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Abstract

We study psuedo-Riemanniasn manifolds (M, g) which admits es-
sential transitive groups of conformal transformations G. We describe
all such Lorentz manifolds which has non exact isotropy representation
of the stability subalgebra. We give a construction of non conformally
flat essential conformally homogeneous manifolds and, using spinor
formalism, prove that it gives all 4-dimensional not conformally flat
Lorentzian manifolds with transitive conformal group.

1 Introduction

It is well know that any Riemannian manifold which admits an essen-
tial conformal transformation is conformally equivalent to the standard
sphere of Euclidean space. It is a Lichnerovich, proved by in compact
case by M. Obata and J. Ferrand , and in general case in [A], [A2],
[Fer],[F].

On the other hand, there are many examples of pseudo-Riemannian (in
particular Lorentzian) manifolds with essential conformal group. Ch.
Frances [E], [F1] constructed first examples of conformally essential
compact Lorentzian manifolds, M.N. Podoksenov [P] found examples
of essential conformally homogeneous Lorentzian manifolds. A local
description of Lorentzian manifolds with essential group of homoth-
eties was given by [A].

Our aim is to study essential conformally homogeneous pseudo-
Riemannian manifolds M = G/H,g), i.e. manifolds with transitive
group G of conformal transformstions which does not preserves any
metric from the conformal class ¢ = [g] . We split all such conformal
manifolds (M = G/H,c) into two types:
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A. Manifolds with non-exact isotropy representation

jih—=co(V),V=g/b=T,M

of the stability subalgebra b.

B. Manifolds with exact isotropy representation j. We give a classifi-
cation of conformally homogeneous Lorentzian manifolds of type A in
any dimension and classification of non conformally flat manifolds of
type B in dimension 4.

We will assume that the transitive conformal group G and the stability
subgroup H are connected and we identify the pseudo-orthogonal Lie
algebra soy , = s0(V') with the space A%V of bivectors.

2  Conformally homogeneous manifolds and
associated graded Lie algebra

Let (M = G/H), g) be a conformally homogeneous pseudo-Riemannian
manifold of signature (k,¢) = (—---—,+---+) and j : H = CO(V)
(resp., j : h — co(V)) the isotropy representation of the stability sub-
group H (resp, stability subalgebra b) of the point 0o = eH € M in the
tangent space V = T, M. There is a filtration

g-1=920g=hDg1D92=0

where g7 := kerj. The associated transitive graded Lie algebra is

gi=gr(g)=g ' +o'+g' =V+g'+g (1)

where V' = g/b, ¢ := bh/g1 = j(h) and g' = g; = kerj. Transitivity
means that [X,V] =0 for X € g° + g' implies X = 0.

2.1 Example: Standard flat model

The projectivisation S%¢ = PRETHHT ¢ PRFLEEL of the isotropic
cone R]SH’ZH C RFFLAL carries a conformally flat conformal struc-
ture of signature (k,£). It is a homogeneous manifold

M = 8% = SOpy1 441/Sim(V)

where the stability subgroup H = Sim(V) is isomorphic to the
group of similarities Sim(V) = R™ - SO(V) -V of the pseudo-Euclidean
vector space V = R¥£.
The associated graded Lie algebra is

gr(80511,041) = 850541041 =V +co(V) + V¥, (2)

where V* = co(V)W) = {T%, [T, X] = TS = £(X) + X A€} is the first
prolongation of co(V) and X A ¢ = X ® € — g ¢ ®gX € co(V).

In the case of Riemannian signature (k,¢) = (0,n), the standard
conformal manifold is the conformal sphere M = S™ = SOq ,4+1/Sim(R™)



2.2 Embedding of grg =g~ + g° + g' into 50441411

For any conformally homogeneous manifold (M = G/H,[g]) , the as-
sociated graded Lie algebra g has natural embedding into the graded
Lie algebra s0541 041 =V +50(V) + V* as a graded subalgebra.

In particular, the conformal structure ¢ in V induces a (may be, de-
generate) conformal structure in g! C V*.

The commutative subalgebra g' is a g’-invariant subspace of the
first prolongation (g°)(") and can be written as g' = T"" < TV such
that TV < Hom(V, g°). In particular, if g° C so(V) then g' = 0.

2.3  Subalgebras h = g C co(V) with non trivial
prolongation

Definition 1 A decomposition
V=P+E+Q

of a pseudo-Euclidean vector space is called standard if P,Q = P* are
isotropic k-dimensional subspaces such that P+ Q is a non-degenerate
subspace and E is the orthogonal complement to P + Q.

We set (PAQ)° = {B € PAQ,trB = 0} = {diag(4,—A"), A €
slp(R)} ~ sl(P) ~ sl(Q).

Proposition 2 Let g° be a proper subalgebra of the conformal linear
Lie algebra co(V') with non-trivial first prolongation h™*) C TV". Then
there is a standard decomposition V.= P + E + Q such that (h)(H) =
T9°F .

Moreover, if k =1,V = Rp+ E + Rq, then
Gmin =R =pAq) +PAE Cg° C ghay = Opnin + 50(E).
If k> 1, then
Oonin = RI+(PAQ)*+PA(P+E) C b =g° C @), = Gpi +50(E).
where I = R(kid + diag(id, —id)).

The proof follows from

Lemma 3 If the first prolongation of a subalgebra g° C co(V) contains
a non degenerate element TS, g~ 1(£,£) # 0, then g° = co(V).

Corollary 4 Let (M = G/H,c) be a conformally homogeneous man-
ifold. If the kernel g, of the isotropy representation contains a non-
isotropic element TS then up to a covering M is isomorphic to the
standard conformal model (S¥*, gs). In particular, any Riemannian
conformally homogeneous manifold with a non-exact isotropy represen-
tation is isomorphic to the conformal sphere.



3 Conformally homogeneous Lorentz man-
ifolds of type A

3.1 Conformally flat conformally homogeneous man-
ifolds associated with graded subalgebra of so;; /41

Let g=g ' +¢°+ g =V + ¢° + g' be a graded subalgebra of the
graded Lie algebra

$0p41,041 =V +co(V)+ V™

Assume that g! # 0 and denote by G the simply connected Lie group
associated with g and by H the connected subgroup generated by the
subalgebra h = g° + g'.

Theorem 5 The homogeneous manifold M = G/H with the natural
conformal structure defined by the j(H)-invariant conformal structure
iV is a conformally homogeneous manifold of type A. The commu-
tative subgroup generated by commutative subalgebra V' has open dense
orbit in M and the manifold M is conformally flat.

Note that in general the filtered Lie algebra g of a conformally homoge-
neous manifold is non isomorphic to the associated graded Lie algebra
g. In the next section we give an example.

3.2 The standard gradation of suy;; .1 and Feffer-
mann space

Let V = CFLAHL = V14 V04 V—1 = Cey +V94-Ce_ be the gradation
of the complex vector space V. We fix a Hermitian form

V3Z=ue; +z+ve_ = (u,z,0) = h(Z,Z) = + vu+ h'(z, 2)

of complex signature (k + 1, + 1) where h%(z,2) = z'Ej 2 is the
Hermitian form in V° of complex signature (k, £) with the Gram matrix
Ey, = diag(—-1,---,—1,1,--- ,1). This gradation induces a depth 2
gradation of the special unitary Lie algebra g = $Uj 11 041 = su(V) =
aut(V, h) which may be written as

g =92 +g7' +g° +g' +g?

Note that this gradation if the adp-eigenspace decomposition for
D = diag(1,0,—1) = ey Ay e_ where we use notation zAyjy =xAy+
1z A\ iy.Here wedge mean real wedge product.

In matrix notation, the gradation is given by

g g ¢ Aip i
supriee1= |00 @0 g | ={l z -*id+B w }
g2 g' ¢ ia —2* At

where B € suy g, z,w € VO = CF! 2% = 2% o, B, A\, u € R.



An element L € $Uj41 041 can be written as
L =aQ +E. +uP +AD +B +E, +8T
where D = diag(1,0,—1) = e4 Aje_ is the grading element,

Q =ie_ Aje_ € g 2, T =iey Njeq € g°
FE, :'z/\Je,ngl, szw/\_]e+€gl
P =iey Aje_ — Zidy =idiag(1l,—2id, 1) € g°

Denote by P = GY - G the parabolic subgroup of G = SUk41 411
generated by the non-negatively graded subalgebra p = g° + g+ =
g +g' +g%

Then the flag manifold S2%:2+1 = SU} 1 o.1/P is the projectiviza-
tion of the cone of isotropic complex lines in C*+1.¢+1 Tt is diffeomor-
phic to the sphere if £ = 0 and it has a natural invariant CR structure.
The Feffermann space is defined as the manifold F' of real isotropic
lines. The group SUgt1 41 acts transitively on F = SUjyq +1/H
with the stability subgroup H = Rt - SUy,-GT C P =C*-SUy - G™.
We have a natural equivariant S'-fibration

F = SUpy1001/H = SUpq1,041/RT-SUpq1.041-G = S = SUpq1,041/P.

The Hermitian metric h of V induces an invariant conformal metric of
signature (2k,20+1)) in F = SUy11 ¢+1/H, constructed by Fefferman.

The solvable non commutative Lie algebra

i 0 0
(={| 2 -2id+B 0|}
1e} —z* i

generate the subgroup L which has an open orbit in F. We identify
[=RQ + Ecke +RP
with the tangent space Ty F'. Then the isotropy representation is given
by

J(B);aQ+E, +puP — Ep,, B € suyy

Jj(D):aQ+ E, + uP —20Q — E, +0

§(Eyw):aQ + E. + P — 0 + aE;y + p(w, 2) P,
where w*z = Re(w*z) + Im(w*2)i = w - z — p(w, 2)i
Note that

[T, Ez] = Eizu [Tv Q] = _D7 [T7 P] = 07
and that suj, acts by the tautological representation on Egr.e and
FEck.e. The Feffermann space is an example of conformally homoge-
neous manifolds of type A, such that the associated filtered Lie algebra
g is not isomorphic to the graded Lie algebra gr(g). Moreover, we have

Theorem 6 Let (M = G/H,c) be a homogeneous conformally Lorentzian
manifold of type A such that the isotropy algebra j(b) is a proper subal-
gebra of co(V'). If the Lie algebra g is not isomorphic to the associated
graded Lie algebra gr(g), than M is conformally isomorphic to the Fef-
ferman space F' = SUy p41/H.



3.3  Sketch of the proof of the theorem [6]

3.3.1 Step 1.
The graded Lie algebra gr(g) = g associated with M has the form

gr(g) ==V + (RD +pAE + €+ RT9P) (3)
where V = Rp + E + Rq is the standard decompositon of the
Minkowski vector space with g(p,q) = 1, D := [q,T9°?] = —T$°" =

—id+pAgq.
The element D defines a depth two gradation

gr(g)= Rg+ E+ Rp+ RD+ €&+ pAE+ RT
adp -2 —id 0 0 0 id 2

Note that a complementary subspace V to h and a complementary
subspace g° to h; in h defines a decomposition

g=V+g’+h (4)

of g , consistent with the filtration g D g1 = h D g1 = h; and an
isomorphism of the graded vector spaces g with

gr(g) =V +g' +g°

We will identify these spaces.

3.3.2 Step 2

We can chose the decomposition of the Lie algebra g such that the
endomorphism adp defines a depth two gradation as follows

g= (Rg+ E+ Rp)+ (RD+ &+ pAE)+ RT
adp -2 —id 0 0 0 id 2

Then V = Rqg+ E + Rp is a subalgebra, which defines a subgroup of G
with open orbit.The assumptions implies that V is not commutative
subalgebra.

3.4 Step 3
Analyzing Jacobi identity we prove that g is of the following form
g = Rg + E + R + RD + t + pAE + RT
D = -2 + -id + 0 + 0 + 0 + id + 2
p = 0 + A + 0 + 0 4+ 0 + A + 0
tE = 0 + C + 0 4+ 0 + ade + C + 0
(5)

[e,e'] = 2p(e,e')g=2 < Je, e >q



q— —e¢
q— —D e —<e e >p+
e——pAhe,e€FE + < Je,e >D+ K, o
adr : p—0 adp Ne: p— —pA Ae
D — -2T D— —pAhe
t+pAE — 0, adeg 5 C — —p A adce,
pAe —=2< Jee >T.

Remaining equations where K, . € £ is a £-valued symmetric bi-
linear form on E which satisfies the following conditions

(%) K€ —Eeened = —2<Je e >et+ < Je e >e'—
< Jee >e— <ee > A+ <e e > Al
(**) KAe,e’ +Ke7Ae’ = 07
(* * *) C(Keye/) = KCe,e' + Ke,Ce’ =0, C=adg, ke 13

3.4.1 Step 4
The unique solution of (*) is
Kee=JeNe —eNJe+ <e e > (J—A).

The equation (**) implies that J? = —1 (after a rescaling) under
the assumption that there is no conformally flat factor.

The equation (***) shows that C' € u(FE). Then one can check
that g ~ SU; ;41 where n := dimM = 2(m +2) and M ~ F =
SUan_H/}R+ . SUn . HB’LS(CW‘)

3.5 The curvature of Feffermann space and Cahen-
Wallach symmetric spaces
Recall that all indecomposable Lorentzian symmetric spaces are ex-

hausted by the spaces of constant curvature and Cahen-Wallach sym-
. 1,n—1
metric spaces CWg’ Let

V=R'"1'=Rg+E+Rp

be the standard decomposition of the Minkowski space and e; an or-
thonormal basis of E. Then the contravariant curvature tensor Rg of
Cahen-Wallach space is given by

n—2

RS:Zq/\SeiVQ/\ei.

i=1
It defines a Lie algebra with a symmetric decomposition
g=b+V=gANE+V Cso(V)+V

with the Lie bracket [z,y] = —R(x,y) € h = ¢\ E, z,y € V. The
Cahen-Wallach space C'Wé”“1 = G/H is associated homogeneous
manifold. Tt is conformally flat if and only if S = Aid, see [G].



Theorem 7 For any point x of the Fefferman space (F,[g]) there is
a metric g € [g] whose contravariant curvature tensor at x coincides
with the curvature tensor of conformally flat Cahen-Wellach space. In
particular, the Feffermann space is conformally flat.

4  Petrov classification of Weyl tensors

4.1 Spinor formalism

To describe 4-dimensional Lorentzian conformally homogeneous man-
ifolds of type B, we recall a spinor description of Weyl tensor of a
Lorentzian 4-manifold.

Let S be the complex 2-space with the symplectic form w = e_ Aey
where ey, e_ is a shmplectic basis of S and we identify S with the dual
space S*. w(ey,e_) = 1 which is identified with the dual space The
associated standard basis E_ = Fa1, Eg = E11 — E9s, E = Fqo of the
unimodular Lie algebra sly(C') defines a gradation

slh(C)=g ' +g"+g' =CE_+C(FEy) +CE,.

The space S®S of Hermitian bilinear forms has the basis e; ® €,1,J €
{+,—} where é,,é_ is the basis of the conjugated vector space S =
C2={ze;+7e }. Ifj:a®@b— (a®b)* =b®a is the Hermitian
conjugation, then the fix point space V = (S®S)? of j is the space of
Hermitian symmetric matrices.

We may write

U z
zZ v

V= {X:UEH+(ZE12+5E21)+UE22}:{( ),u,ueR,zeC}.

We set p = 2FE 1, q = 2E5,E, = zFE;5 + ZF,7 such that F =
{E,, z € C} ~ C and denote by

V=V14V'4VI=R¢+E+Rp

the associated gradation of V. The determinant defines the Lorentz
metric in V' :

g X, X)=X -X=det X =ww —22=wv —2° -y, z =z +iy

such that

Pi=pp=¢=0,pg=2c=c=-lee=0(Rp+Rq) LE
where e; := F1,¢e; = F;.

For XY € V we denote by X AY : Z —w< Y, Z > X— < X, Z >
Y the associated endomorphism from so(V). The group SL(S) acts
isometrically in V' by

©:SLS)> A ¢(A): X — AXA™.



The associated isomorphism of Lie algebras sl(S) and so(V) is given
by

¢(Eo) =2pNg p(iEy) = 2e1 A e,
P(Ey) =v2e1 Ap @(iBy) = —v2e; Ap,
©(E_)=v2e1Nq o(iE_) = —2¢e; Aq.

4.2 Spinor description of the space Ry(V) of Weyl
tensors

Recall that the space of Weyl tensors is defined by
Ro(V) = {W € Hom(A?V,s0(V)),cycdd W(X AY)Z =0,
tr(X - W(X,)X)=0,VX,Y,Z € V}.

Recall that A2V ~ 5l,(C) ~ C? where the complex structure in A2V
is defined by Hodge star operator. Note that V€ =S®S and A?VC =
S%2S ® @ + w ® S?(S) where w, @ are symplectic forms in S and S.

We denote by S3(A?(V)) the 5-dimensional complex space of trace free
symmetric complex endomorphisms of the complex space A?(V) = C3.

Theorem 8 (A. Petrov, R. Penrose) There exists a natural isomor-
phisms of sla(C)- modules

Ro(V) == S§(A*(V)) = S*(S").

The covariant form go W of the Weyl tensor W associated with sym-
metric 4-form ¢ is given by

W, =p@d* +w?® p.

4.3 Petrov classification of Weyl tensors

Since any symmetric form ¢ € S4(S) can be factorized into a product
of linear form ¢ = afvyé we get the following classification of Weyl
tensors:

Type (4) or (N) ¢ = a*;  Type (31) or (IIT) ¢ = a*B;

Type (22) or (D) ¢ = af% Type (211) or (II) ¢ = o?p ;

Type (1111) or (I) ¢ = a4,

where «, 3,7, d are different linear forms in S. Each linear form « in
spinor space S up to a scaling is defined by its kernel @ = 0 which is
a point in to projective line CP! = S2. So up to a complex factor,
the 4-form ¢ is determined by 4 points on the conformal sphere. For a
symmetric 4-form ¢ we denote by aut(¢) (respectively,conf(¢)) the Lie
subalgebra of sl(C) which preserves ¢ ( respectively, preserves ¢ up
to a complex factor).

Proposition 9 i) conf(¢) = 0 for a form of types (1111), (211);

it) aut(¢) = 0 for a form of types different from (2,2) and (4);

iii) conf(¢) = C = CEy for a form of types (31);

iv) conf(¢p) = aut(¢) = CEy for type (22) ;

v) conf(¢) = CEy + CEL, aut(¢) = CEL for type (4).

In particular, only the form of type (31) and (4) admits a conformal
transformation which is not an authomorphism.



Proof: There exists unique conformal transformation of the sphere
which transform three different points into another three different points.
This implies the first claim. If ¢ = o*, then the stabilizer of ¢ in sly(C)
is the same as the stabilizer of the 1-form «. We may assume that
a=e* =(0,1). Then aut(¢) = CE; and conf(¢) = CEy + CE,. If
¢ = a?B? or o8, we may assume that «, 3 are basic 1-forms and then
the stabilizer of C¢ will be the diagonal subalgebra. In the first case
it preserves ¢. O

5 Conformally homogeneous manifolds of
type B

In this section we describe a class of conformally homogeneous pseudo-
Riemannian manifolds of type B and prove all 4-dimensional confor-
mally homogeneous non conformally flat manifold belong to this class.

Proposition 10 Let M = G/H be a conformally homogeneous man-
ifold of type B. Then the isotropy Lie algebra j(h) C co(V), V =Ty M
has a decomposition

j(h) =RD +1,

where [ C so(V) is an ideal of b an the endomorphism D =id+C, C €
s50(V') is a non trivial homothety.

Proof: Indeed,assume that j(§) C so(V). Then the isotropy group
Jj(H) preserves a metric go in the tangent space V. = TyM which
can be extended by left translations to G-invariant metric g on the
homogeneous space M = G/H. Hence, the conformal group G is not
essential. O

5.1 A construction of pseudo-Riemannian confor-
mally homogeneous manifold of type B

Let V = Rq + F + Rp be a standard decomposition of a pseudo-
Euclidean vector space (V,g =< .,. >) of signature (k,¢). The homo-
thety D =id+gAp € co(V). defines a gradation V =Rp+ E +Rq =
VO+ V1 4+V2 A non-degenerate 2-form w(z,y) in E defines the struc-
ture of the Heisenberg Lie algebra with the center Rq and the bracket
[z,y] = w(z,y)q, x,y € E in heis(F) = E + Rq . Moreover, an endo-
morphism A € End(E) with

(A ’ w)(myy) = W(Al',y) +w(m,Ay) = )\w(x7y)

is a derivation of this algebra and defines the structure of a graded Lie
algebra

V=V+V!'+V?=Rp+ heis(E)
such that ad,q = Ag, ady|p = A with the grading element D = id+g¢A
p. Denote by G the Lie group generated by the Lie algebra g = RD+V
and by H the closed subgroup generated by subalgebra RD.

10



Proposition 11 The metric g in'V defines an invariant pseudo-Riemannian
conformal structure in the manifold M = M(A\w,A) = G/H. The
manifold M is a conformally homogeneous manifold of type B.

The curvature operator of the manifold M is given by

Rpg = Ryz =0, Rpp = (A"A° — AA— JA )z Nq, 2 € E

where g7' ow = 2J and A = F(A+ A"), A5 = L(A— A") are
skew-symmetric and symmetric parts of A. In particular, in general
the manifold M 1is not conformally flat.

5.2 Classification of Lorentzian 4-dimensional con-
formally homogeneous manifolds of type B

Theorem 12 Any conformally homogeneous 4-dimensional Lorentzian
manifold of type B which is not conformally flat is conformally isomet-
ric to a manifold M (A w, A).

The proof is based on

Lemma 13 If M = G/H a conformally homogeneous manifold of
type B is not conformally flat, then the isotropy Lie algebra contains
the homothety D = id + g A p with respect to an approprite standard
decomposition V = Rp + E + Rq of the tangent space V. =T, M.

Proof: Let D = id + C € j(h)be a non trivial homothetic endomor-
phism, C' € so(V). By assumption,the Weyl tensor W # 0. Since
id-W=-2and D -W=(id+C)-W =0,C-W = 2W. Then
C-¢=2¢, where ¢ € S*(S?) is 4-form which represents W . Then
proposition [9] shows that the 4-form ¢ has Pertov type (4) or (31) and
C = —3Ey + bE_ € sl3(C). Changing the basis, we may assume that
b= 0. Then the element p~1(C) = gAp € so(V) and D =id + ¢ A p.
O
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