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1 Introduction

Recall that a G-structure of an n-dimensional manifold M is a principal subbundle 7 :
Pg — M of the frame bundle of M with structure group G C GL(V), V = R". Any tensor
field which is infinitesimally homogeneous, i.e. whose value at any point has the same
normal form with respect to some ”admissible” frame, is identified with a G-structure,
whose total space Pg is the set of all such admissible frames.

The prolongation of G-structures (see e.g. [?], Chapter VII) is a powerful method in
differential geometry which associates to any G-structure g : P — M of finite order a
new manifold P = P(m¢) (the full prolongation), with an absolute parallelism (i.e. an
{e}-structure), with the important property that the group of automorphisms Aut(P, {e})
of (P,{e}) is isomorphic to the group of automorphisms Aut(ws) of mg. The absolute
paralellism (P, {e}) provides local invariants for mg (see [?], Theorem 4.1 of Chapter
VII). Owing to Kobayashi’s theorem (see [?], Theorem 3.2 of Chapter 0), Aut(mg) ~
Aut(P, {e}) are Lie groups of dimension less or equal to the dimension of P.

The full prolongation P of wg : P — M is defined by consecutive applications of the
first prolongation. We briefly recall its construction. It is based on the observation that
the bundle j!(rg) : J'Pg = Hor(Pg) — Pg of 1-jets of sections of g (i.e. horizontal
subspaces of T Pg) is a G-structure with structure group

L id 0
G =id + Hom(V, g) = {<A id) , A € Hom(V, g)},

which is a commutative subgroup of GL(V + g). Using the torsion functions of j'(mg),
one can reduce the G-structure j'(7¢) to a G-structure Wg ) P((;l) — P whose structure
group G is the Lie subgroup of G* generated by the Lie subalgebra g™ = Hom(V, g) N
(V®S*V*) C gl(V +g). The G-structure ﬂg) is called the first prolongation of m¢. If the
k-th iterated prolongation g*) := (g(*=1))(1) of the Lie algebra g = Lie(G) vanishes, then
G is called of finite order and the k-th iterated P((;k) first prolongation of Py defines an
absolute parallelism on the full prolongation P := P((;kfl).

While the prolongation procedure works effectively for G-structures of finite order (e.g.
conformal or quaternionic structures), there are other important geometric structures (e.g.
CR-structures and other structures defined on a non-integrable distribution), which can-
not be treated effectively by this method. To overcome this difficulty, in 1970 Tanaka
[?7] generalized the prolongation of G-structures to a larger class of geometric structures,
called Tanaka structures in [?] and infinitesimal flag structures in [?] (see Definition ?7).
Examples of Tanaka structures include CR-structures, subriemannian and subconformal
structures. Tanaka’s prolongation procedure received much attention in the mathemat-
ical literature. There are many approaches for the Tanaka prolongation under different
assumptions, see [?, 7, 7, 7 ?]. Our approach is a developing and a detalization of
the approach from [?], where the first step of the Tanaka prolongation was explained in
detail, but the other steps were only stated without proofs. To prove the iterative con-
struction, one has to check many extra conditions, and this will be carefully done in this
paper. Our approach is close to the approach of 1. Zelenko [?]. The main difference is
that we develop and systematically use the theory of quasi-gradations of filtered vector
spaces. Together with the well-known theory of Tanaka prolongations of non-positively
graded Lie algebras and the torsion functions of G-structures, this provides a conceptual
and simple description of each step of the prolongation procedure: the principal bundle



7 . P — P=1 which relates the n and (n — 1)-prolongations of a given Tanaka
structure is canonically isomorphic to a subbundle of the principal bundle of (n + 1)-
quasi-gradations of TP™1 and is obtained as the quotient of a G-structure of P™1),
with structure group G"GL,1(m,_1), with suitable properties of the torsion function.
These statements are explained in detail in Theorem ??. In Theorem 7?7 we state the
final result of the Tanaka prolongation procedure, which reduces the local classification
of Tanaka structures of finite order to the well understood local classification of absolute
parallelisms. This requires the construction of a canonical frame on a prolongation of
suitable order and a careful analysis of the behaviour of the automorphisms of a Tanaka
structure under the prolongation procedure. We do this in Propositions ?? and Proposi-
tion ??. In the remaining part of the introduction we present the structure of the paper.

Structure of the paper. Section 77 is mainly intended to fix notation. Our original
contribution in this section is the theory of quasi-gradations of filtred vector spaces, which
is developed in Subsections 7?7 and ??7. Besides, we recall the definition of the Tanaka
prolongation of a non-positively graded Lie algebra [?], the basic facts we need from the
theory of G-structures (see e.g. [?]) and the definition of Tanaka structure [?].

In Section 7?7 we state our main results from this paper, namely Theorems ?7 and ?77?.
All notions used in these statements are defined in the previous section.

The remaining sections are devoted to the proofs of Theorems ?? and ??. Let (D;, g :
Pg — M) be a Tanaka G-structure of type m = Z:_ , m*. Basically, the proof of Theorem
77 is divided into two main parts: in a first stage, in Section 7?7 we construct the starting
projection 7Y : PN — P = P of the sequence of projections from Theorem ?? (also
called the first prolongation of the Tanaka structure (D;, w¢g)). For this, we remark that
P has a canonical Tanaka {e}-structure of type mg = m + g° (where g° = Lie(G)) and
we define a G-structure 7! : P! — P as the set of all adapted gradations of TP, or,
equivalently, the set of all frames of TP which lift the canonical graded frames of the
Tanaka {e}-structure of P (see Proposition ?? and Definition ??). Using the torsion, we
reduce 7! to a subbundle 7' : P — P, with structure group G*G'Ly(m;) and we define
7 . PO — P = Pg to be the quotient of #' by the normal subgroup G'Ly(m;) (see
Definition ??7). To a large extent (except Subsection ?7) this material is a rewriting of
the construction from [?], using frames instead of coframes (which are more suitable for
the higher steps of the prolongation). It is also the simplest part of the prolongation
procedure. We skip its details in this introduction and we describe directly the higher
steps of the prolongation, where our new approach using quasi-gradations plays a crucial
role. Therefore, suppose that the projections 7 : P — PG=1 (; < n) from Theorem
?? are given. We aim to define 7(*+1) . p(r+1) _ p(n),

In Section ?? we define P"*' c Gr(TP™) as the set of all adapted gradations of
Tgn P™ (for any H® € P™), whose projection to Tya—1 P is compatible with the
quasi-gradation H" € Gr,;1(Tga-1 P™™Y) (see Definition ??) and we show that the nat-
ural map 7" : PPt — PM) g a G-structure, with structure group Id + gl, 4 (m,,) +
Hom (>~ g, m,,) (see Proposition ??).

The definition of 7"V requires a careful analysis of the torsion functions of the
G-structure 7!, This is done in Sections ?? and ??. In Section ?? we consider an
arbitrary connection p on the G-structure 71 : P»*1 — P and we study the compo-
nent ¥ : P"*' — Hom((m™! + g") A m,, m,) of its torsion function (see Theorem ?7).
The proof of Theorem 7?7 is divided into three parts, according to the decomposition of



Hom((m™' + g") Ay, m,,) into the subspaces Hom(g" A m,, m,), Hom(m~' Am,m,) and
Hom(m™! A Zl o 8%, m,,). In Section 7?7 we define an action of G"G Ly 41(m,_1) on P"*
(see Proposition ?7?) which is used to treat the Hom(g" A m,,, m,)-valued component of
t? (see Proposition ??). The properties of the Hom(m~! A m,m,,)-valued component of ¢”
are consequences of the fact that the canonical graded frames of the Tanaka {e}-structure
on P™ are Lie algebra isomorphisms when restricted to m (see Proposition ?77). The
properties of the remaining Hom(m™! A Y7 g m,, )-valued component of ¢ are inher-
ited from the properties of the torsion function of the G-structure #" : P* — P(=1) (see
Proposition 77).

In Section 7?7 we determine the homogeneous components of t” which are independent
of the connection p and we define and study the (n+1)-torsion £V : P+t — Tor"*t!(m,,)
of the Tanaka structure (D;, 7¢) (see Definition ?? and Theorem ?7).

With the material from the previous sections, in Section 7?7 we finally define the G-
structure 771 : Pt — P and the principal bundle 7("+tY) . P+ 5 PM) we are
looking for. Let W"*! be a complement of Im(9"*)) in the space of torsions Tor"*!(m,,)
(see Theorem ?? for the definition of the map 9™*Y). The G-structure #"*! is the
restriction of 7%t to Pt = (f("+D)=1(WW+1) and has structure group GG L, 5(m,)
(see Proposition ??). The bundle 7"+ : P+ 5 P ig defined as the quotient of 7"*!
by the normal subgroup GL, 2(m,) C G""'GL, 2(m,) and satisfies the properties from
Theorem 7?7 (see Proposition ?7). This concludes the proof of Theorem ?7.

In Section 77 we prove Theorem ?7. The construction of the canonical frame F'**" on
P® (or on any P for I > [), required by Theorem ??, is done in Proposition ??. In
Proposition ?? we show that the automorphism group Aut(D;, 7¢) of a Tanaka structure
(D;, m¢) (not necessarily of finite order) is isomorphic to the automorphism group of any
of the associated G- structures 77 : P — P01 (n > 1). When (D;, 7¢) is of finite order
[, the G-structure 7/ +1 ; pI'+t — p() is an absolute parallelism for large enough I, which
coincides with the canonical frame of P*) (see Proposition ??). This fact, combined with
Proposition 7?7 and Kobayashi’s theorem mentioned above, completes the proof of Theo-
rem 77.

2 Preliminary material

2.1 Quasi-gradations of filtred vector spaces

Let V=V DV 1 D--- DV be a decreasing filtration of a finite dimensional vector
space V' by subspaces V;. We define V; = {0} for j >l and V; =V for j < —k.

Definition 1. i) A gradation H = {H', —k < i < I} of V is called adapted (to the
filtration {V;}) if Vi = H' + H™* + ... + H', for any —k <i <.

ii) A quasi-gradation of degree m > 1 (or shortly, m-quasi-gradation) of V' is
a system of subspaces H = {H', —k < i <1} such that, for any —k <i <1,

a)Vi=H'+ Vi1, bH NVier = Vie.

We denote by Gr(V) and Gr,,,(V) the set of all adapted gradations, respectively the
set of all m-quasi-gradations of V. Remark that Gr,,(V) = Gr(V) for any m > k+ 1+ 1.



For any 1 < m < p, we define
[T Gy (V) — Grp,(V), H;”({Hi}) = {H" 4+ Viym}.
In particular, there is a natural map
" : Gr(V) = Gr,(V), T™({H"}) == {H" 4+ Viym}. (1)

Definition 2. Any adapted gradation of V' which belongs to Grg(V) = (II™)=Y(H) is
called compatible with the quasi-gradation H € Gr,,(V).
Let gr(V) == Y2\, er’(V), where gr'(V) := V;/Vis1, be the graded vector space

associated to V. More generally, for any m > 1, let gr(,,)(V) := Zész grém)(V), where
8,y (V) := Vi/Vigsm. We denote by

gr' = Vi = gr'(V), pripy Vi = iy (V), () : 8l (V) = e (V)

the natural projections. Remark that gr’ = pr and pr = gr for m>k+1+ 1.

Any adapted gradation H = {H'} defines 1nJect1ve maps H togr (V) — V;, with image
H' C V; (from the direct sum decompositions V; = V;,1 + H*). The next proposition
generalizes this statement to quasi-gradations.

Proposition 3. i) There is a one to one correspondence between the space Gr,, (V) of
m-quasi-gradations H = {H'} and the space of maps f = (f*) : gr(V)) = gr,,) (V) where

[l (V) = g (V), grfm o f' = ldgiqy), —k<i<lL (2)

More precisely, any H € Gr,,(V) defines a map i = (fll) per(V) = grg, (V) which

satisfies (?7) and i gr' (V) — grf, (V) has image H'/Viim C gri,, (V). Conversely,
any map [ = (f") : gr(V) = gr(y (V) as in (7?) defines H = {H'} € Grp,(V) by

= (prl) (), —k < i< 3)
and f = H.

ii) A gradation H is compatible with an m-quasi-gradation H if and only if

~ . ~1

pr%m)oH’:H, —k<i<lL (4)

Proof. The proof is straightforward and we omit details. We only define the map H
associated to the quasi-gradation H € Gr,,(V), and this is done as for gradations.
Namely, from Definition ??, V;/Viim = H*/Viym + Vig1/Viewm (direct sum decompo-
sition). This induces an isomorphism between gr'(V) = (V / Viem)/ (Visa /V,er) and
H/Viym C grfm)(V) Vi /Vitm, which gives the required map i Alternatively, H asso-
ciates to [y] € gr'(V') the unique [2] € pr{,, (H’) C gr(,,,(V), such that gr(,,([z]) = [y]. O



2.2 Lifts and quasi-gradations

Let m = Y. m’ be a graded vector space, V a filtered vector space and u : m — gr(V) a
graded vector space isomorphism. Since m is graded, it is filtered in a natural way by the
subspaces m; := Y m/.

Definition 4. A lift of u is a filtration preserving isomorphism F : m — V which
satisfies gr' o Flyi = ulmi, for any i. More generally, an m-lift (m > 1) is a map
F = (Fl) tm = gr(,, (V), where F*:m* — gr(, (V) are such that gr{,, o F* = u|yi, for
any i.

We remark that F'is a lift of u if and only if it is filtration preserving and grio F|lm, =
U o Tyilm,, for any i. (We always denote by my: : m — m’ the natural projection onto
the degree i-component m’ of a graded vector space m). The next theorem generalizes
Lemma 7.1 of [?].

Theorem 5. There is a one to one correspondence between the space of m-quasi-gradations
of V' and the space of m-lifts of u. More precisely, any m-quasi-gradation H defines an

m-lift, by F}L—I = f[z oulmi. Conversely, any m-lift F = (F") defines an m-quasi-gradation
H:= (prfm))_lFi(mi) and F = Fg.

Proof. Let H € Gr,,(V). From the definitions of F; and f]l, grém) o Fl = grém) oH o
Ul = ulmi, i.e. Fg is an m-lift. Conversely, if F' is an m-lift, then Fou™" : gr(V) —
gt (V) satisfies the properties from Proposition ??. We deduce that H := {H'} where
H' = (pt{,,) "' Tm(F o w)' = (pr(,,,)) " F"(m’)
is an m-quasi-gradation. It remains to prove that F' = F. For this, let x € m’. Since
[j\l = (pr{,,)) ' F'(m’), F'(z) € pr{,, (H"). Since gr{,,, o F'(z) = u(x), we obtain F}(r) =
Hi(u(z)) = F(x), as needed (the second equality follows from the proof of Proposition
7?7, by taking [y] = u(z) and [2] = F(x)). O

In view of the above theorem, we identify the space Gr,, (V) of m-quasi-gradations
with the space of m-lifts of u. To avoid confusion, lifts of v will be denoted by Fy and
m-lifts by Fz. The map (??), in terms of m-lifts, is

0" : Gr(V) = Grp(V), Fy = (Fy) = F = (Fjy := pr(,, o Fy). (5)

We end this subsection by discussing group actions on the space of quasi-gradations.
For this, we need to introduce new notation, which will be used also later in the paper.
Recall that if U := 37, U" and W := 3~ W/ are graded vector spaces, then U A W :=
> (UAW)" and Hom(U, W) = >°. Hom'(U, W) are graded as well, where (U A W) :=
> i U AW and Hom' (U, W) := > Hom(U7, Wi*%). For any A € Hom(U, W), we
denote by A’ € Hom'(U,W) its degree i homogeneous component. In particular, the
vector subspaces

gl (m) := {A € gl(m), A(m’) Cc m"™, Vi}
define a gradation of gl(m). This is a Lie algebra gradation: [gF (m), gl"(m)] C g/ ™" (m),
for any j,r. Consider the subalgebra gl,,(m) := Y.  gl'(m) and

GL,(m):={Be€GL(m): B=1d+ A, A€gl, (m)}

6



the Lie group with Lie algebra gl,,(m). For m > 2, GL,,(m) is a normal subgroup of
GLy(m). Any class [A] € GL;(m)/GL,,(m) is determined by the homogeneous compo-
nents of A up to degree m — 1.

Theorem 6. i) The group GLy(m) acts simply transitively on Gr(V), by FA := F o A,
for any F € Gr(V) and A € GLi(m), and the orbits of the subgroup GL,,(m) are the
fibers of the natural map II™ : Gr(V') — Gr,, (V) defined by (?7?).

ii) The map II'"™ induces an isomorphism between the orbit space Gr(V)/GL,,(m) and
Gr,, (V).

iii) The quotient group GLi(m)/GLy,(m) acts simply transitively on Grp,(V), by
(FalAD () = firimFg (A (2)), Vo €', (6)
=0

where Fg € Gr,,(V), [A] € GLi(m)/GL,,(m) and fjy; : gr{;’;(‘/) — grém)(V) are the
natural maps.

Proof. Claim 1) is easy, claim ii) follows from claim i) and the surjectivity of II"™. We
now prove iii). We define an action of GL;(m)/GL,,(m) on Gr,,(V) by I[I"™(Fy)[A] :=
II"(Fy o A), for any Fy € Gr(V) and [A] € GL;(m)/GL,,(m). It is easy to check that
it is a well-defined, simply transitive action. We now prove that it is given by (??). To
simplify notation, let Fig := II"™(F%). For any x € m’,

—_

3

(FalA])(z) = 1™ (Fyg A)(2) = prip (Fi 0 A)(@) = Y (pr(m) © i) (A (2)). (7)
J

Consider the left hand side of (??): for any fixed 0 < j <m — 1,
Fiviam 5 (A1(@)) = Fivim © Prigy © Fif (A (2)) = (pr{yn) 0 F) (A (), (8)

\(A;}‘l?e)re we used (?7) and fjiim 0 pr{x = pr’tm)h/j .,- Relation (??) follows from (??7) and
’7). [

Il
=)

2.3 Tanaka prolongation of a non-positively graded Lie algebra

Let mg = ', m’ +g° be a non-positively graded Lie algebra, with Lie bracket [-,-]. We
always assume that the negative part m := Z;l_k m’ of my is fundamental, i.e. generated
by m~!. We define inductively a sequence of vector spaces g” (r > 1), such that, with the
notation my :=m+3./_ g (f >0), " C gl"(m,_,). First, let

g ={Aecgl(mo), Alr,yl=[A@),yl + [z, A(y)], Vz,y € m}.
Next, suppose that g° C gl®(m,_1) are known for any 1 < s < r. We define

gt = (A e gl im,), Alrg) = [A@),y] + [1,AW)] Yeyem) ()
In (??) [,:] : m x m, — m, extends the Lie bracket |-, -] of m and
[z, 2] = —[z,2] = —2(x), zem, z€g’Cgll(me_q), s<r. (10)

Remark that any A € g" C gl"(m,_;) annihilates the non-negative part ZZ:& g’ of
m,_; and we may consider g" C Hom"(m, m,_1).

7



Theorem 7. [?] The vector space (my)™ := mg + ZQl g" has the structure of a graded
Lie algebra (called the Tanaka prolongation of my), with the following Lie bracket:

i) the Lie bracket of two elements from myg is their Lie bracket in the Lie algebra my;
i) the Lie bracket [z, z], where v € m and z € g° (s > 1) is given by (77?).
ii) the Lie bracket [fi, fo], where fi € 37 500" and fa € Y -, ¢" is defined by induc-

tion by the condition

L1, fol(z) = [fi(2), fo] + [f1, o)), fr€g™, fa€g? zem

Definition 8. Let G C GL(m) be a Lie group with Lie algebra g°. The group G' :=
Id + ¢ C End(m;_;) with group operation (Id + A)(Id + B) := Id + A + B (for any
A, B € g¢') is called the I-Tanaka prolongation of G.

We denote by G'G L, 1(m;_1) the subgroup of GL(m;_;) of all automorphisms of the
form Id + A' + Ay, where A' € ¢! C gl'(m;_;) and Ay € gl (m_;). The Tanaka
prolongation G! is isomorphic to the quotient of G'G' Ly, (m;_;) by the normal subgroup
GLzH(mzq)-

2.4 (G-structures

Notation 9. We begin by fixing notation. Our actions on manifolds are always right
actions. If a Lie group G acts on a manifold P, we denote by R, : P — P, p — pg
the action of g € G on P and by (£4)F (or simply &%) the fundamental vector field on
P generated by a € Lie(G) = g. For any v € P, a,b € g and g € G, (R,).(&}) =
(eAdD@)), o (see e.g. [?], p. 51) and [€%, &%) = €loY (see e.g. [?], p. 41). In particular,
if m: P — M is a principal G-bundle and v : g — T"P the vertical parallelism, v(a), =
vu(a) == &%, then v, = (R,). o 1, 0 Ad(g).

Let m : P — M be a G-structure with structure group G C GL(V). Any u € P is a
frame u : V' — T,M. The action of g € G on u is given by ug := uo g. Let § € Q' (P, V)
be the soldering form of 7, defined by 6,(X) := (v~ ! o m,)(X), for any X € T,P. It is
well-known that 6 is G-equivariant (see e.g. [?], p. 309-310):

Ri0) =g '00, Lea(0) = —Aol, geG, AcgcCgl(V). (11)
Let p be a connection on the G-structure 7 : P — M.

Definition 10. A p-twisted wvector field is a vector field X, on P (where a € V'), such
that (X,)y € TP is the p-horisontal lift of u(a) € TrwyM, for any u € P.

According to [?] (see p. 356),
(Rg)eXa = Xg1(a), (€7, Xa] = Xy, 9g€G, Begcgl(V), acV.  (12)
Definition 11. The p-torsion function is the function
t* . P — Hom(A*(V),V), t2(a AD) := (df)y(Xa, Xp), u€ P, anbe A*(V). (13)
Remark that 6(X,) = a is constant, for any a € V', and

2 (aAD) = —0,([Xas X3)) = —(u" o m)([Xay Xolu), w€ P, aAbeAX(V).  (14)



Theorem 12. i) The torsion function t* is G-equivariant:
-1 2
thgland) =g ti(g(a) Ag(d), ueP geG, anbeA (V). (15)
it) For any other connection p' on T,
t”(aAb) =12 (a AD) — A(b) + B(a), u € P, anb € A*(V). (16)

Above A,B € g C End(V) are given by &2 = (X!)y — (Xo)u, €8 = (X])u — (Xp)u, where
X, X3 (respectwely, X} ) are the p-twisted (respectively, the p'-twisted) vector fields
determined by a, b.

a7

2.5 Tanaka structures
2.5.1 Filtrations of the Lie algebra of vector fields

Let TM = D_y D D_jy1--- O D, (I > —1) be a flag of distributions on a manifold
M. For any p € M, let gr'(T,M) = D;, := (Dy)p/(Dis1)p, gr(T,M) := >, gr'(T,M) and
(gr))? : D; — gr{(TM) the natural projection. We assume that the non-positive part
{D;, i <0} defines a filtration

X(M) =T(D_j) DT(D_js1) D -+ D I(Dy)

of the Lie algebra X(M) of vector fields on M. Then, for any p € M, gr=%(T,M) :=
>icoer'(T,M) is a graded Lie algebra, with Lie bracket {-,-}, (or just {-,-} when p is
understood) induced by the Lie bracket of vector fields. It is called the symbol algebra
of {D;} at p. The following lemma will be useful and can be checked directly.

Lemma 13. Let f : N — M be a smooth map of constant rank and {DM, i < 0} a
flag of distributions which defines a filtration of the Lie algebra X(M). Then {DN =
(fo)"H(DM), i < 0} defines a filtration of the Lie algebra X(N). For any X € T'(DN),
YEF(D}V) with i,7 <0 andp € N,

M

(g™ )P £(X,Y],) = {(e) P £(X), (27)P (V) }

2.5.2 Definition of Tanaka structures

Let mg = 3., m’ + g° be a non-positively graded Lie algebra, (mg)® = mg+ > i>1 0 its
Tanaka prolongation and (m;)=" = Zi‘:o ¢’ the non-negative part of m; = mg + 22:1 g’
Definition 14. A flag of distributions TM = D_y D D_yq1--- D D, (1 > —1) is a
filtration of type m; if the following conditions are satisfied:

i) for any p € M, there is an isomorphism u, : m — gr=U(T,,M) of graded Lie
algebras;

ii) for any p € M, there is a canonical isomorphism v, : (m;)=° — gr=°(T,M) of
graded vector spaces.

The isomorphism u := u; @ v, : my — gr(T,M) is called a graded frame at p.



The group Aut(m) of automorphisms of the graded Lie algebra m acts simply transi-
tively on the set PP, of graded frames at p € P. We denote by 7 : P — M the principal
bundle of graded frames. It has structure group Aut(m).

Definition 15. Let {D;, —k < i < I} be a filtration of type m; on a manifold M and
G C Aut(m) a Lie subgroup of Aut(m). A Tanaka G-structure of type m; on M is a
principal G-subbundle mg : P — M of the bundle m : P — M of graded frames.

The notion of automorphism of a Tanaka structure is defined in a natural way:

Definition 16. An automorphism of a Tanaka G-structure (D;,mg : Po — M) of type
m, is a diffeomorphism f : M — M with the following properties:

i) it preserves the flag of distributions D; (and induces a map f. : gr(T'M) — gr(T'M));

ii) for any graded frame u : wy — gr(T,M) from Pg, the composition f.owu : m; —
gr(TypyM) is also a graded frame from Pg.

Let (D;, m¢) be a Tanaka G-structure of type m = 3! m’ and ¢° := Lie(G). Since
g® € Der’(m), m(g°) := m + g° is a graded Lie algebra: its Lie bracket [-,-] extends the
Lie brackets of m and g° and [a,b] = —[b, a] = —b(a), for any a € m and b € g° C End(m).
Let m(g°)> :=m(g") + }_,~, o' be the Tanaka prolongation of m(g°).

Definition 17. The Tanaka G-structure (D;,ng) of type m has (finite) order [ if [ is the
minimal number such that g+t = 0.

3 Statement of the main results

In this paper we aim to prove the following statements:

Theorem 18. Let (D;, 7 : Pg — M) be a Tanaka G-structure of type m = S m?,
m(g?)® =m+ > .., 9" the Tanaka prolongation of m(g°) = m + g° (where g° = Lie(G))
and G" = Id + g" the n-prolongation of G. There is a sequence of principal G™-bundles
7 . p) 5 P01 (n > 1), with the following properties:

A) The base PV has a Tanaka {e}-structure of type m,_1. This means that there
is a flag of distributions {TP"1) = 25(”,;1) DD 15("]1)} which satisfies

— n—

(D), (D" c (DY), 4,5 <0,

and for any H*' € PV there is a canonical graded vector space isomorphism
[anl . mn_l — gr(Tanlp(n_l))

of whose restriction to m is a Lie algebra isomorphism onto gr<C(Tsn— P"~1),

B) The principal bundle 7" is the quotient of a G-structure 7" : P — PO=1 with
structure group G"G Ly 11(m,_1), by the normal subgroup G Ly,,1(m,_1). The G-structure
7 is a subbundle of the bundle Gr(TP"=V) — P™"=1) of adapted gradations of TPV
(the latter being a G-structure, whose frames are lifts of the graded frames Ign-1, H" ! €
P™=0) " In particular, 7™ : P™ = P"/GLy1(w,_1) — P™ Y is canonically isomorphic
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to a subbundle of the bundle Gr,yi(TP™ V) — TP™Y of (n + 1)-quasi-gradations of
TP"=Y,

~ C) The torsion function t? of one_(equivalently, any) connection p on T satisfies
tha(aNb) € (m, 1)1, for any H* € P* andaAbem™ ™ Agl (0<i<n-—1), and

t7.)°(a AbD) = —[a,b], H"™ € P", aAbem ™A (nz_:g’) (17)

i=0
(In (??) [a,b] denotes the Lie bracket of a and b in the Lie algebra m(g,)* ).
We reobtain the final result of the Tanaka’s prolongation procedure:

Theorem 19. Let (D;, 7 : Po — M) be a Tanaka G-structure of type m = Z;l_k

and order . The I-Tanaka prolongation PY has a canonical {e}-structure. The automor-
phism group Aut(D;, ng) of (D;, ma) is isomorphic to the automorphism group of this {e}-
structure. It is a finite dimensional Lie group with dimAut(D;, ng) < dim(M) + Zi‘:o g’

The remaining part of the paper is devoted to the proofs of Theorem 7?7 and 77.

4 The first prolongation of a Tanaka structure

Let (D;, g : P — M) be a Tanaka G-structure of type m = m* 4 ... +m~ L. In this
section we define the first principal bundle 7 : P — P from Theorem ?7?.

4.1 The G-structure 7' : P! - P

To simplify notation, we denote by P := Py the total space of mg. Let v°: g° — TVP be
the vertical parallelism of 7g, where g° = Lie(G). For any i < —1, let DF := (7¢);1(D;)
and D, := T"P the tangent vertical bundle of mg. The sequence

defines a filtration of the Lie algebra X(P) of vector fields on P and the differential (7¢).
induces a symbol algebra isomorphism

(7a)s : gr=%(T,P) — gr(T,M), u€ P, p=mngu). (19)
The next proposition can be checked directly.

Proposition 20. Any point u € P defines an isomorphism

o= (mg)tou+1v myg=m+g" — gr(T,P) = g<%T,P)+T"P.

The set of isomorphisms {G, u € P} is a Tanaka {e}-structure of type my on P.

From Theorem ?? (applied to gradations), any gradation H = {H®} of T, P adapted
to the filtration (?77?) determines a frame

Fy:mg— T,P, Fy:=Hodi, (20)

which lifts the graded frame @ : myg — gr(7, P) (for the definition of H , see the comments
before Proposition ??). For any a € g°, Fy(a) = H((£*)F) = (£€*)P. From Theorem ?7 i)
we obtain:

11



Proposition 21. The principal bundle 7w : P — P of adapted gradations of TP is a G-
structure with structure group GLi(mg). It consists of all frames of T,,P (for any u € P)
which are lifts of the canonical graded frame u : mg — gr(T,P).

4.2 The action of G on P!

In this subsection we construct an action of G on P! which lifts the action of G' on the
total space P = Pg of the principal G-bundle 7. For any g € G, Ry : P — P preserves
the filtration (??) and induces a map (Ry). : gr(T,,P) — gr(T,,P), for any u € P. Let

p: G — Aut(mg), p(g)(a+0b) :=g(a) +Ad(g9)(b), g€ G, acm, be g’ (21)

Proposition 22. i) For any u € P and g € G, the frames 4 and ug from Proposition 77
are related by
ug = (Ry)sotop(g) : mg — gr(Ty,P). (22)

i) There is an action of G on P, which associates to any frame Fy : mg — T, P from
Pl and g € G the frame

Fpg := (Ry).0 Fyop(g):mg— T,,P. (23)

ii) For any a € g°, the fundamental vector field (€*)F" of the above action of G on P!,
generated by a, is ' -projectable and (71), (€)= (€T

Proof. Claim i) follows from the definition of 4, ug, and v, = (Ry).ov,0Ad(g). For claim
ii), one checks that Fzg € Pl i.e. is a lift of ug (direct computation, which uses that Fy
is a lift of @ and that p is gradation preserving). Claim iii) follows from R,o7! = 7'o R,
(where we use the same notation R, for the actions of g € G on P! and P). O

Lemma 23. The soldering form 6* € Q*(P', my) of n! is G-equivariant:
(Ry)"0" = p(g7") 00", Liaypr (0') = —pu(a) 08!, g€ G, acyg’ (24)
Proof. From the definition of #' and R, o m=nlo R,, we obtain, for any Xy € Ty P!,
((Ry)*0")(Xu) = 0*((Ry)«Xu) = (Furg) " (7" © Ry)(Xur)

= (p(g™") o (Fur)™" o (Ry-1)s 0 (' 0 Ry))(Xn)
= (p(g™") o (Fu)™" o (7)) (Xn) = (plg™") 0 0")(Xpr).

The second relation (?7?) is the infinitesimal version of the first. [

4.3 The torsion function t” of x!

Let p be a connection on the G-structure 7' : P! — P. In this section we study the
properties of the torsion function #*, in connection with the gradation of my. Let {X,, a €
mp} be the family of p-twisted vector fields on P! (recall Section ??). For any a € my,
(Xo)u € Ty P is the p-horisontal lift of Fy(a) € T,P (where 7'(H) = p); when a € g°,
X, € X(P*1) is the p-horisontal lift of (£4) € X(P).

Proposition 24. The function t? : P* — Hom(A?(mg), mg) has only components of non-
negative homogeneous degree.

12



Proof. For any i < 0, let D' := (x#)7(DF). Since for any H € P', Fy : mg — T,P
preserves filtrations, X, € I'(DF"), for any a€ (mp)? (i < 0). Similarly, X, € T(D!") for
any b € (mg)? (j < 0). The sequence {DF" ; i < 0} defines a filtration of the Lie alge-
bra X(P'). It follows that [X,, X;] € [(DL)) and t4(a,b) = —(Fp) (7). ([Xa, Xo))#r)
belongs to (mg);;. O
Theorem 25. i) For any a Ab € A*(g°) and H € P!, t,(a A b) = —[a,b].
i) For any a ANb € A*(mg) and H € P, (t4,)"(a,b) = —|a, b].

Proof. Let a,b € g°. Then X,, X, are the p-horisontal lifts of the fundamental vector fields
(€9)F and (£°)F on P. Thus, [X,, X3| is 7l-projectable and (71),[ X, X3] = [(€9)F, (€9)F] =
(€lePYP We obtain

th(a,b) = —(F) " (m)u([Xa, XoJar) = = (Fr) ()T = —~[a,b].

Claim i) follows.

For claim ii), we distinguish two cases: I) a,b € m; II) a € g°, b € m.

Let a € m’ and b € w/ (i,5 < 0). Then X, € I'(D!"), X, € (D) and [X,, X;] €
F(Dﬁr]) Being a lift of @ : mg — gr(7,P), the frame Fy : my — T, P is filtration
preserving and satisfies

s\DF ~ - " s\D¥
(gr )D oFH|(m ). = U O Tmy)s )sr T(Mg)* © (Fg) 1|D§ =40 'o (gr )D . (25)

Using (7').([Xa, Xs]n) € (D]} ;) and the second relation (??), we obtain

(85)° (@A) = =mmgyies (Fir) ™ (7)o ([ Xas Xol ) = =i o(gn"™)P" (). (X, Xoli). (26)

On the other hand, from Lemma ??, (71),(X%) = Fy(a), (71).(XY) = Fy(b) and the
first relation (?7), we obtain

()" (1), (X, Xolar) = {((&n")P" 0 Far)(a), ((&')"" 0 Fir) (0)} = {i(a), 4(0)}. (27)

Using that @ : m — gr<(T,P) is a Lie algebra isomorphism, we deduce, from (??) and
(?7), that (¢%;)°(a A b) = —[a, b], as needed.

It remains to consider a € g and b € m. For this we use the action of G on P!,
defined in Subsection ??. From Proposition ??, (£%)7" is 7'-projectable and (7!), (€%)F" =
(€4)F. Since a € g° X, is the p-horisontal lift of (£%)”. Therefore, the vector field
Y = X, — (£€9)F" is w'-vertical. We write

th(a N b) = =0"([Xas Xolu) = 0" ()", Xolur) — 0" ([ Xolm). (28)
We need to compute the right hand side of (??). From Lemma ?? and 6'(X}) = b,
0 ([(€)"" Xoln) = =(Lgayp1 0" (X3) = pu(a)(b) = a(b). (29)

In order to compute 8'([Y, X;)x), we write Y = 3 fo(€4)F", where f, are functions on
P! and {A,} is a basis of gl;(mg). Then

6M([Y; Xoln 291 (X (€M) + flX, (€)7])
:—Zﬂ( )05 ([ X, (6%)7]) Zfs (6")(X2)
= f(H)A), (30)
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where in the second equality we used that (€4¢)P" is wl-vertical (hence annihilated by 6'),
in the third equality we used that 0'(X},) = b is constant and in the last equality we used
the second relation (??). From (?7?), (??) and (??), we obtain

th(aAb) = —a(b) — A(b), acg’Cglim), bcm, (31)

where A = 3, fo(H)A, € gl,(my) is uniquely determined by (X,)g — (€95 = (M5
Assume now that b € m*. From (?7?), 7,(a A b) € (mg); and (by projecting (??) onto m’)
(t7)%(a, b) = —a(b) = —[a, b] as required. O
4.4 Variation of the torsion t* of !

Let p be a connection on 7! : P! — P.

Proposition 26. i) The degree zero homogeneous component of t* : P* — Hom(g" A
m, my) is independent of p.

i) The degree zero and one homogeneous components of t* : P — Hom(A?(m), m) are
independent of p.

Proof. Let p’ be another connection on 7!. For any a € mg, the p and p/-twisted vector
fields X, and X!, at a point H € P', are related by (X)) = (X.)u + (€15, where
A € gl;(mg) (the Lie algebra of the structure group GL;(mg) of 7!). Similarly, for any
bemy, (X)u= (Xp)u + (€5)5, where B € gl,(mg). From Theorem ??,

7 (a A D) =12, (a A b) — A(b) + Bla). (32)

Let a € g° and b € m’ (i < 0). Then B(a) = 0, deg(A(b)) > i + 1. We obtain that the
mi-component of A(b) — B(a) vanishes. Claim i) follows. Let a € m* and b € m/ with
i,j < 0. Then deg(A(b)) > j+1>i+j+1and deg(B(a)) > i+1>i+j+1. We obtain
that the m*™ and m"*/*!-components of A(b) — B(a) vanish. Claim ii) follows. O

We denote by Tor(mg) := Hom(A?(m), my) the space of torsions. It is a graded
vector space, with gradation Tor™(mg) = >, - Hom(m’ Am/, (mg)/*™). For any H € P,
we denote by (¢%,)™ the projection of t%; onto Tor™(my).

Definition 27. Let p be a connection on the G-structure w' : P* — P associated to the
Tanaka structure mg : P — M. The function

th: P! — Tor'(mg), P'> H — ty := (%) € Tor' (my)
is called the torsion function of the Tanaka structure (D;, 7).
Proposition 28. The torsion function is independent of the choice of p. It is given by:
ty(a,b) = =i (Fg) N 7)o ([Xo, Xolu), HE P, aem’, bew’, (i,j <0), (33)
where X,, X, € X(P) are p-twisted vector fields.

Proof. The first claim follows from Proposition ?? ii). Relation (??) follows from (?77). [
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Proposition 29. For any H € P! and A=1d + A; € GLi(my),
tya =ty + OA.
Above, OA € Hom(A’m, my) is given by

(0A)(a A b) == Af([a,b]) — [A1(a),b] — [a, AY(b)], aAb € A*(m). (34)
Proof. The inverse A7! of A is of the form A™' = Id + A;, where A; € gly(my) and
A}l = —A}. We choose a connection p on 7!. From Theorem ??, for any a A b € A*(m),

thala nb) = A7 (A(a) A A(D))
=t7,(aND) 4+ th(a N AL (D) + th(Ar(a) AND) + th(Ar(a) A Ar(D))
+ Ay (t2(a AD) + 10 (a A Ay (b)) + 12, (Ar(a) Ab) + 5 (Ai(a) A AL(D))).
Let a € m* and b € m/ (4,7 < 0). Projecting the above equality to m"™*! and using

that t* has only components of non-negative homogeneous degree (see Proposition ?7),
we obtain

th o (a Ab) = th(a AD) + (t9)°(a A AL(D)) + (t2)°(AL(a) A b) + A% (a A D).

Using Al = —A! and (¢%,)°(a AD) = —[a, b], for any a,b € mq (see Theorem ??), we obtain
our claim. O

4.5 The first prolongation
Let (D;, 7 : Pg — M) be a Tanaka G-structure of type m = 3., m’ and t' : P! —

Tor' (mg) its torsion function (see Definition ?7). Let
0 : gly(mg) — Tor'(mg), (0A)(a Ab) = A'([a,b]) — [A*(a),b] — [a, A*(D)], a AbE A*(m).
(35)
Fix a complement W of 9(gl,(mg)) in Tor' (my).
Proposition 30. The bundle 7' : P! := (t')"Y(W) — P is a G-structure with structure
group G*GLy(mg). The torsion function t” of any connection p on T satisfies th;(a \b) €
m~t+g° forany H S P andanbemtAg’ and
t?)°(a Ab) = —[a,b], anbem™ A g

Proof. The first claim follows from Proposition 7?7 and Ker(9) = gl,(mg) + g*. The second
claim follows from Proposition ?? and Theorem ?7 (extend p to a connection on 7t). [

Let P := P'/GLy(mg). The map 7 : P — P induced by #! is a principal bundle
with structure group G*.

Definition 31. The principal G*-bundle 7V : P — P is called the first prolongation
of the Tanaka structure (D;, 7g).

The next proposition concludes the first induction step from the proof of Theorem 77?.
Proposition 32. The principal bundle V) : PY) — P satisfies properties A), B) and C)

from Theorem ?7?. In particular, it is canonically isomorphic to a subbundle of the bundle
Gro(TP) — P of 2-quasi-gradations of T'P.

Proof. From Proposition ??, property A) is satisfied. Properties B) and C) follow from
the definition of 7 and Proposition ??. The statement about quasi-gradations follows
from Theorem ?7? ii). O
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5 The G-structure 7! : prtl — p®)

We now assume that the principal bundles 7® : P — PG=1 from Theorem ?? are given,
for any i < n. Our goal is to construct the principal bundle 7+ . P+ — P from
this theorem. In particular, P(™ needs to have a Tanaka {e}-structure of type m,. This
is induced from P~ as follows.

Lemma 33. The manifold P™ has a Tanaka {e}-structure of type m,. The flag of dis-
tributions {D\™, —k < i < n} of this Tanaka structure is D™ = (7)) }(D" )
(—k<i<n-1) and D = TP = Ker(7™),. For any H" € P™, the canonical
graded frame

Ign -m,=m, 1+¢g" — gr(TgnP(”)) = Z gri(TgnP(”)) + 7%, P™

—k<i<n-—1

15 given by
Ignlm,_ = (@) oI,  Ign|gn i= U, (36)

where ‘ B B
F): Y @ (TnP™) — gr(Tgna POV

—k<i<n—1

is the isomorphism induced by the differential of 7™, H"' = 7™ (H™), and Vi, i gt —
T};’,np(”) is the vertical parallelism of ©™.

Proof. The only non-trivial fact to check is that Ign : m — gr<(Tyn P™) preserves Lie
brackets. For this, we use that both (7)), : gr<(Tg.P™) — gr<’(Ty.-+P"~V) and
Tgn—1 :m — gr<%(Tga—1 P™~Y) have this property. O

In the next sections we shall consider various adapted gradations and quasi-gradations

of TP™ or TP™ 1 They are always considered with respect to the filtrations of the
Tanaka structures of these manifolds.

5.1 Definition and basic properties of 7!

An important role in the prolongation procedure plays a G-structure 7! : P+t —
P™ which we are going to define in this subsection. Let H" € P™ and H"'' =
{(H")', —k < i < n} an adapted gradation of Tz, P™. It projects to an adapted
gradation (7)), (H™) = {(7"),(H"*'), —k < i < n — 1} of Tgaor PV (remark
that (H"™)™ = TVP™ projects trivially to Tn-1 P™ V). The adapted gradations H"+!
and (7). (H™1) define frames which lift the canonical graded frames Iz, and Ign-:
respectively (see Theorem ?7, applied to gradations and lifts):

Frynt = f‘ﬁofgn m, —)Tgnp(n)

Fzoy, iy = (F) (H™ 1) 0 Ignr : My — Tyna PO7Y. (37)

As usual, Fjp,.y = FHnJrll(mn)i (i <n) arid similarly F(iﬁ—(n))*([—]nJrl) 1= Fiamy. ey (o)
(i <n —1). Recall that P™ C Gr,,(TP™Y).
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Definition 34. The manifold P"*" is the set of all adapted gradations H"** of T P™
(for any H™ € P™ ), whose projection (7™),(H™') to Tga-1 P™™Y is compatible with the
quasi-gradation H" € Gry, 41 (Tgn-1P™Y) (where H" ' := 7™ (H™)). The map 7" :
Pt — PW s the natural projection.

More precisely, we set
P = Ugnepo {H™ € Gr(Tg. P™), TI"HH (7)), (H™) = H"}

where II"*! : Gr(Tgn-1 P Y) — Grpy1(Tgn-1 P™Y) is the map (??). Using the first
relation (?77?), we identify any H"™ € P"™! with the associated frame Fpn+1. The next
lemma describes P™! as a submanifold of the frame manifold of P™. In Lemma ?? ii)
below the map Fign is the (n 4 1)-lift of I7.—1 determined by H™ € Grpyi(Tgn-1P™™Y)
(according to Theorem ?7):

Fin = (FL.), Fi = (H") 0 Ignr : (mu_y)' — 8 1) (L1 PO7Y), =k <i<n—1.
(38)

Lemma 35. i) Let H"*' = {(H"*')", —k <14 < n} be an adapted gradation of Tin P
and (7™),(H"™) its projection to Tyn-1P"~V). The associated frames Fizwy_gn+1y and
Fpni1 defined by (?7) are related by

F(ﬁ(n))*(Hn+l) = (ﬁ-(n))* © FHn+1 |mn71' (39)
i) The fiber of 7"+ over H™ € P™ consists of all H**' € Gr(Tg.P"™) whose
associated frame Fyn+1 satisfies: for any —k <i<n—1 and z € (m,_;)’,

prénJrl)(ﬁ-(n))* Ii{nﬂ(x) = F}?n (z), (40)

~(n—1 i
n+1) - (Dz( ))H"—l = 8 (n41)

lar, (7)), Fyniv = Fgn on (m,_1)_1.

where pr% (Tgn-1 PV is the natural projection. In particu-

Proof. From the definitions of A+ and (7)), (H+1),
(7)), (H"+1) o (ﬁ(n))*|gr§n71(Tmp(n)) = (ﬁ(n))* o Hn+1|gr§"*1(TI:1n]5(">)' (41)

Relation (??) follows from (??), (??) and Ign|m, , = (7)1 o Ign-1.

For claim ii), let H"*! € Gr(Tg. P™). Then H™"' € P"*!if and only if (7)), (H"*!) €
Gr(Tgn—1 PV is compatible with the quasi-gradation H" € Gr,y1(Tgn—1 P V). From
Proposition 77 ii), this condition is equivalent to

— %

pri .y o (7)) (H™1) = (H"), i <n—1. (42)

Composing (??) with Ig.-1 and using the relations (?7) and (??), we obtain that (?7) is

equivalent to pré )0 FZﬁ("))*(Hn-‘rl) = FL,, or, from (?7), to (?7). O

n+1

Below any A € Hom(Z;:Ol g',g") acts on m,, by annihilating m and g".
Proposition 36. The projection antl . prtl 5 P0) s o G-structure with structure
group G :=1d + gl (m,) + Hom(Z;:Ol g',9").
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Proof. Let H”“,_ﬁ"“ € (") ~1(H™) be two adapted gradations of Ty P, whose pro-
jections to Tign—1 P™~Y are compatible with the quasi-gradation A" € Gr,41(Tgn—1 P"D).
From Lemma ?7 ii), for any = € (m,_1)", i <n—1,

it (2) = Flgua (1) € @)D D) s = (D) in + T P (43)
Note that T4, Pt C (ﬁmﬂ)m when 7 < —1 and (@ﬁ)nﬂ)gn = 0 when ¢ > 0. Also,
fir = Fren : (mg)" = g" = (DY) g = Ty P™ (44)

is the vertical parallelism of 7(". From relations (??) and (??) we obtain Id + A :=
Frnii © Finn € G. O

5.2 An action of G"GL, 1(m, 1) on P"*

In this subsection we define an action of G"GLyy1(m,_1) on P"! naturally related to
the action of G™ on the total space P™ of the principal G"-bundle 7™ . Consider the
group homomorphism

Pr:G"GL,y1(my—) - G, g=Id+ A"+ A,11 — Pr(g) =g =1d+ A™

Let p" : G"GLy,.1(m,) — Aut(m,) be the trivial extension to m,, = m,_; + g" of the
natural (left) action of G"GLpy1(m,—1) C GL(m,—1) on m,_;. We define an action of
G"GLyy1(m,_1) on the frame manifold of P™: for any g € G"GLy,41(m,_1) and frame

F . mn — TI_{”P(TL)7
Fg:=(Rz)s0Fop"(g):m, — Tgngp("). (45)
Proposition 37. The action (??) preserves P! and

(F(€)™) = (€7, Va € g + gl (m). (46)
(In (??) a € g™ denotes the g"-component of a).

Proof. Let H™' € P! and Fynt1 : m, — Tg.P™ the associated frame. We need to
prove that for any ¢ € G"GL,1(m,_1), the frame Fpyn+1g related to Fyn+1 as in (77),
belongs to P11, i.e. satisfies the following conditions:

I) it is a lift of Ipgng : m, — gr(Tgngp(")), i.e. is filtration preserving and

((e)P™ o (Fyns19))(x) = (Igng © mem,ye) (), € (M), i <n— L. (47)

(This means that Fyn+1g is the frame associated to an adapted gradation of Tgngp(”)).
IT) the adapted gradation from I) belongs to P"*1 i.e. (from Lemma ?7),

prfnﬂ)(w("))* };nﬂg(x) = Flgng(x), Vo € (m, 1), i <n-—1

Since G"GLpt1(Mm,—1) C GLi(my,) and (Rg)s : Tgn-1P™ — Tpu1;P™ preserve
filtrations, Fynt1g preserves filtrations as well. Using the definition of Fyni1g, that R;
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preserves filtrations, (Rz-1)s © Ign; = Ign (which follows from (77) and the fact that g"
is abelian), we obtain that (??) is equivalent to

(gr)P™ © Fyns1) (p™(9)(2)) = (Ign © mampyi) (@), @ € (my)s, i < 7. (48)

Using that p"(g)(z) € (my,); and Fgn+1 lifts Iz., we obtain that (?7?) is equivalent to
T,y (0" (9)(x) — x) = 0, which holds from the definition of p". Condition I) is proved.
Condition IT) can be checked in a similar way, using

Flgng(x) = szfln(x) + (fi—i—n,n—i—l © F}?]tzn>(Anx)7 LS (mn—l)iu 1<n-—1

where A" ;= g—1d € g" and fi i1 : gt (TP™Y) — gri (T P™ 1) is the natural

(n+1) (n+1)
map (see Theorem ?7 ii)). We proved that (?7?) defines an action on P™""!. Relation (77?)
follows from 7"t o R, = Rz o ™t for any g € G"GLy1(m,_1). O

Let 07t : TP — m, be the soldering form of the G-structure 7"+
0 (X) = (Fygner) " M(7"1).X), VX € Tynss P

From relation (?7?), it is G-equivariant. The next lemma shows that "1 is equivariant also
with respect to the actions p" and (??) of G"GL,,1(m,_1) on m, and P"*! respectively.

Lemma 38. For any g € G"GLj11(m,—1) and a € g" + gl (m,_1),
(R)" (") = p"(g7") 00", Ligaypnin (0"71) = —(p")(a) 0 0" (49)
Proof. Like in the proof of Lemma ??, for any g € G"G L1 (my,—1),
(Rg)" (0" ") (Xpgnir) = 0" (Rg) (X ppni1)) = (Fgarrg) (7" 0 Ry) (X))

From Fyni1g = (Rj). 0 Fgni1 0 p™(g) and 7"t o R, = Rz o 7!, we obtain the first
relation (?77). The second relation (?7?) is the infinitesimal version of the first.
[l

6 The torsion function of 7"+!

In this section we prove the following theorem.

Theorem 39. Let p be a connection on the G-structure 71 and t* its torsion function.
i) Then t* : P"*' — Hom((m™! + g") Am,, m,) has only homogeneous components of
non-negative reduced degree, i.e. for any H"' € P! and —k <i <n,

t?{nJrl (m_l N (mnY) C (mn)i—la tpHn+1 (gn A (mn)l) - (mn)min{nJri,n}-
ii) For any H"' € Pl
(t00:1)°(a AD) = —[a,b], Vanbem ™ Am, +g" Am. (50)

We divide the proof of the above theorem into three parts (Subsections ??, 7?7 and ?7),
according to the Hom(m™* Am,m,), Hom(m™! A (Z?:_ol g'),m,) and Hom(g" A m,,, m,)-
valued components of ¢*. Along the proof we shall use the following notation: for any
a € m,, the p-twisted vector field on P"™! determined by a will be denoted by X"*!; for
any a, b belonging to m or g, [a,b] will always denote (as in the statement of Theorem
7?7 above) their Lie bracket in the Tanaka prolongation m(g°)*.
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6.1 The Hom(m ! A m,m,)-valued component

Proposition 40. The torsion function t* : P — Hom(m™! Am,m,) has only homoge-
neous components of non-negative degree. For any H"*' € P+,

(t001)’(a A D) = —[a,b], VaAbem™ Am. (51)

Proof. The argument is similar to the proof of Proposition ?? and Theorem ?7 ii).
The sequence D! = (w"“);lﬁ}”) (i < 0) is a filtration of X(P"*!). For any a €
m~and b € m’, X* € T(D"1Y), X € T(D!Y) and (X7 X € T(DMY).
Since Fgni1 : m, — Tg.P™ is filtration preserving, we obtain that thmsi(a A D) =
—(Fypne) 7L (X2 X)) € (my,);1, which proves the first statement. We now
prove (??). Since Fyni1 is a lift of Ign : m,, — gr(Tg. P™), for any —k < s < n,

((gl‘s)@(n)OFHn+l)|(mn)S = [Hnoﬂ'(mn)s (mn)s, (W(mn)sO(FHn+1)_ )‘,Dgn) = (IHn)_ O<gl‘s)@(n).
D\"™ ) i, We obtain:
—(Tm,)i-1 0 (FH"+1) o (")) ([XZ™, X )
()™ o ()P o (7)) (X, X o)
— (L) H{((gr™)P" © Funn)(a), ((gr)" 0 Fyrar)(b)}
_(]Hn)_l{[H"<a)a Ign(b)} = —la,b]

(we used Lemma ?? and that Ig.|m : m — gr<®(Tz.P™) is a Lie algebra isomorphism).
[

From these relations and (7" 1), ([X2*, X[ i) € (

(thn1) (@ A D) =

6.2 The Hom(m ' A (D~ 01 g'), m,)-valued component of t*

Since 7™ : P — P=1 gatisfies the conditions from Theorem ?7?, it is the quotient
of a G-structure 7" : P — P~ with structure group G"GLy,y1(m,_1), by the normal
subgroup G'L,1(m,_;). In particular, P = ISn/GLnH(mn,l) and the fundamental
vector field (€9)F" € X(P") generated by ¢ € g"+gl, 1 (m,_1) projects to the fundamental

vector field (£°)7 P ¢ X(P™) generated by ¢ € g" (the g"-component of ¢). Let j be a
connection on the G-structure 7 and X € X(P") the p-twisted vector fields (a € m,,_;).
From (?7?), for any A € G"GLnH(mn,l) and c € g" + gl (m,_1),

(Ra)o(X3) = Ximrgy, 1€ X3 = X, (52)
The first relation (?7) implies that X is GL,41(m,_1)-invariant, for any a € (m,_1)_;

(because A|m,_,)_, = Id, for any A € GL,11(m,_1)) and descends to a vector field )A(Z]

on P™ . The following lemma collects the main properties of the vector fields )?g

Lemma 41. i) For anya € m™ and b € g* (with0<i<n-—1),

(X7, X7 = X[, mod(D™). (53)
ii) For any c € g" C gl(m,_1), a cm™ andbe 3.1 ¢,
(€)™, Xy] = Kl (€977, 7] =0, (54)
i) Let H™' € Pl [" = g+ (H™Y) € P™ and a € (m,_1)_1. Then
Fyni(a) = (X) gn mod (TS, P™). (55)
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Proof. i) Let H" € P", Fyn : my_1 — Tgai PV the associated frame and ¢ € m™!,
b € g with 0 < i < n — 1. From the property C) in Theorem ??, we know that
tim(a N D) = —(Fgn) 1 (7). ([X?, X7 gn) belongs to (m,,_);_; and its projection onto
(m,—1)""" is equal to —[a, b]. Using (7").((X{ ;) =) = Fun([a,b]) we obtain

(Fun) M @) (X0, Xp i — (X[ an) = (Fan) (@) (X7, Xp]n) — [a,0] € (1),

Thus, (7").([X7, X3l — (X[} ) mn) belongs to Fpa((m,-1);) = (D" V) gues. But since
a,b, [a,b] € (m;_1)_1, the vector fields X7, X;* and X[ ;, project to P™ and

(")« ([Xas X'l — (X{g ) bn) = (7)) (X2, X g — (X[’Z,b])m)-
We deduce that
@)X, X nes — (XP ) an1) € (D) gns,

(2

which implies (??), because (7)) (D(" 1)) Dgn).
ii) In order to prove (??), let ¢ € g" C gl"(m,,_1) and a € (m,,_1)_1. The vector fields
Xi, XY, and (€9)F" on P project to the vector fields X", )?f(a) and (¢9)P™ on P™
(and c(a) =0, X[,y =0, for any ¢ € g" and a € (m,,_1)o). Claim ii) follows by projecting
the second relation (??) on P™. )
iii) Let H™"1 € P+l " = a"t1(H™1) € P™ and choose H" € P"™ which projects
to H™. For any a € (m,,_1)_1,

(@) (XD am) = (7). (X 1n) = Frn(a) = Fpn(a), (56)
where in the last equality we used that H" € (") (H"') C Gr(Tjga—1 P™Y) is compat-
ible with H" € Gty (Tgn—1 P"V) (in particular, Fyn = Fga on (m,_1)_;). On the other
hand, since H"*' € P! (7)), Fyni1(a) = Fgn(a) (from Lemma ?? and a € (m,,_1)_1).
We obtain (7(™),((X)ga) = (7)), Fyn+1(a), which implies (?7). O
Proposition 42. The function t* : P*** — Hom(m™!' A (3272, g'), m,,) has only homo-
geneous components of non-negative degree. For any H"™ € P+l

n—1
(#(anb) = —fab], anbemn (Y g (57)
i=0
Proof. Let a,b € (m,_1)_;. From relation (??), (#""), (X" gn+1) = Fynii(a) =
(X?)g» and similarly (W"*l)*((X;‘“)HnH) = (X}")j» modulo T4, P™. Therefore, tl_lere
are A, B € gl,.,(m,) + Hom(> 7 ¢, g") (the Lie algebra of the structure group G of
7"*1) and ¢,d € g (the Lie algebra of the structure group of 7#(™), such that

—_——

(X e = (X2 + (€)™ e + (EY) s,
(X g = (XP) s + ((EDP™) o + (E5) 1 (58)
(for a vector field Z € X(P™), we denote by Z its p-horisontal lift to P"*!). Then

—~

t;)W(aAb):(den+l)Hn+1(Xn + (¢ >P<”>+( AP XD 4 (EDPM 4 (£5)PTT

—~ o~ e~ —

= (X + §C)P<") F(ENPY i () = (X7 + (E9)P™ 4+ (€8)P") i (g)
(R 4 (€)P + (NP R+ (E)PY 4 (€8)7 ),
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where

JU) = 9;;11(;(} + (ENPW 4+ (E5)) = (Fyee) X + (€D =0
g(H™1) i= OEh (R + (€77 + (697™) = (Fune) (R0 + (€9™)

a

and the sign '=" means modulo g". (We used (?7?), (Fpns1) "1 ((€9)P™) = ¢ € g™ and
(Fyrns) 1 ((€9P™) = d € g™ ). We obtain

t0 i (a A D) = —.9”“([)@ + (£6)P™ 4 (eHP", AN;L £ (ENP™ 4 (EB)Y" )

= —(Fo) (X + €T XD+ (€97 ) 0) _
= —(Fynrt) H([X2, X e + 1697, X0 + [X2, (6D ) 10)
= —(Fypnr) " (X2, X + (X)) in — (X)) i) (59)

where H™ = 7"+ (H"*') and we used (??) (we remark that c¢(b) = 0 when b € 321" ¢
and similarly for d(a)). Suppose now that @ € m™' and that b € g' (with 0 <i <n —1).
Using (?7), (?77?), (??) and ¢(b) = 0 we obtain
£ (@A b) = —(Fpn) (X[ y — X)) mod(m,);
—la,b] +d(a) mod(m,);,.

Since d € g" C gl"(m,_1), d(a) € g"'. Also, [a,b] = —b(a) € g"'. We deduce that
t0 .1 € Hom(m=' A (3277, '), m,) has only components of non-negative homogeneous
degree and relation (??) holds, for any a Ab € m~' A (301 g'). O

6.3 The Hom(g" A m,, m,)-valued component

This is the last component of the torsion function ¢” which needs to be studied, in order
to conclude the proof of Theorem ?7.

Proposition 43. The function t” : P — Hom(g" A m,,m,) has non-negative reduced
homogeneous components and satisfies

t0) (@nb) = —[a,b], Yanbeg'Am.

Proof. Let a € g" and b € m,. Recall that G"GL, 1(m,_;) acts on P"™! and the
fundamental vector field (£€2)7""" of this action, generated by a € g" C g"+gl,,1(m, 1), is
7L projectable and (7"t1), ()" = (€4)P™ (see Proposition ??). On the other hand,
X1+l e X(P™1) is the p-horisontal lift of (€2)P™ . We obtain that ¥ := X! — (¢2)"*
is " _vertical. We write

t0 (@ Ab) = =" (X X )
_ _en-&-l([(ga)P"H’X;q’+1]Hn+1> o 6)71—}-1([}/’ XZH_I]H"“)' (60)

We need to compute the last row from the right hand side of (??). For the first term, we
use Lemma ?? and that 0"*!(X;"*) = b is constant:

(€T X)) = = Laypnsr (07T (X)) = (07)a(a) (D). (61)
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To compute the second term, we remark that, since Y is 7" !-vertical, there is A €

gl (my,) + Hom(3'— g, "), such that Yimr = (¢€4)077). The soldering form "' of

7"t is G-equivariant (see relation (?7)). Like in the computation (??) from the proof
of Theorem ??, we obtain 6"1([Y, X;"*!]yn+1) = A(b). This fact, together with (??) and
(?7), imply that

tinr (N D) = =(p")(a)(b) — A(b), acg", bem,.

If b € m" (with 4 < —1) then (p").(a)(b) = a(b) € (m,_1)"™ and A(b) € (m,)irnr1. We
deduce that t7,.,(a Ab) € (m,)ir, and (t5,.1)°(a A D) = —a(b) = —[a,b]. If b € ¢
(0 < j <n)then (p").(a)(b) =0 and t},,,.(a ANb) = —A(b) € g". O

The proof of Theorem ?? is now completed.

7 Variation of the torsion t” of 7!

In this section we define and study the (n+1)-torsion of the Tanaka structure (D;, 7). We
preserve the setting from Section ?7. In particular, p is a connection on the G-structure
antl . prtl p(n)

Proposition 44. i) Let 0 <i <n —1. The map
t*: Pt — Hom(m ™t A gl, (m,) "4 4+ (m,)" )

1s independent of the connection p.

i) Let i < n + 1. The homogeneous component (t*)" of degree i of t* : P —
Hom(m™' Am,m,) is independent of the connection p.

Proof. Consider another connection p’ on 7" : P"*1 — P(™_ From Theorem ?7? ii), for
any H™' € P"* and a,b € m,, there are A, B € gl,,,(m,) + Hom (3" ¢, "), such
that /

thine (@A D) =17, (a AND) — A(b) + Bla). (62)
Ifaem™tandbeg (0<i<n-—1)then A(b), B(a) € g" and, from (??), we obtain
claim i). Let a € m™ and b € m/. Then degA(b) > n+1+j > (=1 +j) + 4 and
degB(a) = n > (=14 j) + 1, for any i« < n+ 1 (because j < 0). Relation (??) again
implies claim ii). O

Definition 45. i) The vector space Tor" ! (m,,) := Hom" ™ (m~'Am, m,,)+3" Hom(m~!A
g',g""") is called the space of (n + 1)-torsions.
ii) Let p be a connection on ™+t . PP+l — P The function

) prtt o Tor™t (m,,)

defined by

N 0 )" aAb), anbEmTIA
Bl np) = { Ui (0 AD), anb e iAm (63)
(thns)" (@ ND), anbem ™ N g,

for any H""' € P and 0 < i < n — 1, is called the (n + 1)-torsion of the Tanaka
structure (D;, ). In (7?) the expression (t5,,.:)" "(aAb), foraAb e m~' Ag, denotes
the projection of t4,,,,(a Ab) on g"~!.
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From Proposition 72, £**Y is independent of the choice of p.

Theorem 46. For any H"' ¢ P"*! and Id + A € G,

(n+1) _ 7(n+1) n+1
tH”“(Id-&-A) - tHn+1 + OV A.,
Above )
ot + gl (m,) + > Hom(g', g") — Tor"!(m,,)
i=0
maps gl,.1(m,) into Hom"™ (m~! A m,m,) and Hom(g’, g") into Hom(m~! A g’ g" )

(0 <i<n-—1)and is defined by
(00 Ayr) (@ A B) = A (la,b) — (A (@), 8] — [, 2B, anbem™ Am
@MV A N (@ A b) == —[a, A" (D)], anbem LA g,
for any A, 41 € gl 1 (my,) and A" € Hom(g’, g").
Proof. From Theorem 77,
t‘]’{nH(IdJFA)(a Ab) = (Id + B)th. (Id 4+ A)(a) A (Id + A) (D)), a,bem,,  (64)

where Id + B := (Id+ A)™". If A=A, 1+ A" and B = B,y1 + >, BY, with
Api1, Boia € gl (my,) and A%, B € Hom(g" ", g"), then B’ = —A’ (1 < i < n) and
Brtl = — A"} (easy check). We write (?7) in the equivalent form

t’;{n+1(ld+A)(a AD) =thi(aNb) + th i (a NAD)) + 1.1 (Ala) AD)
 tn(Al) A A®)
+ B (50 (a A D) + 01 (a A AD)) + 441 (Ala) Ab) + 1541 (Ala) A A(D)))
Suppose now that a € m™* and b € m* (i < 0). The above equality becomes
t?{"“(ld-‘,—A) (anb) =17, (aNb) + 100 (a N Appi (D) + thrsa (Ansi(a) AD)
+ t?{nﬂ (Anti(a) A Anya (b))
+ B (i1 (@A D) + 01 (a A A1 (D) + i (Anga(a) A D))
+ B (tjv){nJrl(An—&-l(a) A An+1<b>)> : (65)

Since a € m™! and A,;1(a) € g”, all arguments of 7., in the right hand side of (?7),
belong to (m~! + g") Am,. From Theorem ??,

thJrl(a A b) = (mn)i—lv t?{n+1(a A An+1(b)) € (mn)i+na t?]nﬂ (An+1(a) A b) € (mn)i+n-
AISO, since An+1<a) S gn and An+1 (b) € (mn>i+n+17
tl]){n+1 (An—f—l(a) A An—i—l(b)) S (mn)min{n,2n+i+1}~

We project (??) on (m,)"*". The term 5.1 (Ant1(a) A A,y1(D)) brings no contribution
(because i + n < min{n,2n + i+ 1}). We obtain

(t?{n+1(1d+A))n+l(a AD) = (t,.)" T (a A b) + (th00) (a A Ay ()
+ (té){""'l)O(AZi% (CL) A b) + W(mn)H”Bt?{n-ﬂ (a A b) (66)
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From 7,1 (a AD) € (my,) 14, B(Z?;é ¢’) C ¢g", and B|lm = B,11]m, we obtain

Tayitn Bt (@ Ab) = Brti(th..1) (a A b). (67)
Using Bl = —A1, relations (??), (??) and (??), we obtain, for any a Ab € m~! Am,
(s gapn) ™ (@A D) = (th0)" Ha A D) + (DA™ ) (a A D). (68)

In a similar way, we prove that, for any a Ab € m™! A g,
(Upoirgarn)" (@A B) = ()" (a A D) — [a, A" (D)) (69)

Relations (??) and (??) imply our claim. O

8 Definition of 7"t . pntl) _ p()

Consider the map 0™+ from Theorem ?? and let W"*! be a complement of Im(9™+")
in Tor" ™ (m,,).

Proposition 47. i) The natural projection 7' : P+ = (f{(m+D)=1(Wyn+l) c prtt —
P™ is a G-structure, with structure group G = GG Lyia(my,).

i) Let p be a connection on 7', For any H*' € P™' and a Nb € m ™' A g
(0<i<n) t7,..(aNb) € (m,);—1 and

(thnsr) (@A D) = —[a,b], H"™ e P anbem™ A g).
=0

Proof. Any A"~ € Hom(g',g") (0 <i <n — 1) with 9"V (A"%) =0, i.e.
[a, A" (b)] = —A""(b)(a) =0, Vaem™' beg,

vanishes identically (because A"*(b) € g" C Hom(m,m,_;) satisfies A" (b)[z,y] =
[A"(b)(z), y|+[z, A" (b)(y)], for any =,y € m, and m~! generates m; so, if A" 7*(b)|y-1 =
0, for any b € g, then A"7*(b) = 0 and A"* = 0). We proved that 8(”“)\2:01 Hom(g,g")

is injective. Similarly, any A, 4, € gl,,;(m,) which satisfies 0"V (A, ;) = 0, i.e.

A (e, b)) = [Afi(a), 0] + [a, AT (D), Ya€m™, bem,

satisfies this relation for any a,b € m. It follows that Ker (9("+D]y L)) = g+

g, o(m,). Claim i) follows. Claim ii) follows from Theorem ?? ii) (extend j to a connec-
tion on 7).

]
~ We can finally define the map adany . pnt1) - P™ we are looking for. Namely, let
PFY) .= Pl /G L, o (my,) and 7Y 0 P+ P the map induced by 7.
Proposition 48. The map 7"V . P+l P satisfies properties A), B), and C)
from Theorem 7?7 (with n replaced by n+ 1).

Proof. From Lemma ?7, property A) is satisfied. Property B) is satisfied by construction
and property C) follows from Proposition ?7. From Theorem ?7?, 7+ is canonically
isomorphic to a subbundle of the bundle Gr, o(TP™) of (n + 2)-quasi-gradations of
TP™. O
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9 Proof of Theorem 77

In this section we prove Theorem ?7. In Subsection 7?7 we construct the canonical frame
required by Theorem ??. In Subsection 7?7 we prove the statements about the automor-
phism groups.

9.1 The canonical frame of PO,

Proposition 49. Let (D;,ng) be a Tanaka G-structure of type m = Z;l_k m’ and finite
order 1. Then the Tanaka prolongation PY has a canonical frame F.

Proof. Since gitt = 0, also g° = 0 for any s > [ + 1 and 7#® : P — Pl=b jg 4
diffeomorphism. Moreover, for such an s, D, +)1 = 0 (at any H® € P, (Dl(i)l) fs 1S

isomorphic to (m,)z; = gt! + - + g°, which is trivial). We obtain that Gr,,(TP®) =
Gr(TP(S)) forany s > {+1andm > k+1+1 (see our comments after Definition ??). For
any f,t with f > t+1 we denote by (/1 . PU) — P® the composition 7+Vo- . .oxlf),

We need to construct a canonical isomorphism F@&* : my — T PO, for any H' € P,
Let HFHHL .= (gL =1(Fl) ¢ p+HHD By our construction of Tanaka prolonga-
tions, P*+HD C Gry,zo(TP*D). From the above, Grk+l+2(TP(k+l)) = Gr(TPH+)
and we obtain that P*++1) < Gr(TP k+l)). In particular, H***1 defines a gradation

of T ka(kH) or a frame Flyiir1 = Hk+l+1 o lgeyr : My, = mp — Trrst PO | where
H’““ = p D (R and Tgi e mp — gr(Tgea PE*D) is the graded frame from the
Tanaka {e}-structure of P*+)_ We define Fem = (gt H0),0F i mp — TrPO. O

9.2 The automorphism group Aut(D;, ng)

The proof of the remaining part of Theorem ?? is based on the behaviour of the auto-
morphisms of a Tanaka structure, under the prolongation procedure:

Proposition 50. Let (D;,ng : P = Po — M) be a Tanaka G-structure of type m. The
group of automorphisms Aut(D;, ) of (Di, ) is isomorphic to the group of automor-
phisms of the Tanaka {e}-structure on P = Pg (see Proposition 77) and to the group of
automorphisms Aut(7") of the G-structures " : P" — P~ n > 1.

Proof. The argument is similar to the one used in Theorem 3.2 of [?] (in the setting of
prolongation of G-structures) and is based on the naturality of our construction. One first
shows that any f € Aut(D;, 7g) induces an automorphism fg : P — P of the Tanaka {e}-
structure of P, by fa(u) := fi ou, for any graded frame u : m — gr(7, M) which belongs
to P, and that f — fg is an isomorphism betweeen these Tanaka structure automorphism
groups. Next, one notices (from definitions) that the automorphisms of the Tanaka {e}-
structure of P coincide with the automorphisms of the G-structure 7! : P! — P.

It remains to prove that Aut(7") is isomorphic to Aut(7"*'), for any n > 1. Any
fn=b ¢ Aut(7") induces a map fz, : P" — P, defined by fan(Fyn) = (f* V), 0 Fyn,
for any Fyn € P". The map fp. commutes with the action of G"GL,41(m,_1) (hence,
also with the action of GL,1(m,_1)) on P and induces a map f™ : P — P™ which
belongs to Aut(7"!) (easy check). For the converse, let f € Aut(z"*!), ie. f™ :
P™ — P is a diffeomorphism, such that, for any frame Fyni1 : m,, — T, P™ which
belongs to P, (f™),0Fyns1 : m, — Tﬂn)(gn)P(”) also belongs to P, Since the frames
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from P! are filtration preserving, both Fyns and ( f@™), o Fyni1, therefore also f(™
are filtration preserving. Since the frames from prtl, restrict_ed to g", coincide with the
vertical parallelism of 7 : P(") — P"=1) we obtain that (f),(¢")" PO (5“) P for
any v € g". Therefore, there is f(~1) : P("=1) — PU=U guch that 7o f() = fir=Dog®),
We check that (=1 induces f(™. For this, we use: for any = € (m,_,)’,

prén+1)(777(n)) F}Iﬂ-ﬂ( )= Ffizn(m)a

D1y (F ). (). Ffes (1) = o gy (2, (70)
where H" 1 = ﬁ(”)(ﬁ”) (Relations (?7) follow fr_om Fyne, (f™), 0 Fynr € P™*1 and
Lemma ?7?). Since 70 o f" = fin=U o 70 and f(, f(*=1) are filtration preserving, we
obtain from relations (??) that Fpuw)gn) = = (f" V), 0 Fygn, i.e. f™ is induced by f=1,
as required. It is easy to see that f~Y € Aut(7"). O

Proposition 51. Let (D;,ng) be a Tanaka G-structure of type m = Z;ﬁk m’ and fi-

nite order | and F® the canonical frame of PO. Then Aut(D;, mg) is isomorphic to
Aut(PO, Fea) | [t is a Lie group with dimAut(D;, 7¢) < dim(M) + >1_, g'.

Proof. The argument from Proposmon ?? provides a canonical frame (an absolute paral-
lelism) (F°2)" on any prolongation P! (with I’ > l) 1somorphlc to F°* by means of the
map 7@ Let ' > [ sufficiently large such that 7/ : P — PU~1 i an {e}-structure
(recall Definition ?? for 7). Then, for any s > I', P* = P* = P®) and 7* = #* = 70
is an {e}-structure. Any H*® € P(S) (s >1)isa frame Fgs - mp — Tﬁ(s)(Hs)P( V. By
construction of the prolongations, the preimage (7**!)~!(H*) € P**! is the unique frame
F(Tl—s#»l)fl(Hs) my— THSP(S) given by

(ﬁ(s))* o F(7rs+1)71(HS) = ng, s> I (71)

Consider now the canonical frame (F)" of P("). From the proof of Proposition 77, it is
defined by o

(Fcan)Hl/ — (ﬂ-(k-i-l’,l’-‘rl))* o F(ﬁ'<k+l7+1’l7+1))_1(£ﬂl)' (72)
We will show that (F°")" is the {e}-structure 77+ of P("). From relation (??), we need
to check that (7)), o (F®); = Fgo, for any H' € P"), or, using relation (??),
(TN, 0 Frpirin = Fr et s1,rn) (ggemrany, for any HEHHL ¢ phtl'+1 The latter relation
follows easily from (??7). We obtain that (F'*")" coincides with the absolute parallelism
7'+ on P, From Proposition 72, Aut(P"), (F)") (or Aut(P®, Fea)) is isomorphic
to Aut(D;, 7). From Kobayashi theorem (see Theorem 3.2 of [?], p. 15), these groups
are Lie groups of dimension at most dim(M) + Y'_, g'. O
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