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Abstract

In this work we summarize some recent results to be included in a forthcoming
paper [2]. We present and analyze computational results concerning small complete
caps in the projective spaces PG(N, q) of dimension N = 3 and N = 4 over the
finite field of order q. The results have been obtained using randomized greedy
algorithms and the algorithm with fixed order of points (FOP). The new complete
caps are the smallest known. Based on them, we obtained new upper bounds on the
minimum size t2(N, q) of a complete cap in PG(N, q), N = 3, 4. Our investigations
and results allow to conjecture that these bounds hold for all q.
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1 Introduction. The main results

Let PG(N, q) be the N -dimensional projective space over the Galois field Fq of
order q. A cap K in PG(N, q) is a set of points no three of which are collinear.
A cap K is complete if it is not contained in a larger cap. Caps in PG(2, q)
are also called arcs and they have been widely studied, see e.g. [6,8]. If N > 2
only few constructions and bounds are known, see e.g. [1, 4, 6, 7, 9].

Caps are connected with Coding Theory. Points of an n-cap in PG(N, q)
form columns of a parity-check matrix of a linear q-ary code of length n,
dimension n−N −1, and minimum distance 4 (exceptions are given by the 5-
cap in PG(3, 2) and the 11-cap in PG(4, 3)). For N = 2 this code is maximum
distance separable (MDS); if N = 3 it is Almost MDS code. Complete caps
correspond to non-extendable quasi-perfect codes with covering radius 2.

A central problem concerning caps is to determine the spectrum of the
possible sizes of complete caps in a given space. Of particular interest for
applications to Coding Theory is the lower part of the spectrum; in fact,
small complete caps correspond to codes with small covering density [6].

We denote by t2(N, q) the minimum size of a complete cap in PG(N, q).
The exact values of t2(N, q) are known only for very small q.

The trivial lower bound for t2(N, q) is
√
2q(N−1)/2. General constructions

of complete caps whose size is close to this lower bound are only known for q
even [6]. Using a modification of the approach of [8], the probabilistic upper

bound t2(N, q) < cq
N−1

2 log300 q, with c constant, has been obtained in [5].
Computer assisted results on small complete caps in PG(N, q) and AG(N, q)
are given in [4,6,7,9]. Here AG(N, q) is the N -dimensional affine space over Fq.

In this paper we obtain by computer search 5 results concerning upper
bounds on t2(3, q) and t2(4, q). This search requested a huge of memory and
execution time. We constructed small complete caps in PG(3, q) and PG(4, q)
using two approaches: the algorithm with fixed order of points (FOP), for q ∈
LN in PG(N, q), and randomized greedy algorithms, for q ∈ GN in PG(N, q),
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where N = 3, 4 and L3 := {prime q ≤ 4673}∪ {5003, 6007, 7001, 8009}, G3 :=
{prime q ≤ 3701}∪{3803, 3907, 4001, 4289}, L4 := {prime q ≤ 1361}∪{1409},
G4 := {prime q ≤ 463}. Such relatively wide regions of q values are not
considered in the literature for PG(3, q) and PG(4, q).

Sizes of new small complete caps obtained by computer search give rise to
the following theorem.

Theorem 1.1 Let t2(N, q) be the minimum size of a complete cap in the
projective space PG(N, q). The following upper bounds on t2(N, q) hold.

A. Upper bounds with the constant multiplier
√
N + 2:

t2(N, q) <
√
N + 2 · qN−1

2

√
ln q, q ∈ LN , N = 3, 4. (1)

B. Upper bounds with a decreasing multiplier βN (q):

t2(N, q) < βN (q) · q
N−1

2

√
ln q, βN(q) =

√
N + 1 +

1.3

ln(2q)
, q ∈ LN , N = 3, 4.

Conjecture 1.2 In PG(N, q), N = 3, 4, the bounds (1) hold for all q.

Complete caps obtained in this work are the smallest known in the litera-
ture for prime q with 61 ≤ q ∈ L3 in PG(3, q) and 17 ≤ q ∈ L4 in PG(4, q).

2 Algorithms for small caps in PG(N, q). Graphics

Algorithm with fixed order of points (FOP). We fix a particular order
on the points of PG(N, q) [1]. The algorithm builds a complete cap step by
step adding a new point at each step. Let K(i−1) be the cap obtained at the
(i − 1)-th step. Among the points not lying on bisecants of K(i−1), the first
point in the fixed order is added to K(i−1) to obtain K(i).

Algorithm FOP with lexicographical order of points. The points
of PG(N, q) are ordered as A1, A2, . . . , A qN+1

−1

q−1

. For simplicity, we consid-

ered only q prime. The number i of a point Ai of PG(N, q) is defined as
follows. The elements of the field Fq = {0, 1, . . . , q − 1} are treated as inte-
gers modulo q. A point Ai is represented in homogenous coordinates so that
Ai = (x

(i)
0 , x

(i)
1 , . . . , x

(i)
N ), x

(i)
j ∈ Fq, where the leftmost non-zero element is 1.

The points of PG(N, q) are sorted according to the lexicographic order on the

(N + 1)-tuples of their coordinates; it means that i =
∑N

j=0 q
N−jx

(i)
j . This

order is called a lexicographical order of points. We call lexicap a cap obtained
by the algorithm FOP with the lexicographical order of points.
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We denote by tL2 (N, q) the size of a complete lexicap in PG(N, q).

Remark 2.1 For the lexicographical order with prime q, the size tL2 (N, q) of
a complete lexicap and its set of points depend on N and q only.

Randomized greedy (RG) algorithm. It is a step by step algorithm.
At every step an RG algorithm maximizes the number of points lying on
bisecants of the running cap; but some steps are executed in a random manner.
RG algorithms obtain complete caps smaller than lexicaps, but their computer
time is essentially greater than for the algorithm FOP.

Let tG2 (N, q) denote the smallest size of a complete cap in PG(N, q) ob-
tained using randomized greedy algorithms.
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Fig. 1. Upper bound
√
N + 2 ·qN−1

2

√
ln q (top dashed-dotted red curve) vs values

tL2 (N, q), q ∈ LN (the 2-nd solid black curve) and tG2 (N, q), q ∈ GN (bottom dashed
blue curve). a) N = 3, PG(3, q); b) N = 4, PG(4, q)
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The bounds of Theorem 1.1 are shown in Figures 1, 2. In the scale of Fig. 1
the curves tL2 (N, q) and tG2 (N, q) are close to each other.
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a) N = 3, PG(3, q); b) N = 4, PG(4, q)

For small q the bounds of Theorem 1.1 are provided by sizes tG2 (N, q),
see Fig. 2. But, in general, values tG2 (N, q) depend on parameters of an RG
algorithm, whereas sizes tL2 (N, q) depend on N , q only (Remark 2.1). Also, the
algorithm FOP takes essentially smaller computer time than RG algorithms.

Let BN =
√
N + 2 · qN−1

2

√
ln q. By Figure 1, one sees that the difference

BN − tL2 (N, q) increases when q grows. Moreover, we calculated that the

corresponding relative difference
BN−tL2 (N,q)

BN
increases too. We denote βL

N(q) =
tL2 (N,q)

q
N−1

2
√
ln q

. Figure 2 shows that the curves βL
N(q) have decreasing trend. All this
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raises confidence in correctness of the bound (1) and explains Conjecture 1.2.

Sizes tL2 (N, q) and tG2 (N, q) of complete caps obtained in this work and
other details are given in [2, 3].
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