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Abstract

We discuss geometrical problems which arise in investigation of sys-
tems of early vision of mammals. In particular, we consider two questions:
1) Which visual information comes to eye (retina) and how does it change
under movement of eye and head?
2) How do eyes and brain extract invariant information about the external
geometry from the subjective (dependant on position etc.) input infor-
mation which light brings to retina?

The aim of vision is to obtain information about (Euclidean ) geome-
try of the external world from light which falls to the retina. It must be
objective, i.e. independent from position of observer ( that is invariant
with respect to change of position of eyes, head, velocity etc.)
In the first part of the paper, we analyze which visual information comes
to retina and how it changes due to eye movements. We show that under
some assumptions, visual information which brain use for reconstruction
of black-white picture is encoded into a function I of the energy of light
falling on retina R ( which is a part of the eye sphere S2). The differ-
ential dI of this input function defines the 1-dimensional distribution on
retina. Integral curves of this distributions (”contours”, that is the level
set I = const ) are the main geometric objects which are detected in early
vision. We show that rotation of eye induces a conformal change of the
input function I. One of the main problem (called in neurophysiology
”stability problem”) is to describe a mechanism of compensation of such
transformations of image in retina. We review known fact about infor-
mation processing in retina and primary visual cortex VI and functional
architecture of VI cortex, including models of Petitot, Citti, Sarti of VI
cortrex and model of Bressloff and Covan of hypercolumns and propose
an unification of these models . We consider an application of this unified
model to problem of stability. 1

1This work is written at the IITP and is supported by an RNF grant (project n.14-50-
00150).
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1 Geometry of light

1.1 Light in approximation of geometric optics

In the approximation of geometric optics light is described in terms of
the space L(E3) ' TS2 of straight lines. Light travels along a line ` and
has energy density (the average value of the square norm of electric filed).
In geometric optics one assumes that this energy density I(`) is constant
along ` and does not depend on time. The wave length (color) and po-
larization of light are ignored . (It seems that polarization is important
only for birds and insects which use it for navigation). Then all informa-
tion which is available for eye is encoded in the density or energy of light
I : L(E3) 3 `→ R≥0.

1.2 Light in approximation of classical electro-
dynamics (CED)

Let (M1,3, g) be the Minkowski space and (M1,3 = Rt×E3, g = −dt2+gE)
its decomposition into the time and the space associated with an inertial
observer. According to Maxwell electrodynamics, light is described as
a radiation solution of the Maxwell equation (dF = d ∗ F = 0) that is
a harmonic 2-form F which is a superposition of null ( or plane-wave )
solutions F such that (g(F, F ) = g(F, ∗F ) = 0) . Such plane-wave 2-
form F can be written as F = p ∧ e where p is an isotropic geodesic
vector field (∇pp = 0) and e ∈ Γ(E(p)) is a section of the screen bundle
E(p) = p⊥/Rp. If p = e0 + e1, e = e2 then F = p ∧ e2 = e0 ∧ e2 + e1 ∧ e2

and F describes an electro-magnetic wave with electric vector E = e2 and
magnetic vector H = ∗(e1 ∧ e2) = e3 which is propagated in direction of
the vector e1 = e2 × e3.

1.2.1 The space L0(M1,3) = S2 × E3 = S(E3) ⊂ TE3 of
isotropic lines

Any isotropic line has the form ` = x + Rp where x = ` ∩ E3 and p ∈
Cx = C(TxM

1,3) an isotropic vector. So the space L0(M1,3) of isotropic
lines is naturally identified with
L0(M1,3) = S2×E3 = S(E3) = {(Rp, x)} where S2 = PCx is the celestial
sphere i.e. the projectivization of the light cone Cx.
Note that the space L0(M1,3) of isotropic lines can be identified with the
incident space Inc(E3, L(E3)) = {(x, `), x ∈ `} ⊂ E3 × L(E3). Also
L(M1,3) is identified with the unit sphere bundle S(E3) of the Euclidean
space E3: a unite vector v ∈ Sx(E3) ⊂ Tx(E3) corresponds to isotropic
line `(x, v) = x+ R(∂t + v).

1.2.2 Geodesic congruences of isotropic lines

An isotropic vector fieldM1,3 3 x→ p(x) ∈ Cx is called geodesic field if its
orbits are (isotropic) geodesics (equivalently, ∇pp = 0). It is determined
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by its restriction to E3 which is a section pE3 : E3 → L0(M1,3) = S2×E3

of the bundle

π : L0(M1,3) = S2 × E3 = S(E3)→ E3.

The 3-dimensional submanifold M(p) := pE3(E3) ⊂ L0(M1,3) of the man-
ifold of isotropic lines associated with an isotropic geodesic vector field p
is called a congruence of isotropic lines.

The section pE3 can be identified with a unit vector field pE3 : E3 3
x 7→ vx ∈ TxE3 = E3, where p(x) = ∂t + vx.

1.2.3 Shear free congruences of isotropic lines

Denote by ϕt the (local) flow generated by an isotropic geodesic vector
field p. The field p and associated congruence M(p) is called shear-free
if the isomorphism

(ϕt)∗ : Tx(0)M
1,3 → Tx(t)M

1,3

induced by the shift ϕt along a geodesic ` = {x(t) = ϕtx(0)} preserves
the orthogonal complement p⊥ to the tangent vector p(x(t)) = ẋ(t) and
the map

(ϕt)∗ : p(x(0))⊥ → p(x(t))⊥

is a conformal map with respect to the (degenerate) metric g|p⊥ induced
by the Minkowski metric of M1,3.

1.2.4 Robertson and Kerr theorems

Robertson theorem states that an isotropic geodesic vector field p(x) ∈
X (M1,3) can be extended to a null solution F = p(x)∧ e(x) ∈ Ω(M1,3) of
the Maxwell equation if and only if the associated geodesic congruence is
shear-free.
The Kerr theorem gives a description of shear-free congruence in terms
of complex surfaces of the Penrose twistor space CP 3 of the Minkowski
space M1,3 .

Let R4 = Re0 ⊕ R3 be an orthogonal decomposition of the Eucledean
space (R4, g =< ., . >).
R1,3 = Rie0 ⊕ R3 associated Minkowski vector space and C4 = R4 ⊗ C.
Recall the direct sum decomposition of orthogonal Lie algebra so4 =
sp1 ⊕ sp′1. The set of complex structures in sp1 is parametrised by unit
vectors e1 ∈ R3 :
J = Je1 = e0 ∧ e1 + e2 ∧ e3 where e1, e2, e3 is an oriented orthonormal
basis of R3.
It defines the eigenspace decomposition C4 = Π⊕Π̄, where the J-holomorphic
complex isotropic 2-plane Π = ΠJ = span(e0 + ie1, e2 + ie3) is called an
α-plane or selfdual planes.

1.2.5 An algebraic lemma

Lemma 1 [1] There is 1-1 correspondence between
i) complex structure J ∈ sp1 in R4,
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ii) α-planes ΠJ ,
iii) unit vectors e1 = Je0 ∈ R3

iv) isotropic lines Rp, p = e0 + e1 in the Minkowski space R1,3.

1.2.6 CR structures on E3 and the canonical CR structure
on L0(M1,3) = S2 × E3.

A unit vector field V : E3 → S2 defines a CR structure (H, JV ) =
(V ⊥, Rπ/2) in E3.

The canonical integrable CR structure in L0(M1,3) = S2 × E3 is de-
fined as

(H, J)x,V = (V ⊥x ⊕ TV S2, Rπ/2 ⊕ JS
2

).

This CR structure is induced by the embedding L0(M1,3) = S(E3) ⊂
TS2 of the space of isotropic line as a unite sphere bundle into the tangent
bundle TS2 of the conformal sphere S2 with the natural complex structure
defined by the conformal structure of S2.

1.2.7 Conformal 1-dimensional foliations of E3.

The foliation of E3 defined by a unit vector field V is called to be con-
formal if one of the equivalent conditions holds:
1) The map V : E3 → S(E3) = L0(E3) is a CR map;
2) ((LV JV )X)⊥ = 0, X ∈ V ⊥, where LX stands for the Lie derivative.
4)LV ◦ JV = JV ◦ LV |V⊥ where LV = ∇V ∈ Hom(TE3, V ⊥)
Locally any conformal foliation has the form ker(df) for some complex
function f : E3 → C with (gradf)2 = 0.

1.2.8 A description of shear free congruences ( P. Baird,
J.Wood)

Locally the following objects are equivalent :
i) A complex structure J in a domain D ⊂ R4 s.t. (gcan, J) is a Hermitian
structure;
ii) Foliation of the domain DC ⊂ C4 by α-planes;
iii)The conformal foliation of the domain D ∩ R3;
iv) Shear-free congruence of the domain DC ∩ R1,3.

1.3 Geometry of lines in E3

The space L(E3) of lines `x,e = {x + Re, x ⊥ e} in E3 = R3 is a 4-
dimensional manifold which is naturally identified with the (co)tangent
bundle L(E3) = T ∗S2 = TS2 of the standard unit sphere S2 ⊂ R3.

The group E(3) of Euclidean motions acts transitively on L(E3) with
the stability subgroup SO2 × R.
The homogeneous manifold L(E3) = E(3)/(SO2 × R) carries the natural
E(3)-invariant symplectic structure ω, the complex structure J and the
metric g = ω ◦ J of neutral signature (2, 2).
Moreover, (g, J, ω) is an invariant pseudo-Kähler structure and L(E3) =
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E(3)/SO2 × R is a pseudo-Kähler symmetric space. The symmetry at a
point ` is defined by the Euclidean reflection w.r.t. `.

A point x ∈ E3 defines the projective plane L(x) of lines going through
x. It is a 2-dimensional Lagrangian submanifold of L(E3).

A line ` ⊂ E3 defines a 3-dimensional submanifold of lines which in-
tersect `.

A unit vector field V : E3 → S2 (which is a section of the bundle
L0(M1,3) = E3 × S2 → E3) defines a 3-dimensional submanifolds in
L0(M1,3) and L(E3).

The manifold L(E3) can be considered as the supersphere (2-sphere
over the Grassman algebra of dual numbers) (Study-Kotelnikov ).

1.3.1 Embedding of L(E3) into the manifold L(P 3) = Gr2(V 4) ⊂
PC(Λ2V ) of projective lines

The natural compactification of L(E3) is the space L(P 3) = Gr2(V 4)
of projective lines, that is the Grassmannian of two-planes in the 4-
dimensional space V 4 = {(t, x, y, z)}.
The projective group PGL(V ) = SL4(R)/±1 and its subgroup SO4 act
transitively on L(P 3) and act locally on L(E3). In particular

L(P 3) = SO4/S(O2×O2) = (SO3×SO3)/Z2)/S(O2×O2) = (S2×S2)/Z2.

Also the group SO2,2 acts locally transitively on L(P 3) with four open
orbits and two codimension one orbits.

The subgroup of PGL(V ) which preserves a ball B3 ⊂ E3 ⊂ P 3 is
the Lorentz group SO1,3. (In terms of homogeneous coordinates, B3 is
defined by {x2 + y2 + z2 ≤ t2}.)
It acts in the interior of the ball B3 as the group of isometries of the
Lobachevski metric and on the boundary ”celestial” sphere S2 as the con-
formal Möbius group.

In particular, a transformation A ∈ SO1,3 preserves the Euclidean an-
gle between curves on S2 and transforms circles (i.e. intersection of S2

with planes of E3), but do not preserves the length of curves.

1.3.2 Space of lines as the Klein quadric

The space of lines L(P 3) has a natural embedding

i : Π = span(a, b) 7→ R(a ∧ b) ∈ Q = PC(Λ2V ) ⊂ P (Λ2V ) = P 5

as the Klein quadric Q into the projective space PΛ2V . The Klein quadric
is the projectivisation of the cone C(Λ2V ) of isotropic vectors in the space
Λ2V of bivectors w.r.t. the natural scalar product

gΛ(a ∧ b, c ∧ d) := (a ∧ b ∧ c ∧ d)/vol
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of signature (3, 3). Hence the group SO3,3 acts transitively in L(P 3) =
SO3,3/P and acts locally in L(E3). The set L(x) of lines through a point
corresponds to the projective plane i(L(x)) ⊂ P 5 which belongs to the
Klein quadric Q = SO3,3/P = L(P 3) = P (C(Λ2V )). The group SO3,3 is
the group of conformal transformations ofQ w.r.t. the conformal structure
induced by the metric gΛ.

2 Eye

2.1 Eye as an optical device

We will consider now an eye as an optical device in the framework of
geometric optic. Of course, a description of light as electromagnetic waves
in the framework of Maxwell electrodynamics or in terms of quantum
electrodynamics would be more relevant.

Eye as an optical system is a transparent ball B3 with a system of
lenses which consists of cornea and lens. They focus light to retina R
which is back part of the boundary sphere S2. The inner part of retina
contains receptors ( cones and rodes) which work as photoelements and
transform light into electric impulses.
The cumulative effect of the cornea and lens is equivalent to action of a
lens with center at a point F of the eye sphere S2 , which focuses light
rays to the retina. So we will assume that there is only a lens with center
at a point F ∈ S2 .

2.1.1 The function of energy of light falling on retina

Consider a point A ∈ E3 which is a source of light, going along rays
with constant energy density. The light beam ` = (AF ) which emits
from a point A and passes through the center F of the eye lens has no
refraction and is registered by a receptor at the point Ā := ` ∩ S2 of the
retina R ⊂ S2. Any other beam from A which goes through the lens
L is focused and enters the same point Ā. So the energy of light I(Ā)
at the point Ā of retina is given by the integral of the density of light
I((AX)) = I(A) emits from A in direction (AX) and incident upon the
lens :

I(Ā) :=

∫
Y ∈D

I(AY )dσ = Ω(A) · I(A)

where D = {(AX) ∩ S2(A), X ∈ L} is the intersection of the cone with
vertex A of beams incident upon the lens L, dσ is the standard measure
of this sphere and Ω(A) =

∫
D
dσ is the solid angle. The last equality

holds since we assume that the density of energy I(AX) = I(A) does not
depend of the direction of a beam.

Let M ⊂ E3 be a surface and each point A ∈ M emits light along
any ray with energy density IM (A) (which does not depend on direction).
We consider the central projection πF : M → S2 with the center at
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F ∈ S2 which maps the surface to the eye sphere by

πF : M 3 A 7→ Ā := (AF ) ∩ S2

where (AF ) ∩ S2 the point of intersection , different from F .
It is a local diffeomorphism near any point A ∈ M where the line (FA)
does not belong to the tangent planes TAM and TFS

2. Then the energy
function of light enters the retina is given by

I(Ā) = Ω(A) · IM (π−1(Ā)) = Ω(A) · IM (A).

We assume that the solid angle Σ = Ω(A) associated with any point
A ∈M is constant. Then the energy function of light

I : R→ R, Ā 7→ I(Ā)

enter to retina and detected by receptors is proportional to the pull back
of the density energy function IM via the inverse map π−1 : R → M .
More precisely,

I(Ā) = Ω · IM (A) = Ω · IM (π−1(Ā)).

Even if the surface M is stationary, the energy function I of light
falling on retina depends on time, since the eye is always rotates around
the center O. So we have to consider the energy function

I : S2 × R ⊃ R× R→ R, (Ā, t) 7→ I(Ā, t) = I(z, t)

of light falling on retina as function of three variables, where t ∈ R is the
time and z = (x, y) are coordinates fixed with respect to eye.

The brain extracts all visual information about external world
from this energy function of light falling on retina.
(Recall that we consider only black-white vision and ignore the color).

2.1.2 Remark about input function on retina

As we mention above, all information on black-white vision is extracted
from the energy function I of light falling on retina. Since we discuss
black-white vision, the wave length ( color) is not important as well as the
polarization of light. Note that the polarisation of light play an important
role for birds and insects, which use it for orientation.
Geometrically, the function I is described by level sets I = c = const
together with indication of its value c on a level set. However the values
of the energy function I depends on luminosity and not important for
perception of images. For example, it changes dozens of times when we
turn on the light.
So it seems that the visual system detects information mostly from the 1-
dimensional distribution ( Pfaff system) whose integral curves are contours
( level sets of I). They are determined by the differential dI and even by
the conformal class [dI] of 1-form dI. I thanks Valentin Lychagin for this
remark.
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2.2 Eye as a rigid body. Donder’s and Listing’s
laws

Eye is a rigid ball B3
O which can rotate around the center O w.r.t. three

mutually orthogonal axis
−→
i ,
−→
j ,
−→
k .

For a fixed position of head, there is a privilege initial position B(OF0)
of the eye ball corresponding to the standard (frontal) direction (OF0).
Donder’s law (1846)(No twist). If the head is fixed, the result of a move-
ment of eye from position B(OF0) to a new position B(OF ) is uniquely
determined by the line of sight OF and do not depend on previous move-
ments.
This means that the curve on the sphere, which is described by the rota-
tion of the line of sight OF , determines the curve in the orthogonal group
SO3, which describe the eye movement. Mathematically, this defines a
section of the frame bundle SO3 → S2 = SO3/SO2.
Listing’s law (1845) The movement from the initial position B(OF0)
to other position B(OF ) is obtained by rotation with respect to the axis
−−→
OF0 ×

−−→
OF .

The curve in SO3 is the parallel lift of the arc F0F ⊂ S2.

2.3 Fixation eyes movements. Tremor, drift and
microsaccades

Eyes participates in different involuntary types of movements. Even when
the gaze is ”fixed”, the eye participates in so called ”fixation eye move-
ments”

Fixation eye movements include: tremor, drifts and microsac-
cades.

Tremor is an aperiodic, wave-like motion of the eyes of high frequency
but very small amplitude.
Drifts occur simultaneously with tremor and are slow motions of eyes, in
which the image of the fixation point for each eye remains within the fovea
Drifts occurs between the fast, jerk-like, linear microsaccades.

2.3.1 Characteristics of fixation eye movements

Amplitude Duration Frequency Speed

Tremor 20-40 sec - 30-100 Hz Max 20 min/s

Drift 1-9 min 0.2-0.8 s 95-97% of time 1-30 min/s

Micsac 1-50 min 0.01-0.02 s 0.1-5 Hz 10− 50◦/s

Per 1 s tremor moves on 1-1.5 diameters of the fovea cone
drift moves on 10-15 diameters
microsaccades moves on 15-300 diameters.
Under tremor the axis of eye draws a cone for 0.1 s.
Many microsaccades arise when the image of the fixing point is in the
center of fovea or near the border of fovea. One of the aim of microsac-
cades is to control that the projection of the fixed point of the gaze will
be inside the fovea. It is a typical example of on-off control.
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2.3.2 Model of eye movements by R.Engbert, K. Mergen-
thaler, P. Sinn, A. Pikovsky: ”Self-avoiding random walk
in a swamp on paraboloid”

R.Engbert, K. Mergenthaler, P. Sinn, A. Pikovsky propose a model of
involuntary eye movement described as a self-avoiding random walk on
the square lattice Z2 with quadratic potential (”Walk in a swamp on a
paraboloid”.
The physiological aim of such random walk is that when the gaze is fixed
at a point A, the images of this point on retina must be homogeneously
distributed between all receptors of the fovea.
The model is defined by the cost function (”depth of the swamp”)

h : Z2 → R, (i, j) 7→ hij .

The walker at point (i, j) moves to the neighbor point (i′, j′) which
is one of the four points (i ± 1, j), (i, j ± 1) which has the smallest cost.
After this, the cost h(i′, j′) increases by 1 (the swamp at (i′, j′) becomes
deeper)

h(i′, j′)→ h(i′, j′) + 1

and the cost at all other points relax by the law

hkl → (1− ε)hkl.

The mean square displacement D2(t) for time t ∈ Z can be locally approx-
imated by the function tα. For classical random walk α = 1. The authors
find parameters which gives good correspondence with experiments. The
generic path has less selfintersections then the classical random walk and
it demonstrates persistent behavior (α > 1) on a short timescale and an-
tipersistent behavior (α < 1) on a long timescale, which is consistent with
experimental results.

2.3.3 Why eyes must always rotate?

In the framework of geometric optic ,the information carried by the light
is encoded in the density energy function on the 4-dimensional space
L(E3) of lines. When the position of the eye is fixed, the receptors in
the retina can detect only restriction of this function to the 2-dimensional
(Lagrangian) submanifolds LF of lines , which pass through the center of
lens F . Using fixation eye movements, humans are able to detect informa-
tion about energy function I on some 4-dimensional neighbourhood of the
Lagrangian submanifold L(F ) in L(E3). The cost is that the organization
of such movements is a very complicated problem and many brains and
sensomotor structures are involved in it.
A neurophysiological reason for fixation eye movements will be discussed
later.

3 Central projection. Euclidean case

We give formula for the cental projection πF : M → S2 of a parametrized
surface M = {A = (x(u, v), y(u, v), z(u, v))} ⊂ R3 of the Euclidean space

11



E3 = R3 into the sphere

S2 = {A,
−→
OA2 = r2

0}

with center O = (0, 0, 0) at the origin with respect to the point F =
(r, 0, 0).
It maps a point A ∈ M to the second point of intersection (AF ) ∩ S2 of
the ray (AF ) with the sphere S2.

3.0.4 Formula for central projection

We identify a point A = (x, y, z) with the position vector
−→
OA = (x, y, z).

The central projection is given by

πF : M 3 A 7→ Ā,
−→
OĀ =

−−→
OF − f(A)

−→
FA = −f(A)

−→
OA+ (1− f(A))

−−→
OF

where the function f(A) is the positive solution of the quadratic equation

(FA)2f2 − 2(
−−→
OF ·

−→
FA)f +OF 2 − r2

0 = 0.

Consider the case when F ∈ S2, i.e. r0 = r. Then the equation becomes
linear and we get

f(A) =
2
−−→
OF ·

−→
FA

(FA)2
=

2r(x− r)
(x− r)2 + y2 + z2

Finally,

πF : A 7→ Ā,
−→
OĀ =

−−→
OF − 2

−−→
OF ·
−→
FA

(FA)2

−→
FA = r(

−→
i − 2 cosφ−→e )

where
−→
i ,
−→
j ,
−→
k are basic orts , φ is the angle between

−→
i and

−→
FA and −→e

is the unit vector in direction of
−→
FA. In terms of coordinates,

πF : (x, y, z) 7→ r

R2
(−(x− r)2 + y2 + z2, 2(x− r)y, 2(x− r)z),

where R2 := (A− F )2 = (x− r)2 + y2 + z2.

3.0.5 Relation between metrics on M and S2

We calculate the metric gS2 = (dĀ)2 of the sphere S2 in coordinates u, v,
where Ā(u, v) = πFA(u, v). We have

dĀ = −d(f(A− F )) = −df(A− F )− fdA,

gS2 = (dĀ)2 = f2(dA)2 + fdfd(R2) +R2df2

= f2(dA)2 + df(d(R2f))
= f2(dA)2 + 2rdxdf.

Corollary 1 The cental projection πF : M → S2 is a conformal map if

and only if dx = 0 i.e. M is a part of the plane orthogonal to
−→
i = (1; 0; 0)

or df = 0 i.e. M is a part of the sphere

(x− r(1 + λ))2 + y2 + z2 = λ2r2

with the center on the coordinate line 0x which contains the point F =
(r, 0, 0).
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3.0.6 Rotation lemma

Let R ∈ SO3 be a rotation around the center of the sphere S2. It pre-
serves the sphere S2 and transform the point F into F ′ = RF . We denote
by πRF : M → RS2 = S2 the central projection of the surface into the
sphere RS2. We identify the image Ā = πF (A) of a point A on the sphere
S2 with the point RĀ ∈ RS2 = S2.

Lemma 2 The central projections πF : M → S2 and πRF : M → RS2

are related by
πRF = RπF ◦R−1 : M → S2.

In other words, the rotation R of the sphere around the center O is equiv-
alent to the rotation on the surface M by the inverse transformation R−1.

Proof. We set fF (A) = 2
−→
FA·
−−→
OF

(FA)2
. Then fRF (A) = fF (R−1A) and

πRF (A) = (
−−−−→
O(RF )+fRF (A) = R[

−−→
OF+fF (R−1A)

−−−−−−→
F (R−1A)] = RπF (R−1A)

�

3.0.7 Central projection of a plane to sphere

We consider special case when M is a plane. We may assume that
M = Πρ

n = {A, n · A = ρ} is the plane with the normal vector n =
(cosϕ, sinϕ, 0) where ρ is the distance from M to the center of S2. Then

Πρ
n = {A = ρn+(sinϕy,− cosϕy, z) = (ρ cosϕ+sinϕy, ρ sinϕ−cosϕy, z)}

Proposition 1 The induces metric gS2 of the sphere S2 w.r.t. the local
coordinates y, z s.t. Ā(y, z) = πFA(y, z) is given by

gS2 = dĀ2 = f2dA2 − 2r sinϕdydf

where dA2 = dy2 + dz2 is the metric of the plane Πn
ρ

f = −2
−−→
OF ·

−→
FA

−→
FA2

= −2r(sinϕy + β)

R2
,

R2 = (FA)2 := (y − r sinϕ)2 + (ρ− r cosϕ)2 + z2, β = ρ cosϕ− r.

3.0.8 When the central projection of a plane is a conformal
map ?

Corollary 2 1. The central projection πi : Πn
ρ → S2 is a conformal

map if and only if the plane is frontal , i.e. it is orthogonal to the

frontal direction
−−→
OF (i.e. −→n =

−→
i = (1, 0, 0)).

2. For the plane Πn
ρ which is obtained from a central plane by rotation

Rϕ0z w.r.t. the axis 0z the deviation from conformality 2r sinϕdydf
is small if the angle ϕ is small.
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3. Let π : Π→ S2, π′ : Π′ → S2 be the central projections with respect
to F = (r, 0, 0) where Π is a frontal plane and Π′ = RΠ is obtained
from Π by a rotation R on angle ϕ. Then the local diffeomorphism
Φ = π′ ◦ R ◦ π−1 : S2 → S2 (which describe the transformation of
the image π(Π))) is not a conformal transformation, but it is closed
to a conformal transformation if the angle ϕ is small.

4 Central projection. Projective case

4.1 Minkowski space and conformal sphere

Let (M1,3, g) be the Minkowski space with metric g of signature (−,+,+,+).
We fix a pseudo-orthogonal frame (O, e0, e1, e2, e3) and identify M1,3 with
Minkowski vector space V = R1,3 = Re0⊕R3 with coordinates (t, x, y, z).
We denote by SO(V ) = Aut(V, g)con the connected Lorentz group. It acts
naturally into the projective space P 3 = PV with three orbits :
i)the open orbit B3 = PV− = SO(V )/SO(V )e0 = SO1,3/SO3 which is
the projectivisation of the set V− = {X ∈ V, g(X,X) < 0} of timelike
vectors.
ii)the open orbit B3

+ = PV+ = SO(V )/SO(V )e3 = SO1,3/SO1,2, which
is the projectivization of the set V+ = {X ∈ V, g(X,X) > 0} of spacelike
vectors,
iii) the closed codimension one orbit Q = PV0 = {[p] := Rp, p ∈ V0} ' S2

, which is the projectivisation of the cone of isotropic vectors V0.
The metric g induces a conformal structure on Q ' S2 . The submani-
fold Q = {p = (t, x, y, z),−t2 + x2 + y2 + z2 = 0} ⊂ PV is a projective
quadric. The connected Lorentz group SO(V ) = SO1,3 acts transitively
on Q as the conformal group (the Möbius group). The stability subgroup
P = SO(V )[p] of the point [p], p = 1√

2
(e3 + e0) is isomorphic to the group

Sim(E2) = R+ · SO2 · R2 of similarity transformations of the Euclidean
plane. With respect to the basis p = 1√

2
(e3 + e0), e1, e2, q = 1√

2
(e3 − e0),

the stability subgroup P consists from the matrices of the form

{A =

a −XT 0
0 A0 X
0 0 a−1

 (1)

where a ∈ R+.A0 ∈ SO2, X ∈ R2.

Lemma 3 The subgroup P = SO(V )[p] acts transitively on Q\{[p]} with
stability subgroup P[q] = {diag(a,A0, a

−1)} ' CO2 and on B3 = PV−.

Proof: A non zero isotropic vector which is not proportional to p can
be written as p′ = up + Z + vq, where uv + Z2 = 0, u 6= 0, v 6= 0, Z =
Z1e1 +Z2e2 6= 0. Using transformation of the form (1) with a = 1, A = id,
we can transform p′ into a vector p′′ = (0, Z′, v) with zero first coordinate.
Since p′′ is an isotropic vector, Z′ = 0 and p′′ = vq. This shows that any
element [p′] ∈ Q \ {[p]} can be transform into element [q] and Q \ {[p]}
consists of one orbit of P .Now we may transform any line [n] ∈ PV− into
a line [n′] ⊂ span(p, q) and then the last result follows from (1). �
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4.1.1 Graded Lie algebra of the group SO(V )

Let p, q be isotropic vectors with g(p, q) = 1 and E := span(p, q)⊥.
The gradation V = V−1 + V0 + V1 = Rq + E2 + Rp
induces the gradation of the Lie algebra so(V ) which we identify with the
space of bivectors Λ2(V ) :

so(V ) = q ∧ E2 + (Rp ∧ q + Λ2(E2)) + p ∧ E2 = g−1 + g0 + g1.

The stability subalgebra of the point [p] ∈ Q is

so(V )[p] = g0 + g1 = (Rp ∧ q + so(E2)) + p ∧ E2.

The gradation of so(V ) defines a (local) decomposition of the Möbius
group SO(V ) into a product

SO(V ) = G−1 ·G0 ·G1 = R2
− · CO(R2) · R2

+

of three subgroups G±1 ' R2, G0 ' CO2 = R+ ·SO2. Subgroups G0 ·G±1

are isomorphic to the similarity group Sim(E2) = R+ · SO2 · R2 of the
plane.

4.1.2 Riemann model of conformal sphere

The stereographic projection of the sphere S2 with respect to the ”north
pole” N is a conformal diffeomorphism of the sphere without the pole
S2 \ {N} onto the Euclidean plane E2. We can identify E2 with C and
the sphere S2 with the Riemann sphere Ĉ = C ∪ {∞} with holomorphic
coordinate z. Then the conformal Möbius group SO(V ) is identified with
the group SL2(C) (more precisely, with its quotient SL2(C)/±id by the
subgroup Z2 = {±id} which acts trivially ) of fractional linear transfor-
mations

SL2(C) 3 A : z 7→ az + b

cz + d
, a, b, c, d ∈ C.

The Lie algebra sl2(C) is identified with the Lie algebra of quadratic holo-
morphic vector fields with the natural gradation

sl2(C) = {X = (a+bz+cz2)∂z} = g−1+g0+g1 = {a∂z}+{bz∂z}+{cz2∂z}.

The corresponding (local) decomposition SL2(C) = G−1 ·G0 ·G1 is the
standard Gauss decomposition into upper triangular unipotent subgroup
, diagonal subgroup and law triangular unipotent subgroup. In particular,
G−1 = R2

− consists of parallel translations z 7→ z + b and
the dual subgroup G1 = R2

+ consists of transformations z 7→ z
cz+1

.

4.1.3 Generators of the stability subgroup P = G0 ·G+

In term of the Riemann model Ĉ of the conformal sphere, we describe the
standard generators of the stability subgroup P = SL2(C)0 of the origin
0 ∈ Ĉ. Let (x, y) be the Euclidean coordinates of C associated with the
holomorphic coordinate z = x+ iy and (r, ϕ) corresponding polar coordi-
nates.
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The stability subalgebra p = (sl2(C)0 = g0 + g1 of the origin 0 is
identifies with the Lie algebra of conformal vector fields in R2 = C which
vanish at the origin. It has the following basis:
E = r∂r = x∂x + y∂y (the Euler field or dilatation)
R = x∂y − y∂x (rotation)
Y 1 = 2xe− r2∂x = 2xr∂r − r2∂x, Y

2 = 2ye− r2∂y = 2xr∂r − r2∂y
The fields Y 1, Y 2 form a basis of g1 and generate the commutative sub-
group G1 = R2

+ ⊂ P which acts trivially on the tangent space.

4.1.4 Tits group model of conformal sphere and Cartan
connection

Besides the projective model Q = PV0 = SO(V )/P and Riemann model
Ĉ = SL2(C)/P of the conformal sphere S2, we consider purely group
description of S2 as the set of subgroups H of the group G = SL2(C)
isomorphic to Sim(E2).
The conformal sphere S2 = G/P = SL2(C)/Sim(E2) is an asystatic
manifold, i.e. the stability subgroup P coincides with its normalizer :
P = NG(P ). This implies that different points of S2 have different ( but
conjugated in G) stabilizers. Moreover, any subgroup H isomorphic to
Sim(E2) and any subalgebra h ⊂ g isomorphic to sim(E2) is the stability
subgroup ( respectively, stability subalgebra ) of unique point q ∈ S2. This
allows to describe the conformal sphere as the set of subgroups isomorphic
to the subgroup Sim(E2) ( or subalgebra isomorphic to sim(E2)):

S2 = {H ⊂ G = SL2(C), H ' Sim(E2)} = {h ⊂ sl2(C), h ' sim(E2)}.

We call this model the Tits model. We will see that this model is rele-
vant for vision.

The left invariant Maurer-Cartan form of G = SL2(C) is defined by

µ = g−1dg : TgG→ g = so(V ), ġ 7→ g−1ġ

where ġ ∈ TgG and we use the following physical notation for the action
of the left translation Lg : a 7→ ga on tangent vector ġ:

g−1ġ := (Lg−1)∗ġ.

The Maurer-Cartan form µ defines a Cartan connection on the principal
bundle π : G → S2 = G/P = SL2(C)/G0 · G1. This means that it is
a g-valued 1-form which defines an isomorphism µg : TgG → g of any
tangent space TgG to g with two properties:
i) it is an extension of the canonical vertical parallelism

T vG→ p, TgG 3 gḣ 7→ ḣ ∈ p

(isomorphism of the vertical (tangent to the fibre π−1x = gP space ) to
p;
ii) it is P -equivariant, i.e.

µ(Rhġ) = µ(ġh) = (gh)−1(ġh) = Adh−1µ(ġ), ġ ∈ TgG.
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Recall that Cartan connection is the main tool for investigation of differ-
ential geometric structures , construction their invariants and solution of
equivalence problem. A conformal structure on a manifold of dimension
greater then 2 admits a canonical Cartan connection, which is invariant
with respect to (local) conformal transformation, but it is not true for
(non conformally flat) 2-dimensional manifolds.

4.2 Central projection of a plane Π ⊂ P 3 into the
quadric Q

Now we return to the projective model S2 = Q = PV0 ⊂ P 3 of the
conformal sphere. A point F ∈ B̄3 = P (VT ∪ V0) ⊂ P 3 of the closed ball
with the boundary ∂B̄3 = Q defines the central projection with center F
of a plane Πn, n ∈ SVS into Q, given as in Euclidean case by :

πnF = πF : Πn → Q, A 7→ Â := (AF ) ∩Q
It associates with a point A ∈ Πn the second point Â of intersection of
the oriented projective line (AF ) with Q.

4.2.1 Consistency of Euclidean and projective central pro-
jection

A unit timelike vector e0 (”inertial observer”) defines a decomposition

V = Re0 + E3 = Re0 + e⊥0

of the Minkowski vector space into time and space.
We denote by E3

e0 = e0+E3 the Euclidean vector space with the origin
at 0E3 = e0 and we identify the quadric Q with the cone of isotropic lines.
Then we have the following correspondence between projective objects
and associated Euclidean objects in the Euclidean space E3

e0 .

Q ↔ S2 := Q ∩ E3
e0

Q 3 [p] ↔ p := [p] ∩ E3
e0 ∈ S

2

Πn = Pn⊥ ↔ Πn0−→n = {−→x , −→n · −→x = n0}, n = (n0,
−→n ) ∈ V−

` = P (span(u, v)) ↔ ¯̀ := (span(u, v)) ∩ E3
e0

if span(u, v)) is not parallel to E3.

Lemma 4 Under above correspondence, the central projection

π[f ] : Πn → Q

with center [f ] ∈ B3∪Q of a projective plane to the quadric Q corresponds
to the central projection

πF̄ : Πn0−→n → S2 = Q ∩ E3
e0 , n = (n0,

−→n )

with the center F̄ = [f ] ∩ E3
e0 of the corresponding 2-plane in E3

e0 into
the sphere. The natural bijection χ : Q → S2 ⊂ E3(e0) is a conformal
diffeomorphism of Q onto the unit Euclidean sphere S2 ⊂ E3

e0 .
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4.2.2 Change of observer

Let e′0 be another unit timelike vector (”observer”) and (S2)′ = Q∩E3
e′0
⊂

E3
e′0

the unit Euclidean sphere for the observer e′0. Denote by χ′ : Q →
(S2)′ the natural conformal diffeomorphism. Obviously, we get

Lemma 5 The map

χ′ ◦ (χ)−1 : S2 → (S2)′

is a conformal diffeomorphism between two unit Euclidean spheres.
Any transformation L ∈ SO(V ) with Le0 = e′0 induces an isometry L :
S2 → LS2 = (S2)′ of unit spheres with induced metrics.

Remark Any timelike unit vector e0 ∈ VT is the center of a sphere which
represent Q in the Euclidean space E3

e0 .

4.2.3 Change the central projection under a Lorentz trans-
formation

A Lorentz transformation L ∈ G = SO(V ) maps the hyperplane n⊥

isometrically onto Ln⊥ and the projective plane Πn isomorphically onto
LΠn = ΠLn. Also it preserves the quadric Q and maps lines in Πn onto
circles of Q. In particular, we have

πLnLF (LA) = L(πnFA), ∀A ∈ Πn.

If we identify corresponding points A ∼ LA of the planes Π = Πn and
LΠ = ΠLn, then the images πnF : Π → Q and πLnLF : LΠ → Q are related
by the transformation ΦL : Q→ Q given by

ΦL := (πLnLF )L(πnF )−1 = L(πnF ) ◦ (πnF )−1 = L

We get

Lemma 6 If we identify the corresponding points of the planes Π and  LΠ,
then the images of the central projections πF : Π→ Q and πLF : LΠ→ Q
are related by the conformal transformation ΦL = L|Q.
In particular, if LF = F then the change the plane Π by a Lorentz
transformation L produces the conformal transformation L|Q of the image
πF (Π).

Let F = [p] ∈ Q = PV0 be a point of the conformal sphere. We
proved that the stabilizer P = SO(V )[p] acts transitively on the ball PV−
of timelike lines. Since there is a natural one-to-one correspondence be-
tween timelike lines [n] and projective planes Πn which does not intersects
the quadric Q, the group P acts transitively on the set of planes of the
projective space PV which does not intersect the quadric Q. Now the
above lemma implies

Proposition 2 Let Πn,Πn′ be two projective planes which does not inter-
sect the quadric Q and F = [p] ∈ Q. Then there exists a linear transforma-
tion L ∈ SO(V ) (defined up to a rotation R ∈ SO(E2) in the Euclidean

plane E2 = span(n, p)⊥ ) which transforms Πn to Πn′ = ΠLn. Then
the change of the image on Q of central projection π := πF |Πn → Q to
π′ := πF |Πn′ → Q induces a conformal transformation L|Q.
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Remark The result is not true if the center F = [e] of the central
projection belongs to the ball B3 = PV−. In this case, the action of the
stability subgroup SO(V )[e] ' SO3 on the set of planes Πn which does
not intersect Q is not transitive.
The center of lens in human eye is inside the eye ball, but since the light
is refracted by cornea, the full refraction is equivalent to the refraction by
a lens with center at the boundary sphere.

5 Multiscale Differential Geometry

5.1 Sigma-approximation of differential geome-
try ( following Jan Koenderink and Luc Florack)

From classical point of view, the basic object of geometry is a point. Points
form a space (manifold) and geometry studies geometrical object on this
manifold of points.
From quantum point of view, the basic object is an algebra of functions.
In terms of functions, a point z ∈ M can be defined as a special linear
functional (called ”Dirac delta function”)
δz0 : f 7→ δz0(f) = f(z0). Tangent vector at z0 is a linear functional
v : C∞(M)→ R which satisfies the Leibnitz rule

v(fg) = f(z0)v(g) + g(z0)v(f).

Moreover, such functional can be consider as a partial derivative of the
delta function due to the formula (∂xδz0)(f) = −δz0(∂xf) where (x, y) are
local coordinates of a point z ∈M2.
A linear functional (on an appropriate class of test functions) is called a
generalized function or a distribution.
A function F (z) = F (x, y) ( say, on M = R2 ) defines a generalized
function TF

TF (f) :=

∫
F (z)f(z)dxdy.

called in neurophysiology ” the linear filter with receptive profile (RP) F”.

Note that if we assume that the retina has an affine structure, using
shift Fz0(z) := F (z−z0) we can define a new function (F ∗f)(z0) := TFz0 f
which is called the convolution of F and f .

5.1.1 Visual neurons as filters

Many visual neurons in retina and visual cortex can be considered as
”filter” i.e. a functional which associate with the input function I on
retina R a number which measure the degree of excitation of the neuron.
We will consider only linear neurons, which acts as linear functionals (
generalized functions) on the space of input functions I, and have the
form

TF : I(z) 7→ TF (I) =

∫
D

F (z)I(z)dxdy.
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Here F is a function ( called the receptive profile of the neuron (RP))
with support D ⊂ R ( called the receptive field (RF)).

Roughly speaking, such filter associates with an input function I the
average value I calculated with weight F in a small domain D.

5.1.2 Gauss filter

Since the receptive fields of visual neurons are small, for simplicity, we
may assume that the retina R is a part of Euclidean plane R2 with Carte-
sian coordinares z = (x, y).

The Dirac functional δz0 can be approximated by the Gauss functionals
TGσz0 where

G = Gσz0(z) =
1

2πσ2
exp(−|z − z0|2

2σ2
)

is the Gauss function with means z0 and small standard deviation σ. More
precisely,

δz0 = lim
σ→0

TGσz0 .

We call TGσz0
the sigma-approximation of the Dirac functional.

More generally, for the functional associated with the derivative X ·G
of the Gauss function in direction of vector field X, we have

TX·G(f) =
∫
X ·GIdxdy = −

∫
G(X · Idydz) +

∫
X · (GI)dxdy)

= −
∫
G(X · f + divX)dydz

.

Assume that divX = 0. Then the functional TX·G acts on I as

TX·G : I 7→ −
∫
G(x, y)(X · I)(x, y)dxdy.

So it can be considered as sigma- approximation of the functional

I 7→ −(X · I)(z0)

which is identified with the vector −Xz0 . Similarly, iterated directional
derivatives Xk · · ·X2 · X1 · G of the Gauss function defines functionals,
which can be considered as sigma-approximations of higher order linear
differential opetators at the point z0.

5.1.3 Ganglions as Marr filters (Kuffler and Marr)

It was experimentally found by Stiven Kuffler ( 1950) that receptive field
of many ganglion neurons in retina is a discD and the receptive profile F is
rotationally invariant. The disc D contains a concentric small disc D′ such
that F is positive (resp., negative) in D′ and negative (resp. positive) in
D\D′ for ON-cells (respectively, OFF-cells). David Marr (late 70) showed
that the receptive profile of such cells can be approximated by the Marr
function F = ±∆Gr0σ (r). Sign − gives ON cell, and singe + OFF cell.
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Marr filter is defined by receptive profile ”Laplacian of Gauss”

Mσ
z0(z) := ∆Gσz0 .

Like Gauss filter , Marr filter is isotropic i.e. invariant under the rotatrion
of the plane with center at z0.

5.1.4 Gabor filters

Non-formally, an even (resp., an odd ) Gabor filter is an anisotropic Gauss
filter modulated by cos (resp., sin).
More precisely, the even and odd mother Gabor filters are defines by RP
which is the imaginary and real part of the function

Gab := G1
0(z) exp

√
2iy =

1

2π
exp
−|z|2√

2
exp iy, z = x+ iy.

A general Gabor filter is obtained from the mother Gabor filter Gab(z)
by application a general transformation A = Az0,c = Tz0 · Lc from the
similarity group Sim(E2) = TC · C∗ acts on vectors by

A = Az0,c : z 7→ z0 + cz

and on functions by

A = Az0,c : f 7→ A∗f := (detA)−1f(Az) = |c|−2f(c−1z − z0).

This action preserves the integral of a function :∫
R2

A∗(f)(z)dxdy =

∫
R2

f(z)dxdy.

In particular, it preserves the density of probability measure and trans-
forms the standard Gauss function G1

0 into

A∗G1
0 = Gσz0 =

1

2πσ2
e
|z−z0|

2

2σ2 ,

where we set c = σeiθ. The RP of the general Gabor filter depends on 4
parameters σ, θ, z0 = (x0, y0) and it is parametrized by points of the group
Sim(E2) = TC · C∗. More precisely, the RP of a general Gabor filter has
the form

Gabσφ,Z0
= A∗Gab10 = Gσz0expi

√
2σ−1(y cosφ− (x0 cosφ+ y0 sinφ)).

For z0 = 0, φ = 0, the Gabor filter has RP

Gabσ0 = Gσ0 · exp(
√

2iy)/σ = Gσ0 · (cos
√

2y/σ) + i(sin
√

2y/σ).

Since

∂yG
σ
0 = − y

σ2
Gσ0 , (∂y)2Gσ0 = − 1

σ2
(1− y2

σ2
)Gσ0

we conclude that for small y
σ

the odd and even Gabor filters approximately
have RP proportional to first and second derivative of Gauss function:

(Gabodd)σ0 ≈ Gσ0 ·
√

2y
σ

= −
√

2σ∂yG
σ
0

(Gabev)σ0 ≈ Gσ0 · (1− y2

σ2 ) = −(σ∂y)2Gσ0 .

So the odd Gabor filters correspond to tangent vectors and even Gabor
filters correspond to second order tangent vectors i.e. second jets of curves.
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5.1.5 Functionals associated with conformal vector fields

We describe the receptive profiles X ·G where G = Gσ0 = 1
2πσ2 exp(− r2

2σ2 )
and X is one of the basic conformal vector fileds of sl2(C). We will use
polar coordinates r, ϕ such that x = r cosϕ, y = r sinϕ.

∂xG = − x

σ2
G = − r

σ2
cosϕG,

∂yG = − y

σ2
G = − r

σ2
sinϕG,

E ·G = r∂rG = − r

σ2
G, divE = 2

Y 1 ·G = (2xe− r2∂x)G = (2xr∂r − r2∂x)G = −r
2x

σ2
G = − r

3

σ2
cosϕG,

Y 2 ·G = (2ye− r2∂y)G = (2yr∂r − r2∂y)G = −r
2y

σ2
G = − r

3

σ2
sinϕG,

∆G = (∂2
x + ∂2

y)G = − 1

σ2
(1− 1

σ2
)G = − 1

σ2
(G+ E ·G).

Note that Y 1 ·G = r2∂xG, Y
2 ·G = r2∂yG and that divY 1 = 2x, divY 2 =

2y.

6 Architecture of the retina and retino-
topic map to primary visual cortex

The brain extracts all visual information from the retina R which occupies
the big part of the eye sphere S2.
The bottom layer of the retina consists of receptors (rods and three types
of cones), that is photoelements which transform the light energy into
electricity.
They measure the energy function I of light falling to the retina R ⊂ S2.
The information about energy function I is sent to the external layer of
retina, which consists of ganglion cells.

There are two types of vision : central color vision and peripheral
black-white vision.
During day-time central color vision, most visual information comes from
fovea which is a yellow spot on retina of diameter approx. 0,35 mm. The
most cones, which are responsible for color vision, are concentrated there.
One cone in fovea is connected with 1 or 2 ganglions which send the visual
information to V1 cortex.
During peripheral low light black-white vision, the information comes from
the rods situated in the periphery of the retina. Here one rode is connected
with 102 − 103 ganglions.
There are 1 million of ganglions and 125− 150 millions of receptors.
There are two types of paths from receptors to ganglions:
Direct path : receptors-bipolars-ganglions and
indirect path: receptors -(sometimes horizonal cells)-bipolar cells-(sometimes
amacrine cells) -ganglions.
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About functions of all all there types of retinal neurons see [11]. Note
that the number of different types of neurons in human retina is larger
then 80 ( and in rabbit retina is 55).

6.0.6 Aim of the information processing in retina is the
regularization and contourization of the input function

The input function I of the retina is very irregular. The aim of the infor-
mation processing in retina is to prepare the input function for decoding,
do it more regular and highlight the contours - level set of the input func-
tion with big gradient. It is done by a system of cells with isotropic ( i.e.
rotational invariant ) receptive fields, which are working as Marr filters.
Roughly speaking, system of Marr filters reduces the complexity of the
picture on retina and transform it into graphics ( system of contours) .

6.0.7 Conformal (”topographic”) map from retina to pri-
mary visual cortex VI

There is a conformal map from retina R to the lateral geniculate nucleus
(LGN) ( a part of the thalamus). and then to primary visual cortex VI
of the form

z = x+ iy → k log
z + a

z + b
.

Physiologically, the path goes from R through optic chiasm ( where each
of visual nerve splits in two part , one remains in the same side of the
brain, other goes to another side ) and then come to LGN.
LGN consists of 6 layers. Layers 1,4,6 get information from the opposite
w.r.t. the hemisphere of LGN eye, layers 2,3,5 from the eye from the same
side. Then the information is sent to VI cortex.

7 Architecture of primary visual cortex
VI

7.1 Pinwheel structure

Cortex VI is a layered structure (1,8 mm thick) which consists of 6 hor-
izontal layers, most important is sublayer 4C, where most of the fibres
from LGN projects.
Visual cells of VI are organized in columns and columns are combined
in hypercolumns. Neurons of columns work as filters (functionals) with
small RF.
Hubel and Wiesel classified visual cells into simple cells (25%) and com-
plex cells (75%).

7.1.1 Simple cells as Gabor filters

Simple cells work as Gabor filters.

23



The odd Gabor functions in approximation of Gauss optics ( sin y '
y) are proportional to directional derivatives of the Gauss function Gσz0 .
Hence for small standard deviation σ, the associated Gabor filters act on
input function as tangent vectors v and they detects contours orthogonal
to v. It was shown in A. Sarti , G. Citti and J. Petitot , see [(S-C-P)],
that even simple cells detect the distance to the nearby contour.

7.1.2 Field of 1-distributions with singularities (pinwheels)
in VI

It was discovered by D. Hubel and T. Wiesel (Nobel Prize 1981) that VI
cortex of mammals (tree shrew = tupaia, cat, monkey, human etc. ) has
a 1-dimensional distribution (field of directions or ” orientation” )

Γ : z 7→ Γz = kerωz

with isolated singularities ( called pinwheels) where the 1-form ω, which
defines the distribution, vanishes.
All simple cells of a regular column (at a point z with Γz 6= 0) are excited
only when the contour at z has direction ( or orientation) Γz. A singular
column (which corresponds to a singular point z which Γz = 0 ) contains
simple cells which detect contour of any orientation.
When eye rotates, the contours on retina intersect centres of pinwheels
and more cells detect the contour.This is one of the aims of fixation eye
movements.

7.1.3 Problem of formation of pinwheel structure

The singular points ( pinwheels) of the distribution Γ in VI cortex form a
rather dense finite set of points. Mechanism of creation and evolution of
field of direction Γ with such singularities is proposed by F.Wolf and his
group, see (K-Sh-W). Like in quantum physics, spontaneous symmetry
breaking plays an important role in this process.

7.2 J.Petitot’s model

The history of physics shows that the estimated dimension of the physical
world is increasing from 3 to 4,5, ... 10,11. Similar situation is in neuro-
geometry. D.H. Hubel proposed an idea, that the primary visual cortex
can be modeled by a fiber bundle over the surface whose fibre depends on
many parameters. He called this ”engrafting of variables”.
W. Hoffman expressed an idea that the primary visual cortex is a contact
bundle. This idea was realized by J. Petitot. He considers primary visual
cortex VI as a surface V with a field of directions Γ. J. Petitot notices
that if we will parametrized simple cells according to their function (as
Gabor filters), they may be parametrized by points of the surface Ṽ which
is obtained from V by blow up at all centers z0 of pinwheels. Recall that
the projection π : Ṽ → V is a bijection for any regular point z ∈ V
(which corresponds to column z of simple cell which detect only direction
Γz) and the preimage π−1(z0) of the center of pinwheel is a circle ( which
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corresponds to the circle of direction measured by cells from the column
z0.

7.2.1 Petitot’s model: primary cortex as a contact bundle

Under approximation that all points are centers of pinwheel, J.Petitot
concludes that points of VI cortex are parametrized by the S1-bundle
over the surface V which is naturally identified with the contact bun-
dle in the sense of S. Lie, that is the projectivized (co)tangent bun-
dle PT (V ) = PT ∗V (the space of directions) with the natural contact
structure.(For 2-dimensional manifold there is a canonical identification
PTM = PT ∗M). Simple cells of V detect not only points of a contour
C, but also its direction TzC . So they determine the lift of the contour
to a horizontal curve C̄ ⊂ PT (V ). (Such lift is called in geometry the
Legendrian lift).

So, according to Petotot’s model, VI cortex is the contact bundle PTV
with the canonical contact structure and simple cells determine the Leg-
endrian lift of contours in V to PTV .
If (x, y) are coordinates in V such that contours are described as y = y(x),
then the contact manifold PTV can be locally identified with the manifold
J1(R) of 1-jets of functions with coordinates (x, y, p = dy

dx
) and the con-

tact form θ = dy−pdx. The contact manifold J1(R) is identified with the
Heisenberg group Heis3 or with the group E(2) = SO2 · R2 of Euclidean
motions of the plane with left invariant contact structure.

7.3 Sarti-Citti-Petitot’s model: VI as a principal
CO2 bundle

A generalization of the Petitot’s model was proposed by A.Sarti, G.Citti
and J.Petitot. They assume that the set of simple cells (i.e. the set of
Gabor filters) in VI cortex are parametrized by points of the similarity
group Sim(E2) = G0 ·G− = CO2 · R2

−.
The parameters (σ, θ, z = (x, y)) associated with a Gabor filter has the
following interpretations : σ ∈ R+ ( scaling) is the intensity of reply of the
Gabor filter on stimulus, θ is the orientation ( the angle between a fixed
direction and the direction , detected by Gabor filter), and z = (x, y) ∈
G− = R2

− is the position of the center of filter , which is identified with
the parallel translation from a fixed point of the cortex ( considered as a
plane).
Note that one may identify the space of simple cells for this model with the
total space Sim(E2) of the principal CO2 = R+ ·SO2-bundle Sim(E2) =
G0 ·G− → Sim(E2)/CO2 of conformal frames in the retina.

7.4 Hypercolumns of VI cortex ( Hubel-Wiezel)

Hubel and Wiezel proposed a deep idea that columns in VI cortex are
grouped into hypercolumns or modules, which detect local information
about the image. It is based on their fundamental discovery that any
simple neuron which measure orientation of the contour is excited only
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when the orientation take a certain value ( up to 10-15%). They suggested
that this is a general principle, valid for visual neurons, which measure
some parameter of an image, and gave a very general definition of hy-
percolumns, which is now applied to different parameters in VI and VII
cortex:
A hypercolumn in a neighborhood of a given point of cortex associated
with some local characteristics (orientation, ocular dominance, spatial fre-
quency, temporal frequency, curvature, color etc) is a minimal system of
columns containing neurons which measure all possible values of these
parameters. In other words, it is a system (module) which detects local
structure of the image in a neighborhood of given point. We conjecture
that the retina fields of cells of columns which form a hypercolumn cover a
domain in retina which contains images of the point of line of sight under
fixation eye movements.

The basic observation by Hubel and Wiezel during neurophysiological
experiments was that when the electrode in monkey’s VI cortex moved
from column to next column, the direction of orientation smoothly rotates
with period approximately 12 columns and after 12 columns ( approxi-
mately 1mm) it turns on 180o. Similar 12 column (1 mm) periodicity they
found for other local parameter - ocular dominance. The lines of isodom-
inancy and isoorientation are approx. orthogonal ( and form locally an
orthogonal system ). Analysing these results, they proposed the famous
” ice cube” model of hypercolumn associated with orientation and ocular
dominance. Ocular dominance is Z2-valued function on VI cortex which
indicates the eye ( left or right) which provides main information about
value of input function I at the corresponding points of receptive field.

7.4.1 Spherical model of hypercolumns by Paul Bressloff
and Jack Cowan

Together with orientation θ , one of the most important characteristic of
image is spatial frequency. The spatial frequency measures how often
a periodic components of the structure repeat per unit of distance. More
precisely, spatial frequency p of a grating is defined as number of lines of
grating per millimeter. For more complicated image it is applied to the
main component of the Fourier decomposition of the image.

Paul Bressloff and Jack Cowan proposed a spherical model of hyper-
columns, associated with two parameters : orientation θ and a logarithmic
function of the spatial frequency p. Assume that the spatial frequency
changes in the interval [pL, pH ]. Then Bressloff and Cowan choose as
the second parameter the following normalized logarithmic function of
p: ϕ = π log(p/pL)

log(pH/pL)
− π/2 . It varies in the interval [−π/2, π/2]. They

proposed a model of hypercolumn as a sphere with spherical coordinates
θ ∈ (0, 2π) (longitude) and ϕ ∈ (−π/2, π/2) (latitude). They assume
that north and south pole where ϕ = +π/2 and respectively ϕ = −π/2
corresponds to two centres of pinwheels where the orientation θ is not
defined since the simple cells of the associated singular points measure all
values of the orientation. This model is a generalization of so called ” ring
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model”.

7.4.2 Evolution of an excitation in a hypercolumn

Evolution of an excitation between cells of the hypercolumn is described
by the famous Wilson-Cowan’s equation

∂tu(θ, ϕ, t) = −u(θ, ϕ, t)+

∫ π

0

∫ π

0

W (θ, ϕ|θ′, ϕ′)σ(u(θ′, ϕ′, t))dν+h(θ, ϕ).

Here u(θ, ϕ, t) denotes the activity of a local population of cells on the
sphere with spherical coordinates (θ, ϕ). W is the weight of interaction
between two cells, σ is a sigmoidal function , h is a stimulus from LGN.
Bressloff and Cowan assumed that the weight function W ∈ C∞(S2×S2)
is SO3-invariant. The simplest example of such function is the function

W (ϕ, θ|ϕ, θ) = W0 +W1(cosϕ cosϕ′ + sinϕ sinϕ′cos(2[θ − θ′]))

( where W0,W1 are constant), associated with Riemannian distance on the
sphere. More general form is described in terms of spherical harmonics.

7.4.3 Unification of Bressloff-Cowan and Petitot-Citti-Sarti
models

A weak point of the Petitot- Citti- Sarti model of VI cortex is that it uses
the scale parameter σ which is not known in neurophysiology and which
does not correspond to any characteristic of the image. We propose to
change the parameter σ to the spatial frequency , more precisely to the
the logarithmic function ϕ of spatial frequency, defined by Bressloff and
Cowan. Since the excitation of simple cells depends also on value of spa-
tial frequency, they have different intensity of reply to visual stimuli with
the same orientation but different spatial frequencies. Due to this, the
parameter ϕ is similar to the scaling parameter σ considered by Petitot-
Citti-Sarti.

According to Petitot-Citti-Sarti model, simple cells of VI cortex are
locally parametrized by points of the subgroup P− = G0 ·G− ' Sim(E2)
of the Möbius group G = SL2(C) = G− ·G0 ·G+.
According to Hubel and Wiezel, hypercolumn detects information about
the local structure of image near a point z ∈ R, We assume that sim-
ple cells of a hypercolumn are parametrized by the points of the stability
subgroup P+ = G0 · G+ ' Sim(E2) of the point z. The coordinates
(λ, θ) ∈ G0 = R+ × SO2 corresponds to generators r∂r = x∂x + y∂y and
x∂y−y∂x of the subgroup G0 = CO2 and can be identified with the spher-
ical coordinates (ϕ, θ) of Bressloff and Cowan. Note that the 1-parameter
subgroup generated by r∂r look like a homothety in the neighbourhood of
the fixed point z. Instead of coordinates z = (x, y) which corresponds to
generators ∂x, ∂y, we propose to consider two new parameters, associated
with generators (x2 − y2)∂x + 2xy∂y), (x2 − y2)∂y − 2xy∂x) of the group
G+. They correspond to some local characteristics of second order of the
image, probably , the components of the gradient of the spatial frequency
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p. Then the space of all simple cells of VI cortex is identified with total
space G = SL2(C) of the bundle π : SL2(C)→ SL2(C)/P = S2 , In other
words, the system of simple cells of VI cortex realize the Tits model of
the conformal sphere. The Maurer-Cartan form gives a natural Cartan
connection in S2 which determines conformal structure on S2.

Note that this model is consistent with Bressloff and Cowan model. If
we remove two second order new parameters, we get parametrization of
simple cells of the hypercolumn by spherical coordinates θ and ϕ. They
are not working in two centers of pinwheels which correspond to north
and south poles of the sphere. Geometrically the Bressloff-Cowan sphere
may be identified with the (universal cover ) of the projectivization of
the tangent space of the Petitot contact space PTP associated with the
retina.

7.4.4 Application to stability problem

We start from the remark how the description of some objects may be
done invariant with respect to a group of transformations. Let G be a
group of transformation of a manifold M , ( for example G = SO2 is the
group of rotation of the plane R2). If observers are distributed along an
orbit Gx , (for example, a circle, which is an orbit of G = SO2) then
information which they send to some center is G- invariant.

In particular, the information, which simple cells of a hypercolumn
(parametrized by the points of the stability subgroup P = G0 · G+ '
Sim(E2) ) send to complex cells or to the next level VII will be invariant
with respect to the 4-dimensional stability subgroup P = G0 · G+ of the
Möbius group SL2(C) = G− ·G0 ·G+. We know that fixation eye move-
ment corresponds to conformal transformation of the image on retina.
Hence, the stability means that perception of the images by the brain is
invariant under (local) conformal transformation of image in retina. It re-
mains to do perception invariant with respect to the subgroup G−, which
consists of translations in Riemann model. We suggest that it is done on
the next level of the visual system, probably, in cortex VII.
This conjecture is consistent with fact that the level of invariancy increase
when we go to the next level, see [16].
It is supported also by the following experimental fact. One of the prin-
cipal difference between simple and complex cells is that the excitation of
simple cells is not invariant with respect to the shift of the contour, but
the excitation of complex cells is invariant with respect to such shift, (see
[8]).
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