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Abstract

Let M be a cohomogeneity one manifold of a compact semisim-
ple Lie group G with one singular orbit S0 = G/H . Then M is G-
diffeomorphic to the total space G ×H V of the homogeneous vector
bundle over S0 defined by a sphere transitive representation of G in
a vector space V . We describe all such manifolds M which admit an
invariant Kähler structure of standard type. This means that the re-
striction µ : S = Gx = G/L → F = G/K of the moment map of M to
a regular orbit S = G/L is a holomorphic map of S with the induced
CR structure onto a flag manifold F = G/K, where K = NG(L), en-
dowed with an invariant complex structure JF . We describe all such
standard Kähler cohomogeneity one manifolds in terms of the painted
Dynkin diagram associated with (F = G/K, JF ) and a parametrized
interval in some T -Weyl chamber.
We determine which of these manifolds admit invariant Kähler-Einstein
metrics.
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1 Introduction and statement of the re-

sults

We will study cohomogeneity one Kähler G-manifolds of a compact
semisimple Lie group G. By a cohomogeneity one manifold we under-
stand an n-dimensional manifold M together with a proper action of
a connected Lie group G which has a (real) codimension one orbit.
It is called a Riemannian (respectively, complex; Kähler ) cohomogene-
ity one manifold if an invariant Riemannian metric g (respectively, an
invariant complex structure J ; an invariant Kähler structure (J, ω)) is
given, where J is a complex structure and ω is a symplectic form such
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that g := −ω ◦ J = ω(·, J ·) is a Kähler metric.

Following [15] we will consider Kähler cohomogeneity one G-manifolds
(M,J, ω) of the standard type, that is manifolds which satisfy the fol-
lowing conditions:
(i) Any regular orbit S = Gx = G/L is an ordinary manifold. This
means that the normalizer K = NG(L) of the stability subgroup is the
centralizer of a torus in G and dimK/L = 1.

(ii) the CR structure (H, JH) induced by the complex structure J of
M on a (codimension one) regular orbit S = G/L is projectable, that
is the projection π : S = G/L → F = G/K is a holomorphic map of a
CR manifold onto the flag manifold F equipped with a fixed invariant
complex structure JF which does not depend on S.
Condition (ii) depends on the complex structure J on M and shows
that the CR structure on a regular orbit G/L is determined by a fixed
invariant complex structure JF on the flag manifold F . In particular,
all regular orbits are isomorphic as homogeneous CR manifolds.
The conditions (i),(ii) imply that the moment map µ : M → g∗ ≃ g of
the symplectic G-manifold (M,ω) maps any regular orbit (S = Gx =

G/L, JH) holomorphically to the same flag manifold (F = G/K, JF ).
Note that π := µ|S : S = G/L → F = G/K is the natural equivariant
projection.

A homogeneous CR manifold (S = G/L,H, JH) which satisfies
conditions (i),(ii) is called a standard homogeneous CR manifold.
So, we can equivalently say that a complex (in particular, Kähler) co-
homogeneity one manifold is of the standard type or, shortly, standard
if all regular orbits are standard CR manifolds associated with a fixed
flag manifold (F = G/K, JF ) with a complex structure JF .

The condition (i) is a weak condition. It is equivalent to the con-
dition that the Lie algebra l = LieL is not the centralizer of a regular
3-dimensional subalgebra of the Lie algebra g = LieG.
The classification of all non standard homogeneous CR manifolds with
non degenerate Levi form is given in [2].

Investigation of invariant Einstein metrics on cohomogeneity one
manifolds had been started by D. Page and C.Pope in [14], where they
construct the first example of such metrics. L.Berard- Bergery in his
famous paper ([6]) developed a systematic approach for construction
of invariant Einstein metrics on cohomogeneity one manifolds. A deep
investigation of singular ODE for invariant Einstein metrics on coho-
mogeneity one manifolds had been done by Eschenburg and Wang [9] .

In the Kähler case, Y. Sakane gives in [16] conditions for the ex-
istence of Kähler-Einstein metrics on CP1-bundles P over Hermitian
symmetric spaces of compact type which are of cohomogenity one with
respect to a maximal compact subgroup of the automorphism group
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of P . In [12] and [13] more examples are obtained from these CP1-
bundles by blowing down. We refer the reader also to [11], (see also
[5] and the references therein).

Invariant Kähler-Einstein metrics on cohomogeneity one manifolds
M of a compact semisimple Lie group G had been studied in two im-
portant papers by F. Podestá and A. Spiro [15] and A. Dancer and
M. Y. Wang [8]. In both papers the authors reduced the Kähler-
Einstein equation for an invariant metric in the regular open subman-
ifold Mreg = G/L × (a, b) of M to an ODE for one function together
with some algebraic conditions, which are described in terms of the
reductive decomposition associated with a regular orbit G/L. They
solved this equation and find necessary and sufficient conditions for
extendibility of the Kähler-Einstein metric in Mreg to the whole man-
ifold M . They considered some examples of manifolds which satisfy
these conditions, but did not study such manifolds systematically.

The main aim of this paper is to give a description of (non com-
pact) standard cohomogeneity one Kähler and Kähler-Einstein mani-
folds with one singular orbit in terms of painted Dynkin diagrams. We
closely follow the approach by F. Podestà and A. Spiro [15], who give a
useful description of standard cohomogeneity one Kähler manifolds M
in terms of “abstract models” and get an effective criterion of existence
of an invariant Kähler-Einstein metric on a (compact) cohomogeneity
one manifold with two singular orbits. We will reformulate the basic
results of [15] and simplify the proofs.

The structure of the paper is the following. In the Preliminaries we
recall the basic facts about cohomogeneity one Riemannian manifolds,
CR manifolds and flag manifolds which we need. In Section 3 we define
standard homogeneous CR manifolds and standard cohomogeneity one
complex and Kähler manifolds and discuss their properties.
A standard homogeneous CR manifold S = G/L with associated flag
manifold F = G/K = G/NG(L) is defined by the standard (reductive)
decomposition

g = l+ RZ0
F +m = k+m

orthogonal with respect to the Killing formB of g, where l = LieL, k =
LieK = l+RZ0

F and Z0
F is an Ad L-invariant vector (called fundamen-

tal vector), normalized by B(Z0
F , Z

0
F ) = −1. We will identify Z0

F with
a G-invariant vector field on S which is the fundamental vector field
of the principal T 1-bundle π : S = G/L → S/T 1 = G/K = G/L · T 1.
An AdK-invariant (integrable) complex structure Jm in m defines a
complex structure JF in the flag manifold F = G/K with the reductive
decomposition g = k +m and an invariant projectable CR structure

(H, JH) on S = G/L where H is the invariant distribution defined
by the subspace m.

In Section 4 we describe standard invariant Kähler structures on a
regular cohomogeneity one manifold Mreg = (0, d)×G/L . Following
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[15], we show that such structures are in 1-1 correspondence with the
parametrized open intervals (Z0Zd) ⊂ C(JF ) which are parallel to
Z0 = −iZ0

F . Here C(JF ) denotes the T -Weyl chamber (i.e. roughly
speaking, the projection of the Weyl chamber of g to the center Z(k)
of k) associated with the invariant complex structure JF of the flag
manifold F = µ(S) = G/K.
In Section 5 we give a new proof of Podestà-Spiro formula for the Ricci
form ρ. The Einstein equation for an invariant Kähler metric in Mreg

reduces to a second order ODE for the function f(t) which defines a
parametrization of the interval (Z0Zd) ⊂ C(JF ) and a linear relation
between the initial vector Z0, the vector Z0 and the Koszul vector
ZKos ∈ C(JF ) which defines the invariant Kähler-Einstein metric on
the flag manifold F = (G/K, JF ).
To calculate ρ, we construct holomorphic coordinates {zi} in Mreg =
(0, d) ×G/L which are an extension of local holomorphic coordinates
in the flag manifold F = G/K = G/L · T 1 , and use the formula ρ =
−i∂∂̄ logµ, where µ(zi, z̄i) is the density associated with the volume
form

vol = µ(zi, z̄i)dz
m ∧ dz̄m, m = dimC Mreg.

The singular orbit S0 of a standard cohomogeneity one manifold is
a complex submanifold, hence a flag manifold (S0 = G/H, JS). In
Section 6, we describe all standard cohomogeneity one manifolds with
fixed singular orbit (S0 = G/H, JS). Any such manifold M = Mϕ is
defined by a surjective homomorphism ϕ : H → Um and is the total
space of the homogeneous vector bundle Mϕ = G×HCm

ϕ → S0 = G/H
defined by ϕ. The flag manifold (S0, JS) is determined by a painted
Dynkin diagram (PDD). In terms of PDD, the homomorphism ϕ is
defined by a connected component (a white string) of type Am−1 of
the white subdiagram of PDD and a character χ : Z(H) = T k → T 1

of the center Z(H). The complex structure J on Mϕ is the natural
extension of the complex structure JF . If e 6= 0 is a vector from
Cm, then regular orbits St := G ×H (te) = G/L are parametrized by
t > 0 where L = Hte is the stabilizer. The subgroup K = H[e] is the
stabilizer of the line [e] ∈ PCm. This shows that ϕ determines the
standard reductive decomposition

g = l+ RZ0
F +m.

An invariant Kähler metric inMϕ is defined by an interval (Z0Zd) ⊂
C(JF ) of the T -Weyl chamber associated with JF which starts from a
face associated with G/H together with a parametrization which sat-
isfies the Verdiani boundary condition.
In the last chapter we give necessary and sufficient conditions for a
manifold Mϕ to have an invariant Kähler-Einstein metric. We will use
this condition in the second part of this paper for explicit description
of such Kähler-Einstein metrics on standard cohomogeneity one man-
ifolds of a classical Lie group G.

Acknowledgments. The authors would like to thank F. Podestà and
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A. Spiro for useful discussions, suggestions and clarifications on their
results.

2 Preliminaries

2.1 Riemannian cohomogeneity one manifolds

Let G be a compact Lie group and (M, g) a Riemannian cohomogeneity
one G-manifold, that is G is an isometry group of (M, g) with a
(real) codimension one regular orbit S = Gx = G/L. Denote by
π : M → Ω = M/G the natural projection to the orbit space. There
are four cases: the orbit space is diffeomorphic to a) (0,1) , b) [0,1) c)
[0,1] or d) S1.
In the case b) there is one singular orbit π−1(0) = G/H0 and in the
case c) there are two singular orbits Sǫ = π−1(ǫ) = G/Hǫ, ǫ = 0, 1.
A naturally parametrized geodesic γ(t) normal to an orbit remains
orthogonal to any orbit and it is called a normal geodesic. If it is
complete, it intersects any orbit. In the cases b), c), we will assume
that x = γ(0) belongs to the singular orbit S0 = Gx = G/H0. Then
the stabilizer H0 transforms γ to any other normal geodesic through
x and the isotropy representation j(H0)|V restricted to the normal
space V = T⊥

x (S0) acts transitively on the sphere: in other words, the
orbit j(H)v = H/Hv = H/L is the sphere. The cohomogeneity one
G-manifold M near S0 is locally G-diffeomorphic to the total space
G×H V of a homogeneous vector bundle over the singular orbit S0.
In the case c), when M/G ≃ [0, 1], rescaling the metric we may assume
that γ(ǫ) ∈ Sǫ, ǫ = 0, 1. Then the cohomogeneity one manifold
M is determined by the triple (H0, L,H1) of stability subgroups of
γ(0), γ(1/2), γ(1) and is denoted by M(H0, L,H1). Note that L ⊂
H0 ∩H1 and Hǫ/L are spheres.
In the case d), M/G ≃ S1 = {exp(2πit)}, we assume that γ(0), γ(1) ∈
S0 = π−1(0). Note that the stabilizer L = Gγ(t) of any regular point
of γ preserves pointwisely the geodesic γ. So we can identify any
regular orbit St = G(γ(t)) with the same homogeneous space G/L.
Deleting singular points (if they exist) or, in the case d), the regular
orbit S0 = π−1(0) we get an open dense submanifold Mreg of regular
points which is G-diffeomorphic to Mreg = (0, 1)×G/L.

Note that the orbit space Ω of a Riemannian cohomogeneity one
manifold has a structure of a metric space. The following proposition
gives a description of cohomogeneity one Riemannian manifolds (M, g)
and their orbit spaces.

Proposition 1 Let (M, g) be a Riemannian G-manifold with the orbit
space Ω. Then up to a homothety, (M, g) is described as follows:

a)(No singular orbit) M = Ω×G/L, where Ω ≈ (0, 1). Moreover,
if a normal geodesic is complete, then Ω = R. In the non-complete
case, Ω = (0, 1) or R+. The metric is given by

g = dt2 + gt
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where gt, t ∈ Ω is a 1-parameter family of invariant Riemannian met-
rics on G/L.

b)(One singular orbit S0 = G/H) The orbit space is Ω = [0, d), d =
∞ or 1. If a normal geodesic is complete, then d = ∞ and the man-
ifold M = M(H,L) = G ×H V is the homogeneous vector bundle
over the singular orbit S0 defined by a sphere transitive orthogonal
representation ν : H → O(V ) of H in an Euclidean vector space
V . In the non complete case M is a tubular invariant neighborhood
M = G ×H B ⊂ M(H,L) of the zero section where B is the unit
ball in V . The invariant metric in M is an invariant extension of
the j(H)-invariant Riemannian metric in V , which is described by L.
Verdiani [18].

c)(Two singular orbits Sǫ = G/Hǫ, ǫ = 0, 1) , Ω = [0, 1]. The
Riemannian manifold M is obtained by gluing together two manifolds
M− = π−1([0, 1/2)), M+ = π−1((1/2, 1]) of type b) along the isomor-
phic boundary ∂M± = G/L. As a cohomogeneity one manifold it is
defined by the triple of subgroups H0, L,H1 such that Hǫ/L = Snǫ and
it is denoted by M = M(H0, L,H1).

d) (No singular orbit, Ω is not contractible) Ω = S1 and M is a
fibre bundle over the circle S1 having as universal cover a Riemannian
manifold R×G/L of type a).

2.2 Flag manifolds and painted Dynkin diagrams

2.2.1 Isotropy decomposition, T -roots, T -Weyl cham-

bers and invariant complex structures

Let F = G/K = AdGZ, where Z ∈ g, be a flag manifold, i.e. an adjoint
orbit of a compact semisimple Lie group G with the B-orthogonal
(where B is the Killing form) reductive decomposition

g = k+m = Cg(Z) +m.

We can decompose k as
k = Z(k)⊕ k

′

where k
′
is the semisimple part and Z(k) is the center. We fix a Cartan

subalgebra c of k (hence also of g) and denote by R the root system of
the complex Lie algebra gC w.r.t. the Cartan subalgebra cC. We set

Rk := {α ∈ R, α(Z(k)) = 0}, Rm := R \Rk.

Then
k = c+ g(Rk)

τ , m = g(Rm)
τ ,

where for a subset P ⊂ R, we set

g(P ) =
∑

α∈P

gα

7



being gα the root space with root α and V τ means the fix point set
in V ⊂ gC of the complex conjugation τ . Recall that the Killing form
induces an Euclidean metric in the real vector space ic and roots are
identified with real linear forms on ic. We set t := iZ(k) ⊂ ic and
denote by

κ : R → R|t, α 7→ ᾱ := α|t
the restriction map.

Definition 2 The set RT = κ(Rm) = Rm|t of linear forms on t which
are restriction of roots from Rm is called the system of T -roots and
connected components C of the set t \ {ker ᾱ, ᾱ ∈ RT } are called T -
Weyl chambers.

Sets of T -roots ξ bijectively correspond to irreducible k-submodules
m(ξ) := g(κ−1(ξ)) of the complexified isotropy module mC of the flag
manifold F = G/K.

So a decomposition of the k-modules mC and m into irreducible
submodules can be written as

mC =
∑

ξ∈RT

m(ξ), m =
∑

ξ∈R+

T

[m(ξ) +m(−ξ)]τ

where R+
T := κ(R+

m) is the system of positive T -roots associated with
a system of positive roots R+, see [3], [1].

We fix a system of simple roots ΠW of Rk and denote by Π = ΠW ∪
ΠB its extension to a system of simple roots of R. Let R+ = R+(Π)
be the associated system of positive roots and R+

m := R+ ∩ Rm. The
set R+

T := κ(R+
m) is called positive T -root set.

We need the following

Theorem 3 [3] There exists a one-to-one correspondence between ex-
tensions Π = ΠW ∪ ΠB of the system ΠW of simple system of Rk,
T -Weyl chambers C ⊂ t and invariant complex structures (ICS) J
on F = G/K. If ΠB = {β1, . . . , βk}, then the corresponding T -Weyl
chamber is defined by C = {β̄1 > 0, . . . , β̄k > 0} where β̄ = κ(β) and
the complex structure is defined by ±i-eigenspace decomposition

mC =m+ +m− = g(R+
m) + g(−R+

m) (1)

of the complexified tangent space mC = TeK(G/K).

The extension Π = ΠW ∪ ΠB can be graphically described by a
painted Dynkin diagram, i.e. the Dynkin diagram which represents
the system Π with the nodes representing ΠB painted in black. Such a
diagram, which we sometimes identify with the pair (ΠW ,ΠB), allows
to reconstruct the flag manifold F = G/K with invariant complex

structure JF as follows: the semisimple part k
′
of the (connected)

stability subalgebra k is defined as the regular semisimple subalgebra
associated with the closed subsystem Rk = R ∩ span(ΠW ) and the
vectors ihj defined by condition

βk(hj) = δkj , αi(hj) = 0, βj ∈ ΠB, αi ∈ ΠW
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form a basis of the center Z(k). The complex structure is defined by
(1).

2.2.2 Invariant symplectic forms and Kähler structures

An element Z ∈ t is called to be K-regular if its centralizer CG(Z) =
K or, equivalently, any T -root has a non-zero value on Z.

Proposition 4 ([7], [3]) There exists a natural one-to-one correspon-
dence between elements Z ∈ t and closed invariant 2-forms ωZ on
G/K, given by

Z ↔ ωZ |o = i d(B ◦ Z),

where d is the exterior differential in the Lie algebra g defined by
dα(X,Y ) = −1/2α([X,Y ]) and o = eK ∈ G/K.
Moreover, regular elements Z ∈ C from a T -Weyl chamber C corre-
spond to the Kähler forms ωZ with respect to the complex structure
J(C) associated to C, that is they define an invariant Kähler structure
(ωZ , J(C)). The 2-form 1

2πωZ is integral if the 1-form B ◦ Z has in-
teger coordinates with respect to the fundamental weights πi associated
with the system of black simple roots βi ∈ ΠB.

Recall that if ΠW = {α1, . . . , αm} (resp. ΠB = {β1, . . . , βk}) is the set
of white (resp. black) simple roots, then the fundamental weight πi

associated with βi, i = 1, . . . , k, is the linear form defined by

2〈πi, βj〉
‖βj‖2

= δij , 〈πi, αj〉 = 0. (2)

The B-dual to πi vectors hi form a basis of t.
Let Eα ∈ gα, α ∈ R, be the Chevalley basis of g(R) such thatB(Eα, E−α) =

2
<α,α> where < ., . > is the scalar product in ic∗ = span(R) induced by
the Killing form. We denote by ωα = B ◦Eα the dual basis of 1-forms.
Then for Z ∈ t

ωZ = −i
∑

α∈R+
m

2α(Z)

< α,α >
ωα ∧ ω−α (3)

Indeed,

i d(B ◦ Z)(Eα, E−α) = − i
2B(Z, [Eα, E−α])

= − i
2B([Z,Eα], E−α)

= − i
2α(Z)B(Eα, E−α)

= − iα(Z)
<α,α>

= −2i α(Z)
<α,α>ωα ∧ ω−α(Eα, E−α).

Definition 5 The 1-form

σ =
∑

β∈R+
m

β ∈ t∗ ⊂ ic∗

is called the Koszul form and the dual vector ZKos := B−1 ◦σ is called
the Koszul vector.
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Proposition 6 [3] The Koszul vector ZKos defines the invariant
Kähler-Einstein structure (ωZKos , J(C)) on F = G/K, where J(C) is
the invariant complex structure associated with the T -Weyl chamber C
which is defined by ΠB.

Let us conclude this section by recalling the flag manifolds of the clas-
sical groups: (see, for example, [3], [4]):

- SU(n)/S(U(n1)× · · · × U(ns)× U(1)m)

n = n1 + · · ·+ ns +m, s,m ≥ 0

- SO(2n+ 1)/U(n1)× · · · × U(ns)× SO(2ℓ+ 1)× U(1)m

- Sp(n)/U(n1)× · · · × U(ns)× Sp(ℓ)× U(1)m

- SO(2n)/U(n1)× · · · × U(ns)× SO(2ℓ)× U(1)m

n = n1 + · · ·+ ns +m+ ℓ, s,m, ℓ ≥ 0, ℓ 6= 1

2.3 Homogeneous CR manifolds

We recall that a CR structure on a manifold S is a pair (H, JH) where
H is a codimension one distribution and JH ∈ Γ(End(H)) is a field of
complex structures in H such that the ±i-eigendistributions H± ⊂ HC

are involutive (i.e. closed w.r.t. the Lie bracket).

The complex structure J on a manifold M induces a CR structure

(H, JH) on any hypersurface S ⊂ M where H ⊂ TM is the maximal

J-invariant distribution and JH = J |
H

.

2.3.1 Ordinary homogeneous manifolds and projectable

CR structures

Definition 7 A homogeneous manifold S = G/L of a compact semisim-
ple Lie group G is called an ordinary manifold if the normalizer K :=
NG(L) is the centralizer of a torus and contains L as a codimension
one subgroup.

Such a manifold is the total space of a homogeneous principal circle
bundle π : G/L → G/K over the flag manifold F = G/K.

Let S = G/L be an ordinary homogeneous manifold and K =
NG(L). We define the standard reductive decomposition as the B-
orthogonal decomposition

g = l+ RZ0
F +m (4)

where k = l+ RZ0
F and B(Z0

F , Z
0
F ) = −1.

We will call Z0
F fundamental vector and we will identify it with an

invariant vector field on S which is the fundamental vector field of
the principal bundle π which generates a commuting with G action of
the circle group T 1 on S , that is the structure group of the principal

10



bundle π. The dual 1-form θ0 := B ◦ Z0
F is an invariant 1-form on S

which defines a canonical invariant connection in π.
We denote by Z0 the vector in t = iZ(k) such that Z0

F = iZ0 and, by
a slight abuse of notation, we will call it also fundamental vector.

The following lemma shows that, given a flag manifold F = G/K,
almost all closed codimension one subgroups L of K define an ordinary
manifold S = G/L.

Lemma 8 [2], [15] Let F = G/K be a flag manifold and L a codimen-
sion one closed (normal) subgroup of K. If G/L is not an ordinary
manifold, then L = CG(A1) is the centralizer of the 3-dimensional
regular subalgebra A1 of gC, associated with a long root such that
G/NG(A1) is the Wolf space (symmetric quaternionic Kähler mani-
fold) or G = G2 and a1 is the 3-dimensional subalgebra associated
with a short root.

Now we state some elementary properties of an ordinary manifold
S = G/L.

Lemma 9 ([2], [15]) Let S = G/L an ordinary manifold. Then,

i) Any invariant vector field on S is proportional to Z0
F .

ii) The only invariant codimension one distribution in S = G/L
is the distribution H defined by the AdK-invariant subspace m.
This distribution is also Z0

F -invariant.

iii) There is a natural one-to-one correspondence between invariant
complex structures JF on the flag manifold F = G/K, AdK-
invariant complex structures Jm on m ( which are integrable in

the sense that h
C
+m10 is a subalgebra, where m10 ⊂ mC is the

i-eigenspace of Jm ) and invariant CR structures (H, JH) on S
which are also Z0

F -invariant.

iv) Any irreducible K-submodule of m = ToF remains irreducible as
L-submodule.

Following [15] we give

Definition 10 An invariant CR structure (H, JH) on an ordinary
manifold S = G/L is called projectable if it is Z0

F -invariant or, equiva-
lently if the projection π : S = G/L → F = G/K is a holomorphic map
of the CR manifold S onto the flag manifold F with some invariant
complex structure JF .
An ordinary manifold S = G/L with a projectable CR structure is
called a homogeneous CR manifold of standard type or standard CR
manifold.

The following lemma gives a sufficient condition for an invariant
CR structure on an ordinary manifold S = G/L to be projectable.

Lemma 11 ([15]) If irreducible AdK-submodules of mC are non-equivalent
as Ad L-submodules then any invariant CR structure on an ordinary
manifold S = G/L is projectable.

11



All compact homogeneous Levi non-degenerate CR manifolds with
non projectable CR structure have been classified by [2]. More pre-
cisely, they prove

Theorem 12 [2] A compact homogeneous Levi non-degenerate non
projectable CR manifold (S = G/L,H, J |H) is either the sphere bun-
dle of a compact rank one symmetric space (CROSS) or one of the
exceptional homogeneous CR manifolds

SUn/T
1 · SUn−2, SUp · SUq/T

1 · Up−2 · Uq−2,

SUn/T
1 · SU2 · SU2 · SUn−4, SO10/T

1 · SO6, E6/T
1 · SO8

which admit a holomorphic fibration over flag manifolds with fibers
Sn, n = 2, 3, 5, 7, 9 respectively.

3 Cohomogeneity one Kähler manifolds of

standard type

Let (M,ω, J, g) be a cohomogeneity one Kähler G-manifold, where G
is a connected compact semisimple Lie group. Deleting singular orbits
(if they exist) or, in the case M/G ≃ S1, the regular orbit S0 = π−1(0)
we get an open dense submanifold Mreg of regular points which we
identify as a G-manifold with Mreg = (0, d)×G/L, d = 1 or ∞.

We may assume that the induced metric greg := g|Mreg
has the

form
greg = dt2 + gt, t ∈ (0, d),

where gt := g|St
is an invariant metric on the regular orbit St :=

{t} × G/L = G/L. We denote by Tt := ∂t|St
the unit normal vector

field to the orbit St which is tangent to normal geodesics γ(t) = (t, x0).
Then JTt is a G-invariant tangent vector field on St and θt := g ◦ JTt

the dual invariant 1-form.

Any regular orbit St carries an invariant CR structure (H, JH) in-
duced by J , where

H := JT⊥
t = ker θt ⊂ TSt

and Jt := J |H.

Definition 13 We say that a cohomogeneity one Kähler or complex
manifold M is of standard type if a regular orbit St = Gγ(t) = G/L
with the induced CR structure is a CR manifold of the standard type
(Definition 10 above) and singular orbits (if exist) are flag manifolds
with induced complex structure.

Remark 14 The last condition is automatically satisfied if M is a
Kähler manifold.
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3.1 Moment map of a cohomogeneity one Kähler

manifold

Let (M,J, ω, g) be a cohomogeneity one Kähler manifold of a compact
semisimple Lie group G. Since the group G is semisimple and preserves
the Kähler form, the (G-equivariant) moment map

µ : M → g∗ ≃ g, x → µx, µx(X) = hX(x)

where hX it the hamiltonian of the Killing vector field X̂ generated by
X ∈ g, is defined.

Lemma 15 [15] The restriction µt : St = G/L → Ft := µ(St) =
G/K of the moment map to a regular orbit is a G-equivariant principal
bundle with the structure group T 1 = K/L over a flag manifold F =
G/K (i.e. an adjoint orbit of G). In particular, L is a codimension
one normal subgroup of the group K, which is the centralizer of a torus
in G.

Proof: Since the moment map µt is equivariant, it maps St = G/L
onto an adjoint orbit F = G/K.

Now ker ωt = ker ω|TSt
= RJTt and d(hX) = ω ◦X give ker dµt =

RJTt. So L is a codimension one subgroup of K. In terms of the Lie
algebra, we can write a B-orthogonal decomposition of g

g = l+ RZ0
F +m, k = l+ RZ0

F

where Z0
F is an AdL-invariant vector, such that the associated invari-

ant vector field on St is proportional to JTt. The corresponding 1-
parameter group T 1 = expRJTt = expRZ0

F (which is closed in K,
since the subgroup L is closed, see [2]) commutes with G and defines
the structure of T 1-principal bundle π : St → F = G/Kt. �

Remark 16 The subgroup L ⊂ K = L · T 1 = Lcon · T 1 can be non
connected.

Corollary 17 A cohomogeneity one Kähler manifold M is of the stan-
dard type if the moment map µ : St = G/L → F = G/K maps any
regular orbit with the induced CR structure holomorphically onto the
associated flag manifold F = G/K = G/NG(L) with a fixed invariant
complex structure JF .

4 Standard invariant Kähler structures

on cohomogeneity one manifolds

Let (S = G/L,H, JH) be a standard CR manifold with holomorphic
fibration π : S = G/L → F = G/K over a flag manifold with a
complex structure JF . Infinitesimally, it is described by a standard
decomposition

g = (l+ RZ0
F ) +m = k+m

13



where Z0
F is the fundamental vector, k = Ng(l), together with an

AdK-invariant complex structure Jm inm. Now we describe invariant
Hermitian and Kähler structures of standard type in a regular coho-
mogeneity one manifold Mreg = (0, d)×G/L which induce a given CR

structure (H, JH) on each regular orbit St = {t} ×G/L = G/L. We
identify Z0

F with a G-invariant vector field on St = G/L and denote by
θ0 := B ◦ Z0

F the dual invariant 1-form with kernel H = ker θ0. Any
invariant vector field (resp. 1-form) is conformal to Z0

F (resp. θ0).

4.1 Invariant Hermitian structures on Mreg

We fix an invariant metric g on Mreg = (0, d)×G/L of the form

g = dt2 + gt

where gt is an invariant metric in St = S = G/L such that the CR

structure JH is orthogonal.
We describe all g-orthogonal projectable invariant complex structures
J on Mreg which project onto a given invariant complex structure JF

of the flag manifold F = G/K, or, equivalently, are extensions of the

associated CR structure JH. Then (g, J) is an invariant Hermitian
structure in Mreg.

Since the invariant 1-forms dt, θ0 are orthogonal to each other and

the distribution H = ker{dt, θ0}, any extension of JH to an orthogo-
nal invariant almost complex structure on Mreg can be written as

J∗dt := dt ◦ J = a(t)θ0, J∗θ0 = − 1
a(t)dt

JTt = 1
a(t)Z

0
F , JZ0

F = −a(t)Tt
(5)

where a : (0, d) → R is a non vanishing function.

Proposition 18 Any extension of the CR structure JH to an in-
variant orthogonal (integrable) complex structure J on Mreg is given
by (5).

Proof: We have to check that the almost complex structure J is in-

tegrable. Since J |
H

= JH is an integrable CR structure in S, it
is sufficient to check that the differential of the 1-form dt − iJ∗dt =
dt+ iaθ0 ∈ Ω1,0(M) belongs to the space Ω2,0(M) +Ω1,1(M) of forms
of type (2, 0) and (1, 1). Since dθ0 = ω0 ∈ Ω1,1(M) , we have

d(dt + iaθ0) = iȧdt ∧ θ0 + iadθ0

= (dt+ iaθ0) ∧ iȧθ0 + iadθ0 ∈ Ω2,0(M) + Ω1,1(M).

�
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4.2 Invariant Kähler structures on Mreg

We describe all standard invariant Kähler structures (ωreg, Jreg, greg)
on Mreg = (0, d) × G/L which induce the projectable CR structure

(H, JH) on St = {t} × S.
Recall that vectors Z ∈ t = iZ(k) correspond to invariant closed

2-forms ωZ on F = G/K, whose value at o = eK is given by

(ωZ)o(X,Y ) = i d(B ◦ Z)(X,Y ), X, Y ∈m.

We will denote the pull back of ωZ to Mreg by the same letter ωZ . In
particular, the vector Z0 = −iZ0

F defines the invariant 2-form ω0 :=
ωZ0 = i dB ◦ Z0 = dB ◦ Z0

F = dθ0 on S which is the curvature of
the principal connection θ0 in the principal bundle π : S = G/L →
F = G/K. We denote by C(JF ) ⊂ t the T -Weyl chamber which
corresponds to the complex structure JF .

The following proposition shows that a standard invariant Kähler
structure in Mreg is defined by a parametrized open interval (Z0Zd) in
the T -Weyl chamber C(JF ), parallel to Z0.

Proposition 19 A standard invariant Kähler structure (ωreg, Jreg, greg)
on Mreg = (0, d) × G/L which induces an invariant CR structure

(H, JH) on regular orbits is defined by a parametrized open inter-
val Zt = Z0 + f(t)Z0 ⊂ C(JF ) where f : (0, d) → R, limt→0 f(t) = 0
is a smooth function with a(t) = ḟ(t) > 0. More precisely, define

θt := iB ◦ Zt = iB ◦ Z0 + f(t)iB ◦ Z0 = θ0 + f(t)θ0,

ω0 := dθ0 = ωZ0
, ω0 := dθ0 = ωZ0 .

Then the Kähler structure is given by

ωreg = d(θ0 + f(t)θ0) = ḟdt ∧ θ0 + ω0 + f(t)ω0,

greg = dt2 + (ḟ θ0)2 + π∗g0 + f(t)π∗g0,

Jreg : dt → −ḟ θ0, θ0 → 1

ḟ
dt, J |

H
= JH.

Here g0 = −ω0 ◦ JF , g0 = −ω0 ◦ JF are symmetric bilinear forms on
F .
The pair (ωt := ω0+ f(t)ω0, JF ) defines an invariant Kähler structure
on F for t ∈ (0, d) .

Proof: Using (5), we have

ωreg(Tt, JTt) = 1 = ωreg(Tt,
1

a
Z0
F ).

This shows that the Kähler form ωreg on Mreg can be written as

ωreg = dt ∧ a(t)θ0 + ωS
t

where ωS
t := ω|St

is a closed invariant 2-form on St = S with kernel
RZ0

F .
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The form ωS
t is the pull back of an invariant symplectic form ωZt

=
id(B ◦ Zt) associated with a vector Zt ∈ C(JF ) (where C(JF ) is the
Weyl chamber which corresponds to the complex structure JF ). It is
sufficient to check that ωS

t is invariant with respect to the fundamental
vector field Z0

F . We have

LZ0
F
ωS
t = iZ0

F
dωS

t + diZ0
F
ωS
t = 0

since ωS
t is closed and has kernel RZ0

F .
Now the condition that ωreg is closed can be written as

dt ∧ aω0 + dt ∧ ω̇S
t = 0

or

−a(t)ω0 + ω̇S
t = 0 = ωaZ0+Żt

= 0

or Żt + aZ0 = 0. This implies that the curve Zt is an (open) interval
(maybe, a ray) (Z0Zd) ⊂ C̄(JF ) with parametrization Zt = Z0 +
f(t)Z0, t ∈ (0, d), with a(t) = ḟ(t) > 0. We may assume that f(0) = 0.
We have proved that

ωreg = ḟ(t)dt ∧ θ0 + ωZt
= ḟ(t)dt ∧ θ0 + ω0 + f(t)ω0.

Now we easily calculate the metric greg as a composition of ωreg

and J . �

Since an interval in C(JF ) is not diffeomorphic to a circle, we get

Corollary 20 There is no cohomogeneity one Kähler manifold of
standard type with the orbit space S1.

Corollary 21 i) a(t) := ḟ(t) = ωreg(Tt, Z
0
F ) = greg(JTt, Z

0
F ),

a(t)2 = greg((Z
0
F )γ(t), (Z

0
F )γ(t)).

ii) For any X ∈ g the square norm of the Killing field X̂ along a
normal geodesic γ(t) is given by

bX(t) = |X̂ |2γ(t) = ω0(X, JX)+f(t)ω0(X, JX) = g0(X,X)+f(t)g0(X,X).

iii) If ω0(X, JX) 6= 0, then ḃX(t) = a(t)ω0(X, JX) = a(t)g0(X,X) 6=
0 and the function bX(t) has no critical points for t ∈ (0, d). It
is true if 0 6= X ∈ m.

4.3 Basic properties of standard Kähler cohomo-

geneity one manifolds with singular orbits

As an application of previous results, we prove two basic properties
of a standard Kähler cohomogeneity one manifold with one or two
singular orbits (see also [15]).
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Proposition 22 Let M be a standard cohomogeneity one Kähler
manifold with the orbit space M/G = [0, 1) . Then the singular or-
bit S0 = Gγ(o) = G/H0 is a complex submanifold, hence a Kähler flag
manifold and H ⊃ K = NG(L).

Proof: The value Ẑ0
p of the Killing vector field Ẑ0 generated by the

fundamental vector Z0
F ∈ g at the point p := γ(0) ∈ S0 is zero, since

in the opposite case we get two Ad L-invariant elements Ẑ0
p , JẐ

0
p in

the B-orthogonal complement l⊥ = RZ0
F +m ⊂ g. This proves that

H ⊃ K since K = NG(L) is a connected subgroup.
For a subspace n ⊂ g we denote by n̂γ(t) the subspace of Tγ(t)M

spanned by the values of the Killing vectors X̂γ(t), X ∈ n. Since
ω(γ̇(t), m̂γ(t)) = 0 for t 6= 0 it is true also for t = 0. But

TγS0 = ĝ0 = m̂γ(0)

since (̂l + RẐ0)0 = 0. So for any normal geodesic γ(t) with γ(0) = p,
we get

ω(γ̇(0), TpS0) = g(γ̇(0), JTpS0) = ω(γ̇(0), m̂γ(0)) = g(γ̇(0), Jm̂γ(0)) = 0.

Since vectors γ̇(0) span T⊥
p S0, we get

g(T⊥
p S0, JTpS0) = 0

which shows that S0 is a complex submanifold. �

As a corollary, we get the

Proposition 23 If (M,ω, J, g) is a standard (compact) cohomogene-
ity one Kähler manifold with two singular orbits Sǫ = Gγ(ǫ) =
G/Hǫ, ǫ = 0, 1, then the singular orbits are complex submanifolds and
K := NG(L) = H0 ∩H1.

Proof: It remains only to check that H0 ∩H1 = K. Since the metric g
is complete, for any normal geodesic γ(t), t ∈ R through a point p ∈ M
we have

ω(γ̇(t), m̂t) = 0.

Also, since Ẑ0
p = 0, we get

ω(γ̇(0), Ẑ0
p) = 0.

Since TpS0 = m̂0, this means that ω(T⊥
p S0, TpS0) = g(T⊥

p S0, JTpS0)) =
0 that is S0 is a complex submanifold and H0 and similarly H1 are the
centralizers of some torus in G. Then H0 ∩ H1 ⊃ K is also the cen-
tralizer of a torus and hence, a connected subgroup. If K 6= H0 ∩H1 ,
then there is non-zero vector X ∈ m∩ h0 ∩ h1 and the associated func-
tion bX(t) := |X̂γ(t)|2 (the square norm of the Killing field X̂ along a
normal geodesic) vanishes at the points t = 0, 1. Hence it has a critical
point in (0, d), which contradicts Corollary 21. �

17



5 Einstein equation and Kähler-Einstein

structure on Mreg

To calculate the Ricci form of an invariant Kähler metric on Mreg =
(0, d)×G/L we construct local holomorphic coordinates z0, z1, . . . , zn

inMreg which are extension of local holomorphic coordinates z1, . . . , zn

of the associated flag manifold F = G/K.

5.1 Holomorphic coordinates and Kähler potential

of Mreg

Let z1, . . . , zn, t, φ be local coordinates on Mreg, where φ is a local
coordinate on the torus T 1 = {eiφ} such that K = L · T 1. In these
coordinates, let

θ0 = c dφ+Φ(z, z̄) = c dφ + i

n
∑

j=1

(Fjdzj − F̄jdz̄j) (6)

and let Ψ be a solution to the system of partial differential equations

∂Ψ

∂zj
= Fj , j = 1, . . . , n (7)

(it is easily checked that dθ0 = ω0 implies ∂Fk

∂zj
=

∂Fj

∂zk
).

Then, we claim that

z0 = icφ+

∫

1

f ′ dt+Ψ (8)

is a new holomorphic coordinate on Mreg. Indeed, this is equivalent to
say that ∂̄z0 = (d− idc)(z0) = 0, where d = ∂ + ∂̄ and dc = i(∂̄− ∂) =
J−1dJ . We have

dz0 = ic dφ+
1

f ′ dt+
n
∑

j=1

∂Ψ

∂zj
dzj +

∂Ψ

∂z̄j
dz̄j =

= ic dφ+
1

f ′ dt+
n
∑

j=1

Fjdzj + F̄jdz̄j

and

dcz0 = J−1(ic dφ+
1

f ′ dt+
n
∑

j=1

Fjdzj + F̄jdz̄j) =

= −icJdφ− 1

f ′ Jdt− i(

n
∑

j=1

Fjdzj − F̄jdz̄j) =

(by Jdt = −f ′θ0 and Jθ0 = 1
f ′
dt)

= −i
1

f ′dt− i(

n
∑

j=1

Fjdzj + F̄jdz̄j) + θ0 − i(

n
∑

j=1

Fjdzj − F̄jdz̄j) =
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= −i
1

f ′dt+ c dφ− i(

n
∑

j=1

Fjdzj + F̄jdz̄j)

so dz0 = idcz0 as required.

5.2 The Ricci form and the Einstein equation for

an invariant Kähler metric on Mreg

Now, we calculate the Ricci form of an invariant Kähler structure
(ωreg, J

reg, greg) onMreg = (0, d)×G/L associated with a parametrized
interval Zt = Z0+f(t)Z0 in the T -Weyl chamber C(JF ) corresponding
to the complex structure JF of the flag manifold F = G/K.
By Proposition 19, the Kähler form is given by

ωreg = ḟ(t)dt ∧ θ0 + (ω0 + f(t)ω0) = ḟ(t)dt ∧ θ0 + ωZt
(9)

where ωZt
= d(B ◦ Zt), so that

ωn+1
reg = (n+ 1)df ∧ θ0 ∧ (ωZt

)n,

(n+ 1)(ωZt
)n = (n+ 1)(−2)n(

∑

α∈R+
m

α(Zt)
(α,α)ωα ∧ ω−α)

n = h(f)volF ,

where R+
m is the set of positive black roots,

volF := (n+ 1)!(−2)n
∏

α∈R+
m

1

(α, α)
ωα ∧ ω−α

is a volume form on F = G/K and

h(f) =
∏

α∈R+
m

α(Zt) =
∏

α∈R+
m

(α0 + fα0), α0 := α(Z0), α
0 := α(Z0).

So we can finally write

ωn+1
reg = ḟh(f)dt ∧ θ0 ∧ volF . (10)

Lemma 24 Let z1, . . . , zn be holomorphic coordinates in F = G/K
and z0, z1, · · · , zn their extension to holomorphic coordinates in (0, d)×
G/L, being z0 defined by above formula (8). Then the density µ asso-
ciated with the volume form

ωn+1
reg = µdz0 ∧ · · · ∧ dzn ∧ dz̄0 ∧ · · · ∧ dz̄n

is given by

µ =
i

2
ḟ2h(f)µF

where µF is the density associated with the volume form volF .
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Proof: By substituting (6) in (10) we have

ωn+1
reg = ḟh(f)µFdt ∧ dφ ∧ dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n (11)

By (8) we have dz0 = ic dφ + 1
f ′
dt+ (terms containing dzj , dz̄j),

dz̄0 = −ic dφ+ 1
f ′
dt+ (terms containing dzj , dz̄j) and −2ic 1

f ′
dt∧dφ =

dz0 ∧ dz̄0+ (terms containing dzi, dz̄i). By replacing this in (11) we
conclude the proof.

�

Now we calculate the Ricci form ρ of the invariant Kähler structure
using the very well-known formula

ρ = −i∂∂̄ logµ = −1

2
ddc logµ = −1

2
ddc log(ḟ2h(f))− 1

2
ddc logµF .

The second term is the Ricci form ρF = dσ of (any) invariant Kähler
(with respect to the complex structure JF ) metric. We calculate the
first term. By Proposition 19

dc log(ḟ2h) = J−1d log(ḟ2h) =
d

dt
log(ḟ2h)J−1dt = ḟ

d

dt
log(ḟ2h)θ0,

ddc log(ḟ2h) =
d

dt
(ḟ

d

dt
log(ḟ2h))dt ∧ θ0 + ḟ

d

dt
log(ḟ2h)ω0

and

ρ = −1

2

d

dt
(ḟ

d

dt
log(ḟ2h))dt ∧ θ0 − 1

2
ḟ
d

dt
log(ḟ2h)ω0 + ρF .

The Einstein equation ρ = λωreg ≡ λḟdt ∧ θ0 + λω0 + λfω0 can be
rewritten as

λf +
1

2
ḟ
d

dt
log(ḟ2h) = c, c = const (12)

ρF = λω0 + cω0 (13)

Since by Proposition 6 we have ρF = d(B ◦ ZKos), where ZKos is the
Koszul vector, (13) can be rewritten as

ZKos = λZ0 + cZ0. (14)

Now we write (12) in more explicit form. Since ḟ d
dt log(ḟ

2) = 2f̈ and

d

dt
log(h(f)) =

d

dt

∑

α∈R+
m

log(α0 + fα0) =
∑

α∈R+
m

ḟα0

α0 + fα0
=: ḟA(f)

where A(f) =
∑

α∈R+
m

α0

α0+fα0 , we get

f̈ +
1

2
A(f)ḟ2 + λf = c (15)

We proved the following

Proposition 25 [15] The Kähler metric on (0, d) × G/L defined by
a parametrized interval Zt = Z0 + f(t)Z0 ⊂ C, t ∈ (0, d) of a Weyl
chamber C is a Kähler-Einstein metric if and only if the function f(t)
satisfies the equation (15) and the relation (14) holds.
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5.3 An example: the n-dimensional projective space

Let M be the projective space CPn = {[x0, x1, . . . xn]} with affine
coordinates wk = xk

x0
, k = 1, . . . , n, endowed with the Fubini-Study

form ωCPn = i∂∂̄ log(1 + |w1|2 + · · · + |wn|2). Let us denote x =
(x1, . . . , xn) and let us consider the action of G = SU(n) on M given
by A[x0, x] = [x0, Ax].
It is easily checked that this is a cohomogeneity one action, with singu-
lar orbits S0 = G([x0, 0]) = [x0, 0], S1 = G([0, x]) = CP

n−1, and regu-
lar orbits diffeomorphic to S2n−1 (obtained when x0 6= 0 and x 6= 0).
For every regular point [1, w1, . . . , wn], its orbit can be identified with
the sphere of radius r =

√

|w1|2 + · · ·+ |wn|2 in Cn, so that the sin-
gular orbit S0 (resp. S1) is obtained when the radius tends to 0 (resp.
to infinity).
The flag F = G/K associated with the regular orbits is SU(n)/U(n−
1) = S2n−1/{eiφ} = CPn−1. Let zk = wk

w1
, k = 2, . . . , n, be the affine

coordinate on F . Then we can take r, φ, z2, . . . , zn as local coordinates
on a dense open subset of the union of regular orbits Mreg. More
precisely, set

(w1, . . . , wn) =

(

r
w1

√

|w1|2 + · · ·+ |wn|2
, . . . , r

wn
√

|w1|2 + · · ·+ |wn|2

)

=

=

(

reiφ
√

1 + |z|2
,

reiφz2
√

1 + |z|2
, . . . ,

reiφzn
√

1 + |z|2

)

. (16)

where we are setting |z|2 := |z2|2 + · · ·+ |zn|2.
Using the change of coordinates (16), after a long but straight com-
putation we can see that the restriction ωreg of the Fubini-Study form
ωCPn to Mreg is

2r

(1 + r2)2
dr∧



dφ+
i

2(1 + |z|2)

n
∑

j=2

(zjdz̄j − z̄jdzj)



+
r2

1 + r2
ω̃ (17)

where ω̃ = i∂∂̄ log(1 + |z|2) is the Fubini-Study form on CPn−1.
In order to find the relation between the parameter r and the parameter
t used in the above sections, let us recall that ∂

∂t is a unit field on Mreg

normal to each regular orbit. On the one hand, ∂
∂r is normal to the

regular orbits. On the other hand, a straight calculation shows that
the coefficient of dr2 in the espression of the metric greg is 2

(1+r2)2 ,

so we must have dt =
√
2

1+r2 dr and, integrating, r = tan
(

t√
2

)

. By

replacing this into (17) we find

√
2

2
sin

(

t√
2

)

dt∧



dφ+
i

2(1 + |z|2)

n
∑

j=2

(zjdz̄j − z̄jdzj)



+sin2
(

t√
2

)

ω̃

(18)
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This is exactly formula (9) with f(t) =
√
n−1

n
√
2
sin2

(

t√
2

)

, ω0 = n
√

2
n−1 ω̃

and θ0 = n
√

2
(n−1)

(

dφ+ i
2(1+|z|2)

∑n
j=2(zjdz̄j − z̄jdzj)

)

. The correct

normalization for θ0 is obtained as follows. On the Lie algebra su(n)
of G = SU(n), θ0 is defined as B(Z0

F , ·), where B(X,Y ) = 2ntr (XY )
is the Killing-Cartan form and Z0

F ∈ su(n) is such that B(Z0
F , Z

0
F ) =

−1. This last condition easily implies that Z0
F = i

n
√

2(n−1)
diag ((n −

1),−1, . . . ,−1). Then, for every XI ∈ TI(SU(n)) having iα1, . . . , iαn

(αk ∈ R) on the diagonal, we have

θ0(XI) = B(Z0
F , XI) = − 2n

n
√

2(n− 1)
((n− 1)α1 − α2 − · · · − αn) =

= −
√

2

(n− 1)
nα1

and for general Xg ∈ Tg(SU(n)), g = (aij),

θ0(Xg) = θ0(dg−1Xg) = −n

√

2

(n− 1)
(ā11a

′
11 + · · ·+ ān1a

′
n1).

Hence θ0 = −
√

2
(n−1) (ā11da11 + · · · + ān1dan1). Now, if we take

into account that CPn−1 = SU(n)/U(n − 1) via the action CPn−1 =
{A[1, 0, . . . , 0]} = {[a11, . . . , an1]} and accordingly to (16) we replace

a11 = eiφ√
1+|z|2

, a21 = eiφz2√
1+|z|2

, . . . , an1 = eiφzn√
1+|z|2

, a straight calcula-

tion yields exactly the above expression for θ0.

Finally, let us verify that f(t) =
√
n−1

n
√
2
sin2

(

t√
2

)

satisfies the Einstein

equation (15). In this case, since F = CPn−1, the set R+
m contains the

roots ε1 − ε2, . . . , ε1 − εn. Moreover, since the singular orbit S0 is a
fixed point, we must have Z0 = 0 and then α0 = α(Z0) = 0. Hence

A(f) =
∑

α∈R+
m

α0

α0+fα0 = n−1
f and (15) reduces to

f̈ +
n− 1

2

ḟ2

f
+ λf = c.

One immediately sees that f(t) =
√
n−1

n
√
2
sin2

(

t√
2

)

is a solution to this

equation for c =
√
n−1√
2

and λ = n+1, which is exactly the value of the

Einstein constant for ωCPn = i log(1 + |w1|2 + · · ·+ |wn|2).

6 Standard cohomogeneity one Kähler man-

ifolds with one singular orbit

In the sequel we will consider only standard cohomogeneity one G-
manifolds M (Definition 13) with one (complex) singular orbit (S0 =
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G/H, JS). For brevity, we will call these manifolds just standard C1
manifolds.

First of all, we prove that any such manifold is the total space of the
homogeneous vector bundle Mϕ = G ×H Vϕ → S0 = G/H over a flag
manifold S0 = G/H defined by a representation ϕ : H → GL(Vϕ) with
ϕ(H) ≃ Um. Then we give a description of these manifolds in terms of
painted Dynkin diagrams and determine the invariant Kähler metrics
on them.

6.1 Reduction to admissible vector bundles

Let (S0 = G/H, JS) be a flag manifold with invariant complex struc-
ture.

Definition 26 A complex linear representation ϕ : H → GL(Vϕ) =
GLm(C) and the associated homogeneous vector bundle Mϕ = G×HVϕ

are called admissible if ϕ(H) ≃ Um.

Note that an admissible representation is defined by a normal subgroup
N = ker(ϕ) such that H/N ≃ Um. Such a subgroup N is also called
an admissible subgroup.

The main result of this section is the following

Theorem 27 Let M be a standard complex C1 manifold. Then M is
the total space Mϕ of an admissible vector bundle Mϕ = G×H Vϕ → S0

over the singular orbit (S0 = G/H, JS).

Proof: Any cohomogeneity one manifold M with one singular orbit
can be identified with the homogeneous vector bundle M = G ×H V
over the singular orbit S0 = G/H associated to some sphere transitive
representation ϕ : H → GL(Vϕ), where Vϕ is the normal space of the
singular orbit S (Proposition 1). Since, by assumption, the orbit S0

is a complex submanifold, the linear group ϕ(H) preserves a complex
structure in V . Checking the Borel list of sphere transitive linear
groups, we conclude that ϕ(H) ≃ H/ker (ϕ) ≃ SUm, Um, Spm/2 or
T 1 · Spm/2.
It remains to check that the only possible case is ϕ(H) = Um which is
clear for m = 1. For m > 1, the result follows from the following two
lemmas.

Lemma 28 Let H be the stability subgroup of a flag manifold F =
G/H. Then there is no normal subgroup N ⊂ H with H/N ≃ SUm, m >
1.

Proof: If, by contradiction, a normal subgroup N ⊂ H such that
H/N ≃ SUm exists, then there is an ideal sum of h corresponding
to a connected component of type Am−1 in the white subdiagram ΠW

of the painted Dynkin diagram Π = ΠW ∪ ΠB of the flag manifold
G/H .
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For the classical groups, we can always assume that the inclusion of
Am−1 into Π has the form

◦
α1

− ◦
α2

− · · · − ◦
αm−1

− • − · · ·

Then the ideal Am−1 = sum is embedded into a subalgebra Am =
sum+1 and the subgroup H = NG(h) ⊃ NSUm+1

(sum) = Um con-
tains Um as a normal subgroup. Since Um = SUm × T 1/Zm, we have
H/N ≃ SUm/Zm. This implies that there is no normal subgroup N
with H/N ≃ SUm, for m > 1, as required.

Consider now exceptional groups. There are only two flag manifolds
of type F4, where the inclusion of the subalgebra Am−1 = sum is not
as above:

• − • ⇒ ◦ − ◦

◦ − ◦ ⇒ • − •

Indeed, in these cases the (white) subalgebra h
′
= A2 = su3 is embed-

ded into h̃ = C3 = sp6 for the first diagram and into h̃ = B3 = so7
for the second diagram. In both cases we have NH̃(SU3) = U3 =
SU3×T 1/Z3. Repeating the above argument, we conclude thatH/N =
SU3/Z3.

In the case when G has type Eℓ, ℓ = 6, 7, 8, we can always embed
Am−1 into Am or Dm and use similar arguments with the exception of
the cases

◦ − ◦ − · · · −
•
|
◦ − ◦ − ◦

which correspond to the flag manifold G/H = Eℓ/Uℓ, ℓ = m = 6, 7, 8.
In this case we have H = SUℓ · T 1, that is, at the Lie algebra level,
h = sul+iRd where ad d defines a gradation of depth 2 or 3 of the com-
plex Lie algebra eCℓ . If we denote by V = C

ℓ the standard Uℓ-module,
then the gradation is given by (see [10], section 3.5)

eCℓ = uℓ + g−2 + g−1 + g1 + g2

for ℓ = 6, 7, where g−1 = Λ3V, g−2 = Λ6V, g1 = Λ3V ∗, g−2 = Λ4V ∗,
and by

eC8 = u8 + g−3 + g−2 + g−1 + g1 + g2 + g3

where g±1, g±2 are defined as above and g−3 = V ⊗ Λ8V, g3 = V ∗ ⊗
Λ8V ∗. The isotropy action of the semisimple part SUℓ of the stability
subgroup H = SUℓ · T 1 is the standard action on forms.
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Since the isotropy action of i·d on the space gk is ik·id and h = uℓ = g0,
we have [d, h] = 0, that is i · d ∈ z(h), so that N = exp(Ri · d) = Z(H).
By Z(H) ∩ SUm = Z(Um) ∩ SUm = Zm we have then

H/N = H/ exp(Ri·d) = H/Z(H) = (H∩SUm)/(Z(H)∩SUm) = SUm/Zm.

The case of the group G2 is similar. �

Lemma 29 There is no normal subgroup N ⊂ H with the quotient
H/N ≃ Spm or T 1 · Spm such that the associated cohomogeneity one
manifold M = G×H Vϕ has ordinary regular orbits.

Proof: The only flag manifold G/H of a classical Lie group which ad-
mits a normal subgroup N ⊂ H with indicated quotient has the form
G/H = Spn/(Un1

× · · · × Uns
× T k × Spm) = Spn/(N × Spm). The

associated cohomogeneity one manifold Spn ×H Vϕ has regular orbits
given, for non-zero v ∈ Vϕ, by

Spn/L = Spn/N × (Spm)v = Spn/N × Spm−1

which are not ordinary since NG(L) \ L ⊃ NSpm
(Spm−1) ⊃ Sp1 and

Sp1 is not one-dimensional.

For the exceptional case, we have to consider the cases of F4/Sp3 · T 1

with Dynkin diagram

• − ◦ ⇒ ◦ − ◦
and F4/Sp2 · T 2 with Dynkin diagram

• − ◦ ⇒ ◦ − •
In both cases, the associated cohomogeneity one manifold has non
ordinary regular orbits. For example, in the first case the correspond-
ing regular orbit is F4/(T

1 · Sp3)v = F4/Sp2, so that NG(L) \ L ⊃
NF4

(Sp2) ⊃ Sp1 and we conclude as in the classical case above. The
case of F4/Sp2 · T 2 is similar. This finishes the proof of the lemma. �

6.1.1 Description of admissible homogeneous vector bun-

dles in terms of Dynkin diagrams

The following proposition describes the admissible homogeneous vec-
tor bundles π : Mϕ = G ×H Vϕ → S0 = G/H , over a flag manifold
(S0 = G/H, JS) in terms of painted Dynkin diagrams and characters
χ : T k → T 1 of the connected center T k of the stabilizer H = H ′ · T k.

Proposition 30 Let (S0 = G/H = G/H ′ · T k, JS) be a flag manifold
associated with painted Dynkin diagram Π = ΠB ∪ ΠW . Then an
admissible homogeneous vector bundle Mϕ = G×H Vϕ is defined by a
pair (Am−1, χ) where Am−1 is a connected component of ΠW of type
Am−1 (i.e. a string of length m− 1), and χ : T k → T 1 a character.
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Proof: The stability subalgebra of S0 admits a direct sum decomposi-
tion

h = sum ⊕ n′ ⊕ Z(h)

where sum is the ideal associated with the string Am−1 and the corre-
sponding decomposition of the stability subgroup is H = SUm ·N ′ ·T k.
Then the extension of the tautological representation of SUm in a vec-
tor space Vϕ = Cm by a character χ : T k → T 1 · idVϕ

is an admissible
representation ϕ : H → ϕ(H) = U(Vϕ) ≃ Um. The converse statement
is also clear. �

6.2 Regular submanifold Mreg of Mϕ

6.2.1 Invariant complex structures in the projective

space PVϕ = H[e0] = Um/Um−1 × U(1)0

Let π : Mϕ = G ×H Vϕ → S0 = G/H be an admissible vector bun-
dle over a flag manifold (S0 = G/H, JS) with reductive decomposition
g = h+ p.

We identify Vϕ with the arithmetic complex vector space Cm with
the standard Hermitian form < ., . > and the standard basis e0 =
(1, · · · , 0)T , · · · , em−1 = (0, · · · , 0, 1)T . Then the stability subalgebra
may be written as
h = n ⊕ um where um is the Lie algebra of skew-Hermitian matrices.
The orbit ϕ(H)e0 = H/He0 is the sphere with the reductive decompo-
sition of h = n⊕ um given by

h = (n⊕ um−1) + (RI0 + q)

where I0 = diag(i, 0m−1) and

q = {CX :=

(

0 −X∗

X 0

)

, X ∈ C
m−1} ≃ C

m−1.

The diagonal Lie algebra cum
is a Cartan subalgebra of um and a basic

vector ej is a weight vector for cum
with weight ǫj where

ǫj(diag(x0, x1, · · · , xm−1)) = xj .

The elementary matrices Eij ∈ uCm = glm(C) are root vectors with
roots αij = ǫi−ǫj . The reductive decomposition um = (um−1+RI0)+q

of the projective space CPm−1 = Um/Um−1 × U(1)0 defines a decom-
position of the root system Rum

of uCm into the union of white roots
R0

um
= {ǫi − ǫj , i, j > 0} ( which are roots of the stability subalgebra)

and the complementary black roots R′
um

= {±α0j = ±(ǫ0−ǫj), j > 0}.
The multiplication by ±i in ToCP

m−1 = q = Cm−1 defines two (op-
posite) invariant complex structures ±Jq which define two invariant

complex structures ±JCPm−1

on CPm−1. They correspond to the fol-
lowing painted Dynkin diagrams:

α01• − α12◦ − · · ·− αm−1m◦ α10• − α21◦ − · · ·− αmm−1◦ .
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Note that α01(id0) = 1 where id0 = −iI0 = diag(1, 0, · · · , 0). So the

T -Weyl chamber associated with the complex structure ±JCPm−1

is
±R+id0.

Deleting the singular orbit S0 = G/H which is the zero section
of π, we get a regular open submanifold which is the union of the
codimension one regular orbits parametrized by t > 0
St = G(te0) = G ×H (te0) = G/L where L = He0 = ker(ϕ) · Um−1 is
the stabilizer of the point e0. So we identify Mreg with

Mreg = R
+ ×G/L.

The projectivization G ×H PVϕ of the vector bundle π is a homoge-
neous manifold
F = G{te0} = G ×H [e0] = G/K where the stabilizer K = H[e0] =
L× U(1)0 with U(1)0 = diag(U(1), idm−1).
We will assume that the regular orbit S = G/L is an ordinary man-
ifold. Then NG(L) = K = L × U(1)0 and the natural projection
G/L → F = G/K is a principal U(1)0-bundle over the flag mani-
fold F . The restriction of this projection to a fibre V (x) = π−1(x) is
the standard projection S2m−1 = St ∩ V (x) → PV (x) of the sphere
onto the projective space. To be specific, we assume that JF = J+

F

corresponds to β = α12 such that the system of black roots

ΠF
B = {β = α1, β1, · · · , βk}

and the T -Weyl chamber is defined by conditions

C(JF ) = {β > 0, β1 > 0, · · · , βk > 0} ⊂ t = iZ(k)

We have the following standard (B-orthogonal) decomposition

g = l+ RZ0
F +m = l+ RZ0

F + q+ p

where Z0
F ∈ RI0 is the fundamental vector, i.e. the vector of Z(k) =

Z(l)⊕RI0 orthogonal to l and normalized by the conditionB(Z0
F , Z

0
F ) =

−1. Note that by assumption, its centralizer is k.

6.2.2 Extension of the complex structure JS to an in-

variant complex structure in F

Let Π = ΠW ∪ ΠB be the PDD associated with (S0, J
S) and ΠB =

{β1, · · · , βk}. We may assume that the T -Weyl chamber C(JS) asso-
ciated with the complex structure JS is defined by

C(JS) = {β1 > 0, · · · , βk > 0} ⊂ tS = iZ(h) = iZ(n) + Ridm.

We extend the complex structure Jp = JS |p to a AdK-invariant com-
plex structure J±

m on m = q+p choosing one of the complex structures
±Jq, described above. This defines two invariant complex structures

27



J±
F in the flag manifold F = G/K which are consistent with the com-

plex structure JS in S0 such that the natural projection F → S0 is
holomorphic. The PDD of the flag manifold (F, J±

F ) is obtained from
the PDD of (S0, J

S) by painting in black one of the end roots β = α1

or αm−1 of the white string Am−1 = {α1, · · · , αm−1} ⊂ tF = iZ(k) =
tS + RZ0, Z0 = −iZ0

F .
Since β(Z0) 6= 0, changing Z0 to −Z0 if necessary, we may assume
that β(Z0) > 0.

6.2.3 Decomposition TMϕ = T hMϕ + T vMϕ of the tan-

gent bundle

The decomposition g = h+p defines a G-invariant principal connection
in the principal bundle G → S0 = G/H such that the decomposition
of the tangent bundle TG into horizontal subbundle T hG and vertical
subbundle is given by

TaG = T h
a G+ T v

aG = ap+ ah = (La)∗p+ (La)∗h.

It defines a similar decomposition of the tangent bundle TMϕ given by

T[a,v]Mϕ = T h
[a,v]Mϕ + T v

[a,v]Mϕ = T h
a G+ TvVϕ = ap+ Vϕ.

In particular, along the radial line Re0 ∈ π−1(eH) ⊂ Mϕ the tangent
space Tte0Mreg can be written as

Tte0Mϕ = T h
te0Mreg + T v

te0Mϕ = p+ Vϕ.

Proposition 31 Let gV be a ϕ(H) = Um-invariant metric in Vϕ and
gtp, t ∈ R a 1-parameter family of AdK-invariant metrics in p.
Then the metric gte0 = gtp ⊕ gV in p + Vϕ = Tte0Mreg is extended by
left translations from G to a smooth invariant metric in Mϕ.

Proof: Indeed, the metric gp defines an invariant metric in S0 = G/H
which induces the G-invariant metric gh in the horizontal distribution
T hMϕ via the isomorphism π∗ : T h

xMϕ → Tπ(x)S0. The metric gV in
the fibre Vϕ = π−1(eH) induces an invariant metric gv in the vertical
distribution T vMϕ. Then g = gh ⊕ gv is an invariant Riemannian
metric in Mϕ. �

6.2.4 Description of the character

For simplicity, we will assume that G acts effectively on S0. Then
G has no center and we may identify G with the adjoint group AdG

and H with the adjoint subgroup AdH ⊂ AdG. Then the group of
characters X (T k) is identified with the lattice QT = spanZRT ⊂ t∗H of
T -roots as follows.
We denote by

Q∗
T := {h ∈ t, β̄(h) ∈ Z, β̄ ∈ RT } = span(h1, · · · , hk) ⊂ tH := iZ(h)
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the lattice in tH = iZ(h) dual to QT with basis (hi, i = 1, · · · , k) dual
to the basis {β̄j = κ(βj), βj ∈ ΠB} of QT , β̄j(hk) = δjk.
Then 2πQ∗

T is the kernel of the exponential map

exp ◦i : t → T k, h 7→ exp ih

and we may identify T k with tH/2π(QT )
∗.

A weight

Λ =

k
∑

j=1

pj β̄j ∈ QT = X (T k) : h =

k
∑

j=1

xjhj 7→ Λ(h) =

k
∑

j=1

pjxj

defines a character

χ = χΛ : T k → C
∗, exp ih 7→ e2πiΛ(h) = e2πipjxj .

(The reader is referred for example to [17] for the correspondence be-
tween homogeneous line bundles and characters).

6.3 Invariant Kähler structures on Mϕ

Let (S0 = G/H, JS) be a flag manifold with reductive decomposition
g = h+p associated with painted Dynkin diagram Π = ΠW∪ΠB , ΠB =
{β1, · · · , βk} and the complex structure JS associated with the T -
Weyl chamber C(JS) = {β1 > 0, · · · , βk > 0} ⊂ tS = iZ(h). Let
Mϕ = G ×H Vϕ, Vϕ = Cm−1 be the admissible homogeneous vector
bundle associated with a pair (Am−1, χ) where Am−1 is a connected
component of ΠW of type Am−1 (i.e. a white string of length m − 1
and χ : T ℓ = Zcon(H) → T 1 a character.
We assume that the regular orbit St = G(te0) = G/L is ordinary.
Then the projectivization F = G ×H PVϕ = G/K = G/L × U(1)
is a flag manifold. Let JF be an extension of the complex structure
JS to an invariant complex structure of F defined by extension of the
complex structure Jp = JS |p to a complex structure Jm = Jq ⊕ Jp on
m = q+ p = TeKF such that the PDD of (F = G/K, JF ) is obtained
by painting in black the end root β of the string Am−1.
The standard decomposition associated with the C1 manifold Mreg

may be written as

g = l+ RZ0
F +m = (n+ sum−1 + RIm−1) + (q+ p)

where n = ker(ϕ), k = l + RZ0
F and Z0

F is the fundamental vector
which is identified with the fundamental vector field on Mreg whose
restriction to a regular orbit St is the fundamental vector field of the
principal U(1) -bundle St = G/L → F = G/K = G/L× U(1).

The main result of this section is the following theorem.

Theorem 32 Let Mϕ = G×H Vϕ be as above a standard C1 manifold
having as singular orbit the flag manifold (S0 = G/H, JS), where the
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complex structure JS is associated with the T -Weyl chamber C(JS) =
{β1 > 0, · · · , βk > 0} ⊂ iZ(h) and let JF be an extension of the
complex structure JS to an invariant complex structure of F = G×H

PVϕ = G/K associated with the T -Weyl chamber C(JF ) = {β >
0, β1 > 0, · · · , βk > 0}.
Let Z0

F = κI0 be the fundamental vector, where κ−1 = (−B(I0, I0))
1
2

and I0 is defined in Section 6.2.1, and let θ0 be the dual to Z0
F invariant

1-form on the regular part Mreg of Mϕ. We may assume that β(Z0) >
0 where Z0 = −iZ0

F ∈ iZ(k).
Let Z0 ∈ C(JS) be a vector from the T -Weyl chamber C(JS) which is
the face of the Weyl chamber C(JF ) = {β = 0} . Then a segment in
C(JF ) with a parametrization Z0 + f(t)Z0, ḟ(t) > 0 defines a Kähler
metric in Mreg given by (see Proposition 19)

greg = dt2 + (ḟ θ0)2 + π∗
F g0 + f(t)π∗

F g
0,

where πF : Mreg → F is the natural projection, g0 = ωZ0
◦ JF is a

symmetric bilinear form on F ( which is the pull back of an the invari-
ant Kähler metric on S0 ) and g0 = −ωZ0 ◦JF is a symmetric bilinear
form on F .
The Kähler structure smoothly extends to a geodesically complete in-
variant Kähler structure on Mϕ if and only if the function f(t) is ex-
tended to a smooth even function on R such that Z0+ f(t)Z0 ∈ C(JF )
and satisfies the following Verdiani conditions :

f(0) = ḟ(0) = 0, f̈(0) = κ

Proof: In the notations used before the statement, let X ∈ q, Y ∈ m,
then

go(X,Y ) = d(B ◦ Z0)(X, JmY ) = −B(Z0, [X, JmY ]) =

= −B([Z0, X ], JmY ]) = 0.

This shows that π∗
Sg0 is a metric in the horizontal subbundle T hMϕ.

Similarly, for X ∈ q, Y ∈ p , we get

g0(X,Y ) = −B(Z0
F , [X, JpY ]) = −B([Z0

F , X ], JpY ) = 0

since [Z0
F , X ] ∈ q and JpY ∈ p. This shows that greg(T

hMreg, T
vMreg) =

0. The horizontal part ghreg of the metric greg at a point te0 can be
written as

ghreg = greg|p = π∗
F g0 + fπ∗

F g
0.

Under the assumptions of the theorem, it is extended to a smooth
metric in T hMreg. The vertical part is gvreg = greg|V = dt2 + (ḟ θ0)2 +
fπ∗

F g
0|q. Since Z0

F and q belong to um ⊂ h, using calculation in um we
get for X,Y ∈ q gvreg(X,Y ) = −d(B ◦ Z0

F )(X, iY ) = B(Z0
F , [X, iY ]) =

B(Z0
F , X

∗iY + iY ∗X) = −2 < X, Y > B(Z0
F , I0) =

2
κ < X, Y > where

< X, Y >= Im(X∗Y ) = 1
2 (X

∗Y + Y ∗X) is the standard metric in
q = Cm−1.
Now, let geucl = dt2 + t2η2 + geucl|q be the flat euclidean metric on V ,
where η denotes the 1-form dual to the vector field generated by I0.
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Since θ0 = 1
κη we can rewrite greg|V = dt2 + ( ḟ

κt )
2t2η2 + fπ∗

F g
0|q and

apply Verdiani criterion (Theorem 1 in [18]) which says that gvreg|Vϕ\{0}
is extended to Vϕ if and only if f(t) satisfies the stated conditions, i.e.

is a smooth even function on R with ḟ(0) = 0, f̈(0) = κ. Then by
Proposition 31 the metric greg is extended to a Riemannian metric gM
on Mϕ. Since this metric is Kähler on Mreg, the corresponding com-
plex structure Jreg is parallel. It is clear that Jreg is extended to a
parallel complex structure on Mϕ. Hence the metric gM is Kähler.

The claim about the completeness of the metric on Mϕ follows from
the following

Lemma 33 A metric of the form dt2 + gt on a manifold M = R×N ,
where gt, t ∈ R is a family of metrics on the compact manifold N , is
complete.

Proof of the Lemma: By Hopf-Rinow theorem, a metric is complete
if and only if the closed balls are compact. This is true under our
assumptions since any closed ball of radius r in M is contained in the
compact set [−r, r]×N . �

Definition 34 An interval, together with a parametrization as de-
scribed in Theorem 32, is called admissible.

Remark 35 Notice that for any d > 0, an admissible parametrization
f : (0,+∞) → (0, d) exists, take for example the function

f(t) = d(1 − e−
κ
2d

t2).

This shows that, without additional conditions, a bounded segment in
the Weyl chamber can define a complete Kähler metric (compare with
the case of Kähler-Einstein metrics in the next section).

7 Kähler-Einstein metrics on standard co-

homogeneity one manifolds

In this section we give necessary and sufficient conditions for the exis-
tence of (complete and non-complete) Kähler-Einstein metrics on stan-
dard C1 manifolds.

Our first result is the following

Theorem 36 Let M be a standard cohomogeneity one manifold, i.e.
(see Theorem 27) the total space of an admissible bundle Mϕ = G×H

Vϕ → S0 over the singular orbit (S0 = G/H, JS).
Let (F = G ×H PVϕ = G/K, JF ) be the flag manifold associated with
regular orbits, ZKos ∈ C(JF ) be the Koszul vector which defines the
invariant Kähler-Einstein metric on (F, JF ) associated with the invari-
ant complex structure JF and (Z0Zd) ⊆ C = C(JF ) an interval in the
T -Weyl chamber C(JF ) which represents a standard invariant Kähler
structure on Mϕ (Theorem 32).
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Then, the interval (Z0Zd) with a parametrization f(t) defines a Kähler-
Einstein structure with Einstein constant λ if and only if the vectors
ZKos, Z0, Z

0 are related by

ZKos = λZ0 + κmZ0 (19)

where m = dim(Vϕ), k is defined by Z0
F = κIo (Theorem 32) and f(t)

is the solution of the equation

f̈(t) +
1

2
A(f)ḟ2 + λf = κm (20)

with the initial conditions
limt→0 f(t) = limt→0 ḟ(t) = 0, limt→0 f̈(t) = κ

where A(f) =
∑

α∈R+
m

α(Z0)
α(Z0)+fα(Z0) , being R+

m the set of the positive

black roots of G/K (see formulas (14) and (15)).
Moreover, the Kähler-Einstein metric can be extended to a complete
metric if and only if λ ≤ 0, and in this case the segment extends to a
ray Z0 + R+Z0 in C(JF ).

Proof:
The calculations made in Section 5.2 show that the Kähler metric
determined by the interval (Z0Zd) together with a parametrization
Z(t) = Z0 + f(t)Z0 satisfies the Einstein condition if and only if

ZKos = λZ0 + cZ0 (21)

f̈(t) +
1

2
A(f)ḟ2 + λf = c (22)

for some constant c. So, we must show that c = κm.
In order to do that, recall that in Theorem 32 it was shown that the
metric extends to the singular orbit if and only if the function f satisfies
the initial conditions limt→0 f(t) = limt→0 ḟ(t) = 0, limt→0 f̈(t) = κ.
This implies that f(t) = κ

2 t
2 +O(t3), and then

1

2
A(f)ḟ2 =

∑

α∈R+
m

α(Z0)(κ2t2 +O(t3))

α(Z0) + α(Z0)(κ2 t
2 +O(t3))

when t → 0 tends to 0 if α(Z0) 6= 0 and to 2κ if α(Z0) = 0. Since
Z0 ∈ Cβ = {β = 0, β1 > 0, . . . , βk > 0} where {β1, . . . , βk} (resp.
{β, β1, . . . , βk}) is the set of black roots in the Dynkin diagram of
G/H (resp. G/K), then a positive black root α ∈ R+

m is a black root
of G/H if and only if α(Z0) 6= 0 (recall that, since Z0 ∈ Z(k) then
every white root vanishes on Z0).
In other words, the number of roots α ∈ R+

m for which α(Z0) = 0
equals the number of positive black roots of G/K minus the number
of positive black roots of G/H , i.e. equals dimC(G/K)− dimC(G/H)
which, by G/K = G ×H PVϕ, is equal to m − 1. It follows then that
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1
2A(f)ḟ

2 → κ(m− 1) for t → 0, which, combined with the other initial
conditions, implies that

f̈(t) +
1

2
A(f)ḟ2 + λf → κ+ κ(m− 1) = κm.

This shows that c = κm.
Notice that f(t) extends to a smooth even function. In fact it follows
by a straight calculation using equation (22) that, under the given
initial conditions, limt→0 f

(3)(t) = 0, which shows that f extends to
a C3 function invariant by reflection at 0. Then, it gives rise to a
C2-Einstein metric and we can apply a result by DeTurck and Kazdan
(see, for example, [5]) to conclude that f is C∞.

In order to end the proof of the theorem, we need to prove the following

Lemma 37 If the condition (19) is fulfilled, then the function f(t)
parametrizing the segment (Z0Zd) which gives the Kähler-Einstein met-
ric is the inverse to the function

t(f) =

∫ f

0

√

P (s)

2
∫ s

0
(c− λv)P (v)dv

ds (23)

where P is the polynomial defined by P (x) = Πα∈R+
m

(α(Z0)+x α(Z0)).

Proof: The proof is based on the fact that, if f satisfies the ordinary
differential equation f̈(t) + 1

2A(f)ḟ
2 + λf = c, where A(f) is any

function of f , then

(f ′)2 = e−
∫

f

0
A(v)dv

(

∫ f

0

2(c− λv)e
∫

v

0
A(s)dsdv +D

)

(24)

Indeed, by the substitution p(f) = f ′ we get f ′′(t) = p′(f)f ′ = p′p, so
that the equation can be rewritten

p′p+
1

2
A(f)p2 + λf = c

that is, by setting u(f) = p2(f),

u′ = −A(f)u+ 2(c− λf).

Then (24) follows by using the general formula to solve a linear first or-

der ODE x′ = Px+Q, that is x(t) = e
∫
P (t)dt

[

∫

Q(t)e−
∫
P (t)dtdt+D

]

.

In particular, in our caseA(f) =
∑

α∈R+
m

α(Z0)
α(Z0)+fα(Z0) , we have e

∫
A(f)df =

Πα∈R+
m

(α(Z0) + fα(Z0)) = P (f) which, replaced into (24) yields

(f ′)2 =
1

P (f)

(

∫ f

0

2(c− λv)P (v)dv +D

)

(25)

from which formula (23) follows by extracting the square root, inverting
and integrating, and by taking into account that for t → 0 we have
f(t) → 0 and f ′(t) → 0. �
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Now, using formula (23) we are ready to end the proof of Theorem 36.

If λ > 0, then the metric is not complete by Myers’ theorem, which im-
plies that a complete Kahler-Einstein manifold with positive Einstein
constant is compact (and then in the C1 case should have two singular
orbits).
Let then λ ≤ 0. Then, by (19) we have κmZ0 = ZKos−λZ0 and since
ZKos, Z0 belong to C(JF ) then also Z0 ∈ C(JF ).
This implies that the polynomial P (x) = Πα∈R+

m

(α(Z0) + x α(Z0))
is strictly positive for x > 0: indeed, by definition, a root is black
if and only if in its decomposition as sum of the basis roots there is
one of those corresponding to the black vertices of the painted Dynkin
diagram, that is β, β1, . . . , βp. Since for any white root γ one has
γ(Z0) = γ(Z0) = 0 (since Z0, Z

0 ∈ Z(k)), the factors α(Z0) + x α(Z0)
of the polynomial P (x) are positive for x > 0 if and only if β(Z0) +
x β(Z0) = β(Z0+xZ0), βj(Z0)+x βj(Z

0) = βj(Z0+xZ0), j = 1, . . . , p,
are positive, which is true by definition of C(JF ).
From this and from λ ≤ 0, it follows that the polynomial Q(s) =
2
∫ s

0 (κm−λv)P (v)dv appearing in the formula (23) has first derivative
Q′(s) = 2(κm − λs)P (s) always positive for s > 0, so it is strictly
increasing and (being Q(0) = 0) we have Q(s) > 0 for any s.

Then the integrand
√

P (s)
2
∫

s

0
(κm−λv)P (v)dv

in (23) is always well-definite

and obviously positive. Moreover, being the square root of the ratio
between one polynomial of degree N and a polynomial of degree N +2
(both with no positive real roots), it goes to infinity like 1/s, and then
if f → ∞ then one has t → ∞: this shows that f does not blow in
finite time, and then it is defined on (0,+∞), which, together with the
fact that Z0 + f(t)Z0 ∈ C(JF ) (we have already observed above that
Z0 ∈ C(JF )) proves that the metric is complete.
Now, in order to prove that Z0 + fZ0 is actually a ray in C(JF ), we
observe that the function f does not stay bounded.
Indeed, if so, then either there would be a point t0 > 0 for which if
f ′(t0) = 0, or f ′(t) → 0 for t → ∞. In the first case, let t0 be the
first positive value for which if f ′(t0) = 0: by the initial conditions,
it should be f ′′(t0) ≤ 0. But, from equation (22), one gets f ′′(t0) =
c− λf(t0) and then, since c = κm > 0 and λ ≤ 0, we have f ′′(t0) > 0,
a contradiction. In the second case, we can conclude by the same
argument since, from equation (22),

f ′′ = c− λf − 1

2
A(f)f ′2 → c− λf.

�

Using Theorem 36 and Lemma 37, together with the description of
standard C1 manifolds in terms of Dynkin diagrams and characters
given in Section 6, it is possible to find explicit conditions (at least
when G is a classical group) for the existence and completeness of
Kähler-Einstein standard C1 manifolds having a given flag manifold
S0 = G/H as (the only) singular orbit, for any sign of the Einstein
constant. More precisely, one has
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Proposition 38 Let G a simply connected Lie group with Lie algebra
g equal to one of the classical Lie algebras sun, sp2n, so2n, so2n+1, and
let (S0 = G/H, JS) be a flag manifold associated with painted Dynkin
diagram Π = ΠH

B ∪ΠH
W (possibly consisting of more connected compo-

nents) which begins with a white Am−1 string.
Let G/K be the flag manifold obtained by painting in black one of the
end roots of the Am−1 string, and let n1, . . . , np be the coefficients of the
fundamental weights associated to the roots in ΠH

B in the decomposition
of the Koszul form of G/K.

Then,

(i) there exists a Kähler-Einstein standard C1 manifold M (having
S0 as only singular orbit) with Einstein constant λ = 0 if and
only if n1, n2, . . . , np (resp. n1 + 1, n2, . . . , np) are divisible by m
if the Am−1 string is a connected component of the diagram (resp.
otherwise). In particular, if m = 1 this condition is trivially
fulfilled.

(ii) for any λ 6= 0, there always exists a Kähler-Einstein standard
C1 manifold M (having S0 as only singular orbit) with Einstein
constant λ.

If the above conditions are satisfied then, in accordance with above
Theorem 36, the Kahler-Einstein metric can be chosen to be complete
for λ ≤ 0, while for λ > 0 the metric is never complete. Notice that
these results are obviously consistent with Myers’ theorem and with
[8].
We give a proof of Proposition 38 and illustrate it with some examples
in the second part of this paper.
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