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Abstract: Binary codes created by doubling construction, including quasi-perfect 

ones with distance d = 4, are investigated. All [172r−6, 172r−6 − r, 4] quasi-perfect 

codes are classified. Weight spectrum of the codes dual to quasi-perfect ones with  

d = 4 is obtained. The automorphism group Aut(C) of codes obtained by doubling 

construction is studied. A subgroup of Aut(C) is described and it is proved that the 

subgroup coincides with Aut(C) if the starting matrix of doubling construction has 

an odd number of columns. (It happens for all quasi-perfect codes with d = 4 except 

for Hamming one.) The properness and t-properness for error detection of codes 

obtained by doubling construction are considered. 
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1. Introduction 

Let an [n, n − r, d] code be a linear binary code of length n, redundancy r, and 

minimum distance d. A code with d = 4 is quasi-perfect if its covering radius is equal 

to 2. Addition of any column to a parity check matrix of a quasi-perfect code 

decreases the code distance. A parity check matrix of a quasi-perfect [n, n − r, 4] code 

can be treated as a complete n-cap in the projective space PG(r − 1, 2) of dimension 

r − 1. A cap in PG(N, 2) is a set of points no three of which are collinear. A cap is 

complete if no point can be added to it. 

Observation 1. An arbitrary [n, n − r, 4] code is either a quasi-perfect code or 

the shortening of some quasi-perfect code with d = 4 and redundancy r. 

So, studying quasi-perfect codes is important. The [2r−1, 2r−1 − r, 4] extended 

Hamming code is deeply investigated. The [52r−4, 52r−4 − r, 4] Panchenko code  

[1, 2, 6, 7, 15] draws attention as in it the number of weight 4 codewords is small and, 

in a number of cases, the smallest possible among all codes with d = 4. This 

essentially increases the error detection capability of Panchenko code. Nevertheless, 
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Panchenko code is studied insufficiently. The same can be said about other quasi- 

perfect [n, n − r, 4] codes (not about Hamming one). 

Observation 2 [6]. All quasi-perfect [n, n − r, 4] codes of length n ≥ 2r−2 + 2 

can be described by doubling construction (see Equation (1) below). 

So, it is appropriate to study quasi-perfect [n, n − r, 4] codes from the point  

of view of doubling construction. Such researches were done, for instance, in  

[1, 2, 6, 7]. In this work we continue investigations of codes created by doubling 

construction, including quasi-perfect ones. 

In Section 2, we describe doubling construction and, basing on the results of [6], 

give a general description of a parity check matrix for a whole class of quasi-perfect 

binary codes with distance 4. Also, we classify all quasi-perfect [17, 17 − 6, 4] codes 

and thereby all quasi-perfect [nr, nr − r, 4] codes with nr = 172r−6, r ≥ 6. 

In Section 3, we prove a general theorem on weight spectrum of the code dual 

to quasi-perfect one and obtain all these spectra for quasi-perfect [nr, nr − r, 4] codes 

with nr = 2r−2 + 2r−2−g, g = 2, 3, 4, r ≥ g + 2. 

In Section 4, the Automorphism group Aut(C) of codes obtained by doubling 

construction is investigated. We describe a subgroup G of Aut(C) and prove that if 

the starting matrix of doubling construction has an odd number of columns then  

G = Aut(C). It happens for all quasi-perfect codes with d = 4 except for Hamming 

one. 

In Section 5, the properness and t-properness for error detection of codes, 

obtained by doubling construction, is considered. We use the results of this work and 

papers [3, 8–11]. 

Some results of this work were briefly presented in [5]. 

2. Doubling construction and classification of binary quasi-perfect 

codes with distance 4 

For a code with redundancy r we introduce the following notations: nr is length of the 

code, Hr is its parity check matrix of size r×nr, and dr is code distance. 

Definition 1. Doubling construction creates a parity check matrix Hr of an  

[nr, nr − r, dr] code from a parity check matrix Hr−1 of an [nr−1, nr−1 − (r − 1), dr−1] 

code as follows: 

(1)   

1 1

0...0 | 1...1

| .

|

r

r r

H

H H 

 
 

      
 
  

 

By (1), nr = 2nr−1. Also, if dr−1 = 3 then dr = 3; if dr−1 ≥ 4 then dr = 4. Doubling 

construction is called also Plotkin construction, see [6] and the references therein. 

Let us define matrices M, S, and Ω as 
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(2)   
01

,
11

M
 

  
 

 

10001

01001
,

00101

00011

S

 
 
 
 
 
 

 

00000 1111

10001 0000

.01001 1001

00101 0101

00011 0011

 
 
 
  
 
 
  

 

The matrix S (respectively Ω) can be treated as a parity check matrix of the 

[22+1, 1, 5] perfect repetition code (resp. [23 + 1, 4, 4] quasi-perfect code). By [6, 

Lemma 10], there exists only one (up to equivalence) [23 + 1, 4, 4] quasi-perfect code; 

moreover, the parity check matrix of this code can be presented in the form Ω. 

From the results of the paper [6], we have a general description of a parity check 

matrix for a whole class of quasi-perfect codes with distance 4. 

Theorem 1 [6]. (i) Let nr ≥ 2r−2 + 2, r ≥ 5, and let an [nr, nr − r, 4] code be quasi-

perfect. Then length nr can take any value from the sequence 

(3)   nr = 2r−2 + 2r−2−g = (2g + 1)2r−2−g  for  g = 0, 2, 3, 4, 5, …, r − 3. 

Moreover, nr may not take any other value that is not listed in (3). Also, for each 

g = 0, 2, 3, 4, 5, …, r − 3, there exists an [nr, nr − r, 4] quasi-perfect code with  

nr = 2r−2 + 2r−2−g. 

(ii) Let nr = 2r−2 + 2r−2−g = (2g + 1)2r−2−g, g ∈ {0, 2, 3, 4, 5, …, r − 3},  r ≥ 5, and 

let an [nr, nr − r, 4] code be quasi-perfect. Then a parity check matrix Hr of this code 

can be presented in the form 

(4)   

(0) (1) ( )
2 2 2

* * *
2 2 2

| | |

| | ... | ,

| | |

D
r g r g r g

r

g g g

B B B

H

H H H

     

  

 
 

          
 
 

 

where D = 2r−g−2 − 1, ( ) ( ) ( )
2 2 2

j j j
r g r g r gB b b     

      is the (r −g −2)×(2g +1) matrix of 

identical columns 
( )

2
j

r gb    every of which is the (r − g − 2)-positional binary 

representation of the integer j (with the most significant bit at the top position), 
*
0 2 ,H M   *

2 2 ,H S   *
3 2 ,H     

*
2gH   is a parity check matrix of a quasi-perfect 

[2g + 1, 2g + 1 − (g + 2), 4] code if g ≥ 4. 

The [2r−1, 2r−1 − r, 4] code (with starting matrix M ) is the extended Hamming 

code. The [52r−4, 52r−4 − r, 4] code (with starting matrix S) is the Panchenko  

code Πr proposed in [15], see also [1, 2, 6, 7]. The parity check matrix of Πr  

is the matrix Hr of (4) with g = 2, D = 2r−4 − 1, 
*

2 .gH S   We denote by Wr the  

[92r−5, 92r−5−r, 4] code (with starting matrix Ω). 

By Theorem 1, all quasi-perfect [nr, nr − r, 4] codes with g = 0, 2, 3, and, 

respectively, nr = 2r−1, nr = 52r−4, and nr = 92r−4, are classified. 

Corollary 1. For g ≥ 4 and nr = 2r−2 + 2r−2−g, in order to classify all quasi-perfect  

[nr, nr − r, 4] codes, it is sufficient to classify all quasi-perfect [2g + 1, 2g + 1 −  

(g + 2), 4] codes. 
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In order to classify [24 + 1, 24 + 1 − (4 + 2), 4] codes, we (similarly to  

[6, Equation (18)]) introduce a (g + 2) × (2g + 1) matrix 

(5)  *
2 1

Ham
1 1 1

0...0 | 1 | 1 | ... | 1

( ,..., ; ) | | | | ,

\ { ,..., } | | | ... |

g v

g v v

H a a x

H a a x x a x a





 
 

                  
 

  

 

where ai and x are (g + 1)-positional distinct columns; the entry 
Ham

1 1\{ ,..., }g vH a a

notes the (g + 1) × (2g − v) matrix obtained by removing of the columns a1, …, av 

from the parity check matrix of the [2g, 2g − (g + 1), 4] extended Hamming code; ⊕ 

means the bit-by-bit sum of binary columns modulo two; v is a parameter. 

Conjecture 1 [6, Remark 5].  
(i) There exist exactly 5 distinct (up to equivalence) quasi-perfect  

[24 + 1, 24 + 1 − (4 + 2), 4] codes. 

(ii) Parity check matrices of these codes can be presented in the form 

H*
4+2(a1, a2, …, av; x) with v = 1, 3, 4, 5, 6, 

where 5-positional columns a1, a2, …, av are linearly independent for v ≤ 5, columns 

a1, a2, a3, a4, a5 are linear independent for v = 6. 

Note that the order of columns a1, a2, …, av does not influence the properties of 

the matrix H*
4+2 (a1, a2, …, av; x). Therefore, for v = 6 any quintuplet of columns from 

the set {a1, a2, a3, a4, a5, a6} must be linearly independent. It is possible, for instance, 

if the columns a1, a2, a3, a4, a5 are linearly independent and also  

a6 = a1⊕a2⊕a3⊕a4⊕a5. 

Conjecture 1(i) is proved in [4, 12] by exhaustive computer search. 

Proposition 1 [4, 12]. There exist exactly 5 distinct (up to equivalence) quasi-

perfect [17, 11, 4] codes. 

In this work, we prove Conjecture 1(ii) for specified columns ai and x. We put 

(6)   a1 = (10000)T, a2 = (10001)T, a3 = (10010)T, a4 = (10100)T, 

a5 = (11000)T, x = (11111)T, a6 = a1⊕a2⊕a3⊕a4⊕a5 = (11111)T, x′ = (11110)T. 

Note that, in (6), the columns a1, a2, a3, a4, a5 are linearly independent. 

Let us define the matrices Φ1, …, Φ5 as follows: 

(7)   Φ1 = H*
4+2(a1; x), Φ2 = H*

4+2(a1, a2, a3; x), Φ3 = H*
4+2(a1, a2, a3, a4; x), 

Φ4 = H*
4+2(a1, a2, a3, a4, a5; x), Φ5 = H*

4+2(a1, a2, a3, a4, a5, a6; x′), 

where ai, x, and x′ are taken from (6). 

By (5)-(7), we have 

(8)   1 2

0000000 00000000 11 00000 00000000 1111

1111111 11111111 10 11111 11111111 1000

0000000 11111111 11 00000 11111111 1111
,

0001111 00001111 11 01111 00001111 1111

0110011 00110011 11 100

1010101 01010101 11

 
 
 
 

    
 
 
 
  

,

11 00110011 1110

10101 01010101 1101
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(9)   3 4

0000 00000000 11111 0000 0000000 111111

1111 11111111 10000 1111 1111111 100000

0000 11111111 11111 0000 1111111 111110
,

0111 00001111 11110 0111 0001111 111101

1011 00110011 11101 101

1101 01010101 11011

 
 
 
 

    
 
 
 
  

,

1 0110011 111011

1101 1010101 110111

 
 
 
 
 
 
 
 
  

 

(10)   5

0000 000000 1111111

1111 111111 1000000

0000 111111 1111100
.

0111 000111 1111010

1011 011001 1110110

1101 101010 0010001

 
 
 
 

   
 
 
 
  

 

Proposition 2. All matrices Φ1, …, Φ5 are non equivalent to each other and 

every matrix is a parity check matrix of a [17, 11, 4] quasi-perfect code. 

Proof: We checked the assertion by computer. 

By Propositions 1 and 2, the following theorem is proved.     

Theorem 2. The five codes with the parity check matrices Φ1, …, Φ5 give the 

whole list of all distinct, up to equivalence, [24 + 1, 24 + 1 − (4 + 2), 4] quasi-perfect 

codes. 

Now, by Corollary 1, we can say that all quasi-perfect [nr, nr − r, 4] codes with 

nr = 172r−6, r ≥ 6, are classified. 

3. Dual weight spectrum of codes obtained by doubling construction 

For a code C, let Aw (respectively A
⊥
w) be the number of codewords of weight w in C 

(respectively in the dual code C
⊥
). Usually, the code is clear by context. To emphasize 

the code we can write Aw(C) or A
⊥
w(C). 

Theorem 3. Let g ≥ 2 and let {A
⊥
w(Tg+2), w = 0, 1, …, 2g + 1} be the weight 

spectrum of the code dual to the starting [2g + 1, 2g + 1 − (g + 2), d] code Tg+2 with 

the parity check matrix H*
g+2 of the construction (4). Then the weight spectrum of the 

code dual to the resultant [(2g + 1)2r−2−g, (2g + 1)2r−2−g − r, 4] code Cr with the parity 

check matrix Hr of (4) is as follows: 

(11)   A
⊥
w2r−2−g(Cr) = A

⊥
w (Tg+2), w = 0, 1, …, 2g + 1, 

A
⊥
(2g+1)2r−3−g(Cr) = 2r − 2g+2, 

A
⊥
u(Cr) = 0, u ∉ {02r−2−g, 12r−2−g, …, (2g + 1)2r−2−g} ∪ {(2g + 1)2r−3−g}. 

Proof: We consider the matrix Hr of (4) as a generator matrix of the dual code. 

If a codeword of the dual code is created without the inclusion of the top r−g−2 rows 
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(i.e., without matrices Br

(j)

−g−2), then its weight is equal to the weight of the 

corresponding word formed from rows of matrix H
∗
g+2 multiplied by D + 1 = 2r−g−2. 

This explains the term A
⊥
w2r−2−g(Cr) = A

⊥
w(Tg+2). If at least one of the top r − g − 2 rows 

of Hr in (4) is used for creating a word of the dual code, then the weight of this word 

is equal to (2g + 1)2r−3−g. The number of such words is 2r − 2g+2.    

Let Vr,j be the [172r−6, 172r−6 − r, 4] code with the parity check matrix Hr of (4) 

where g = 4, H
∗
g+2 = H

∗
4+2 = Φj, D = 2r−6 − 1, j = 1, …, 5. 

Proposition 3. For the [nr, nr − r, 4] quasi-perfect codes Πr, Wr, and Vr,1, …, 

Vr,5, the weight spectrum of the nonzero weights of the dual codes is as follows: 

Πr, nr = 52r−4: A
⊥
22r−4 = 10, A

⊥
52r−5 = 2r − 24, A

⊥
42r−4 = 5, 

Wr, nr = 92r−5: A
⊥
22r−5 = 1, A

⊥
42r−5 = 21, A

⊥
92r−6 = 2r − 25, 

A
⊥
62r−5 = 7, A

⊥
82r−5 = 2, 

Vr,1, nr = 172r−6: A
⊥
22r−6 = 1, A

⊥
82r−6 = 45, A

⊥
172r−7 = 2r − 26, 

A
⊥
102r−6 = 15, A

⊥
162r−6 = 2, 

Vr,2, nr = 172r−6: A
⊥
42r−6 = 1, A

⊥
62r−6 = 3, A

⊥
82r−6 = 42, A

⊥
172r−7 = 2r − 26, 

A
⊥
102r−6 = 12, A

⊥
122r−6 = 3, A

⊥
142r−6 = 1, A

⊥
162r−6 = 1, 

Vr,3, nr = 172r−6: A
⊥
52r−6  = 2, A

⊥
72r−6  = 8, A

⊥
82r−6 = 30, A

⊥
172r−7  = 2r − 26, 

A
⊥
92r−6  = 12, A

⊥
112r−6 = 8, A

⊥
132r−6  = 2, A

⊥
162r−6  = 1; 

Vr,4, nr = 172r−6: A
⊥
62r−6 = 6, A

⊥
82r−6  = 40, A

⊥
172r−7  = 2r − 26, 

A
⊥
102r−6  = 10, A

⊥
122r−6  = 6, A

⊥
162r−6  = 1; 

Vr,5, nr = 172r−6: A
⊥
72r−6  = 16, A

⊥
82r−6 = 30, A

⊥
172r−7  = 2r − 26, 

A
⊥
112r−6  = 16, A

⊥
162r−6 = 1. 

Proof: By computer search, we obtained the following dual weight spectra of 

the nonzero weights of the starting [ng+2, ng+2 − (g + 2), 4] quasi-perfect codes with 

the parity check matrices S, Ω, Φ1, …, Φ5: 

S, ng+2 = 5: A
⊥
2 = 10, A

⊥
4 = 5; 

Ω, ng+2 = 9: A
⊥
2 = 1, A

⊥
4 = 21, A

⊥
6 = 7, A

⊥
8 = 2,  

Φ1, ng+2 = 17: A
⊥
2 = 1, A

⊥
8 = 45, A

⊥
10 = 15, A

⊥
16 = 2, 

Φ2, ng+2 = 17: A
⊥
4 = 1, A

⊥
6 = 3, A

⊥
8 = 42, A

⊥
10 = 12, A

⊥
12 = 3, A

⊥
14 = 1, A

⊥
16 = 1, 

Φ3, ng+2 = 17: A
⊥
5 = 2, A

⊥
7 = 8, A

⊥
8 = 30, A

⊥
9 = 12, A

⊥
11 = 8, A

⊥
13 = 2, A

⊥
16 = 1, 

Φ4, ng+2 = 17: A
⊥
6 = 6, A

⊥
8 = 40, A

⊥
10 = 10, A

⊥
12 = 6, A

⊥
16 = 1,  

Φ5, ng+2 = 17: A
⊥
7 = 16, A

⊥
8 = 30, A

⊥
11 = 16, A

⊥
16 = 1.  

Now we use Theorem 3.        
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4. The automorphism group of codes created by doubling construction 

In this section we investigate the properties of the automorphism group of the codes 

obtained applying doubling construction. 

Definition 2. The permutations of coordinate places which send a code C into 

itself form the code automorphism group of C, denoted by Aut(C). 

A code and its dual have the same automorphism group. 

Theorem 4 [14, Chapter 8, Problem 29]. Aut(C)= Aut(C
⊥
). 

Let C be an [n, n − r, d] code, let π ∈ Aut(C), and let g1, …, gn−r be the rows of 

a generator matrix G of the code C. Then π(g1), …, π(gn−r) is a basis of C too. 

Therefore a change of basis matrix belonging to the general linear group GL(n−r, 2) 

corresponds to π. 

On the other hand, we can consider the columns cj of G as points of the 

projective space PG(n−r −1, 2). Let K ∈ GL(n−r, 2) = PGL(n−r, 2) belong to the 

stabilizer group of the set Σ = {cj}j=1,...,n, i.e., Kcj ∈ Σ,  ∀j ∈ {1, …, n}. Then K induces 

a permutation of the coordinate places and therefore preserves the weight of each 

codeword. Then, by [14, Chapter 8, Problem 33], if no coordinate of C is always zero, 

K corresponds to a permutation π ∈ Aut(C). 

From the discussion above and Theorem 4, we can represent Aut(C) as the 

stabilizer group of the columns of its parity check matrix Hr treated as points of  

PG(r − 1, 2). We will denote Aut(C) also as Aut(Hr). 

Lemma 1. The r × 2r−sns matrix Hr, obtained from a starting s × ns matrix Hs 

applying doubling construction r − s times, has the form 

(12)   

(0) (0) (1) (1) (2 1) (2 1)

1 1 1

| |

| | ,

| |

r s r s r s r s r s r s

r

n n ns s s

b b b b b b

H

h h h h h h

 
     

 
 

                  
 
  

 

where ℓ = r − s, hj is the j-th s-positional column of Hs, and b
(
r
i)
−s is the (r − s)-positional 

binary representation of the integer i. 

Proof: By induction on r − s.     

Now we describe a subgroup of Aut(C). Let Zℓ,m be the ℓ × m matrix with all 

entries equal to 0 and let Tℓ,m be any ℓ × m binary matrix. We denote by r the 

following set of matrices: 

(13)   

,

,

|

| : GL( , 2), Aut( ) .

|

r s r s s

r r s s s

s r s s

K T

K r s A H

Z A

 





  
  

            
  
  

 

Proposition 4. It holds that 

|r| = (2r−s − 1)(2r−s − 2) …(2r−s − 2r−s−1)|Aut(Hs)|2(r−s)s. 

Proof: Note that |GL(n, 2)| = (2n − 1)(2n − 2) … (2n − 2n−1). Also, there are 2ℓm 

distinct matrices Tℓ,m.     
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Theorem 5. The matrix set r is a subgroup of Aut(Hr). 

Proof: Let  

( )

,

u
r s

j

b

h


 
 
   
 
 

  u ∈ {0, …, 2r−s − 1}, j ∈ {1, …, ns}, be a column of Hr of 

(12). Let Mr = 

,

,

|

| .

|

r s r s s

r

s r s s

K T

Z A

 



 
 
        
 
 

 Then 

( ) ( )
, ,

,

|

| .

|

u u
r s r s s r s r s r s r s s j

r

s r s s j s j

K T b K b T h

H

Z A h A h

     



     
    

                      
    

     

 

Moreover, Det(Mr) = Det(Kr−s)Det(As)  0, so r ⊂ Aut(Hr). Finally, 

, , , ,

, , ,

| | |

| | | .

| | |

r s r s s r s r s s r s r s r s r s s r s r s s

r

s r s s s r s s s r s s s

K T K T K K K T K T

Z A Z A Z A A

         

  

              
     
                                   
             

 

 

In general, r  Aut(Hr). For example, if we apply repeatedly doubling 

construction starting from matrix M (so, s = 2), the columns of Hr form a 2r−1-cap  

of PG(r − 1, 2) that is the complement of a hyperplane; its stabilizer group is  

AGL(r − 1, 2) and |AGL(r − 1, 2)| = (2r − 2) … (2r − 2r−1). Note that the mentioned 

cap corresponds to the [2r−1, 2r−1 − r, 4] extended Hamming code. 

On the other hand, there exist codes of redundancy r obtained by doubling 

construction whose automorphism group is r. 

Lemma 2. Let X = {x1, …, xn} be a set of n boolean values. Let Σn be the multiset 

of all possible 2n sums of elements of X (counting also the sum without addends and 

attributing the value 0 to it). If at least one of the elements of X is equal to 1 then Σn 

contains 2n−1 zeros and 2n−1 ones. 

Proof: By induction on n. The case n = 1 is trivial. In the general case consider 

the 2n−1 sums that do not contain xn. If an index i, 1 ≤ i ≤ n − 1, exists such that  

xi = 1, then by the inductive hypothesis 2n−2 sums are equal to 0 and 2n−2 sums are 

equal to 1. Adding xn we obtain other 2n−2 sums equal to 0 and 2n−2 sums equal to 1 

whether xn = 0 or xn = 1. If xi = 0, i = 1, …, n − 1, then the 2n−1 sums not containing 

xn are equal to 0, xn = 1 and the 2n−1 sums containing xn are equal to 1.    

Theorem 6. Let Cs be an [ns, ns − s] code having a parity check matrix Hs without 

zero columns and without rows of weight ns/2. Then for the code Cr obtained applying 

doubling construction r − s times starting from Hs, it holds that Aut(Cr) = r. 

Proof: Let ℓ = r − s. Let Hs = [h1 … hns ] where hi is an s-positional column. By 

Lemma 1, Hr of the form (12) is a parity check matrix of the code Cr. Let 
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(14)   

1

1,1 1, 1

,1 ,

|

| Aut( ),

...

|

...

r r

r r s

t

K

t

M C

x x a

x x a

 

 
 
 
 
 

           
 
 
 
 
  

 

where Kℓ is an ℓ × ℓ matrix, ti and aj are s-positional rows, and xi,j ∈ {0, 1}. Let rj be 

the j-th row of MrHr, j = ℓ + 1, …, r. Then 
T T T T T

1 ,1 1 ,1 ,2 1 ,2  
s s s

T

j j j n j j j j n j j j j nr a h a h x a h x a h x a h x a h             

T T

,1 , 1 1 ,1 , .
sj j j j j j nx x a h x x a h 
      

As Mr ∈ Aut(Cr), it induces a permutation on the coordinates of the codewords, 

so 

weight(rj ) = weight(qj ) = 2ℓweight(pj−ℓ), 

where qj is the j-th row of Hr and pi is the i-th row of Hs. On the other hand, fix a 

value i, 1 ≤ i ≤ ns, and consider the elements of rj in positions i + (k −1)ns, k = 1, …, 

2ℓ, they are: 
T T T T

,1 ,2 ,1 ,2 ,1, , , , , ,j i j j i j j i j j j i ja h x a h x a h x x a h x        

T

, .j j ix a h   All possible sums of elements of the set {xj,1, …, xj,ℓ} appear as 

addends of 
T .j ia h  If at least one of the xj,t, is equal to 1, then, by Lemma 2, exactly 

2ℓ−1 of these sums are equal to 1, and therefore exactly 2ℓ−1 of these elements of rj are 

equal to 1. It implies weight (rj) = ns2
ℓ−1 and weight(pj−ℓ) = weight(rj)/2

ℓ = ns/2. This 

is not possible by hypothesis. Moreover, xℓ+1,1 =…= xℓ+1,ℓ = … = xr,1 = … = xr,ℓ = 0 

implies Det(Kℓ)  0, otherwise Det(Mr) = 0. 

Finally, we show that the s×s submatrix 

1

s

s

a

A

a

 
 


 
  

 

permutes the columns of Hs, i.e., it belongs to Aut(Cs). In fact, let 

( )

,

u
r s

j

b

h


 
 
   
 
 

  

u ∈ {0, …, 2r−s −1}, j ∈ {1, …, ns}, be a column of Hr of (12). Then, taking into 

account that xi,j = 0 in Mr of (14), we have 
( )

,

u
r s

r

j s j

b y

M

h A h
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where y is an (r − s)-positional column. The column 

s j

y

A h

 
 
 

 
 

 is a column of Hr if and 

only if Ashj is a column of Hs. Moreover, if Ashi = Ashj, i  j, then the 2ℓ+1 columns 
( ) ( )

, ,

u u
r s r s

i j

b b

h h

 
   
   
      
   
   

 u = 0, …, 2ℓ − 1, can have only 2ℓ different images under Mr.   

Corollary 2. Let Cs be an [n, n − s] code having a parity check matrix Hs without 

zero columns. If n is odd then for the code Cr obtained applying doubling construction 

r − s times starting from Hs, it holds that Aut(Cr) = r. 

By computer search, we obtained the following proposition. 

Proposition 5. For the matrices of (2), (8)-(10), it holds that 

|Aut(S)| = 120, |Aut(Ω)| = 336, |Aut(Φ1)| = 40 320, |Aut(Φ2)| = 576, |Aut(Φ3)| = 384, 

|Aut(Φ4)| = 720, |Aut(Φ5)| = 11 520. 

Corollary 3. Let the value of |Aut(Φj )| be as in Proposition 5. It holds that 

|Aut(Πr )| = 12024(r−4)  4
3

0

,2  2
r

i

i

r




   

|Aut(Wr)| = 33625(r−5)  5
4

0

,2  2
r

i

i

r




   

|Aut(Vr,j)| = |Aut(Φj)|26(r−6)  6
5

0

,2  2
r

i

i

r




   j = 1, …, 5. 

Proof: Taking into account that all matrices of (2), (8)-(10), have an odd number 

of columns, the assertion follows from Proposition 4, Corollary 2, and Proposition 5. 

 

5. Properness and t-properness for error detection of codes obtained by 

doubling construction 

Problems connected with error detection are considered, e.g., in [3, 8-11, 13], see also 

the references therein. Here we consider a binary symmetric channel. 

Let p be the symbol error probability of the channel. 

For the code C, let Pue(C, p) be the probability of undetected error under the 

condition that the code is used only for error detection. 

For the code C, let 
   ,ue

t
P C p  be the probability of undetected error under the 

conditions that d ≥ 2t + 1 and the code is used for correction of ≤ t errors. 

Definition 3 [8-11]. (i) A binary code C is proper (respectively t-proper) if 

Pue(C, p) (respectively 
   ,ue

t
P C p ) is an increasing function of p in the interval  

[0, ½]. 
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(ii) Let a ≥ 0 and b ≤ ½ be real values. A binary code C is proper (respectively 

t-proper) in the interval [a, b] if Pue(C, p) (respectively 
   ,ue

t
P C p ) is an increasing 

function of p in [a, b]. 

Using the results of this work, in particular Theorem 3 and Proposition 3, and 

papers [2, 3, 8-11], we proved a number of results on the properness and t-properness 

of codes obtained by doubling construction. 

Theorem 7 [11, Theorem 2]. Let a binary code of length n have dual distance 

d
⊥
. If  

  1 ,
3 2

n n
d    

     
   

 

then the code is proper in the interval 

1
.

1

2

2
,

n d

n d





 










 

Lemma 3. In doubling construction (1), let the starting [nr−1, nr−1 − (r − 1), dr−1] 

code, given by the parity check matrix Hr−1, have dual distance d
⊥
r−1 in the region  

(15)   
1

1 11 .
3 2

r r

r

n n
d



    
    

  



 

Then the resultant [nr, nr − r, dr ] code, given by the parity check matrix Hr, has dual 

distance d
⊥
r in the region 

(16)   1 .
3 2r

r rd
n n 
   

    
   

 

Proof: By (1) and (11), we has nr = 2nr−1 and d
⊥
r = 2d

⊥
r−1. 

The right inequality of (15) corresponds to either 2d
⊥
r−1 ≤ nr−1 (if nr−1 is even), or 

2d
⊥
r−1 ≤ nr−1 − 1 (if nr−1 is odd). The right inequality of (16) always corresponds to 

2d
⊥
r−1 ≤ nr−1. So, for all values of nr−1, the right part of (16) follows from the right part 

of (15). 

The left inequality of (15) (respectively of (16)) corresponds to one of three 

cases: 

• nr−1 + 3 ≤ 3d
⊥
r−1 (respectively nr−1 + 1.5 ≤ 3d

⊥
r−1) if nr−1 ≡ 0 (mod 3); 

• nr−1 + 5 ≤ 3d
⊥
r−1 (respectively nr−1 + 2 ≤ 3d

⊥
r−1) if nr−1 ≡ 1 (mod 3); 

• nr−1 + 4 ≤ 3d
⊥
r−1 (respectively nr−1 + 2.5 ≤ 3d⊥r−1) if nr−1 ≡ 2 (mod 3). 

So, for all values of nr−1, the left part of (16) follows from the left part of (15). 

 
Theorem 8. The codes Πr, Vr,4, and Vr,5, are proper in intervals [a, ½ ], where 

Π
⊥
r: 4

1 1
,

3 3 2r
a


 


 r ≥ 6;   Vr,4: 6

5 1
,

11 11 2r
a


 


 r ≥ 8; 
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Vr,5: 
6

3 1
,

10 10 2r
a


 


 r ≥ 6. 

Proof: We use Proposition 3, Theorem 7, and Lemma 3.    

Proposition 6 [11, Remark 1]. An [n, n − r, d] code is proper in the interval  

[0, 
d

n
]. 

Proposition 7. The codes Π
⊥
r, W

⊥
r, V

⊥
r,j dual to the codes Πr, Wr, Vr,j, are proper 

in intervals [0, b], where 

b = 
2

5
 for Π

⊥
r, b = 

2

9
 for W

⊥
r, b = 

2

17
 for V

⊥
r,1, b = 

4

17
 for V

⊥
r,2, 

b = 
5

17
 for V

⊥
r,3, b = 

6

17
 for V

⊥
r,4, b = 

7

17
 for V

⊥
r,5. 

Proof: We use Propositions 3 and 6.     

Definition 4 [8-10].  

• Let C be an [n, n − r, d] code with dual weight spectrum {A
⊥
0, …, A

⊥
n}. Dual 

extended binomial moment B
∗
ℓ is defined as follows: 

*

1

1
,i

i

n i
B A

n n


 
  

   
 
 

  ℓ = 1, …, n. 

• Let C be an [n, n − r, d] code. Let Qh,i be the number of vectors of weight i in 

the cosets of weight h, excluding the coset leaders.  We define the following values: 

(17)   *
, ,

1 0

1
,

t

t h i

i t h

n i
A Q

n n
  

 
  

   
 
 

   ℓ = t + 1, …, n. 

Theorem 9 [8, Theorem 6]. Let C be an [n, n − r, d] binary code with dual 

distance d
⊥
 and dual extended binomial moments {B

∗
1, …, B

∗
n}. Let d + d

⊥
 ≤ n. If 

B
∗
n−ℓ ≤ B

∗
n−ℓ+1 − 2r−ℓ, ℓ = d + 1, …, n − d

⊥
 + 1, 

then C is proper. 

Proposition 8. The codes with the parity check matrices S and Ω are proper. 

The codes Πr with r = 5, 6, 7, 8, 9 are proper. The code W6 is proper. 

Proof: We use Proposition 3 and Theorem 9.    

Proposition 9. The codes Πr with 10 ≤ r ≤ 20 are not proper. 

Proof: Using [9, Equation (2.2)] and Proposition 3, we obtain 

Pue(Πr, p) = 
1

2r
(1 + 10(1 − 2p)2r−3

 + (2r − 16)(1 − 2p)52r−5
 +  

+ 5(1 − 2p)2r−2
) − (1 − p)52r−4

. 

The corresponding derivative by p is 
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Pʹue(Πr, p) = 5(−
1

2
(1 − 2p)2r−3−1 − (2r−4 − 1)(1 − 2p)52r−5−1 − 

1

2
(1 − 2p)2r−2−1 +  

+ 2r−4(1 − p)52r−4−1). 

Taking into account Theorem 8, we checked by computer that, for 10 ≤ r ≤ 20, 

in the region 
4

1 1
0,

3 3 2r

 
 

 
 there exist values of p such that the derivative  

Pʹue(Πr, p) is negative.     

Theorem 10 [10, Theorem 2]. Let C be an [n, n − r, d] binary code with A
∗
ℓ,t

 as 

in (17). If 

A
∗
ℓ,t − 2A

∗
ℓ−1,t ≥ 0, ℓ = t + 2, …, n, 

then C is t-proper. 

Proposition 10. The codes with the parity check matrices S and Ω are 1-proper. 

The codes Πr with r = 5, 6, 7 are 1-proper. The code W6 is 1-proper. 

Proof: We use Theorem 10. In order to calculate the values of A
∗
ℓ,t, we take the 

parity check matrices of the corresponding codes.   
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