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1 Introduction

Recall that a G-structure of an n-dimensional manifold M is a principal subbundle πG :
PG → M of the frame bundle ofM with structure groupG ⊂ GL(V ), V = Rn. Any tensor
field which is infinitesimally homogeneous, i.e. whose value at any point has the same
normal form with respect to some ”admissible” frame, is identified with a G-structure,
whose total space PG is the set of all such admissible frames.
The prolongation of G-structures (see e.g. [?], Chapter VII) is a powerful method in
differential geometry which associates to any G-structure πG : PG → M of finite order a
new manifold P = P (πG) (the full prolongation), with an absolute parallelism (i.e. an
{e}-structure), with the important property that the group of automorphisms Aut(P, {e})
of (P, {e}) is isomorphic to the group of automorphisms Aut(πG) of πG. The absolute
paralellism (P, {e}) provides local invariants for πG (see [?], Theorem 4.1 of Chapter
VII). Owing to Kobayashi’s theorem (see [?], Theorem 3.2 of Chapter 0), Aut(πG) ≃
Aut(P, {e}) are Lie groups of dimension less or equal to the dimension of P .

The full prolongation P of πG : PG → M is defined by consecutive applications of the
first prolongation. We briefly recall its construction. It is based on the observation that
the bundle j1(πG) : J1PG = Hor(PG) → PG of 1-jets of sections of πG (i.e. horizontal
subspaces of TPG) is a G-structure with structure group

G1 = id + Hom(V, g) = {
(
id 0
A. id

)
, A. ∈ Hom(V, g)},

which is a commutative subgroup of GL(V + g). Using the torsion functions of j1(πG),

one can reduce the G-structure j1(πG) to a G-structure π
(1)
G : P

(1)
G → PG whose structure

group G(1) is the Lie subgroup of G1 generated by the Lie subalgebra g(1) = Hom(V, g) ∩
(V ⊗S2V ∗) ⊂ gl(V + g). The G-structure π

(1)
G is called the first prolongation of πG. If the

k-th iterated prolongation g(k) := (g(k−1))(1) of the Lie algebra g = Lie(G) vanishes, then

G is called of finite order and the k-th iterated P
(k)
G first prolongation of PG defines an

absolute parallelism on the full prolongation P := P
(k−1)
G .

While the prolongation procedure works effectively for G-structures of finite order (e.g.
conformal or quaternionic structures), there are other important geometric structures (e.g.
CR-structures and other structures defined on a non-integrable distribution), which can-
not be treated effectively by this method. To overcome this difficulty, in 1970 Tanaka
[?] generalized the prolongation of G-structures to a larger class of geometric structures,
called Tanaka structures in [?] and infinitesimal flag structures in [?] (see Definition ??).
Examples of Tanaka structures include CR-structures, subriemannian and subconformal
structures. Tanaka’s prolongation procedure received much attention in the mathemat-
ical literature. There are many approaches for the Tanaka prolongation under different
assumptions, see [?, ?, ?, ?, ?]. Our approach is a developing and a detalization of
the approach from [?], where the first step of the Tanaka prolongation was explained in
detail, but the other steps were only stated without proofs. To prove the iterative con-
struction, one has to check many extra conditions, and this will be carefully done in this
paper. Our approach is close to the approach of I. Zelenko [?]. The main difference is
that we develop and systematically use the theory of quasi-gradations of filtered vector
spaces. Together with the well-known theory of Tanaka prolongations of non-positively
graded Lie algebras and the torsion functions of G-structures, this provides a conceptual
and simple description of each step of the prolongation procedure: the principal bundle
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π̄(n) : P̄ (n) → P̄ (n−1) which relates the n and (n − 1)-prolongations of a given Tanaka
structure is canonically isomorphic to a subbundle of the principal bundle of (n + 1)-
quasi-gradations of T P̄ (n−1) and is obtained as the quotient of a G-structure of P̄ (n−1),
with structure group GnGLn+1(mn−1), with suitable properties of the torsion function.
These statements are explained in detail in Theorem ??. In Theorem ?? we state the
final result of the Tanaka prolongation procedure, which reduces the local classification
of Tanaka structures of finite order to the well understood local classification of absolute
parallelisms. This requires the construction of a canonical frame on a prolongation of
suitable order and a careful analysis of the behaviour of the automorphisms of a Tanaka
structure under the prolongation procedure. We do this in Propositions ?? and Proposi-
tion ??. In the remaining part of the introduction we present the structure of the paper.

Structure of the paper. Section ?? is mainly intended to fix notation. Our original
contribution in this section is the theory of quasi-gradations of filtred vector spaces, which
is developed in Subsections ?? and ??. Besides, we recall the definition of the Tanaka
prolongation of a non-positively graded Lie algebra [?], the basic facts we need from the
theory of G-structures (see e.g. [?]) and the definition of Tanaka structure [?].

In Section ?? we state our main results from this paper, namely Theorems ?? and ??.
All notions used in these statements are defined in the previous section.

The remaining sections are devoted to the proofs of Theorems ?? and ??. Let (Di, πG :
PG → M) be a Tanaka G-structure of type m =

∑−1
i=−k m

i. Basically, the proof of Theorem
?? is divided into two main parts: in a first stage, in Section ?? we construct the starting
projection π̄(1) : P̄ (1) → P = PG of the sequence of projections from Theorem ?? (also
called the first prolongation of the Tanaka structure (Di, πG)). For this, we remark that
P has a canonical Tanaka {e}-structure of type m0 = m + g0 (where g0 = Lie(G)) and
we define a G-structure π1 : P 1 → P as the set of all adapted gradations of TP , or,
equivalently, the set of all frames of TP which lift the canonical graded frames of the
Tanaka {e}-structure of P (see Proposition ?? and Definition ??). Using the torsion, we
reduce π1 to a subbundle π̃1 : P̃ 1 → P , with structure group G1GL2(m1) and we define
π̄(1) : P̄ (1) → P = PG to be the quotient of π̃1 by the normal subgroup GL2(m1) (see
Definition ??). To a large extent (except Subsection ??) this material is a rewriting of
the construction from [?], using frames instead of coframes (which are more suitable for
the higher steps of the prolongation). It is also the simplest part of the prolongation
procedure. We skip its details in this introduction and we describe directly the higher
steps of the prolongation, where our new approach using quasi-gradations plays a crucial
role. Therefore, suppose that the projections π̄(i) : P̄ (i) → P̄ (i−1) (i ≤ n) from Theorem
?? are given. We aim to define π̄(n+1) : P̄ (n+1) → P̄ (n).

In Section ?? we define P n+1 ⊂ Gr(T P̄ (n)) as the set of all adapted gradations of
TH̄nP̄ (n) (for any H̄n ∈ P̄ (n)), whose projection to TH̄n−1P̄ (n−1) is compatible with the
quasi-gradation H̄n ∈ Grn+1(TH̄n−1P̄ (n−1)) (see Definition ??) and we show that the nat-
ural map πn+1 : P n+1 → P̄ (n) is a G-structure, with structure group Id + gln+1(mn) +

Hom(
∑n−1

i=0 gi,mn) (see Proposition ??).
The definition of π̄(n+1) requires a careful analysis of the torsion functions of the

G-structure πn+1. This is done in Sections ?? and ??. In Section ?? we consider an
arbitrary connection ρ on the G-structure πn+1 : P n+1 → P̄ (n) and we study the compo-
nent tρ : P n+1 → Hom((m−1 + gn) ∧ mn,mn) of its torsion function (see Theorem ??).
The proof of Theorem ?? is divided into three parts, according to the decomposition of
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Hom((m−1 + gn)∧mn,mn) into the subspaces Hom(gn ∧mn,mn), Hom(m−1 ∧m,mn) and
Hom(m−1 ∧

∑n−1
i=0 gi,mn). In Section ?? we define an action of GnGLn+1(mn−1) on P n+1

(see Proposition ??) which is used to treat the Hom(gn ∧ mn,mn)-valued component of
tρ (see Proposition ??). The properties of the Hom(m−1 ∧m,mn)-valued component of tρ

are consequences of the fact that the canonical graded frames of the Tanaka {e}-structure
on P̄ (n) are Lie algebra isomorphisms when restricted to m (see Proposition ??). The
properties of the remaining Hom(m−1 ∧

∑n−1
i=0 gi,mn)-valued component of tρ are inher-

ited from the properties of the torsion function of the G-structure π̃n : P̃ n → P̄ (n−1) (see
Proposition ??).

In Section ?? we determine the homogeneous components of tρ which are independent
of the connection ρ and we define and study the (n+1)-torsion t̄(n+1) : P n+1 → Torn+1(mn)
of the Tanaka structure (Di, πG) (see Definition ?? and Theorem ??).

With the material from the previous sections, in Section ?? we finally define the G-
structure π̃n+1 : P̃ n+1 → P̄ (n) and the principal bundle π̄(n+1) : P̄ (n+1) → P̄ (n) we are
looking for. Let W n+1 be a complement of Im(∂(n+1)) in the space of torsions Torn+1(mn)
(see Theorem ?? for the definition of the map ∂(n+1)). The G-structure π̃n+1 is the
restriction of πn+1 to P̃ n+1 = (t̄(n+1))−1(W n+1) and has structure group Gn+1GLn+2(mn)
(see Proposition ??). The bundle π̄(n+1) : P̄ (n+1) → P̄ (n) is defined as the quotient of π̃n+1

by the normal subgroup GLn+2(mn) ⊂ Gn+1GLn+2(mn) and satisfies the properties from
Theorem ?? (see Proposition ??). This concludes the proof of Theorem ??.

In Section ?? we prove Theorem ??. The construction of the canonical frame F can on
P̄ (l̄) (or on any P̄ (l̄′), for l̄′ ≥ l̄), required by Theorem ??, is done in Proposition ??. In
Proposition ?? we show that the automorphism group Aut(Di, πG) of a Tanaka structure
(Di, πG) (not necessarily of finite order) is isomorphic to the automorphism group of any
of the associated G-structures π̃n : P̃ n → P̄ (n−1) (n ≥ 1). When (Di, πG) is of finite order
l̄, the G-structure π̃ l̄′+1 : P̃ l̄′+1 → P̄ (l̄′) is an absolute parallelism for large enough l̄′, which
coincides with the canonical frame of P̄ (l̄′) (see Proposition ??). This fact, combined with
Proposition ?? and Kobayashi’s theorem mentioned above, completes the proof of Theo-
rem ??.

2 Preliminary material

2.1 Quasi-gradations of filtred vector spaces

Let V = V−k ⊃ V−k+1 ⊃ · · · ⊃ Vl be a decreasing filtration of a finite dimensional vector
space V by subspaces Vi. We define Vj = {0} for j > l and Vj = V for j < −k.

Definition 1. i) A gradation H = {H i, −k ≤ i ≤ l} of V is called adapted (to the
filtration {Vi}) if Vi = H i +H i+1 + · · ·+H l, for any −k ≤ i ≤ l.

ii) A quasi-gradation of degree m ≥ 1 (or shortly, m-quasi-gradation) of V is
a system of subspaces H̄ = {H̄ i, −k ≤ i ≤ l} such that, for any −k ≤ i ≤ l,

a)Vi = H̄ i + Vi+1, b)H̄ i ∩ Vi+1 = Vi+m.

We denote by Gr(V ) and Grm(V ) the set of all adapted gradations, respectively the
set of all m-quasi-gradations of V . Remark that Grm(V ) = Gr(V ) for any m ≥ k+ l+ 1.
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For any 1 ≤ m ≤ p, we define

Πm
p : Grp(V ) → Grm(V ), Πm

p ({H̄ i}) := {H̄ i + Vi+m}.

In particular, there is a natural map

Πm : Gr(V ) → Grm(V ), Πm({H i}) := {H i + Vi+m}. (1)

Definition 2. Any adapted gradation of V which belongs to GrH̄(V ) := (Πm)−1(H̄) is
called compatible with the quasi-gradation H̄ ∈ Grm(V ).

Let gr(V ) :=
∑l

i=−k gr
i(V ), where gri(V ) := Vi/Vi+1, be the graded vector space

associated to V . More generally, for any m ≥ 1, let gr(m)(V ) :=
∑l

i=−k gr
i
(m)(V ), where

gri(m)(V ) := Vi/Vi+m. We denote by

gri : Vi → gri(V ), pri(m) : Vi → gri(m)(V ), gri(m) : gr
i
(m)(V ) → gri(V )

the natural projections. Remark that gri = pri(1) and pri(1) = gri(m) for m ≥ k + l + 1.

Any adapted gradation H = {H i} defines injective maps Ĥ i : gri(V ) → Vi, with image
H i ⊂ Vi (from the direct sum decompositions Vi = Vi+1 + H i). The next proposition
generalizes this statement to quasi-gradations.

Proposition 3. i) There is a one to one correspondence between the space Grm(V ) of
m-quasi-gradations H̄ = {H̄ i} and the space of maps f = (f i) : gr(V ) → gr(m)(V ) where

f i : gri(V ) → gri(m)(V ), gri(m) ◦ f i = Idgri(V ), −k ≤ i ≤ l. (2)

More precisely, any H̄ ∈ Grm(V ) defines a map ̂̄H = ( ̂̄H i

) : gr(V ) → gr(m)(V ) which

satisfies (??) and ̂̄H i

: gri(V ) → gri(m)(V ) has image H̄ i/Vi+m ⊂ gri(m)(V ). Conversely,

any map f = (f i) : gr(V ) → gr(m)(V ) as in (??) defines H̄ = {H̄ i} ∈ Grm(V ) by

H̄ i := (pri(m))
−1Im(f i), −k ≤ i ≤ l (3)

and f = ̂̄H.

ii) A gradation H is compatible with an m-quasi-gradation H̄ if and only if

pri(m) ◦ Ĥ i = ̂̄H i

, −k ≤ i ≤ l. (4)

Proof. The proof is straightforward and we omit details. We only define the map ̂̄H
associated to the quasi-gradation H̄ ∈ Grm(V ), and this is done as for gradations.
Namely, from Definition ??, Vi/Vi+m = H̄ i/Vi+m + Vi+1/Vi+m (direct sum decompo-
sition). This induces an isomorphism between gri(V ) = (Vi/Vi+m)/(Vi+1/Vi+m) and

H̄ i/Vi+m ⊂ gri(m)(V ) = Vi/Vi+m, which gives the required map ̂̄H i

. Alternatively, ̂̄H i

asso-

ciates to [y] ∈ gri(V ) the unique [z] ∈ pri(m)(H̄
i) ⊂ gri(m)(V ), such that gri(m)([z]) = [y].
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2.2 Lifts and quasi-gradations

Let m =
∑

im
i be a graded vector space, V a filtered vector space and u : m → gr(V ) a

graded vector space isomorphism. Since m is graded, it is filtered in a natural way by the
subspaces mi :=

∑
j≥im

j.

Definition 4. A lift of u is a filtration preserving isomorphism F : m → V which
satisfies gri ◦ F |mi = u|mi, for any i. More generally, an m-lift (m ≥ 1) is a map
F = (F i) : m → gr(m)(V ), where F i : mi → gri(m)(V ) are such that gri(m) ◦ F i = u|mi, for
any i.

We remark that F is a lift of u if and only if it is filtration preserving and gri ◦F |mi
=

u ◦ πmi|mi
, for any i. (We always denote by πmi : m → mi the natural projection onto

the degree i-component mi of a graded vector space m). The next theorem generalizes
Lemma 7.1 of [?].

Theorem 5. There is a one to one correspondence between the space of m-quasi-gradations
of V and the space of m-lifts of u. More precisely, any m-quasi-gradation H̄ defines an

m-lift, by F i
H̄
:= ̂̄H i

◦u|mi . Conversely, any m-lift F = (F i) defines an m-quasi-gradation
H̄ i := (pri(m))

−1F i(mi) and F = FH̄ .

Proof. Let H̄ ∈ Grm(V ). From the definitions of F i
H̄

and ̂̄H i

, gri(m) ◦ F i
H̄

= gri(m) ◦
̂̄H i

◦
u|mi = u|mi , i.e. FH̄ is an m-lift. Conversely, if F is an m-lift, then F ◦ u−1 : gr(V ) →
gr(m)(V ) satisfies the properties from Proposition ??. We deduce that H̄ := {H̄ i} where

H̄ i = (pri(m))
−1Im(F ◦ u)i = (pri(m))

−1F i(mi)

is an m-quasi-gradation. It remains to prove that F = FH̄ . For this, let x ∈ mi. Since
H̄ i = (pri(m))

−1F i(mi), F i(x) ∈ pri(m)(H̄
i). Since gri(m) ◦F i(x) = u(x), we obtain F i

H̄
(x) =̂̄H i(u(x)) = F i(x), as needed (the second equality follows from the proof of Proposition

??, by taking [y] = u(x) and [z] = F i(x)).

In view of the above theorem, we identify the space Grm(V ) of m-quasi-gradations
with the space of m-lifts of u. To avoid confusion, lifts of u will be denoted by FH and
m-lifts by FH̄ . The map (??), in terms of m-lifts, is

Πm : Gr(V ) → Grm(V ), FH = (F i
H) 7→ FH̄ = (F i

H̄ := pri(m) ◦ F i
H). (5)

We end this subsection by discussing group actions on the space of quasi-gradations.
For this, we need to introduce new notation, which will be used also later in the paper.
Recall that if U :=

∑
i U

i and W :=
∑

j W
j are graded vector spaces, then U ∧ W :=∑

i(U ∧W )i and Hom(U,W ) =
∑

iHom
i(U,W ) are graded as well, where (U ∧W )i :=∑

j+r=i U
j ∧ W r and Homi(U,W ) :=

∑
j Hom(U j,W j+i). For any A ∈ Hom(U,W ), we

denote by Ai ∈ Homi(U,W ) its degree i homogeneous component. In particular, the
vector subspaces

glj(m) := {A ∈ gl(m), A(mi) ⊂ mi+j, ∀i}
define a gradation of gl(m). This is a Lie algebra gradation: [glj(m), glr(m)] ⊂ glj+r(m),
for any j, r. Consider the subalgebra glm(m) :=

∑
i≥m gli(m) and

GLm(m) := {B ∈ GL(m) : B = Id + A, A ∈ glm(m)}
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the Lie group with Lie algebra glm(m). For m ≥ 2, GLm(m) is a normal subgroup of
GL1(m). Any class [A] ∈ GL1(m)/GLm(m) is determined by the homogeneous compo-
nents of A up to degree m− 1.

Theorem 6. i) The group GL1(m) acts simply transitively on Gr(V ), by FA := F ◦ A,
for any F ∈ Gr(V ) and A ∈ GL1(m), and the orbits of the subgroup GLm(m) are the
fibers of the natural map Πm : Gr(V ) → Grm(V ) defined by (??).

ii) The map Πm induces an isomorphism between the orbit space Gr(V )/GLm(m) and
Grm(V ).

iii) The quotient group GL1(m)/GLm(m) acts simply transitively on Grm(V ), by

(FH̄ [A])
i(x) :=

m−1∑
j=0

fj+i,mF
j+i

H̄
(Aj(x)), ∀x ∈ mi, (6)

where FH̄ ∈ Grm(V ), [A] ∈ GL1(m)/GLm(m) and fj+i : grj+i
(m)(V ) → gri(m)(V ) are the

natural maps.

Proof. Claim i) is easy, claim ii) follows from claim i) and the surjectivity of Πm. We
now prove iii). We define an action of GL1(m)/GLm(m) on Grm(V ) by Πm(FH)[A] :=
Πm(FH ◦ A), for any FH ∈ Gr(V ) and [A] ∈ GL1(m)/GLm(m). It is easy to check that
it is a well-defined, simply transitive action. We now prove that it is given by (??). To
simplify notation, let FH̄ := Πm(FH). For any x ∈ mi,

(FH̄ [A])(x) = Πm(FHA)(x) = pri(m)(FH ◦ A)(x) =
m−1∑
j=0

(pri(m) ◦ F
j+i
H )(Aj(x)). (7)

Consider the left hand side of (??): for any fixed 0 ≤ j ≤ m− 1,

fj+i,mF
j+i

H̄
(Aj(x)) = fj+i,m ◦ prj+i

(m) ◦ F
j+i
H (Aj(x)) = (pri(m) ◦ F

j+i
H )(Aj(x)), (8)

where we used (??) and fj+i,m ◦ prj+i
(m) = pri(m)|Vj+i

. Relation (??) follows from (??) and

(??).

2.3 Tanaka prolongation of a non-positively graded Lie algebra

Let m0 =
∑−1

i=−k m
i+g0 be a non-positively graded Lie algebra, with Lie bracket [·, ·]. We

always assume that the negative part m :=
∑−1

i=−k m
i of m0 is fundamental, i.e. generated

by m−1. We define inductively a sequence of vector spaces gr (r ≥ 1), such that, with the
notation mf := m+

∑f
r=0 g

r (f ≥ 0), gr ⊂ glr(mr−1). First, let

g1 := {A ∈ gl1(m0), A[x, y] = [A(x), y] + [x,A(y)], ∀x, y ∈ m}.

Next, suppose that gs ⊂ gls(ms−1) are known for any 1 ≤ s ≤ r. We define

gr+1 := {A ∈ glr+1(mr), A[x, y] = [A(x), y] + [x,A(y)] ∀x, y ∈ m}. (9)

In (??) [·, ·] : m×mr → mr extends the Lie bracket [·, ·] of m and

[x, z] = −[z, x] = −z(x), x ∈ m, z ∈ gs ⊂ gls(ms−1), s ≤ r. (10)

Remark that any A ∈ gr ⊂ glr(mr−1) annihilates the non-negative part
∑r−1

i=0 g
i of

mr−1 and we may consider gr ⊂ Homr(m,mr−1).
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Theorem 7. [?] The vector space (m0)
∞ := m0 +

∑
r≥1 g

r has the structure of a graded
Lie algebra (called the Tanaka prolongation of m0), with the following Lie bracket:

i) the Lie bracket of two elements from m0 is their Lie bracket in the Lie algebra m0;

ii) the Lie bracket [x, z], where x ∈ m and z ∈ gs (s ≥ 1) is given by (??).

iii) the Lie bracket [f1, f2], where f1 ∈
∑

r≥0 g
r and f2 ∈

∑
r≥1 g

r is defined by induc-
tion by the condition

[f1, f2](x) = [f1(x), f2] + [f1, f2(x)], f1 ∈ gr1 , f2 ∈ gr2 , x ∈ m.

Definition 8. Let G ⊂ GL(m) be a Lie group with Lie algebra g0. The group Gl :=
Id + gl ⊂ End(ml−1) with group operation (Id + A)(Id + B) := Id + A + B (for any
A,B ∈ gl) is called the l-Tanaka prolongation of G.

We denote by GlGLl+1(ml−1) the subgroup of GL(ml−1) of all automorphisms of the
form Id + Al + Al+1, where Al ∈ gl ⊂ gll(ml−1) and Al+1 ∈ gll+1(ml−1). The Tanaka
prolongation Gl is isomorphic to the quotient of GlGLl+1(ml−1) by the normal subgroup
GLl+1(ml−1).

2.4 G-structures

Notation 9. We begin by fixing notation. Our actions on manifolds are always right
actions. If a Lie group G acts on a manifold P , we denote by Rg : P → P , p → pg
the action of g ∈ G on P and by (ξa)P (or simply ξa) the fundamental vector field on
P generated by a ∈ Lie(G) = g. For any u ∈ P , a, b ∈ g and g ∈ G, (Rg)∗(ξ

a
u) =

(ξAd(g−1)(a))ug (see e.g. [?], p. 51) and [ξa, ξb] = ξ[a,b] (see e.g. [?], p. 41). In particular,
if π : P → M is a principal G-bundle and ν : g → T vP the vertical parallelism, ν(a)u =
νu(a) := ξau, then νug = (Rg)∗ ◦ νu ◦ Ad(g).

Let π : P → M be a G-structure with structure group G ⊂ GL(V ). Any u ∈ P is a
frame u : V → TpM . The action of g ∈ G on u is given by ug := u ◦ g. Let θ ∈ Ω1(P, V )
be the soldering form of π, defined by θu(X) := (u−1 ◦ π∗)(X), for any X ∈ TuP. It is
well-known that θ is G-equivariant (see e.g. [?], p. 309-310):

R∗
g(θ) = g−1 ◦ θ, LξA(θ) = −A ◦ θ, g ∈ G, A ∈ g ⊂ gl(V ). (11)

Let ρ be a connection on the G-structure π : P → M .

Definition 10. A ρ-twisted vector field is a vector field Xa on P (where a ∈ V ), such
that (Xa)u ∈ TuP is the ρ-horisontal lift of u(a) ∈ Tπ(u)M , for any u ∈ P .

According to [?] (see p. 356),

(Rg)∗Xa = Xg−1(a), [ξB, Xa] = XB(a), g ∈ G, B ∈ g ⊂ gl(V ), a ∈ V. (12)

Definition 11. The ρ-torsion function is the function

tρ : P → Hom(Λ2(V ), V ), tρu(a ∧ b) := (dθ)u(Xa, Xb), u ∈ P, a ∧ b ∈ Λ2(V ). (13)

Remark that θ(Xa) = a is constant, for any a ∈ V , and

tρu(a ∧ b) = −θu([Xa, Xb]) = −(u−1 ◦ π∗)([Xa, Xb]u), u ∈ P, a ∧ b ∈ Λ2(V ). (14)
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Theorem 12. i) The torsion function tρ is G-equivariant:

tρug(a ∧ b) = g−1tρu(g(a) ∧ g(b)), u ∈ P, g ∈ G, a ∧ b ∈ Λ2(V ). (15)

ii) For any other connection ρ′ on π,

tρ
′

u (a ∧ b) = tρu(a ∧ b)− A(b) +B(a), u ∈ P, a ∧ b ∈ Λ2(V ). (16)

Above A,B ∈ g ⊂ End(V ) are given by ξAu := (X ′
a)u − (Xa)u, ξ

B
u := (X ′

b)u − (Xb)u, where
Xa, Xb (respectively, X ′

a, X
′
b) are the ρ-twisted (respectively, the ρ′-twisted) vector fields

determined by a, b.

2.5 Tanaka structures

2.5.1 Filtrations of the Lie algebra of vector fields

Let TM = D−k ⊃ D−k+1 · · · ⊃ Dl (l ≥ −1) be a flag of distributions on a manifold
M . For any p ∈ M , let gri(TpM) = Di

p := (Di)p/(Di+1)p, gr(TpM) :=
∑

i gr
i(TpM) and

(gri)D : Di → gri(TM) the natural projection. We assume that the non-positive part
{Di, i ≤ 0} defines a filtration

X(M) = Γ(D−k) ⊃ Γ(D−k+1) ⊃ · · · ⊃ Γ(D0)

of the Lie algebra X(M) of vector fields on M . Then, for any p ∈ M , gr<0(TpM) :=∑
i<0 gr

i(TpM) is a graded Lie algebra, with Lie bracket {·, ·}p (or just {·, ·} when p is
understood) induced by the Lie bracket of vector fields. It is called the symbol algebra
of {Di} at p. The following lemma will be useful and can be checked directly.

Lemma 13. Let f : N → M be a smooth map of constant rank and {DM
i , i ≤ 0} a

flag of distributions which defines a filtration of the Lie algebra X(M). Then {DN
i =

(f∗)
−1(DM

i ), i ≤ 0} defines a filtration of the Lie algebra X(N). For any X ∈ Γ(DN
i ),

Y ∈ Γ(DN
j ) with i, j < 0 and p ∈ N ,

(gri+j)D
M

f∗([X,Y ]p) = {(gri)DM

f∗(Xp), (gr
j)D

M

f∗(Yp)}f(p).

2.5.2 Definition of Tanaka structures

Let m0 =
∑−1

i=−k m
i+g0 be a non-positively graded Lie algebra, (m0)

∞ = m0+
∑

i≥1 g
i its

Tanaka prolongation and (ml)
≥0 =

∑l
i=0 g

i the non-negative part of ml = m0 +
∑l

i=1 g
i.

Definition 14. A flag of distributions TM = D−k ⊃ D−k+1 · · · ⊃ Dl (l ≥ −1) is a
filtration of type ml if the following conditions are satisfied:

i) for any i, j ≤ 0, [Γ(Di),Γ(Dj)] ⊂ Γ(Di+j);

ii) for any p ∈ M , there is an isomorphism u−
p : m → gr<0(TpM) of graded Lie

algebras;

iii) for any p ∈ M , there is a canonical isomorphism νp : (ml)
≥0 → gr≥0(TpM) of

graded vector spaces.

The isomorphism u := u−
p ⊕ νp : ml → gr(TpM) is called a graded frame at p.
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The group Aut(m) of automorphisms of the graded Lie algebra m acts simply transi-
tively on the set Pp of graded frames at p ∈ P . We denote by π : P → M the principal
bundle of graded frames. It has structure group Aut(m).

Definition 15. Let {Di, −k ≤ i ≤ l} be a filtration of type ml on a manifold M and
G ⊂ Aut(m) a Lie subgroup of Aut(m). A Tanaka G-structure of type ml on M is a
principal G-subbundle πG : PG → M of the bundle π : P → M of graded frames.

The notion of automorphism of a Tanaka structure is defined in a natural way:

Definition 16. An automorphism of a Tanaka G-structure (Di, πG : PG → M) of type
ml is a diffeomorphism f : M → M with the following properties:

i) it preserves the flag of distributions Di (and induces a map f∗ : gr(TM) → gr(TM));

ii) for any graded frame u : ml → gr(TpM) from PG, the composition f∗ ◦ u : ml →
gr(Tf(p)M) is also a graded frame from PG.

Let (Di, πG) be a Tanaka G-structure of type m =
∑−1

i=−k m
i and g0 := Lie(G). Since

g0 ⊂ Der0(m), m(g0) := m + g0 is a graded Lie algebra: its Lie bracket [·, ·] extends the
Lie brackets of m and g0 and [a, b] = −[b, a] = −b(a), for any a ∈ m and b ∈ g0 ⊂ End(m).
Let m(g0)∞ := m(g0) +

∑
l≥1 g

l be the Tanaka prolongation of m(g0).

Definition 17. The Tanaka G-structure (Di, πG) of type m has (finite) order l̄ if l̄ is the
minimal number such that gl̄+1 = 0.

3 Statement of the main results

In this paper we aim to prove the following statements:

Theorem 18. Let (Di, πG : PG → M) be a Tanaka G-structure of type m =
∑−1

i=−k m
i,

m(g0)∞ = m +
∑

i≥0 g
i the Tanaka prolongation of m(g0) = m + g0 (where g0 = Lie(G))

and Gn = Id + gn the n-prolongation of G. There is a sequence of principal Gn-bundles
π̄(n) : P̄ (n) → P̄ (n−1) (n ≥ 1), with the following properties:

A) The base P̄ (n−1) has a Tanaka {e}-structure of type mn−1. This means that there

is a flag of distributions {T P̄ (n−1) = D̄(n−1)
−k ⊃ · · · ⊃ D̄(n−1)

n−1 } which satisfies

[Γ(D̄(n−1)
i ),Γ(D̄(n−1)

j )] ⊂ Γ(D̄(n−1)
i+j ), i, j ≤ 0,

and for any H̄n−1 ∈ P̄ (n−1), there is a canonical graded vector space isomorphism

IH̄n−1 : mn−1 → gr(TH̄n−1P̄ (n−1))

of whose restriction to m is a Lie algebra isomorphism onto gr<0(TH̄n−1P̄ (n−1)).

B) The principal bundle π̄(n) is the quotient of a G-structure π̃n : P̃ n → P̄ (n−1), with
structure group GnGLn+1(mn−1), by the normal subgroup GLn+1(mn−1). The G-structure
π̃n is a subbundle of the bundle Gr(T P̄ (n−1)) → P̄ (n−1) of adapted gradations of T P̄ (n−1)

(the latter being a G-structure, whose frames are lifts of the graded frames IH̄n−1, H̄n−1 ∈
P̄ (n−1)). In particular, π̄(n) : P̄ (n) = P̃ n/GLn+1(mn−1) → P̄ (n−1) is canonically isomorphic
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to a subbundle of the bundle Grn+1(T P̄
(n−1)) → T P̄ (n−1) of (n + 1)-quasi-gradations of

T P̄ (n−1).

C) The torsion function tρ̃ of one (equivalently, any) connection ρ̃ on π̃n satisfies
tρ̃Hn(a ∧ b) ∈ (mn−1)i−1, for any Hn ∈ P̃ n and a ∧ b ∈ m−1 ∧ gi (0 ≤ i ≤ n− 1), and

(tρ̃Hn)0(a ∧ b) = −[a, b], Hn ∈ P̃ n, a ∧ b ∈ m−1 ∧ (
n−1∑
i=0

gi). (17)

(In (??) [a, b] denotes the Lie bracket of a and b in the Lie algebra m(g0)
∞).

We reobtain the final result of the Tanaka’s prolongation procedure:

Theorem 19. Let (Di, πG : PG → M) be a Tanaka G-structure of type m =
∑−1

i=−k

and order l̄. The l̄-Tanaka prolongation P̄ (l̄) has a canonical {e}-structure. The automor-
phism group Aut(Di, πG) of (Di, πG) is isomorphic to the automorphism group of this {e}-
structure. It is a finite dimensional Lie group with dimAut(Di, πG) ≤ dim(M) +

∑l̄
i=0 g

i.

The remaining part of the paper is devoted to the proofs of Theorem ?? and ??.

4 The first prolongation of a Tanaka structure

Let (Di, πG : PG → M) be a Tanaka G-structure of type m = m−k + · · · + m−1. In this
section we define the first principal bundle π̄(1) : P̄ (1) → P from Theorem ??.

4.1 The G-structure π1 : P 1 → P

To simplify notation, we denote by P := PG the total space of πG. Let ν
0 : g0 → T vP be

the vertical parallelism of πG, where g0 = Lie(G). For any i ≤ −1, let DP
i := (πG)

−1
∗ (Di)

and D0 := T vP the tangent vertical bundle of πG. The sequence

TP = DP
−k ⊃ DP

−k+1 ⊃ · · · ⊃ DP
−1 ⊃ DP

0 (18)

defines a filtration of the Lie algebra X(P ) of vector fields on P and the differential (πG)∗
induces a symbol algebra isomorphism

(πG)∗ : gr
<0(TuP ) → gr(TpM), u ∈ P, p = πG(u). (19)

The next proposition can be checked directly.

Proposition 20. Any point u ∈ P defines an isomorphism

û = (πG)
−1
∗ ◦ u+ ν0

u : m0 = m+ g0 → gr(TuP ) = gr<0(TuP ) + T v
uP.

The set of isomorphisms {û, u ∈ P} is a Tanaka {e}-structure of type m0 on P .

From Theorem ?? (applied to gradations), any gradation H = {H i} of TuP adapted
to the filtration (??) determines a frame

FH : m0 → TuP, FH := Ĥ ◦ û, (20)

which lifts the graded frame û : m0 → gr(TuP ) (for the definition of Ĥ, see the comments

before Proposition ??). For any a ∈ g0, FH(a) = Ĥ((ξa)Pu ) = (ξa)Pu . From Theorem ?? i)
we obtain:
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Proposition 21. The principal bundle π1 : P 1 → P of adapted gradations of TP is a G-
structure with structure group GL1(m0). It consists of all frames of TuP (for any u ∈ P )
which are lifts of the canonical graded frame û : m0 → gr(TuP ).

4.2 The action of G on P 1

In this subsection we construct an action of G on P 1 which lifts the action of G on the
total space P = PG of the principal G-bundle πG. For any g ∈ G, Rg : P → P preserves
the filtration (??) and induces a map (Rg)∗ : gr(TuP ) → gr(TugP ), for any u ∈ P. Let

ρ : G → Aut(m0), ρ(g)(a+ b) := g(a) + Ad(g)(b), g ∈ G, a ∈ m, b ∈ g0. (21)

Proposition 22. i) For any u ∈ P and g ∈ G, the frames û and ûg from Proposition ??
are related by

ûg = (Rg)∗ ◦ û ◦ ρ(g) : m0 → gr(TugP ). (22)

ii) There is an action of G on P 1, which associates to any frame FH : m0 → TuP from
P 1 and g ∈ G the frame

FHg := (Rg)∗ ◦ FH ◦ ρ(g) : m0 → TugP. (23)

iii) For any a ∈ g0, the fundamental vector field (ξa)P
1
of the above action of G on P 1,

generated by a, is π1-projectable and (π1)∗(ξ
a)P

1
= (ξa)P .

Proof. Claim i) follows from the definition of û, ûg, and ν0
ug = (Rg)∗◦ν0

u◦Ad(g). For claim
ii), one checks that FHg ∈ P 1, i.e. is a lift of ûg (direct computation, which uses that FH

is a lift of û and that ρ is gradation preserving). Claim iii) follows from Rg ◦ π1 = π1 ◦Rg

(where we use the same notation Rg for the actions of g ∈ G on P 1 and P ).

Lemma 23. The soldering form θ1 ∈ Ω1(P 1,m0) of π
1 is G-equivariant:

(Rg)
∗θ1 = ρ(g−1) ◦ θ1, L(ξa)P

1 (θ1) = −ρ∗(a) ◦ θ1, g ∈ G, a ∈ g0. (24)

Proof. From the definition of θ1 and Rg ◦ π1 = π1 ◦Rg, we obtain, for any XH ∈ THP
1,

((Rg)
∗θ1)(XH) = θ1((Rg)∗XH) = (FHg)

−1(π1 ◦Rg)∗(XH)

= (ρ(g−1) ◦ (FH)
−1 ◦ (Rg−1)∗ ◦ (π1 ◦Rg)∗)(XH)

= (ρ(g−1) ◦ (FH)
−1 ◦ (π1)∗)(XH) = (ρ(g−1) ◦ θ1)(XH).

The second relation (??) is the infinitesimal version of the first.

4.3 The torsion function tρ of π1

Let ρ be a connection on the G-structure π1 : P 1 → P . In this section we study the
properties of the torsion function tρ, in connection with the gradation of m0. Let {Xa, a ∈
m0} be the family of ρ-twisted vector fields on P 1 (recall Section ??). For any a ∈ m0,
(Xa)H ∈ THP

1 is the ρ-horisontal lift of FH(a) ∈ TpP (where π1(H) = p); when a ∈ g0,
Xa ∈ X(P 1) is the ρ-horisontal lift of (ξa)P ∈ X(P ).

Proposition 24. The function tρ : P 1 → Hom(Λ2(m0),m0) has only components of non-
negative homogeneous degree.
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Proof. For any i ≤ 0, let DP 1

i := (π1)−1
∗ (DP

i ). Since for any H ∈ P 1, FH : m0 → TuP
preserves filtrations, Xa ∈ Γ(DP 1

i ), for any a ∈ (m0)
i (i ≤ 0). Similarly, Xb ∈ Γ(DP 1

j ) for

any b ∈ (m0)
j (j ≤ 0). The sequence {DP 1

i , i ≤ 0} defines a filtration of the Lie alge-
bra X(P 1). It follows that [Xa, Xb] ∈ Γ(DP 1

i+j) and tρH(a, b) = −(FH)
−1(π1)∗([Xa, Xb])H)

belongs to (m0)i+j.

Theorem 25. i) For any a ∧ b ∈ Λ2(g0) and H ∈ P 1, tρH(a ∧ b) = −[a, b].
ii) For any a ∧ b ∈ Λ2(m0) and H ∈ P 1, (tρH)

0(a, b) = −[a, b].

Proof. Let a, b ∈ g0. Then Xa, Xb are the ρ-horisontal lifts of the fundamental vector fields
(ξa)P and (ξb)P on P . Thus, [Xa, Xb] is π

1-projectable and (π1)∗[Xa, Xb] = [(ξa)P , (ξb)P ] =
(ξ[a,b])P . We obtain

tρH(a, b) = −(FH)
−1(π1)∗([Xa, Xb]H) = −(FH)

−1(ξ[a,b])P = −[a, b].

Claim i) follows.
For claim ii), we distinguish two cases: I) a, b ∈ m; II) a ∈ g0, b ∈ m.
Let a ∈ mi and b ∈ mj (i, j < 0). Then Xa ∈ Γ(DP 1

i ), Xb ∈ Γ(DP 1

j ) and [Xa, Xb] ∈
Γ(DP 1

i+j). Being a lift of û : m0 → gr(TuP ), the frame FH : m0 → TuP is filtration
preserving and satisfies

(grs)D
P ◦ FH |(m0)s = û ◦ π(m0)s|(m0)s , π(m0)s ◦ (FH)

−1|DP
s
= û−1 ◦ (grs)DP

. (25)

Using (π1)∗([Xa, Xb]H) ∈ (DP
i+j)u and the second relation (??), we obtain

(tρH)
0(a∧b) = −π(m0)i+j(FH)

−1(π1)∗([Xa, Xb]H) = −û−1◦(gri+j)D
P

(π1)∗([Xa, Xb]H). (26)

On the other hand, from Lemma ??, (π1)∗(X
a
H) = FH(a), (π

1)∗(X
b
H) = FH(b) and the

first relation (??), we obtain

(gri+j)D
P

(π1)∗([Xa, Xb]H) = {((gri)DP ◦ FH)(a), ((gr
j)D

P ◦ FH)(b)} = {û(a), û(b)}. (27)

Using that û : m → gr<0(TuP ) is a Lie algebra isomorphism, we deduce, from (??) and
(??), that (tρH)

0(a ∧ b) = −[a, b], as needed.
It remains to consider a ∈ g0 and b ∈ m. For this we use the action of G on P 1,

defined in Subsection ??. From Proposition ??, (ξa)P
1
is π1-projectable and (π1)∗(ξ

a)P
1
=

(ξa)P . Since a ∈ g0, Xa is the ρ-horisontal lift of (ξa)P . Therefore, the vector field
Y := Xa − (ξa)P

1
is π1-vertical. We write

tρH(a ∧ b) = −θ1([Xa, Xb]H) = −θ1([(ξa)P
1

, Xb]H)− θ1([Y,Xb]H). (28)

We need to compute the right hand side of (??). From Lemma ?? and θ1(Xb) = b,

θ1([(ξa)P
1

, Xb]H) = −(L(ξa)P
1θ1)H(Xb) = ρ∗(a)(b) = a(b). (29)

In order to compute θ1([Y,Xb]H), we write Y =
∑

s fs(ξ
As)P

1
, where fs are functions on

P 1 and {As} is a basis of gl1(m0). Then

θ1([Y,Xb]H) = −
∑
s

θ1H(Xb(fs)(ξ
As)P

1

+ fs[Xb, (ξ
As)P

1

])

= −
∑
s

fs(H)θ1H([Xb, (ξ
As)P

1

]) = −
∑
s

fs(H)L(ξAs )P1 (θ1)(Xb)

=
∑
s

fs(H)As(b), (30)
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where in the second equality we used that (ξAs)P
1
is π1-vertical (hence annihilated by θ1),

in the third equality we used that θ1(Xb) = b is constant and in the last equality we used
the second relation (??). From (??), (??) and (??), we obtain

tρH(a ∧ b) = −a(b)− A(b), a ∈ g0 ⊂ gl(m), b ∈ m, (31)

where A =
∑

s fs(H)As ∈ gl1(m0) is uniquely determined by (Xa)H − (ξa)P
1

H = (ξA)P
1

H .
Assume now that b ∈ mi. From (??), tρH(a ∧ b) ∈ (m0)i and (by projecting (??) onto mi)
(tρH)

0(a, b) = −a(b) = −[a, b] as required.

4.4 Variation of the torsion tρ of π1

Let ρ be a connection on π1 : P 1 → P .

Proposition 26. i) The degree zero homogeneous component of tρ : P 1 → Hom(g0 ∧
m,m0) is independent of ρ.

ii) The degree zero and one homogeneous components of tρ : P 1 → Hom(Λ2(m),m) are
independent of ρ.

Proof. Let ρ′ be another connection on π1. For any a ∈ m0, the ρ and ρ′-twisted vector
fields Xa and X ′

a, at a point H ∈ P 1, are related by (X ′
a)H = (Xa)H + (ξA)P

1

H , where
A ∈ gl1(m0) (the Lie algebra of the structure group GL1(m0) of π1). Similarly, for any
b ∈ m0, (X

′
b)H = (Xb)H + (ξB)P

1

H , where B ∈ gl1(m0). From Theorem ??,

tρ
′

H(a ∧ b) = tρH(a ∧ b)− A(b) +B(a). (32)

Let a ∈ g0 and b ∈ mi (i < 0). Then B(a) = 0, deg(A(b)) ≥ i + 1. We obtain that the
mi-component of A(b) − B(a) vanishes. Claim i) follows. Let a ∈ mi and b ∈ mj with
i, j < 0. Then deg(A(b)) ≥ j+1 > i+ j+1 and deg(B(a)) ≥ i+1 > i+ j+1. We obtain
that the mi+j and mi+j+1-components of A(b)−B(a) vanish. Claim ii) follows.

We denote by Tor(m0) := Hom(Λ2(m),m0) the space of torsions. It is a graded
vector space, with gradation Torm(m0) =

∑
i,j Hom(mi∧mj, (m0)

i+j+m). For any H ∈ P 1,
we denote by (tρH)

m the projection of tρH onto Torm(m0).

Definition 27. Let ρ be a connection on the G-structure π1 : P 1 → P associated to the
Tanaka structure πG : PG → M. The function

t1 : P 1 → Tor1(m0), P 1 ∋ H → t1H := (tρH)
1 ∈ Tor1(m0)

is called the torsion function of the Tanaka structure (Di, πG).

Proposition 28. The torsion function is independent of the choice of ρ. It is given by:

t1H(a, b) = −πmi+j+1(FH)
−1(π1)∗([Xa, Xb]H), H ∈ P 1, a ∈ mi, b ∈ mj, (i, j < 0), (33)

where Xa, Xb ∈ X (P 1) are ρ-twisted vector fields.

Proof. The first claim follows from Proposition ?? ii). Relation (??) follows from (??).
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Proposition 29. For any H ∈ P 1 and A = Id + A1 ∈ GL1(m0),

t1HA = t1H + ∂A.

Above, ∂A ∈ Hom(Λ2m,m0) is given by

(∂A)(a ∧ b) := A1
1([a, b])− [A1

1(a), b]− [a,A1
1(b)], a ∧ b ∈ Λ2(m). (34)

Proof. The inverse A−1 of A is of the form A−1 = Id + Ã1, where Ã1 ∈ gl1(m0) and
Ã1

1 = −A1
1. We choose a connection ρ on π1. From Theorem ??, for any a ∧ b ∈ Λ2(m),

tρHA(a ∧ b) = A−1tρH(A(a) ∧ A(b))

= tρH(a ∧ b) + tρH(a ∧ A1(b)) + tρH(A1(a) ∧ b) + tρH(A1(a) ∧ A1(b))

+ Ã1 (t
ρ
H(a ∧ b) + tρH(a ∧ A1(b)) + tρH(A1(a) ∧ b) + tρH(A1(a) ∧ A1(b))) .

Let a ∈ mi and b ∈ mj (i, j < 0). Projecting the above equality to mi+j+1 and using
that tρ has only components of non-negative homogeneous degree (see Proposition ??),
we obtain

t1HA(a ∧ b) = t1H(a ∧ b) + (tρH)
0(a ∧ A1

1(b)) + (tρH)
0(A1

1(a) ∧ b) + Ã1
1t

0
H(a ∧ b).

Using Ã1
1 = −A1

1 and (tρH)
0(a∧b) = −[a, b], for any a, b ∈ m0 (see Theorem ??), we obtain

our claim.

4.5 The first prolongation

Let (Di, π : PG → M) be a Tanaka G-structure of type m =
∑−1

i=−k m
i and t1 : P 1 →

Tor1(m0) its torsion function (see Definition ??). Let

∂ : gl1(m0) → Tor1(m0), (∂A)(a ∧ b) = A1([a, b])− [A1(a), b]− [a,A1(b)], a ∧ b ∈ Λ2(m).
(35)

Fix a complement W of ∂(gl1(m0)) in Tor1(m0).

Proposition 30. The bundle π̃1 : P̃ 1 := (t1)−1(W ) → P is a G-structure with structure
group G1GL2(m0). The torsion function tρ̃ of any connection ρ̃ on π̃1 satisfies tρ̃H(a∧ b) ∈
m−1 + g0, for any H ∈ P̃ 1 and a ∧ b ∈ m−1 ∧ g0, and

(tρ̃H)
0(a ∧ b) = −[a, b], a ∧ b ∈ m−1 ∧ g0.

Proof. The first claim follows from Proposition ?? and Ker(∂) = gl2(m0)+g1. The second
claim follows from Proposition ?? and Theorem ?? (extend ρ̃ to a connection on π1).

Let P̄ (1) := P̃ 1/GL2(m0). The map π̄(1) : P̄ (1) → P induced by π̃1 is a principal bundle
with structure group G1.

Definition 31. The principal G1-bundle π̄(1) : P̄ (1) → P is called the first prolongation
of the Tanaka structure (Di, πG).

The next proposition concludes the first induction step from the proof of Theorem ??.

Proposition 32. The principal bundle π̄(1) : P̄ (1) → P satisfies properties A), B) and C)
from Theorem ??. In particular, it is canonically isomorphic to a subbundle of the bundle
Gr2(TP ) → P of 2-quasi-gradations of TP.

Proof. From Proposition ??, property A) is satisfied. Properties B) and C) follow from
the definition of π̄(1) and Proposition ??. The statement about quasi-gradations follows
from Theorem ?? ii).
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5 The G-structure πn+1 : P n+1 → P̄ (n)

We now assume that the principal bundles π̄(i) : P̄ (i) → P̄ (i−1) from Theorem ?? are given,
for any i ≤ n. Our goal is to construct the principal bundle π̄(n+1) : P̄ (n+1) → P̄ (n) from
this theorem. In particular, P̄ (n) needs to have a Tanaka {e}-structure of type mn. This
is induced from P̄ (n−1), as follows.

Lemma 33. The manifold P̄ (n) has a Tanaka {e}-structure of type mn. The flag of dis-

tributions {D̄(n)
i , −k ≤ i ≤ n} of this Tanaka structure is D̄(n)

i := (π̄(n))−1
∗ (D̄(n−1)

i )

(−k ≤ i ≤ n − 1) and D̄(n)
n := T vP̄ (n) = Ker(π̄(n))∗. For any H̄n ∈ P̄ (n), the canonical

graded frame

IH̄n : mn = mn−1 + gn → gr(TH̄nP̄ (n)) =
∑

−k≤i≤n−1

gri(TH̄nP̄ (n)) + T v
H̄nP̄

(n)

is given by
IH̄n|mn−1 := (π̄(n))−1

∗ ◦ IH̄n−1 , IH̄n |gn := νn
H̄n , (36)

where
(π̄(n))∗ :

∑
−k≤i≤n−1

gri(TH̄nP̄ (n)) → gr(TH̄n−1P̄ (n−1))

is the isomorphism induced by the differential of π̄(n), H̄n−1 = π̄(n)(H̄n), and νn
H̄n : gn →

T v
H̄nP̄

(n) is the vertical parallelism of π̄(n).

Proof. The only non-trivial fact to check is that IH̄n : m → gr<0(TH̄nP̄ (n)) preserves Lie
brackets. For this, we use that both (π̄(n))∗ : gr<0(TH̄nP̄ (n)) → gr<0(TH̄n−1P̄ (n−1)) and
IH̄n−1 : m → gr<0(TH̄n−1P̄ (n−1)) have this property.

In the next sections we shall consider various adapted gradations and quasi-gradations
of T P̄ (n) or T P̄ (n−1). They are always considered with respect to the filtrations of the
Tanaka structures of these manifolds.

5.1 Definition and basic properties of πn+1

An important role in the prolongation procedure plays a G-structure πn+1 : P n+1 →
P̄ (n) which we are going to define in this subsection. Let H̄n ∈ P̄ (n) and Hn+1 =
{(Hn+1)i, −k ≤ i ≤ n} an adapted gradation of TH̄nP̄ (n). It projects to an adapted
gradation (π̄(n))∗(H

n+1) := {(π̄(n))∗(H
n+1)i, −k ≤ i ≤ n − 1} of TH̄n−1P̄ (n−1) (remark

that (Hn+1)n = T vP̄ (n) projects trivially to TH̄n−1P̄ (n−1)). The adapted gradations Hn+1

and (π̄(n))∗(H
n+1) define frames which lift the canonical graded frames IH̄n and IH̄n−1

respectively (see Theorem ??, applied to gradations and lifts):

FHn+1 = Ĥn+1 ◦ IH̄n : mn → TH̄nP̄ (n)

F(π̄(n))∗(Hn+1) =
̂(π̄(n))∗(Hn+1) ◦ IH̄n−1 : mn−1 → TH̄n−1P̄ (n−1). (37)

As usual, F i
Hn+1 := FHn+1|(mn)i (i ≤ n) and similarly F i

(π̄(n))∗(Hn+1)
:= F(π̄(n))∗(Hn+1)|(mn−1)i

(i ≤ n− 1). Recall that P̄ (n) ⊂ Grn+1(T P̄
(n−1)).

16



Definition 34. The manifold P n+1 is the set of all adapted gradations Hn+1 of TH̄nP̄ (n)

(for any H̄n ∈ P̄ (n)), whose projection (π̄(n))∗(H
n+1) to TH̄n−1P̄ (n−1) is compatible with the

quasi-gradation H̄n ∈ Grn+1(TH̄n−1P̄ (n−1)) (where H̄n−1 := π̄(n)(H̄n)). The map πn+1 :
P n+1 → P̄ (n) is the natural projection.

More precisely, we set

P n+1 = ∪H̄n∈P̄ (n){Hn+1 ∈ Gr(TH̄nP̄ (n)), Πn+1(π̄(n))∗(H
n+1) = H̄n}

where Πn+1 : Gr(TH̄n−1P̄ (n−1)) → Grn+1(TH̄n−1P̄ (n−1)) is the map (??). Using the first
relation (??), we identify any Hn+1 ∈ P n+1 with the associated frame FHn+1 . The next
lemma describes P n+1 as a submanifold of the frame manifold of P̄ (n). In Lemma ?? ii)
below the map FH̄n is the (n + 1)-lift of IH̄n−1 determined by H̄n ∈ Grn+1(TH̄n−1P̄ (n−1))
(according to Theorem ??):

FH̄n = (F i
H̄n), F i

H̄n = ( ̂̄Hn)i ◦ IH̄n−1 : (mn−1)
i → gri(n+1)(TH̄n−1P̄ (n−1)), −k ≤ i ≤ n− 1.

(38)

Lemma 35. i) Let Hn+1 = {(Hn+1)i, −k ≤ i ≤ n} be an adapted gradation of TH̄nP̄ (n)

and (π̄(n))∗(H
n+1) its projection to TH̄n−1P̄ (n−1). The associated frames F(π̄(n))∗(Hn+1) and

FHn+1 defined by (??) are related by

F(π̄(n))∗(Hn+1) = (π̄(n))∗ ◦ FHn+1|mn−1 . (39)

ii) The fiber of πn+1 over H̄n ∈ P̄ (n) consists of all Hn+1 ∈ Gr(TH̄nP̄ (n)) whose
associated frame FHn+1 satisfies: for any −k ≤ i ≤ n− 1 and x ∈ (mn−1)

i,

pri(n+1)(π̄
(n))∗F

i
Hn+1(x) = F i

H̄n(x), (40)

where pri(n+1) : (D̄
(n−1)
i )H̄n−1 → gri(n+1)(TH̄n−1P̄ (n−1)) is the natural projection. In particu-

lar, (π̄(n))∗FHn+1 = FH̄n on (mn−1)−1.

Proof. From the definitions of Ĥn+1 and ̂(π̄(n))∗(Hn+1),

̂(π̄(n))∗(Hn+1) ◦ (π̄(n))∗|gr≤n−1(TH̄n P̄ (n)) = (π̄(n))∗ ◦ Ĥn+1|gr≤n−1(TH̄n P̄ (n)). (41)

Relation (??) follows from (??), (??) and IH̄n |mn−1 = (π̄(n))−1
∗ ◦ IH̄n−1 .

For claim ii), letHn+1 ∈ Gr(TH̄nP̄ (n)). ThenHn+1 ∈ P n+1 if and only if (π̄(n))∗(H
n+1) ∈

Gr(TH̄n−1P̄ (n−1)) is compatible with the quasi-gradation H̄n ∈ Grn+1(TH̄n−1P̄ (n−1)). From
Proposition ?? ii), this condition is equivalent to

pri(n+1) ◦ ̂(π̄(n))∗(Hn+1)
i

= ( ̂̄Hn)i, i ≤ n− 1. (42)

Composing (??) with IH̄n−1 and using the relations (??) and (??), we obtain that (??) is
equivalent to pri(n+1) ◦ F i

(π̄(n))∗(Hn+1)
= F i

H̄n , or, from (??), to (??).

Below any A ∈ Hom(
∑n−1

i=0 gi, gn) acts on mn, by annihilating m and gn.

Proposition 36. The projection πn+1 : P n+1 → P̄ (n) is a G-structure with structure
group Ḡ := Id + gln+1(mn) + Hom(

∑n−1
i=0 gi, gn).
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Proof. LetHn+1, H̃n+1 ∈ (πn+1)−1(H̄n) be two adapted gradations of TH̄nP̄ (n), whose pro-
jections to TH̄n−1P̄ (n−1) are compatible with the quasi-gradation H̄n ∈ Grn+1(TH̄n−1P̄ (n−1)).
From Lemma ?? ii), for any x ∈ (mn−1)

i, i ≤ n− 1,

F i
Hn+1(x)− F i

H̃n+1(x) ∈ (π̄(n))−1
∗ (D̄(n−1)

i+n+1)H̄n−1 = (D̄(n)
i+n+1)H̄n + T v

H̄nP̄
(n). (43)

Note that T v
H̄nP̄

(n) ⊂ (D̄(n)
i+n+1)H̄n when i ≤ −1 and (D̄(n)

i+n+1)H̄n = 0 when i ≥ 0. Also,

F n
Hn+1 = F n

H̃n+1 : (mn)
n = gn → (D̄(n)

n )H̄n = T v
H̄nP̄

(n) (44)

is the vertical parallelism of π̄(n). From relations (??) and (??) we obtain Id + A :=
F−1
Hn+1 ◦ FH̃n+1 ∈ Ḡ.

5.2 An action of GnGLn+1(mn−1) on P n+1

In this subsection we define an action of GnGLn+1(mn−1) on P n+1, naturally related to
the action of Gn on the total space P̄ (n) of the principal Gn-bundle π̄(n). Consider the
group homomorphism

Pr : GnGLn+1(mn−1) → Gn, g = Id + An + An+1 → Pr(g) := ḡ = Id + An.

Let ρn : GnGLn+1(mn) → Aut(mn) be the trivial extension to mn = mn−1 + gn of the
natural (left) action of GnGLn+1(mn−1) ⊂ GL(mn−1) on mn−1. We define an action of
GnGLn+1(mn−1) on the frame manifold of P̄ (n): for any g ∈ GnGLn+1(mn−1) and frame
F : mn → TH̄nP̄ (n),

Fg := (Rḡ)∗ ◦ F ◦ ρn(g) : mn → TH̄nḡP̄
(n). (45)

Proposition 37. The action (??) preserves P n+1 and

(πn+1)∗((ξ
a)P

n+1

) = (ξā)P̄
(n)

, ∀a ∈ gn + gln+1(mn−1). (46)

(In (??) ā ∈ gn denotes the gn-component of a).

Proof. Let Hn+1 ∈ P n+1 and FHn+1 : mn → TH̄nP̄ (n) the associated frame. We need to
prove that for any g ∈ GnGLn+1(mn−1), the frame FHn+1g related to FHn+1 as in (??),
belongs to P n+1, i.e. satisfies the following conditions:

I) it is a lift of IH̄nḡ : mn → gr(TH̄nḡP̄
(n)), i.e. is filtration preserving and

((gri)D̄
(n) ◦ (FHn+1g))(x) = (IH̄nḡ ◦ π(mn)i)(x), x ∈ (mn)i, i ≤ n− 1. (47)

(This means that FHn+1g is the frame associated to an adapted gradation of TH̄nḡP̄
(n)).

II) the adapted gradation from I) belongs to P n+1, i.e. (from Lemma ??),

pri(n+1)(π̄
(n))∗F

i
Hn+1g(x) = F i

H̄nḡ(x), ∀x ∈ (mn−1)
i, i ≤ n− 1.

Since GnGLn+1(mn−1) ⊂ GL1(mn) and (Rḡ)∗ : TH̄n−1P̄ (n) → TH̄n−1ḡP̄
(n) preserve

filtrations, FHn+1g preserves filtrations as well. Using the definition of FHn+1g, that Rḡ
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preserves filtrations, (Rḡ−1)∗ ◦ IH̄nḡ = IH̄n (which follows from (??) and the fact that gn

is abelian), we obtain that (??) is equivalent to

((gri)D̄
(n) ◦ FHn+1)(ρn(g)(x)) = (IH̄n ◦ π(mn)i)(x), x ∈ (mn)i, i ≤ n. (48)

Using that ρn(g)(x) ∈ (mn)i and FHn+1 lifts IH̄n , we obtain that (??) is equivalent to
π(mn)i(ρ

n(g)(x)− x) = 0, which holds from the definition of ρn. Condition I) is proved.
Condition II) can be checked in a similar way, using

F i
H̄nḡ(x) = F i

H̄n(x) + (fi+n,n+1 ◦ F i+n
H̄n )(Anx), x ∈ (mn−1)

i, i ≤ n− 1

where An := ḡ− Id ∈ gn and fi+n,n+1 : gr
i+n
(n+1)(T P̄

(n−1)) → gri(n+1)(T P̄
(n−1)) is the natural

map (see Theorem ?? ii)). We proved that (??) defines an action on P n+1. Relation (??)
follows from πn+1 ◦Rg = Rḡ ◦ πn+1, for any g ∈ GnGLn+1(mn−1).

Let θn+1 : TP n+1 → mn be the soldering form of the G-structure πn+1:

θn+1(X) = (FHn+1)−1((πn+1)∗X), ∀X ∈ THn+1P n+1.

From relation (??), it is Ḡ-equivariant. The next lemma shows that θn+1 is equivariant also
with respect to the actions ρn and (??) of GnGLn+1(mn−1) on mn and P n+1 respectively.

Lemma 38. For any g ∈ GnGLn+1(mn−1) and a ∈ gn + gln+1(mn−1),

(Rg)
∗(θn+1) = ρn(g−1) ◦ θn+1, L(ξa)Pn+1 (θn+1) = −(ρn)∗(a) ◦ θn+1. (49)

Proof. Like in the proof of Lemma ??, for any g ∈ GnGLn+1(mn−1),

(Rg)
∗(θn+1)(XHn+1) = θn+1((Rg)∗(XHn+1)) = (FHn+1g)−1((πn+1 ◦Rg)∗(XHn+1)).

From FHn+1g = (Rḡ)∗ ◦ FHn+1 ◦ ρn(g) and πn+1 ◦ Rg = Rḡ ◦ πn+1, we obtain the first
relation (??). The second relation (??) is the infinitesimal version of the first.

6 The torsion function of πn+1

In this section we prove the following theorem.

Theorem 39. Let ρ be a connection on the G-structure πn+1 and tρ its torsion function.
i) Then tρ : P n+1 → Hom((m−1 + gn) ∧mn,mn) has only homogeneous components of

non-negative reduced degree, i.e. for any Hn+1 ∈ P n+1 and −k ≤ i ≤ n,

tρHn+1(m
−1 ∧ (mn)

i) ⊂ (mn)i−1, tρHn+1(g
n ∧ (mn)

i) ⊂ (mn)min{n+i,n}.

ii) For any Hn+1 ∈ P n+1,

(tρHn+1)
0(a ∧ b) = −[a, b], ∀a ∧ b ∈ m−1 ∧mn + gn ∧m. (50)

We divide the proof of the above theorem into three parts (Subsections ??, ?? and ??),
according to the Hom(m−1 ∧ m,mn), Hom(m−1 ∧ (

∑n−1
i=0 gi),mn) and Hom(gn ∧ mn,mn)-

valued components of tρ. Along the proof we shall use the following notation: for any
a ∈ mn, the ρ-twisted vector field on P n+1 determined by a will be denoted by Xn+1

a ; for
any a, b belonging to m or gi, [a, b] will always denote (as in the statement of Theorem
?? above) their Lie bracket in the Tanaka prolongation m(g0)∞.
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6.1 The Hom(m−1 ∧ m,mn)-valued component

Proposition 40. The torsion function tρ : P n+1 → Hom(m−1 ∧m,mn) has only homoge-
neous components of non-negative degree. For any Hn+1 ∈ P n+1,

(tρHn+1)
0(a ∧ b) = −[a, b], ∀a ∧ b ∈ m−1 ∧m. (51)

Proof. The argument is similar to the proof of Proposition ?? and Theorem ?? ii).

The sequence Dn+1
i := (πn+1)−1

∗ D̄(n)
i (i ≤ 0) is a filtration of X(P n+1). For any a ∈

m−1 and b ∈ mi, Xn+1
a ∈ Γ(Dn+1

−1 ), Xn+1
b ∈ Γ(Dn+1

i ) and [Xn+1
a , Xn+1

b ] ∈ Γ(Dn+1
i−1 ).

Since FHn+1 : mn → TH̄nP̄ (n) is filtration preserving, we obtain that tρHn+1(a ∧ b) =
−(FHn+1)−1(πn+1)∗([X

n+1
a , Xn+1

b ]) ∈ (mn)i−1, which proves the first statement. We now
prove (??). Since FHn+1 is a lift of IH̄n : mn → gr(TH̄nP̄ (n)), for any −k ≤ s ≤ n,

((grs)D̄
(n)◦FHn+1)|(mn)s = IH̄n◦π(mn)s|(mn)s , (π(mn)s◦(FHn+1)−1)|D̄(n)

s
= (IH̄n)−1◦(grs)D̄(n)

.

From these relations and (πn+1)∗([X
n+1
a , Xn+1

b ]Hn+1) ∈ (D̄(n)
i−1)H̄n , we obtain:

(tρHn+1)
0(a ∧ b) = −(π(mn)i−1 ◦ (FHn+1)−1 ◦ (πn+1)∗)([X

n+1
a , Xn+1

b ]Hn+1)

= −((IH̄n)−1 ◦ (gri−1)D̄
(n) ◦ (πn+1)∗)([X

n+1
a , Xn+1

b ]Hn+1)

= −(IH̄n)−1{((gr−1)D̄
(n) ◦ FHn+1)(a), ((gri)D̄

(n) ◦ FHn+1)(b)}
= −(IH̄n)−1{IH̄n(a), IH̄n(b)} = −[a, b]

(we used Lemma ?? and that IH̄n |m : m → gr<0(TH̄nP̄ (n)) is a Lie algebra isomorphism).

6.2 The Hom(m−1 ∧ (
∑n−1

i=0 gi),mn)-valued component of tρ

Since π̄(n) : P̄ (n) → P̄ (n−1) satisfies the conditions from Theorem ??, it is the quotient
of a G-structure π̃n : P̃ n → P̄ (n−1) with structure group GnGLn+1(mn−1), by the normal
subgroup GLn+1(mn−1). In particular, P̄ (n) = P̃ n/GLn+1(mn−1) and the fundamental

vector field (ξc)P̃
n ∈ X(P̃ n) generated by c ∈ gn+gln+1(mn−1) projects to the fundamental

vector field (ξ c̄)P̄
(n) ∈ X(P̄ (n)) generated by c̄ ∈ gn (the gn-component of c). Let ρ̃ be a

connection on the G-structure π̃n and Xn
a ∈ X(P̃ n) the ρ̃-twisted vector fields (a ∈ mn−1).

From (??), for any A ∈ GnGLn+1(mn−1) and c ∈ gn + gln+1(mn−1),

(RA)∗(X
n
a ) = Xn

A−1(a), [(ξc)P̃
n

, Xn
a ] = Xn

c(a). (52)

The first relation (??) implies that Xn
a is GLn+1(mn−1)-invariant, for any a ∈ (mn−1)−1

(because A|(mn−1)−1 = Id, for any A ∈ GLn+1(mn−1)) and descends to a vector field X̂n
a

on P̄ (n). The following lemma collects the main properties of the vector fields X̂n
a .

Lemma 41. i) For any a ∈ m−1 and b ∈ gi (with 0 ≤ i ≤ n− 1),

[X̂n
a , X̂

n
b ] = X̂n

[a,b] mod(D̄(n)
i ). (53)

ii) For any c ∈ gn ⊂ gl(mn−1), a ∈ m−1 and b ∈
∑n−1

i=0 gi,

[(ξc)P̄
(n)

, X̂n
a ] = X̂n

c(a), [(ξc)P̄
(n)

, X̂n
b ] = 0. (54)

iii) Let Hn+1 ∈ P n+1, H̄n = πn+1(Hn+1) ∈ P̄ (n) and a ∈ (mn−1)−1. Then

FHn+1(a) = (X̂n
a )H̄n mod(T v

H̄nP̄
(n)). (55)
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Proof. i) Let Hn ∈ P̃ n, FHn : mn−1 → TH̄n−1P̄ (n−1) the associated frame and a ∈ m−1,
b ∈ gi with 0 ≤ i ≤ n − 1. From the property C) in Theorem ??, we know that
tρ̃Hn(a ∧ b) = −(FHn)−1(π̃n)∗([X

n
a , X

n
b ]Hn) belongs to (mn−1)i−1 and its projection onto

(mn−1)
i−1 is equal to −[a, b]. Using (π̃n)∗((X

n
[a,b])Hn) = FHn([a, b]) we obtain

(FHn)−1(π̃n)∗
(
[Xn

a , X
n
b ]Hn − (Xn

[a,b])Hn

)
= (FHn)−1(π̃n)∗([X

n
a , X

n
b ]Hn)− [a, b] ∈ (mn−1)i.

Thus, (π̃n)∗([X
n
a , X

n
b ]Hn − (Xn

[a,b])Hn) belongs to FHn((mn−1)i) = (D̄(n−1)
i )H̄n−1 . But since

a, b, [a, b] ∈ (mn−1)−1, the vector fields Xn
a , X

n
b and Xn

[a,b] project to P̄ (n) and

(π̃n)∗([X
n
a , X

n
b ]Hn − (Xn

[a,b])Hn) = (π̄(n))∗([X̂
n
a , X̂

n
b ]H̄n − (X̂n

[a,b])H̄n).

We deduce that

(π̄(n))∗([X̂
n
a , X̂

n
b ]H̄n−1 − (X̂n

[a,b])H̄n−1) ∈ (D̄(n−1)
i )H̄n−1 ,

which implies (??), because (π̄(n))−1
∗ (D̄(n−1)

i ) = D̄(n)
i .

ii) In order to prove (??), let c ∈ gn ⊂ gln(mn−1) and a ∈ (mn−1)−1. The vector fields

Xn
a , X

n
c(a) and (ξc)P̃

n
on P̃ n project to the vector fields X̂n

a , X̂
n
c(a) and (ξc)P̄

(n)
on P̄ (n)

(and c(a) = 0, Xn
c(a) = 0, for any c ∈ gn and a ∈ (mn−1)0). Claim ii) follows by projecting

the second relation (??) on P̄ (n).
iii) Let Hn+1 ∈ P n+1, H̄n = πn+1(Hn+1) ∈ P̄ (n) and choose Hn ∈ P̃ n which projects

to H̄n. For any a ∈ (mn−1)−1,

(π̄(n))∗((X̂
n
a )H̄n) = (π̃n)∗((X

n
a )Hn) = FHn(a) = FH̄n(a), (56)

where in the last equality we used that Hn ∈ (π̃n)−1(H̄n−1) ⊂ Gr(TH̄n−1P̄ (n−1)) is compat-
ible with H̄n ∈ Grn+1(TH̄n−1P̄ (n−1)) (in particular, FHn = FH̄n on (mn−1)−1). On the other
hand, since Hn+1 ∈ P n+1, (π̄(n))∗FHn+1(a) = FH̄n(a) (from Lemma ?? and a ∈ (mn−1)−1).

We obtain (π̄(n))∗((X̂
n
a )H̄n) = (π̄(n))∗FHn+1(a), which implies (??).

Proposition 42. The function tρ : P n+1 → Hom(m−1 ∧ (
∑n−1

i=0 gi),mn) has only homo-
geneous components of non-negative degree. For any Hn+1 ∈ P n+1,

(tρHn+1)
0(a ∧ b) = −[a, b], a ∧ b ∈ m−1 ∧ (

n−1∑
i=0

gi). (57)

Proof. Let a, b ∈ (mn−1)−1. From relation (??), (πn+1)∗((X
n+1
a )Hn+1) = FHn+1(a) =

(X̂n
a )H̄n and similarly (πn+1)∗((X

n+1
b )Hn+1) = (X̂n

b )H̄n modulo T v
H̄nP̄

(n). Therefore, there

are A,B ∈ gln+1(mn) + Hom(
∑n−1

i=0 gi, gn) (the Lie algebra of the structure group Ḡ of
πn+1) and c, d ∈ gn (the Lie algebra of the structure group of π̄(n)), such that

(Xn+1
a )Hn+1 = (

˜̂
Xn

a )Hn+1 + ( ˜(ξc)P̄ (n))Hn+1 + (ξA)P
n+1

Hn+1 ,

(Xn+1
b )Hn+1 = (

˜̂
Xn

b )Hn+1 + ( ˜(ξd)P̄ (n))Hn+1 + (ξB)P
n+1

Hn+1 (58)

(for a vector field Z ∈ X(P̄ (n)), we denote by Z̃ its ρ-horisontal lift to P n+1). Then

tρHn+1(a ∧ b) = (dθn+1)Hn+1(
˜̂
Xn

a + ˜(ξc)P̄ (n) + (ξA)P
n+1

,
˜̂
Xn

b + ˜(ξd)P̄ (n) + (ξB)P
n+1

)

= (
˜̂
Xn

a + ˜(ξc)P̄ (n) + (ξA)P
n+1

)Hn+1(f)− (
˜̂
Xn

b + ˜(ξd)P̄ (n) + (ξB)P
n+1

)Hn+1(g)

− θn+1([
˜̂
Xn

a + ˜(ξc)P̄ (n) + (ξA)P
n+1

,
˜̂
Xn

b + ˜(ξd)P̄ (n) + (ξB)P
n+1

]Hn+1),
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where

f(Hn+1) := θn+1
Hn+1(

˜̂
Xn

b + ˜(ξd)P̄ (n) + (ξB)P
n+1

) = (FHn+1)−1(X̂n
b + (ξd)P̄

(n)

) ≡ b

g(Hn+1) := θn+1
Hn+1(

˜̂
Xn

a + ˜(ξc)P̄ (n) + (ξA)P
n+1

) = (FHn+1)−1(X̂n
a + (ξc)P̄

(n)

) ≡ a

and the sign ’≡’ means modulo gn. (We used (??), (FHn+1)−1((ξc)P̄
(n)
) = c ∈ gn and

(FHn+1)−1((ξd)P̄
(n)
) = d ∈ gn ). We obtain

tρHn+1(a ∧ b) ≡ −θn+1([
˜̂
Xn

a + ˜(ξc)P̄ (n) + (ξA)P
n+1

,
˜̂
Xn

b + ˜(ξd)P̄ (n) + (ξB)P
n+1

]Hn+1)

≡ −(FHn+1)−1([X̂n
a + (ξc)P̄

(n)

, X̂n
b + (ξd)P̄

(n)

]H̄n)

≡ −(FHn+1)−1([X̂n
a , X̂

n
b ]H̄n + [(ξc)P̄

(n)

, X̂n
b ]H̄n + [X̂n

a , (ξ
d)P̄

(n)

]H̄n)

≡ −(FHn+1)−1([X̂n
a , X̂

n
b ]H̄n + (X̂n

c(b))H̄n − (X̂n
d(a))H̄n), (59)

where H̄n = πn+1(Hn+1) and we used (??) (we remark that c(b) = 0 when b ∈
∑n−1

i=0 gi

and similarly for d(a)). Suppose now that a ∈ m−1 and that b ∈ gi (with 0 ≤ i ≤ n− 1).
Using (??), (??), (??) and c(b) = 0 we obtain

tρHn+1(a ∧ b) = −(FHn+1)−1(X̂n
[a,b] − X̂n

d(a)) mod(mn)i

= −[a, b] + d(a) mod(mn)i.

Since d ∈ gn ⊂ gln(mn−1), d(a) ∈ gn−1. Also, [a, b] = −b(a) ∈ gi−1. We deduce that
tρHn+1 ∈ Hom(m−1 ∧ (

∑n−1
i=0 gi),mn) has only components of non-negative homogeneous

degree and relation (??) holds, for any a ∧ b ∈ m−1 ∧ (
∑n−1

i=0 gi).

6.3 The Hom(gn ∧ mn,mn)-valued component

This is the last component of the torsion function tρ which needs to be studied, in order
to conclude the proof of Theorem ??.

Proposition 43. The function tρ : P n+1 → Hom(gn ∧mn,mn) has non-negative reduced
homogeneous components and satisfies

(tρHn+1)
0(a ∧ b) = −[a, b], ∀a ∧ b ∈ gn ∧m.

Proof. Let a ∈ gn and b ∈ mn. Recall that GnGLn+1(mn−1) acts on P n+1 and the
fundamental vector field (ξa)P

n+1
of this action, generated by a ∈ gn ⊂ gn+gln+1(mn−1), is

πn+1-projectable and (πn+1)∗(ξ
a)P

n+1
= (ξa)P̄

(n)
(see Proposition ??). On the other hand,

Xn+1
a ∈ X(P n+1) is the ρ-horisontal lift of (ξa)P̄

(n)
. We obtain that Y := Xn+1

a − (ξa)P
n+1

is πn+1-vertical. We write

tρHn+1(a ∧ b) = −θn+1([Xn+1
a , Xn+1

b ]Hn+1)

= −θn+1([(ξa)P
n+1

, Xn+1
b ]Hn+1)− θn+1([Y,Xn+1

b ]Hn+1). (60)

We need to compute the last row from the right hand side of (??). For the first term, we
use Lemma ?? and that θn+1(Xn+1

b ) = b is constant:

θn+1([(ξa)P
n+1

, Xn+1
b ]) = −L(ξa)P

n+1 (θn+1)(Xn+1
b ) = (ρn)∗(a)(b). (61)
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To compute the second term, we remark that, since Y is πn+1-vertical, there is A ∈
gln+1(mn) + Hom(

∑n−1
i=0 gi, gn), such that YHn+1 = (ξA)P

n+1

Hn+1 . The soldering form θn+1 of
πn+1 is Ḡ-equivariant (see relation (??)). Like in the computation (??) from the proof
of Theorem ??, we obtain θn+1([Y,Xn+1

b ]Hn+1) = A(b). This fact, together with (??) and
(??), imply that

tρHn+1(a ∧ b) = −(ρn)∗(a)(b)− A(b), a ∈ gn, b ∈ mn.

If b ∈ mi (with i ≤ −1) then (ρn)∗(a)(b) = a(b) ∈ (mn−1)
i+n and A(b) ∈ (mn)i+n+1. We

deduce that tρHn+1(a ∧ b) ∈ (mn)i+n and (tρHn+1)
0(a ∧ b) = −a(b) = −[a, b]. If b ∈ gj

(0 ≤ j ≤ n) then (ρn)∗(a)(b) = 0 and tρHn+1(a ∧ b) = −A(b) ∈ gn.

The proof of Theorem ?? is now completed.

7 Variation of the torsion tρ of πn+1

In this section we define and study the (n+1)-torsion of the Tanaka structure (Di, πG). We
preserve the setting from Section ??. In particular, ρ is a connection on the G-structure
πn+1 : P n+1 → P̄ (n).

Proposition 44. i) Let 0 ≤ i ≤ n− 1. The map

tρ : P n+1 → Hom(m−1 ∧ gi, (mn)
−i+1 + · · ·+ (mn)

n−1)

is independent of the connection ρ.

ii) Let i ≤ n + 1. The homogeneous component (tρ)i of degree i of tρ : P n+1 →
Hom(m−1 ∧m,mn) is independent of the connection ρ.

Proof. Consider another connection ρ′ on πn+1 : P n+1 → P̄ (n). From Theorem ?? ii), for
any Hn+1 ∈ P n+1 and a, b ∈ mn, there are A,B ∈ gln+1(mn) + Hom(

∑n−1
i=0 gi, gn), such

that
tρ

′

Hn+1(a ∧ b) = tρHn+1(a ∧ b)− A(b) + B(a). (62)

If a ∈ m−1 and b ∈ gi (0 ≤ i ≤ n − 1) then A(b), B(a) ∈ gn and, from (??), we obtain
claim i). Let a ∈ m−1 and b ∈ mj. Then degA(b) ≥ n + 1 + j > (−1 + j) + i and
degB(a) = n > (−1 + j) + i, for any i ≤ n + 1 (because j < 0). Relation (??) again
implies claim ii).

Definition 45. i) The vector space Torn+1(mn) := Homn+1(m−1∧m,mn)+
∑n−1

i=0 Hom(m−1∧
gi, gn−1) is called the space of (n+ 1)-torsions.

ii) Let ρ be a connection on πn+1 : P n+1 → P̄ (n). The function

t̄(n+1) : P n+1 → Torn+1(mn)

defined by

t̄
(n+1)

Hn+1 (a ∧ b) =

{
(tρHn+1)

n+1(a ∧ b), a ∧ b ∈ m−1 ∧m

(tρHn+1)n−i(a ∧ b), a ∧ b ∈ m−1 ∧ gi,
(63)

for any Hn+1 ∈ P n+1 and 0 ≤ i ≤ n − 1, is called the (n + 1)-torsion of the Tanaka
structure (Di, πG). In (??) the expression (tρHn+1)n−i(a∧ b), for a∧ b ∈ m−1∧gi, denotes
the projection of tρHn+1(a ∧ b) on gn−1.
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From Proposition ??, t̄(n+1) is independent of the choice of ρ.

Theorem 46. For any Hn+1 ∈ P n+1 and Id + A ∈ Ḡ,

t̄
(n+1)

Hn+1(Id+A) = t̄
(n+1)

Hn+1 + ∂(n+1)A.

Above

∂(n+1) : gln+1(mn) +
n−1∑
i=0

Hom(gi, gn) → Torn+1(mn)

maps gln+1(mn) into Homn+1(m−1 ∧ m,mn) and Hom(gi, gn) into Hom(m−1 ∧ gi, gn−1)
(0 ≤ i ≤ n− 1) and is defined by

(∂(n+1)An+1)(a ∧ b) := An+1
n+1([a, b])− [An+1

n+1(a), b]− [a,An+1
n+1(b)], a ∧ b ∈ m−1 ∧m

(∂(n+1)An−i)(a ∧ b) := −[a,An−i(b)], a ∧ b ∈ m−1 ∧ gi,

for any An+1 ∈ gln+1(mn) and An−i ∈ Hom(gi, gn).

Proof. From Theorem ??,

tρHn+1(Id+A)(a ∧ b) = (Id + B)tρHn+1((Id + A)(a) ∧ (Id + A)(b)), a, b ∈ mn, (64)

where Id + B := (Id + A)−1. If A = An+1 +
∑n

i=1A
i and B = Bn+1 +

∑n
i=1B

i, with
An+1, Bn+1 ∈ gln+1(mn) and Ai, Bi ∈ Hom(gn−i, gn), then Bi = −Ai (1 ≤ i ≤ n) and
Bn+1

n+1 = −An+1
n+1 (easy check). We write (??) in the equivalent form

tρHn+1(Id+A)(a ∧ b) = tρHn+1(a ∧ b) + tρHn+1(a ∧ A(b)) + tρHn+1(A(a) ∧ b)

+ tρHn+1(A(a) ∧ A(b))

+B
(
tρHn+1(a ∧ b) + tρHn+1(a ∧ A(b)) + tρHn+1(A(a) ∧ b) + tρHn+1(A(a) ∧ A(b))

)
.

Suppose now that a ∈ m−1 and b ∈ mi (i < 0). The above equality becomes

tρHn+1(Id+A)(a ∧ b) = tρHn+1(a ∧ b) + tρHn+1(a ∧ An+1(b)) + tρHn+1(An+1(a) ∧ b)

+ tρHn+1(An+1(a) ∧ An+1(b))

+B
(
tρHn+1(a ∧ b) + tρHn+1(a ∧ An+1(b)) + tρHn+1(An+1(a) ∧ b)

)
+B

(
tρHn+1(An+1(a) ∧ An+1(b))

)
. (65)

Since a ∈ m−1 and An+1(a) ∈ gn, all arguments of tρHn+1 , in the right hand side of (??),
belong to (m−1 + gn) ∧mn. From Theorem ??,

tρHn+1(a ∧ b) ∈ (mn)i−1, tρHn+1(a ∧ An+1(b)) ∈ (mn)i+n, tρHn+1(An+1(a) ∧ b) ∈ (mn)i+n.

Also, since An+1(a) ∈ gn and An+1(b) ∈ (mn)i+n+1,

tρHn+1(An+1(a) ∧ An+1(b)) ∈ (mn)min{n,2n+i+1}.

We project (??) on (mn)
i+n. The term tρHn+1(An+1(a) ∧ An+1(b)) brings no contribution

(because i+ n < min{n, 2n+ i+ 1}). We obtain

(tρHn+1(Id+A))
n+1(a ∧ b) = (tρHn+1)

n+1(a ∧ b) + (tρHn+1)
0(a ∧ An+1(b))

+ (tρHn+1)
0(An+1

n+1(a) ∧ b) + π(mn)i+nBtρHn+1(a ∧ b). (66)
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From tρHn+1(a ∧ b) ∈ (mn)−1+i, B(
∑n−1

j=0 g
j) ⊂ gn, and B|m = Bn+1|m, we obtain

π(mn)i+nBtρHn+1(a ∧ b) = Bn+1
n+1(t

ρ
Hn+1)

0(a ∧ b). (67)

Using Bn+1
n+1 = −An+1

n+1, relations (??), (??) and (??), we obtain, for any a ∧ b ∈ m−1 ∧m,

(tρHn+1(Id+A))
n+1(a ∧ b) = (tρHn+1)

n+1(a ∧ b) + (∂An+1)(a ∧ b). (68)

In a similar way, we prove that, for any a ∧ b ∈ m−1 ∧ gi,

(tρHn+1(Id+A))
n−i(a ∧ b) = (tρHn+1)

n−i(a ∧ b)− [a,An−i(b)]. (69)

Relations (??) and (??) imply our claim.

8 Definition of π̄(n+1) : P̄ (n+1) → P̄ (n)

Consider the map ∂(n+1) from Theorem ?? and let W n+1 be a complement of Im(∂(n+1))
in Torn+1(mn).

Proposition 47. i) The natural projection π̃n+1 : P̃ n+1 = (t̄(n+1))−1(W n+1) ⊂ P n+1 →
P̄ (n) is a G-structure, with structure group G = Gn+1GLn+2(mn).

ii) Let ρ̃ be a connection on π̃n+1. For any Hn+1 ∈ P̃ n+1 and a ∧ b ∈ m−1 ∧ gi

(0 ≤ i ≤ n), tρ̃Hn+1(a ∧ b) ∈ (mn)i−1 and

(tρ̃Hn+1)
0(a ∧ b) = −[a, b], Hn+1 ∈ P̃ n+1, a ∧ b ∈ m−1 ∧ (

n∑
i=0

gi).

Proof. Any An−i ∈ Hom(gi, gn) (0 ≤ i ≤ n− 1) with ∂(n+1)(An−i) = 0, i.e.

[a,An−i(b)] = −An−i(b)(a) = 0, ∀a ∈ m−1, b ∈ gi,

vanishes identically (because An−i(b) ∈ gn ⊂ Hom(m,mn−1) satisfies An−i(b)[x, y] =
[An−i(b)(x), y]+[x,An−i(b)(y)], for any x, y ∈ m, andm−1 generatesm; so, if An−i(b)|m−1 =
0, for any b ∈ gn, then An−i(b) = 0 and An−i = 0). We proved that ∂(n+1)|∑n−1

i=0 Hom(gi,gn)

is injective. Similarly, any An+1 ∈ gln+1(mn) which satisfies ∂(n+1)(An+1) = 0, i.e.

An+1
n+1([a, b]) = [An+1

n+1(a), b] + [a,An+1
n+1(b)], ∀a ∈ m−1, b ∈ m,

satisfies this relation for any a, b ∈ m. It follows that Ker
(
∂(n+1)|gln+1(mn)

)
= gn+1 +

gln+2(mn). Claim i) follows. Claim ii) follows from Theorem ?? ii) (extend ρ̃ to a connec-
tion on πn+1).

We can finally define the map π̄(n+1) : P̄ (n+1) → P̄ (n) we are looking for. Namely, let
P̄ (n+1) := P̃ n+1/GLn+2(mn) and π̄(n+1) : P̄ (n+1) → P̄ (n) the map induced by π̃n+1.

Proposition 48. The map π̄(n+1) : P̄ (n+1) → P̄ (n) satisfies properties A), B), and C)
from Theorem ?? (with n replaced by n+ 1).

Proof. From Lemma ??, property A) is satisfied. Property B) is satisfied by construction
and property C) follows from Proposition ??. From Theorem ??, π̄(n+1) is canonically
isomorphic to a subbundle of the bundle Grn+2(T P̄

(n)) of (n + 2)-quasi-gradations of
T P̄ (n).
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9 Proof of Theorem ??

In this section we prove Theorem ??. In Subsection ?? we construct the canonical frame
required by Theorem ??. In Subsection ?? we prove the statements about the automor-
phism groups.

9.1 The canonical frame of P̄ (l̄).

Proposition 49. Let (Di, πG) be a Tanaka G-structure of type m =
∑−1

i=−k m
i and finite

order l̄. Then the Tanaka prolongation P̄ (l̄) has a canonical frame F can.

Proof. Since gl̄+1 = 0, also gs = 0 for any s ≥ l̄ + 1 and π̄(s) : P̄ (s) → P̄ (s−1) is a
diffeomorphism. Moreover, for such an s, D̄(s)

l̄+1
= 0 (at any H̄s ∈ P̄ (s), (D̄(s)

l̄+1
)H̄s is

isomorphic to (ms)l̄+1 = gl̄+1 + · · · + gs, which is trivial). We obtain that Grm(T P̄
(s)) =

Gr(T P̄ (s)) for any s ≥ l̄+1 and m ≥ k+ l̄+1 (see our comments after Definition ??). For
any f, t with f ≥ t+1 we denote by π̄(f,t+1) : P̄ (f) → P̄ (t) the composition π̄(t+1)◦· · ·◦ π̄(f).

We need to construct a canonical isomorphism F can
H̄ l̄ : ml̄ → TH̄ l̄P̄ (l̄), for any H̄ l̄ ∈ P̄ (l̄).

Let H̄k+l̄+1 := (π̄(k+l̄+1,l̄+1))−1(H̄ l̄) ∈ P̄ (k+l̄+1). By our construction of Tanaka prolonga-
tions, P̄ (k+l̄+1) ⊂ Grk+l̄+2(T P̄

(k+l̄)). From the above, Grk+l̄+2(T P̄
(k+l̄)) = Gr(T P̄ (k+l̄))

and we obtain that P̄ (k+l̄+1) ⊂ Gr(T P̄ (k+l̄)). In particular, H̄k+l̄+1 defines a gradation

of TH̄k+l̄P̄ (k+l̄) or a frame FH̄k+l̄+1 = ̂̄Hk+l̄+1 ◦ IH̄k+l̄ : mk+l̄ = ml̄ → TH̄k+l̄P̄ (k+l̄), where
H̄k+l̄ := π̄(k+l̄+1)(H̄k+l̄+1) and IH̄k+l̄ : ml̄ → gr(TH̄k+l̄P̄ (k+l̄)) is the graded frame from the
Tanaka {e}-structure of P̄ (k+l̄).We define F can

H̄ l̄ := (π̄(k+l̄,l̄+1))∗◦FH̄k+l̄+1 : ml̄ → TH̄ l̄P̄ (l̄).

9.2 The automorphism group Aut(Di, πG)

The proof of the remaining part of Theorem ?? is based on the behaviour of the auto-
morphisms of a Tanaka structure, under the prolongation procedure:

Proposition 50. Let (Di, πG : P = PG → M) be a Tanaka G-structure of type m. The
group of automorphisms Aut(Di, πG) of (Di, πG) is isomorphic to the group of automor-
phisms of the Tanaka {e}-structure on P = PG (see Proposition ??) and to the group of
automorphisms Aut(π̃n) of the G-structures π̃n : P̃ n → P̄ (n−1), n ≥ 1.

Proof. The argument is similar to the one used in Theorem 3.2 of [?] (in the setting of
prolongation of G-structures) and is based on the naturality of our construction. One first
shows that any f ∈ Aut(Di, πG) induces an automorphism fG : P → P of the Tanaka {e}-
structure of P , by fG(u) := f∗ ◦ u, for any graded frame u : m → gr(TpM) which belongs
to P , and that f 7→ fG is an isomorphism betweeen these Tanaka structure automorphism
groups. Next, one notices (from definitions) that the automorphisms of the Tanaka {e}-
structure of P coincide with the automorphisms of the G-structure π̃1 : P̃ 1 → P .

It remains to prove that Aut(π̃n) is isomorphic to Aut(π̃n+1), for any n ≥ 1. Any
f̄ (n−1) ∈ Aut(π̃n) induces a map fP̃n : P̃ n → P̃ n, defined by fP̃n(FHn) := (f̄ (n−1))∗ ◦ FHn ,
for any FHn ∈ P̃ n. The map fP̃n commutes with the action of GnGLn+1(mn−1) (hence,
also with the action of GLn+1(mn−1)) on P̃ n and induces a map f̄ (n) : P̄ (n) → P̄ (n) which
belongs to Aut(π̃n+1) (easy check). For the converse, let f̄ (n) ∈ Aut(π̃n+1), i.e. f̄ (n) :
P̄ (n) → P̄ (n) is a diffeomorphism, such that, for any frame FHn+1 : mn → TH̄nP̄ (n) which
belongs to P̃ n+1, (f̄ (n))∗◦FHn+1 : mn → Tf̄ (n)(H̄n)P̄

(n) also belongs to P̃ n+1. Since the frames
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from P̃ n+1 are filtration preserving, both FHn+1 and (f̄ (n))∗ ◦ FHn+1 , therefore also f̄ (n),
are filtration preserving. Since the frames from P̃ n+1, restricted to gn, coincide with the
vertical parallelism of π̄(n) : P̄ (n) → P̄ (n−1), we obtain that (f̄ (n))∗(ξ

v)P̄
(n)

= (ξv)P̄
(n)
, for

any v ∈ gn. Therefore, there is f̄ (n−1) : P̄ (n−1) → P̄ (n−1) such that π̄(n)◦f̄ (n) = f̄ (n−1)◦π̄(n).
We check that f̄ (n−1) induces f̄ (n). For this, we use: for any x ∈ (mn−1)

i,

pri(n+1)(π̄
(n))∗F

i
Hn+1(x) = F i

H̄n(x),

pri(n+1)(π̄
(n))∗(f̄

(n))∗F
i
Hn+1(x) = F i

f̄ (n)(H̄n)(x), (70)

where H̄n−1 = π̄(n)(H̄n). (Relations (??) follow from FHn+1 , (f̄ (n))∗ ◦ FHn+1 ∈ P̃ n+1 and
Lemma ??). Since π̄(n) ◦ f̄ (n) = f̄ (n−1) ◦ π̄(n) and f̄ (n), f̄ (n−1) are filtration preserving, we
obtain from relations (??) that Ff̄ (n)(H̄n) = (f̄ (n−1))∗ ◦ FH̄n , i.e. f̄ (n) is induced by f̄ (n−1),

as required. It is easy to see that f̄ (n−1) ∈ Aut(π̃n).

Proposition 51. Let (Di, πG) be a Tanaka G-structure of type m =
∑−1

i=−k m
i and fi-

nite order l̄ and F can the canonical frame of P̄ (l̄). Then Aut(Di, πG) is isomorphic to

Aut(P̄ (l̄), F can). It is a Lie group with dimAut(Di, πG) ≤ dim(M) +
∑l̄

i=0 g
i.

Proof. The argument from Proposition ?? provides a canonical frame (an absolute paral-
lelism) (F can)′ on any prolongation P̄ (l̄′) (with l̄′ ≥ l̄), isomorphic to F can by means of the
map π̄(l̄′,l̄+1). Let l̄′ ≥ l̄ sufficiently large such that π l̄′ : P l̄′ → P̄ (l̄′−1) is an {e}-structure
(recall Definition ?? for π l̄′). Then, for any s ≥ l̄′, P s = P̃ s = P̄ (s) and πs = π̃s = π̄(s)

is an {e}-structure. Any H̄s ∈ P̄ (s) (s ≥ l̄′) is a frame FH̄s : ml̄ → Tπ̄(s)(H̄s)P̄
(s−1). By

construction of the prolongations, the preimage (πs+1)−1(H̄s) ∈ P s+1 is the unique frame
F(πs+1)−1(H̄s) : ml̄ → TH̄sP̄ (s) given by

(π̄(s))∗ ◦ F(πs+1)−1(H̄s) = FH̄s , s ≥ l̄′. (71)

Consider now the canonical frame (F can)′ of P̄ (l̄′). From the proof of Proposition ??, it is
defined by

(F can)′
H̄ l̄′ = (π̄(k+l̄′,l̄′+1))∗ ◦ F(π̄(k+l̄′+1,l̄′+1))−1(H̄ l̄′ ). (72)

We will show that (F can)′ is the {e}-structure π l̄′+1 of P̄ (l̄′). From relation (??), we need
to check that (π̄(l̄′))∗ ◦ (F can)′

H̄ l̄′ = FH̄ l̄′ , for any H̄ l̄′ ∈ P̄ (l̄′), or, using relation (??),

(π̄(k+l̄′,l̄′))∗ ◦FH̄k+l̄′+1 = Fπ̄(k+l̄′+1,l̄′+1)(H̄k+l̄′+1), for any H̄k+l̄′+1 ∈ P̄ k+l̄′+1. The latter relation
follows easily from (??). We obtain that (F can)′ coincides with the absolute parallelism
π l̄′+1 on P̄ (l̄′). From Proposition ??, Aut(P̄ (l̄′), (F can)′) (or Aut(P̄ (l̄), F can)) is isomorphic
to Aut(Di, πG). From Kobayashi theorem (see Theorem 3.2 of [?], p. 15), these groups

are Lie groups of dimension at most dim(M) +
∑l̄

i=0 g
i.
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