b bγ ν γ δ≠ ⊕ ⊕

γ δ ν

γ δ ν

≠= 10. , , , 0,
, , , linear independent.

H

H

i b b b b
b b b b

= 8r
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We consider weight spectra of dual shortened code
for the variants noted. Denote by  the matrix of
all linear combinations of rows of a matrix . If

, the number of rows and columns in sub-
matrices , as usually, is clear by the context. Note
that matrices , , and

 are identical for all codes . Entries
of type  mean that the submatrix  is removed for
shortening a code. In tables for weight spectrum,
denote by A , B , C  data for the following objects.

A : linear combination of  top rows of a
matrix .

B : linear combination of 4 bottom rows of a matrix
.
C : linear combination of  top rows and 4

bottom rows of a matrix .
. , . Spectrum of

type I.

The shortened parity check matrix has the form

Condition  means that columns
 are linear independent. Taking into account

(2.6)–(2.10), (2.16) and the structure of the matrix
, it can be shown that matrix 

with  has size  and
consists of  sections. Everyone from  iden-
tical bottom sections has size  and contains the
zero top row. The top section of size  does not
contain this zero row. Table 8 follows from the struc-
tures of matrices , ,

, , and .

. , , . Spec-
trum of type I.

The shortened parity check matrix has the form

Condition  means that columns
 are linear independent. Taking into account

(2.6)–(2.10), (2.16) and the structure of the matrix ,
it can be shown that matrix  with

 has size  and consists

of  sections. Everyone from  identical bot-
tom sections has size  and contains the zero top
row. The top section of size  does not contain
this zero row. Table 9 follows from the structures of

matrices , , , and
 for the case .

. , . Spectrum of
type II.

The shortened parity check matrix has the form

Condition  means that columns
 are linear dependent. Taking into account

(2.6)–(2.10), (2.16) and the structure of the matrix
, it can be shown that matrix 

with  has size  and
consists of  sections. Everyone from  iden-
tical bottom sections has size  and contains the
zero top row. The top section of size  does not
contain this zero row. Table 10 follows from the struc-
tures of matrices , , ,
and  for the case .

. ,  linear inde-
pendent. Spectrum of type III.

The shortened parity check matrix has the form

Taking into account (2.6)–(2.10), (2.16) and the
structure of matrix , it can be shown that matrix

 for the case, when 

are linear independent, has size  and

consists of  sections. Everyone from  iden-
tical bottom sections has size  and contains the

( )W A
A

= i j kA B B B
uB

( )W GGGG 15W G 8GG 4G( )
15W GG 8G 4G( ) ( )

,8
i

rΠ
B B

i i i
i ( 4)r −

( )
,8
i

rP
i

( )
,8
i

rP
i ( 4)r −

( )
,8
i

rP
= 1i = 0bγ 0Hb b bδ ν⊕ ⊕ ≠

0 1 2 0 0 0(1)
,8

15

H D
r

B B B B B B B
P

G G G G
δ≠ ν≠ ≠=

… … … …

… 8G… 4G…

.
G

⎡ ⎤
⎢ ⎥
⎣ ⎦…

0Hb b bδ ν⊕ ⊕ ≠
, , Hb b bδ ν

(1)
,8rP ( )0 0 0HW B B Bδ≠ ν≠ ≠

0Hb b bδ ν⊕ ⊕ ≠ 4(2 1) 12r − − ×
72 r − 72 1r − −

8 12×
7 12×

( )0 0 0HW B B Bδ≠ ν≠ ≠ ( )W GGGG

15W GG 8G 4G( ) (1)
,8rP ( )0 0 0HW B B Bδ≠ ν≠ ≠

= 2i 0bγ ≠ = 0bδ 0Hb b bγ ν⊕ ⊕ ≠

0 1 2 0 0 0(2)
,8

15

H D
r

B B B B B B B
P

G
δ= γ≠ ν≠ ≠=

… … … …

8G G G G… … 4G…

.
G

⎡ ⎤
⎢ ⎥
⎣ ⎦…

0Hb b bγ ν⊕ ⊕ ≠
, , Hb b bγ ν

(2)
,8rP

( )=0 0 0 0HW B B B Bδ γ≠ ν≠ ≠

γ ν⊕ ⊕ ≠ 0Hb b b 4(2 1) 17r − − ×
72 r − 72 1r − −

8 17×
7 17×

( )W GGGG 15W G 8GG 4G( ) (2)
,8rP

( )=0 0 0 0HW B B B Bδ γ≠ ν≠ ≠ 0Hb b bγ ν⊕ ⊕ ≠

= 7i = 0bγ = 0Hb b bδ ν⊕ ⊕

0 1 2 0 0 0(7)
,8

15

H D
r

B B B B B B B
P

G G G G
δ≠ ν≠ ≠=

… … … …

… 8G… 4G…

.
G

⎡ ⎤
⎢ ⎥
⎣ ⎦…

= 0Hb b bδ ν⊕ ⊕
, , Hb b bδ ν

(7)
,8rP ( )0 0 0HW B B Bδ≠ ν≠ ≠

= 0Hb b bδ ν⊕ ⊕ 4(2 1) 12r − − ×
−62 r 62 1r − −

4 12×
3 12×

( )W GGGG 15W GG 8G 4G( ) (7)
,8rP

( )0 0 0HW B B Bδ≠ ν≠ ≠ = 0Hb b bδ ν⊕ ⊕
= 10i , , , 0Hb b b bγ δ ν ≠ , , , Hb b b bγ δ ν

0 1 0 0 0 0(10)
,8

15

H D
r

B B B B B B B
P

G G G G
γ≠ δ≠ ν≠ ≠=

… … … … …

… … 8G… 4G…

.
G

⎡ ⎤
⎢ ⎥
⎣ ⎦…

(10)
,8rP

( )0 0 0 0HW B B B Bγ≠ δ≠ ν≠ ≠ γ δ ν, , , Hb b b b

4(2 1) 17r − − ×
82 r − 82 1r − −

16 17×
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Table 8. Weight spectrum of the code dual to the code . Spectrum of type I

Weight
(general case)

A1
the number

of words

B1
the number of 

words

C1
the number of 

words

Sum of the 
number of words

Weight Sum of the 
number of words

3 3 28 3

6 6 29 6

1 1 30 1

33 8

34 27

35 50

36 67

37 56

38 25

39 6

40 1

2 2 57 2

3 3 58 3

(1)
,8rΠ

8r = 8r =

32 4r − −
32 3r − −
32 2r − −

7E − 75 2 2r −⋅ − 75 2 2r −⋅ −

6E − 715 2 3r −⋅ − 715 2 3r −⋅ −

5E − 725 2 r −⋅ 725 2 r −⋅

4E − 735 2 3r −⋅ − 735 2 3r −⋅ −

3E − 71 2r −⋅ 730 2 6r −⋅ − 731 2 6r −⋅ −

2E − 73 2r −⋅ 710 2 1r −⋅ − 713 2 1r −⋅ −

1E − 73 2r −⋅ 73 2r −⋅

E 71 2 1r −⋅ − 71 2 1r −⋅ −
22 7r − −
22 6r − −

Table 9. Weight spectrum of the code dual to the code 

Weight
(general case)

A2
the number

of words

B2
the number

of words

C2
the number

of words

Sum of the 
number of words

Weight Sum of the 
number of words

3 3 28 3

6 6 29 6

1 1 30 1

33 8

34 27

35 50

36 67

37 56

38 25

39 6

40 1

2 2 57 2

3 3 58 3

(2)
,8rΠ

8r = 8r =

32 4r − −
32 3r − −
32 2r − −

7E − 71 2r −⋅ 74 2 2r −⋅ − 75 2 2r −⋅ −

6E − 72 2r −⋅ 713 2 3r −⋅ − 715 2 3r −⋅ −

5E − 71 2r −⋅ 724 2r −⋅ 725 2r −⋅

4E − 735 2 3r −⋅ − 735 2 3r −⋅ −

3E − 731 2 6r −⋅ − 731 2 6r −⋅ −

2E − 71 2r −⋅ 712 2 1r −⋅ − 713 2 1r −⋅ −

1E − 72 2r −⋅ 71 2r −⋅ 73 2r −⋅

E 71 2 1r −⋅ − 71 2 1r −⋅ −
22 7r − −
22 6r − −
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Table 10. Weight spectrum of the code dual to the code 

Weight
(general case)

A7
the number

of words

B7
the number

of words

C7
the number

of words

Sum of the 
number of words

Weight Sum of the 
number of words

3 3 28 3

6 6 29 6

1 1 30 1

33 6

34 33

35 48

36 57

37 66

38 27

40 3

2 2 57 2

3 3 58 3

(7)
,8rΠ

8r = 8r =

32 4r − −
32 3r − −
32 2r − −

7E − 62 2 2r −⋅ − 62 2 2r −⋅ −

6E − 69 2 3r −⋅ − 69 2 3r −⋅ −

5E − 612 2 r −⋅ 612 2 r −⋅

4E − 615 2 3r −⋅ − 615 2 3r −⋅ −

3E − 618 2 6r −⋅ − 618 2 6r −⋅ −

2E − 63 2r −⋅ 64 2 1r −⋅ − 67 2 1r −⋅ −

E 62 1r − − 62 1r − −
22 7r − −
22 6r − −

Table 11. Weight spectrum of the code dual to the code 

Weight
(general case)

A10
the number

of words

B10
the number

of words

C10
the number

of words

Sum of the 
number of words

Weight Sum of the 
number of words

3 3 28 3

6 6 29 6

1 1 30 1

32 1

33 6

34 25

35 56

36 67

37 50

38 27

39 8

40 0

2 2 57 2

3 3 58 3

(10)
,8rΠ

8r = 8r =

− −32 4r

− −32 3r

− −32 2r

8E − 81 2r −⋅ 82r −

7E − 83 2r −⋅ 85 2 2r −⋅ − 88 2 2r −⋅ −

6E − 83 2r −⋅ 825 2 3r −⋅ − 828 2 3r −⋅ −

5E − 81 2r −⋅ 855 2r −⋅ 856 2r −⋅

4E − 870 2 3r −⋅ − 870 2 3r −⋅ −

3E − 81 2r −⋅ 855 2 6r −⋅ − 856 2 6r −⋅ −

2E − 83 2r −⋅ 825 2 1r −⋅ − 828 2 1r −⋅ −

1E − 83 2r −⋅ 85 2r −⋅ 88 2r −⋅

E 81 2 1r −⋅ − 81 2 1r −⋅ −
− −22 7r

− −22 6r
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zero top row. The top section of size  does not
contain this zero row. Table 11 follows from the struc-
tures of matrices , , ,
and  for the case when

 are linear independent.

Spectra of codes  with  can be
obtained similarly to above-said. Spectra of codes with

 are the same; we call them spectra of type
I. Spectra of codes with  are identical to each
other; we call them spectra of type II. Finally, the code
with  has type III. Table 1 gives the summary of
all the results.

Theorem 2.7 is proved.

ACKNOWLEDGMENTS
The work was carried out at the IITP RAS at the

expense of the Russian Science Foundation (project
no. 14-50-00150).

REFERENCES
1. E. Fujiwara, Code Design for Dependable Systems The-

ory and Practical Applications. USA (Wiley, New Jersey,
2006).

2. R. Micheloni, A. Marelli, and R. Ravasio, Error Cor-
rection Codes for Non-Volatile Memories (Springer-Ver-
lag, Qimonda Italy, 2008).

3. Yu. L. Sagalovich, “Code protection of computer ran-
dom access memory from errors,” Avtom. Telemekh.
52 (5), 3–45 (1991).

4. V. M. Sidel’nikov, “On spectrum of weights of binary
Bose–Chaudhuri–Hocquenghem codes,” Probl. Pere-
dachi Inf. 7 (1), 14–22 (1971).

5. T. Kasami, T. Fujiwara, and S. Lin, “An approximation
to the weight destitution of binary linear codes,” IEEE
Trans. Inf. Theory 31, 769–780 (1985).

6. I. Krasikov and S. Litsyn, “On Spectra of BCH Codes,”
IEEE Trans. Inf. Theory 41, 786–788 (1995).

7. E. R. Berlekamp, Algebraic Coding Theory (McGrow-
Hill, New-York, 1968; Mir, Moskow, 1971).

8. T. Kassami, N. Tokura, E. Ivadari, and Ya. Inagaki,
Coding Theory (Mir, Moscow, 1978).

9. F. J. MacWilliams and N. J. A. Sloane, The Theory of
Error-Correcting Codes (North-Holland Publ. Com-
pany, Amsterdam, 1977).

10. A. Barg and I. Dumer, “On Computing the Weight
Spectrum of Cyclic Codes,” IEEE Trans. Inf. Theory
38, 1382–1386 (1992).

11. V. I. Panchenko, “On optimization of linear code with
distance 4,” in Proc. 8th All-Union Conf. on Coding The-
ory and Communications, Kuibyshev, 1981, Part 2: Cod-
ing Theory (Moscow, 1981), pp. 132–134 [in Russian].

12. A. A. Davydov and L. M. Tombak, “An alternative to
the Hamming code in the class of SEC-DED codes in
semiconductor memory,” IEEE Trans. Inf. Theory 37,
897–902 (1991).

13. R. E. Blahut, Theory and Practice of Error Control Codes
(Addison-Wesley, Reading, 1984; Mir, Moscow, 1986).

14. V. D. Kolesnik, Error-Correcting Coding for Transmis-
sion and Storage of Information (Algebraic Theory of
Block Codes) (Vysshaya Shkola, Moscow, 2009)
[in Russian].

15. A. A. Davydov and L. M. Tombak, “Quasi-perfect lin-
ear binary codes with minimal distance 4 and full caps
in projective geometry,” Probl. Peredachi Inf. 25 (4),
11–23 (1989).

16. A. A. Davydov, A. Yu. Drozhzhina-Labinskaya, and
L. M. Tombak, “Supplementary correcting possibilities
of BCH codes, correcting double and triple errors,” in
Problems of Cybernetics. Complex Engineering of Ele-
mental and Assembly Base of Super Computer, Ed. by
V. A. Mel’nikov and Yu. I. Mitropol’skii (VINITI,
Moscow, 1988), pp. 86–112 [in Russian].

17. S. A. Ashmanov, Linear Programming (Nauka, Mos-
cow, 1981) [in Russian].

15 17×

( )W GGGG 15W GG 8G 4G( ) (10)
,8rP

( )0 0 0 0HW B B B Bγ≠ δ≠ ν≠ ≠

γ δ ν, , , Hb b b b
( )

,8
i

rΠ = 3,4,5,6,8,9i

= 1, ,6i …

= 7,8,9i

= 10i


