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Fig. 1.  The novelty filter
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To account for the orientation-contingent colour after-effect a new neural model of the novelty filter is 
proposed that uses chemical synapses with Hebbian plasticity and electrical synapses permitting to propagate 
control signals to modifiable synapses. 

The orientation-contingent colour after-effect, or the McCollough-effect (ME), is generally obtained 
when after the exposure for a few minutes to alternating coloured gratings (e.g., red vertical and green 
horizontal ones) subjects perceive similarly oriented achromatic gratings as if they were tinted with 
complementary hues. A traditional explanation of the ME by adaptation of single detectors selective to colour 
and orientation suffers from a number of inconsistencies: 1) the ME lasts much longer (from several days up 
to 3 months) than ordinary adaptation, decay of the effect being completely arrested by night's sleep or 

occluding the eye for a long time, 2) the strength of the ME 
practically does not depend on the intensity of adapting light, 3) a 
set of related pattern-contingent after-effects discovered later 
required for such an explanation new detectors, specific to other 
patterns. These properties can be explained, however, in the 
framework of associative memory and novelty filters. It is 
supposed that in the course of "adaptation" the colour grid patterns 
are stored in the memory. When testing with an achromatic grid, 
the associative image of the grid with the same orientation is 
recalled from the memory and subtracted from the input image, 

leaving in the resulting image only novel feature, namely, a complementary colour of the grid – Fig. 1. 
In the previous works1,2 we developed a linear computational model of the filter based on a neural 

network with modifiable synapses (Fig. 2) which consists of (i) an input layer of two (left and right eyes) 
square matrix with two analog neurons (red and green) in each pixel, (ii) an isomorphic associative neural 
layer, each secondary analog neuron being synaptically connected with all neurons of the input layer, except 
a neuron of the same position, so that excitations yi of the associative neuron were weighted sums of signals 
xj of input neurons: 
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(iii) an output layer of novelty neurons, each neuron of which calculated the difference between 
corresponding values of the input and associative layers: iii yxz �� .

Fig. 2.  Computational model of the novelty filter that accounts for the ME. 
Red- and green-sensitive neurons of left and right eyes of the same spatial position are 

distributed to four adjacent areas for clarity. 
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Modification of synaptic weights conformed to the following learning rule:  
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The function of the model was examined by simulation. After a few presentations of coloured gratings 
the model displayed the ME that was slowly destroyed by subsequent presentations of random pictures. With 
a sufficiently large receptor matrix the effect lasted a thousand times longer than the period of adaptation. At 
the same time the effect was rapidly erased by presentation of achromatic grids of the same orientations and 
spatial frequencies as adapting ones. Continuous darkness did not change the strength of the effect. Like real 
ME, the model did not display an interocular transfer. The model can account for different pattern-contingent 
colour after-effects without assuming any predetermined specific detectors. Such detectors were constructed 
in the course of adaptation to specific stimuli (gratings). 

Unfortunately, while the proposed scheme demonstrated fundamental possibility of the �� in the 
network with modifiable synapses, it was physiologically implausible3. Unlike the Hebbian synapses whose 
plasticity was controlled by membrane potentials of presynaptic and postsynaptic neurons only (Fig. 3, A), 
there was a third neuron in that model, involved in the control of modification of synaptic weight, besides the 
two neurons immediately forming the synaptic contact (Fig. 3, B). It was unclear what kind of 
neurophysiological mechanism could organize the information flow from that remote neuron to the synapse. 

Fig. 3. Wiring diagrams of synaptic weights modification. 
(A) the Hebbian network, (B) the physiologically implausible novelty filter and (C) the novelty 

filter with electrical synapses. Neurons are shown by large circles: x – input layer, y – associative 
layer, z – output layer (novelty neurons). Thin black arrows represent conventional synaptic 

contacts between neurons. The electrical synapse is shown with open arrows directed towards 
each other. Large gray arrows indicate paths of signals that control the synaptic weights. 

The problem can be simplified, if some fraction of membrane potential of the output novelty neuron 
would be sent directly to the corresponding associative neuron in order that the latter could control synaptic 
weights of its synapses (e.g., by using the Hebbian scheme). One of the possible ways to do that is to use so 
called electrical synapses between neurons (Fig. 3, C). At these synapses there are no synaptic gap and 
chemical transmitters. Instead, there are gap junctions, direct channels between neurons that establish 
continuity between the cytoplasm of adjacent cells and provide spread of membrane potential from one cell 
to another. Such synapses are quite common in the nervous system, including the retina. In this paper we 
suggest a novelty filter based on this idea. 

Like the previous model, the model with electrical synapses consists of three isomorphic neural layers 
of analog neurons. As distinct from that model each secondary neuron is synaptically connected only with a 
restricted set of nearby input neurons, including the neuron with the same location, its total input signal being 
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jiji xwy~ , where i=1,2…,m, ijw are synaptic weights and iD denote a subset of input neurons, 

synaptically connected to i-th associative neuron. Neurons of the third layer are connected to the 
corresponding neurons of the first two layers – with excitatory synapses to the input layer neurons and 
inhibitory ones to the associative layer neurons. Hence the output neurons calculate the difference between 
the values of corresponding neurons of input and associative layers: iii yxz �� . Besides that the output 
neurons were connected with corresponding associative neurons by means of an electrical synapse. Resultant 
signal of the associative neuron (its membrane potential) is iii ypzpy ~)1( ����� , where p is a constant 
determining the efficacies of electrical synapses. Results of computer simulations presented later were 
obtained with a value of p = 0.2. 

We use a classical Hebbian learning rule in the model: 

ijij yxw ���� � .   (*) 
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As follows from the latter expression, �wij cannot be negative with nonnegative values of xj and yj, and hence 
the connections of any secondary neuron with input neurons will not decrease in the course of adaptation. In 
particular, this means that any erroneous connection between some associative neuron and some input neuron 
of the opposite color type cannot disappear during further adaptation. Therefore, as distinct from our previous 
model, we use the input stimuli with values from -0.5 to 0.5 (the value of -0.5 corresponding to low intensity 
and the value of 0.5 corresponding to high intensity in each channel). Another feature of our model was 
vetoed sign change of synaptic weights4. Actually an excitatory synapse cannot turn into an inhibitory one 
during modification of weights. Therefore inhibitory connections were prohibited in the model, and the 
learning rule was 
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The next problem that we had faced during our transition to this model was the fact that this basic 
Hebbian scheme (*) led to unrealistic growth of the synaptic weights. To overcome this inconvenience we 
used an ordinary postsynaptic normalization:  
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Results of simulation are presented at Fig. 4. In the model, the size of the retina was 16�16 pixels and 
sizes of the areas of input neurons connected to each associative neuron were 9�9 pixels. The strength of the 
effect was evaluated by presentation of vertical white grids to the input layer of the model. The value of the 
effect was calculated as the difference between mean excitations of novelty neurons z, corresponding to white 
pixels of input image, in green and red channels. We made the same series of computer experiments with this 
model that was done with the previous model of the novelty filter2. During the first 1000 cycles of iterations 
random stimuli were presented to the model. After that, to obtain the ME, red vertical and green horizontal 
grids were presented alternately, and next, random stimuli were presented again. It can be seen in fig. 4 that 
adaptation (branch a of the curve) goes much faster than decay (branch b). At the same time the effect is 
rapidly erased by presentation of alternately oriented achromatic grids (branch c). As expected, the 
persistence of the ME (the ratio of speeds of adaptation and desadaptation) is proportional to the number of 
plastic synapses in the receptive fields of associative neurons. The rate of learning depends on the intensity of 
the adapting stimuli, but the final strength of the effect does not – dotted curve in fig. 4 represents the course 
of adaptation to twice less bright grids than that for the branch a. It is necessary to notice that the fig. 4 
presented below almost repeats the fig. 4,a, published in the article2, dedicated to the initial (physiologically 
implausible) model of the novelty filter. The only difference is a much slower decay during desadaptation 
(branch b), due to the greater number of plastic synapses in the receptive fields of the associative neurons in 
this case (area of 9�9 pixels) in comparison with the previous model (6�6 pixels). 

Thus, the results of simulation show that physiologically plausible scheme of novelty filter with 
electrical synapses does work and presents the same phenomena as our initial novelty filter does1,2.

Fig. 4.  Time courses of the McCollough-effect in the model during (a) an 
adaptation to alternating colour grids and (b) a subsequent desadaptation with 

random stimuli or (c) erasing the effect with black-and-white test grids. 

As concerns the possible localization of such a mechanism in the visual system and specific types of 
neurons involved in its organization the question remains still open. One may suppose any level from the 
retinal inner plexiform layer to first stages of visual processing in the striate cortex, where signals from two 
eyes converge. In any case the direct way (from input neurons to novelty neurons) must be organized with 
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neurons that possess small receptive fields, sufficient to provide for a good spatial resolution of the grids, 
while some interneurons with wide dendritic trees serve as associative neurons. In the retina, it is naturally to 
suppose bipolar cells as the input neurons, the output retinal neurons (ganglion cell) as novelty neurons, and 
amacrine sells as associative neurons. 

Our scheme of the novelty filter with electrical synapses (Fig.3,C) contains an inhibitory synapse 
between associative neurons and novelty neurons. C.C.D. Shute5 suggested that the ME could reflect a 
mechanism which should be inhibited by GABAergic neurons. This means that associative interneurons 
release inhibitory neurotransmitter GABA. The classical inhibitory neurotransmitter, gamma aminobutyric 
acid (GABA) occurs in many different varieties of amacrine cells in most vertebrate retinas6. Electrical 
synapses are also frequent in the retina7. In most cases gap junctions make contact between neurons of the 
same type. But sometimes electrical synapses exist also between neurons of different types, including 
contacts between some types of amacrine and ganglion cells. In particular, R. Jacoby et al. have described 
two types of amacrine cells that make gap junctions with so called parasol ganglion cells in the primate 
retina8. One type of these amacrine cells was GABAergic and made both inhibitory chemical synapses and 
gap junctions with the parasol ganglion cell dendrites. Unfortunately, this harmonious morphological scheme 
cannot account for the ME. The parasol ganglion cells cannot serve for the visual pathway of high resolution. 
They have rather large receptive fields, project to the magnocellular layers of the lateral geniculate nucleus 
and are particularly important for the perception of motion, but not the visual tasks, requiring high spatial 
resolution8.

As to a fine morphological structure of synaptic interactions at the subsequent levels of the visual 
system the information is rather poor. The massive presence of gap junction couplings among interneurons of 
the striate cortex was recently discovered9. Gap junctions are common between cortical GABAergic 
interneurons10, but little is known about the electrical synapses between these interneurons and neurons of the 
direct pathway, responsible for high spatial resolution. 

This work was supported by the program of the RAS Branch of Biological Sciences 
“Physiological mechanisms for regulation of internal environment and control of behavior in living systems”. 
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