New covering codes of radius R, codimension $t R$ and $t R+\frac{R}{2}$, and saturating sets in projective spaces

Alexander A. Davydov*
Institute for Information Transmission Problems (Kharkevich institute), Russian Academy of Sciences
Bol'shoi Karetnyi per. 19, Moscow, 127051, Russian Federation. E-mail: adav@iitp.ru
Stefano Marcugini ${ }^{\dagger}$ and Fernanda Pambianco ${ }^{\dagger}$
Dipartimento di Matematica e Informatica, Università degli Studi di Perugia,
Via Vanvitelli 1, Perugia, 06123, Italy. E-mail: \{stefano.marcugini,fernanda.pambianco\}@unipg.it

Abstract

The length function $\ell_{q}(r, R)$ is the smallest length of a q-ary linear code of codimension r and covering radius R. In this work we obtain new constructive upper bounds on $\ell_{q}(r, R)$ for all $R \geq 4$ and $r=t R$ with integer $t \geq 2$, and also for all even $R \geq 2$ and $r=t R+\frac{R}{2}$ with integer $t \geq 1$. The new bounds are provided by new infinite families of covering codes with fixed R and growing codimension. The new bounds improve upon the known ones.

We propose a general regular construction (called "Line-Ovals") of a minimal ρ-saturating $((\rho+1) q+1)$-set in the projective space $\operatorname{PG}(2 \rho+1, q)$ for all $\rho \geq 0$. Such a set corresponds to an $[R q+1, R q+1-2 R]_{q} R$ locally optimal ${ }^{1}$ code of covering radius $R=\rho+1$. In these codes, we investigate combinatorial properties regarding to spherical capsules (including the property to be a surface-covering code ${ }^{1}$) and give corresponding constructions for code codimension lifting. Using the new codes as starting points in these constructions we obtained the desired infinite code families with growing $r=t R$.

In addition, we obtain new 1-saturating sets in the projective plane $\operatorname{PG}\left(2, q^{2}\right)$ and, founding on them, construct infinite code families with fixed even radius $R \geq 2$ and growing codimension $r=t R+\frac{R}{2}, t \geq 1$.

^[*The research of A.A. Davydov was done at IITP RAS and supported by the Russian Government (Contract No 14.W03.31.0019). ${ }^{\dagger}$ The research of S. Marcugini and F. Pambianco was supported in part by Ministry for Education, University and Research of Italy (MIUR) (Project "Geometrie di Galois e strutture di incidenza"), by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INDAM), and by University of Perugia, (Projects "Configurazioni Geometriche e Superfici Altamente Simmetriche" and "Codici lineari e strutture geometriche correlate", Base Research Fund 2015). ${ }^{1}$ See the definitions at the end of Section 1.1]

Keywords: Covering codes, saturating sets, the length function, upper bounds, projective spaces.

Mathematics Subject Classification (2010). 51E21, 51E22, 94B05

1 Introduction

1.1 Covering codes. The length function

Let \mathbb{F}_{q} be the Galois field with q elements, $\mathbb{F}_{q}^{*}=\mathbb{F}_{q} \backslash\{0\}$. Let \mathbb{F}_{q}^{n} be the n-dimensional vector space over \mathbb{F}_{q}. Denote by $[n, n-r]_{q}$ a q-ary linear code of length n and codimension (redundancy) r, that is a subspace of \mathbb{F}_{q}^{n} of dimension $n-r$. The sphere of radius R with center c in \mathbb{F}_{q}^{n} is the set $\left\{v: v \in \mathbb{F}_{q}^{n}, d(v, c) \leq R\right\}$ where $d(v, c)$ is the Hamming distance between the vectors v and c.

Definition 1.1. (i) The covering radius of a linear $[n, n-r]_{q}$ code is the least integer R such that the space \mathbb{F}_{q}^{n} is covered by the spheres of radius R centered at the codewords.
(ii) A linear $[n, n-r]_{q}$ code has covering radius R if every column of \mathbb{F}_{q}^{r} is equal to a linear combination of at most R columns of a parity check matrix of the code, and R is the smallest value with this property.

Definitions 1.1(i) and 1.1(ii) are equivalent. Let an $[n, n-r]_{q} R$ code be an $[n, n-r]_{q}$ code of covering radius R. An $[n, n-r]_{q} R$ code of minimum distance d is denoted by $[n, n-r, d]_{q} R$ code. For an introduction to coverings of vector Hamming spaces over finite fields, see [5, 7].

The covering density μ of an $[n, n-r]_{q} R$-code is defined as the ratio of the total volume of all q^{n-r} spheres of radius R centered at the codewords to the volume q^{n} of the space \mathbb{F}_{q}^{n}. By Definition 1.1 (i), we have $\mu \geq 1$. In the other words,

$$
\begin{equation*}
\mu=\left(q^{n-r} \sum_{i=0}^{R}(q-1)^{i}\binom{n}{i}\right) \frac{1}{q^{n}}=\frac{1}{q^{r}} \sum_{i=0}^{R}(q-1)^{i}\binom{n}{i} \geq 1 \tag{1.1}
\end{equation*}
$$

The covering quality of a code is better if its covering density is smaller. For fixed q, r, R, the covering density of an $[n, n-r]_{q} R$ code decreases with decreasing n.

Codes investigated from the point of view of the covering quality are usually called covering codes [7]; see an online bibliography [28, works [5, 9-14, 17, 20, 26, 27], and the references therein.

Definition 1.2. [5, 7] The length function $\ell_{q}(r, R)$ is the smallest length of a q-ary linear code of codimension r and covering radius R.

From (1.1), see also Definition 1.1(ii), one obtains an implicit lower bound on $\ell_{q}(r, R)$:

$$
\begin{equation*}
\sum_{i=0}^{R}(q-1)^{i}\binom{\ell_{q}(r, R)}{i} \geq q^{r} \tag{1.2}
\end{equation*}
$$

In particular, for $R=1$ we have $\ell_{q}(r, 1) \geq \frac{q^{r}-1}{q-1}$. This means that the perfect $\left[\frac{q^{r}-1}{q-1}, \frac{q^{r}-1}{q-1}-r, 3\right]_{q} 1$ Hamming code achieves the bound and has the covering density equal to one. The same is true for the perfect Golay codes $[23,12,7]_{2} 3$ and $[11,6,5]_{3} 2$. In the general case, note that the main term of the sum in (1.2) is $(q-1)^{R}\left(\stackrel{\ell_{q}(r, R)}{R}\right)$. If n is considerable larger than R (this is the natural situation in covering codes investigations) and if q is large enough, we have

$$
\begin{aligned}
& \sum_{i=0}^{R}(q-1)^{i}\binom{\ell_{q}(r, R)}{i} \approx(q-1)^{R}\binom{\ell_{q}(r, R)}{R} \approx q^{R} \frac{\left(\ell_{q}(r, R)\right)^{R}}{R!} \gtrsim q^{r} \\
& \ell_{q}(r, R) \gtrsim \sqrt[R]{R!} \cdot q^{(r-R) / R}
\end{aligned}
$$

and, in a more general form,

$$
\begin{equation*}
\ell_{q}(r, R) \gtrsim c q^{(r-R) / R} \tag{1.3}
\end{equation*}
$$

where c is independent of q but it is possible that c depends on r and R.
Let t, s, R^{*} be integers. Let q^{\prime} be a prime power. In [11, 13, 14, 17], see also the references therein, for the situations

$$
\begin{align*}
& \text { (i) } r=t R, \text { arbitrary } q, \tag{1.4}\\
& \text { (ii) } R=s R^{*}, r=t R+s, q=\left(q^{\prime}\right)^{R^{*}}, \\
& \text { (iii) } r \neq t R, \quad q=\left(q^{\prime}\right)^{R},
\end{align*}
$$

$[n, n-r]_{q} R$ covering codes are obtained with lengths of the form

$$
\begin{equation*}
n=c_{1}(r, R) q^{(r-R) / R}+\sum_{i \geq 2} c_{i}(r, R) q^{(r-R) / R-\mu_{i}}, c_{1}(r, R)>1, \mu_{i}>0 \tag{1.5}
\end{equation*}
$$

where all $c_{i}(r, R)$ are constants independent of q. Also, for $i \geq 2$, one usually has $c_{i}(r, R) \geq$ 0 , but it is possible that $c_{i}(r, R)<0$, see for example Propositions 1.6 and 1.7. For growing q, code length n of (1.5) is close (by order) to the bound (1.3) since all $\mu_{i}>0$.

In this work, we consider the case (i) of (1.4) for $R \geq 4$ and the situation (ii) for even R with $R^{*}=2$. We briefly describe the known results and then improve upon many of them by constructing new codes.

For new codes with $r=t R$ we note and use interesting and useful combinatorial properties connected with the locally optimality, R, ℓ-capsules and R, ℓ-objects.

Definition 1.3. [12] A linear covering code is called locally optimal if one cannot remove any column from its parity check matrix without increase in covering radius. A locally optimal code can be called also non-shortening in the sense mentioned.

Let $0 \leq \ell \leq R$. A spherical R, ℓ-capsule with center c in \mathbb{F}_{q}^{n} is the set $\left\{v: v \in \mathbb{F}_{q}^{n}\right.$, $0 \leq \ell \leq d(v, c) \leq R\}$ where $d(v, c)$ is the Hamming distance between the vectors v and c, see [9, Rem. 5], [10, Rem. 2.1], [14, Sect, 2].

Definition 1.4. [9], [10, Sect. 2], [14, Sect, 2] Let $0 \leq \ell \leq R$. A linear $[n, n-r]_{q} R$ code of covering radius R is called an R, ℓ-object and is denoted as an $[n, n-r]_{q} R, \ell$ code if any of following holds.
(i) The space \mathbb{F}_{q}^{n} is covered by the R, ℓ-capsules centered at the codewords.
(ii) Every column of the space \mathbb{F}_{q}^{r} (including the zero column) is equal to a linear combination with nonzero coefficients of at least ℓ and at most R distinct columns of a parity-check matrix of the code.
(iii) Every coset of the code (including the code itself) contains a weight w word of the space \mathbb{F}_{q}^{n} such that $\ell \leq w \leq R$.

Definitions 1.4(i), 1.4 (ii), and 1.4(iii) are equivalent. In 9, 10, 14] widened definitions of R, ℓ-objects are considered. But for this work, Definition 1.4 is sufficient.

Note that the R, R-capsule is the surface of the sphere of radius R.
Definition 1.5. An $[n, n-r]_{q} R, R$ code is called surface-covering code of radius R.
The value of ℓ is important for code codimension lifting constructions, see Section 4 .

1.2 The known results

Codes with radius $R=2,3$ and codimension $r=t R$ are widely investigated for arbitrary q, see [11], [14, Sects. 4, 5], [17, Ths. 9,12]. At the same time, codes with $R \geq 4$ and $r=t R$ are investigated insufficiently; moreover, the known results on these codes are obtained by use of codes with $R=2,3$ in the so-called direct sum construction [14, Sect.4.2]. The following results on codes with $R \geq 4$ and $r=t R$ are described in the literature.

Proposition 1.6. [13, Sect. 2], [14, Ths. 6.1,6.2] The following constructive upper bounds on the length function (provided by infinite families of codes with growing codimension) hold:

$$
\begin{equation*}
\ell_{q}(r, R) \leq R q^{(r-R) / R}+\left\lceil\frac{R}{3}\right\rceil q^{(r-2 R) / R}+\delta_{q}(r, R), R \geq 4, r=t R, t \geq 2 \tag{1.6}
\end{equation*}
$$

where values of $\delta_{q}(r, R)$ with $w=2 R(\bmod 3)$ are as follows:

$$
\delta_{q}(r, R)=0, \quad q \geq 4, \quad r=2 R \quad \text { [14, Th. 6.1]; }
$$

$$
\begin{array}{llll}
\delta_{q}(r, R)=0, & q=16, q \geq 23, & r=3 R & \text { [14, eq. (6.1)], [17]; } \\
\delta_{q}(r, R)=2 w\left(q^{(r-3 R) / R}+1\right), & q=4,5,9, & r=4 R & \text { [14, eq. (6.1)], [11]; } \\
\delta_{q}(r, R)=w\left(q^{(r-3 R) / R}+1\right), & q \geq 7, q \neq 9, & r=4 R, 6 R & \text { [14, eq. (6.1)], [17]; } \\
\delta_{q}(r, R)=w q^{(r-3 R) / R}, & q=5,9, & r \geq 5 R, r \neq 6 R & \text { [14, Th. 6.2]; } \\
\delta_{q}(r, R)=0, & q \geq 7, q \neq 9, & r \geq 5 R, r \neq 6 R & \text { [14, Th. 6.2]. }
\end{array}
$$

The following results on codes with even covering radius $R \geq 2$ and codimension $r=t R+\frac{R}{2}$ are described in the literature.

Proposition 1.7. [11, Ex. 6, eq. (33)], [13], [14, Sects. 4.4, 7] Let q^{\prime} be a prime power. Let the covering radius $R \geq 2$ be even. Let the code codimension be $r=t R+\frac{R}{2}$ with integer t. The following constructive upper bounds on the length function (provided by infinite families of codes with growing codimension) hold:

$$
\begin{align*}
& \ell_{q}(r, R) \leq \frac{R}{2}\left(3-\frac{1}{\sqrt{q}}\right) q^{(r-R) / R}+\frac{R}{2}\left\lfloor q^{(r-2 R) / R-0.5}\right\rfloor, q=\left(q^{\prime}\right)^{2} \geq 16, t \geq 1 \tag{1.7}\\
& \ell_{q}(r, R) \leq R\left(1+\frac{1}{\sqrt[4]{q}}+\frac{1}{\sqrt{q}}\right) q^{(r-R) / R}+\frac{R}{2}\left\lfloor q^{(r-2 R) / R-0.5}\right\rfloor, q=\left(q^{\prime}\right)^{4}, t \geq 1 \tag{1.8}\\
& \ell_{q}(r, R) \leq R\left(1+\frac{1}{\sqrt[6]{q}}+\frac{1}{\sqrt[3]{q}}+\frac{1}{\sqrt{q}}\right) q^{(r-R) / R}+R\left\lfloor q^{(r-2 R) / R-0.5}\right\rfloor, q=\left(q^{\prime}\right)^{6} \tag{1.9}\\
& q^{\prime} \leq 73 \text { prime }, t \geq 1, t \neq 4,6
\end{align*}
$$

Problem 1. Improve the known bounds on the length function $\ell_{q}(r, R)$ collected in
(i) Proposition 1.6 where $R \geq 4, r=t R, t \geq 2$,
(ii) Proposition 1.7 where $R \geq 2$ is even, $r=t R+\frac{R}{2}, t \geq 1$.

1.3 Saturating sets in projective spaces

Effective methods to obtain upper bounds on $\ell_{q}(r, R)$ are connected with saturating sets in projective spaces.

Let $\operatorname{PG}(N, q)$ be the N-dimensional projective space over the field \mathbb{F}_{q}; see [21-23] for an introduction to the projective spaces over finite fields, see also [19, 22, 26, 27] for connections between coding theory and Galois geometries.

Definition 1.8. (i) A point set $\mathcal{S} \subseteq \operatorname{PG}(N, q)$ is ρ-saturating if for any point A of $\mathrm{PG}(N, q) \backslash \mathcal{S}$ there exist $\rho+1$ points in \mathcal{S} generating a subspace of $\mathrm{PG}(N, q)$ containing A, and ρ is the smallest value with such property.
(ii) A point set $\mathcal{S} \subseteq \operatorname{PG}(N, q)$ is ρ-saturating if every point $A \in \operatorname{PG}(N, q)$ (in the homogeneous coordinates) can be written as a linear combination of at most $\rho+1$ points of \mathcal{S}, and ρ is the smallest value with such property (cf. Definition 1.1(ii)).

Definitions 1.8(i) and 1.8(ii) are equivalent.
Saturating sets are considered, for instance, in [5, 6, 10, 12, 17, 19, 20, 24, 26, 27, 30, In the literature, saturating sets are also called "saturated sets", "spanning sets", "dense sets".

Let $s_{q}(N, \rho)$ be the smallest size of a ρ-saturating set in $\operatorname{PG}(N, q)$.
If q-ary positions of a column of an $r \times n$ parity check matrix of an $[n, n-r]_{q} R$ code are treated as homogeneous coordinates of a point in $\operatorname{PG}(r-1, q)$ then this parity check matrix defines an $(R-1)$-saturating set of size n in $\mathrm{PG}(r-1, q)$ [6, 10, 13, 14, 16, 19, 20, 24, 26, 27, So, there is a one-to-one correspondence between $[n, n-r]_{q} R$ codes and ($R-1$)-saturating n-sets in $\mathrm{PG}(r-1, q)$. Therefore,

$$
\ell_{q}(r, R)=s_{q}(r-1, R-1)
$$

Recall that the results of Proposition 1.6 are based on direct sum of codes of radius $R=2,3$. The following geometrical constructions make an important contribution to the structures of the best codes with $R=2,3$:

- "oval plus line" [6, p. 104], [10, Th. 5.1]; the construction obtains an 1-saturating ($2 q+1$)set in $\operatorname{PG}(3, q)$ that corresponds to an $[2 q+1,(2 q+1)-4]_{q} 2$ code with $r=2 R$;
- "two ovals plus line" [16, Sect. 4]; the construction obtains a 2 -saturating $(3 q+1)$-set in $\operatorname{PG}(5, q)$ that corresponds to a $[3 q+1,(3 q+1)-6]_{q} 3$ code with $r=2 R$.

Problem 2. [14, Sect. 6.1] For all $\rho \geq 3$ obtain a general construction of a ρ-saturating $((\rho+1) q+1)$-set in $\mathrm{PG}(2 \rho+1, q)$ that corresponds to an $[R q+1, R q+1-2 R]_{q} R$ code with $R=\rho+1$. In other words, prove (constructively) that $s_{q}(2 \rho+1, \rho) \leq(\rho+1) q+1$ and thereby prove that $\ell_{q}(2 R, R) \leq R q+1$.

Note that for $n<(\rho+1) q+1=R q+1$, no examples of ρ-saturating n-sets in PG $(2 \rho+1, q)$ (resp. $[n, n-2 R]_{q} R$ codes with $R=\rho+1$) seem to be known. Moreover, in [14, Prop. 4.2], it is proved that $\ell_{4}(4,2)=s_{4}(3,1)=2 \cdot 4+1$. This strengthens the interest to Problem 2 and gives rise to the following.

Problem 3. [14, Sects. 4, 5] Determining whether $\ell_{q}(2 R, R)=R q+1$, equivalently whether $s_{q}(2 \rho+1, \rho)=(\rho+1) q+1$.

Definition 1.9. A ρ-saturating set in $\operatorname{PG}(N, q)$ is minimal if it does not contain a smaller ρ-saturating set in $\operatorname{PG}(N, q)$.

If the positions of a column of a parity check matrix of an $[n, n-r]_{q} R$ locally optimal code are considered as homogeneous coordinates of a point in $\operatorname{PG}(r-1, q)$ then this parity check matrix defines a minimal $(R-1)$-saturating n-set in $\operatorname{PG}(r-1, q)$ [12]. So, there is a a one-to-one correspondence between $[n, n-r]_{q} R$ locally optimal codes and minimal $(R-1)$-saturating n-sets in $\mathrm{PG}(r-1, q)$.

If for the solution of Problem 2 we obtain minimal $((\rho+1) q+1)$-sets in $\operatorname{PG}(2 \rho+1, q)$ (resp. locally optimal $[R q+1, R q+1-2 R]_{q} R$ codes), this advances the solution of Problem 3.

Note that the codes providing the bounds of Proposition 1.7 are based on 1-saturating sets in the projective plane of square order. Improvements of these bounds could be connected with new 1 -saturating sets of relatively small sizes.

Problem 4. In $\operatorname{PG}\left(2, q^{2}\right)$, construct new 1-saturating sets with sizes smaller than the known ones.

1.4 The goals and the structure of the paper

The goals of this paper:

- solve Problem 2 and with the help of the new $[R q+1, R q+1-2 R]_{q} R$ codes solve Problem 1 (i) regarding codes of covering radius $R \geq 4$ and codimension $t R$;
- solve Problem 4 and with the help of the new 1 -saturating sets solve Problem 1 (ii) regarding codes with even covering radius $R \geq 2$ and codimension $t R+\frac{R}{2}$.

The paper is organized as follows. In Section 2 we collect the main results of the paper. In Section 3, we propose a construction "line plus ρ ovals" for ρ-saturating sets in PG $(2 \rho+$ $1, q$) and codes of codimension $2 R$. This solves Problem 2, In Section 4, we describe two constructions from the family of the so-called " q^{m}-concatenating constructions" for code codimension lifting. The constructions are convenient for $[n, n-r]_{q} R, \ell$ codes with $\ell \in\{R-1, R\}$. In Section 5, we prove that the codes obtained in Section 3 have $\ell=R$ for odd q and $\ell=R-1$ for even q. (So, for odd q we have surface-covering codes.) Then we use these codes as starting ones for the constructions of Section 4. As the result, we obtained new infinite code families with fixed radius $R \geq 4$ and growing codimension $t R$. This solves Problem 1(i) for the most part. In Section 6, using recent results on double blocking set, we obtain new 1 -saturating sets in $\operatorname{PG}\left(2, q^{2}\right)$ that solve in part Problem 4. Then basing on these sets, we obtain new infinite code families for all fixed even radii $R \geq 2$ and growing codimension $t R+\frac{R}{2}$. This solves in part Problem $\mathbb{1}$ (ii).

2 The main results

The main results of this paper are as follows:

- Problem 2 is solved, see Section 3. For all $\rho \geq 0$ we propose a general regular construction ("Line-Ovals") of a minimal ρ-saturating $((\rho+1) q+1)$-set in $\operatorname{PG}(2 \rho+1, q)$. This set corresponds to an $[R q+1, R q+1-2 R]_{q} R$ locally optimal code with $R=\rho+1$. Thereby we have proved that $s_{q}(2 \rho+1, \rho) \leq(\rho+1) q+1$ and, equivalently, $\ell_{q}(2 R, R) \leq$ $R q+1$. The minimality of the obtained ρ-saturating set allows to hope that Problem 3 can be solved.
- Problem 1 (i) is solved for the most part, see Sections 4 and 5. We described two constructions for code codimension lifting. Using the $[R q+1, R q+1-2 R]_{q} R$ codes as a start for these constructions, we obtained infinite code families with fixed radius $R \geq 4$ and growing codimension $t R$. These families improve the known results collected in Proposition 1.6 apart from $t=3$. New bounds on the length function obtained in this paper are given in Theorem 2.1 based on Theorems 3.8, 3.10, 5.3, 5.4.

Theorem 2.1. Let t be a growing integer. For the length function $\ell_{q}(r, R)$ and for the smallest size $s_{q}(r-1, R-1)$ of a $(R-1)$-saturating set in the projective space $\mathrm{PG}(r-1, q)$ the following constructive upper bounds (provided by infinite families of codes) hold:
$\ell_{q}(r, R)=s_{q}(r-1, R-1) \leq R q^{(r-R) / R}+q^{(r-2 R) / R}+\Delta_{q}(r, R), r=t R$, where for $m_{1}=\left\lceil\log _{q}(R+1)\right\rceil+1$ we have
(i) $\Delta_{q}(r, R)=0$ if $t=2, q=4$ and $q \geq 7, R \geq 4$;
(ii) $\Delta_{q}(r, R)=0$ if $t=2, q=5, R=4,5$;
(iii) $\Delta_{q}(r, R)=0$ if $t \geq\left\lceil\log _{q} R\right\rceil+3, q \geq 7$ odd, $R \geq 4$;
(iv) $\Delta_{q}(r, R)=\sum_{j=2}^{t} q^{(r-j R) / R}$ if $m_{1}+2<t<3 m_{1}+2, q \geq 8$ even, $R \geq 4$;
(v) $\Delta_{q}(r, R)=\sum_{j=2}^{m_{1}+2} q^{(r-j R) / R}$ if $t=m_{1}+2$ and $t \geq 3 m_{1}+2, q \geq 8$ even, $R \geq 4$.

The new bounds of Theorem [2.1] are better than the known ones of Proposition 1.6. In particular, in Proposition [1.6, the coefficient for $q^{(r-2 R) / R}$ is $\left\lceil\frac{R}{3}\right\rceil$, whereas in Theorem 2.1 it is equal to 1 or 2 , see (i)-(iii) and (iv)-(v), respectively. Note that in the cases (iv)-(v), the coefficient is equal to 2 since the term with $j=2$ of the sum in $\Delta_{q}(r, R)$ is $q^{(r-2 R) / R}$.

- Problem 4 is solved in part, see Section 6 .

Throughout the paper we use the following notation:

$$
\begin{align*}
& \phi(q) \text { is the order of the largest proper subfield of } \mathbb{F}_{q} ; \tag{2.1}\\
& f_{q}(r, R)=\left\{\begin{array}{cc}
0 & \text { if } \quad r \neq \frac{9 R}{2}, \frac{13 R}{2} \\
q^{(r-3 R) / R-0.5}+q^{(r-4 R) / R-0.5} & \text { if } \quad r=\frac{9 R}{2}, \frac{13 R}{2}
\end{array}\right. \tag{2.2}
\end{align*}
$$

In Theorem 6.3(v),(vi), using recent results on double blocking set, it is shown that in $\mathrm{PG}(2, q)$ there are 1 -saturating sets of the following sizes:

$$
2 \sqrt{q}+2 \frac{\sqrt{q}-1}{\phi(\sqrt{q})-1}, \quad q=p^{2 h}, h \geq 2, p \geq 3 \text { prime }
$$

$$
2 \sqrt{q}+2 \frac{\sqrt{q}}{p}+2, \quad \quad q=p^{2 h}, h \geq 2, p \geq 7 \text { prime }
$$

The new 1 -saturating sets have smaller sizes than the known ones, see Remark 6.4.

- Problem 1(ii) is solved in part, see Section 6. Using the new 1-saturating sets in $P G(2, q)$, we obtained infinite families of codes with covering radius $R=2$, see Theorem 6.9, and, basing on them, we constructed infinite code families with fixed even radius $R \geq 2$ and growing codimension $t R+\frac{R}{2}$, see Theorem 6.11 that gives rise to Theorem 2.2,
Theorem 2.2. Assume that p is prime, $q=p^{2 \eta}, \eta \geq 2$, covering radius $R \geq 2$ is even, and code codimension is $r=t R+\frac{R}{2}$ with growing integer $t \geq 1$. Let $\phi(\sqrt{q})$ and $f_{q}(r, R)$ be as in (2.1), (2.2). The following constructive upper bounds on the length function (provided by infinite families of codes with growing codimension) hold:
(i) $\ell_{q}(r, R) \leq R\left(1+\frac{\sqrt{q}-1}{\sqrt{q}(\phi(\sqrt{q})-1)}\right) q^{(r-R) / R}+R\left\lfloor q^{(r-2 R) / R-0.5}\right\rfloor+\frac{R}{2} f_{q}(r, R), p \geq 3$;
(ii) $\ell_{q}(r, R) \leq R\left(1+\frac{1}{p}+\frac{1}{\sqrt{q}}\right) q^{(r-R) / R}+R\left\lfloor q^{(r-2 R) / R-0.5}\right\rfloor+\frac{R}{2} f_{q}(r, R), p \geq 7$.

If $\sqrt{q}=p^{\eta}$ with $\eta \geq 3$ odd, the new bounds of Theorem 2.2 are better than the known ones of Proposition 1.7. For example, if $q=p^{6}, \eta=3$, then the bound of Theorem 2.2(ii) is by $R q^{(r-R) / R-1 / 3}$ smaller than the known one of (1.9). Also, the new bound holds for all $p \geq 7$ whereas in (1.9) $p \leq 73$. Moreover, if $\eta \geq 5$ odd, the known bounds (1.7) have the main term $\frac{3}{2} R q^{(r-R) / R}$ whereas for the new bounds it is $R q^{(r-R) / R}$.

3 Construction "Line-Ovals" for ρ-saturating sets in $\mathrm{PG}(2 \rho+1, q)$ and codes of codimension $2 R$

Notation. Throughout the paper we denote by $x_{i}, i=0,1, \ldots, N$, the homogeneous coordinates of points of $P G(N, q)$. In the other words, a point $\left(x_{0} x_{1} \ldots x_{N}\right) \in \operatorname{PG}(N, q)$. The leftmost nonzero coordinate is equal to 1 . In general, by default, $x_{i} \in \mathbb{F}_{q}$. If $x_{i} \in \mathbb{F}_{q}^{*}$, we denote it as \widehat{x}_{i}. If $\left(x_{i} \ldots x_{i+m}\right) \neq(0 \ldots 0)$, we denote it as $\overline{x_{i} \ldots x_{i+m}}$. Also, we can write explicit values 0,1 for some coordinates or denote coordinates by letters values of which is explained later.

3.1 The construction

Let $\mathbb{F}_{q}=\left\{a_{1}=0, a_{2}, \ldots, a_{q}\right\}$ be the Galois field of order q. Let $\mathbb{F}_{q}^{*}=\mathbb{F}_{q} \backslash\{0\}=$ $\left\{a_{2}, \ldots, a_{q}\right\}$. Denote $\Sigma_{\rho}=\operatorname{PG}(2 \rho+1, q)$. Let Σ_{u} be the $(2 u+1)$-subspace of Σ_{ρ} such that

$$
\Sigma_{u}=\{(\underbrace{x_{0} x_{1} \ldots x_{2 u+1}}_{2 u+2} \underbrace{0 \ldots 0}_{2 \rho-2 u}): x_{i} \in \mathbb{F}_{q}\}, u=0,1, \ldots, \rho .
$$

In Σ_{u}, let π_{u} be the plane such that

$$
\pi_{u}=\{(\underbrace{0 \ldots 0}_{2 u-1} x_{2 u-1} x_{2 u} x_{2 u+1} \underbrace{0 \ldots 0}_{2 \rho-2 u}): x_{i} \in \mathbb{F}_{q}\} \subset \Sigma_{u}, u=1,2, \ldots, \rho .
$$

In π_{u}, let A_{u}^{0} and A_{u}^{∞} be the points of the form

$$
A_{u}^{0}=(\underbrace{0 \ldots 0}_{2 u-1} 100 \underbrace{0 \ldots 0}_{2 \rho-2 u}) \in \pi_{u}, A_{u}^{\infty}=(\underbrace{0 \ldots 0}_{2 u-1} 001 \underbrace{0 \ldots 0}_{2 \rho-2 u}) \in \pi_{u}, u=1,2, \ldots, \rho .
$$

In π_{u}, let \mathcal{C}_{u} and \mathcal{C}_{u}^{*} be the conic and the truncated one, respectively, of the form

$$
\mathcal{C}_{u}=\mathcal{C}_{u}^{*} \cup\left\{A_{u}^{0}, A_{u}^{\infty}\right\}, \mathcal{C}_{u}^{*}=\{(\underbrace{0 \ldots 0}_{2 u-1} 1 a a^{2} \underbrace{0 \ldots 0}_{2 \rho-2 u}): a \in \mathbb{F}_{q}^{*}\}, u=1,2, \ldots, \rho .
$$

Let T_{u} be the nucleus of \mathcal{C}_{u}, if q is even, or the intersection of the tangents to \mathcal{C}_{u} in A_{u}^{0} and A_{u}^{∞}, if q is odd, so that

$$
T_{u}=(\underbrace{0 \ldots 0}_{2 u-1} 010 \underbrace{0 \ldots 0}_{2 \rho-2 u}) \in \pi_{u}, u=1,2, \ldots, \rho .
$$

Finally, in Σ_{0}, let A_{0}^{0} and A_{0}^{∞} be the points of the form $A_{0}^{0}=(10 \underbrace{0 \ldots 0}_{2 \rho}), A_{0}^{\infty}=(01 \underbrace{0 \ldots 0}_{2 \rho})$.
Also, let \mathcal{L}_{0} and \mathcal{L}_{0}^{*} be the line and the truncated one, respectively, such that

$$
\mathcal{L}_{0}=\mathcal{L}_{0}^{*} \cup\left\{A_{0}^{0}, A_{0}^{\infty}\right\} \subset \Sigma_{0}, \mathcal{L}_{0}^{*}=\{(1 a \underbrace{0 \ldots 0}_{2 \rho}): a \in \mathbb{F}_{q}^{*}\} \subset \Sigma_{0} .
$$

Construction S. ("Line-Ovals") Let $\rho \geq 0$. Let \mathcal{S}_{ρ} be a point $((\rho+1) q+1)$-subset of Σ_{ρ}. Let P_{j} be the j-th point of $\mathcal{S}_{\rho}, j=1,2, \ldots,(\rho+1) q+1$. We construct S_{ρ} as follows:

$$
\begin{align*}
& \mathcal{S}_{\rho}=\left\{A_{0}^{0}\right\} \cup \mathcal{L}_{0}^{*} \cup \bigcup_{u=1}^{\rho}\left(\mathcal{C}_{u}^{*} \cup\left\{T_{u}\right\}\right) \cup\left\{A_{\rho}^{\infty}\right\}=\left\{P_{1}, P_{2}, \ldots, P_{(\rho+1) q+1}\right\} \tag{3.1}
\end{align*}
$$

The points P_{j} of \mathcal{S}_{ρ} have the form

$$
\begin{align*}
& P_{1}=(10 \underbrace{0 \ldots 0}_{2 \rho})=A_{0}^{0} ; \quad P_{j}=(1 a_{j} \underbrace{0 \ldots 0}_{2 \rho}), \quad a_{j} \in \mathbb{F}_{q}^{*}, \quad j=2,3, \ldots, q ; \tag{3.2}\\
& P_{u q+j-1}=(\underbrace{0 \ldots 0}_{2 u-1} 1 a_{j} a_{j}^{2} \underbrace{0 \ldots 0}_{2 \rho-2 u}), a_{j} \in \mathbb{F}_{q}^{*}, \quad u=1,2, \ldots, \rho, j=2,3, \ldots, q ; \\
& P_{(u+1) q}=(\underbrace{0 \ldots 0}_{2 u-1} 010 \underbrace{0 \ldots 0}_{2 \rho-2 u})=T_{u}, u=1,2, \ldots, \rho ; \quad P_{(\rho+1) q+1}=A_{\rho}^{\infty} .
\end{align*}
$$

Example 3.1. By (3.1), $S_{0}=\left\{A_{0}^{0}\right\} \cup \mathcal{L}_{0}^{*} \cup\left\{A_{0}^{\infty}\right\}, S_{1}=\left\{A_{0}^{0}\right\} \cup \mathcal{L}_{0}^{*} \cup \mathcal{C}_{1}^{*} \cup\left\{T_{1}, A_{1}^{\infty}\right\}$, $S_{2}=\left\{A_{0}^{0}\right\} \cup \mathcal{L}_{0}^{*} \cup \mathcal{C}_{1}^{*} \cup\left\{T_{1}\right\} \cup \mathcal{C}_{2}^{*} \cup\left\{T_{2}, A_{2}^{\infty}\right\}$. By (3.1), (3.2), we have

3.2 Saturation of Construction \mathbf{S} for $0 \leq \rho \leq 2$

We say that a point $A \in \operatorname{PG}(N, q)$ is ρ-covered by a set \mathcal{S} if A is a linear combination of less than or equal to $\rho+1$ points of a \mathcal{S}. A subset $\mathcal{G} \subset \operatorname{PG}(N, q)$ is ρ-covered by \mathcal{S} if all points of \mathcal{G} are ρ-covered by \mathcal{S}.

Definition 3.2. Let \mathcal{S} be a ρ-saturating set in $\operatorname{PG}(N, q)$. A point $A \in \mathcal{S}$ is ρ-essential if $\mathcal{S} \backslash\{A\}$ is no longer a ρ-saturating set. A point $A \in \mathcal{S}$ is ρ-essential for a set $\widetilde{\mathcal{M}}_{\rho}(A) \subset$ $\operatorname{PG}(N, q)$ if all points of $\widetilde{\mathcal{M}_{\rho}}(A)$ are not ρ-covered by $\mathcal{S} \backslash\{A\}$. We denote by $\mathcal{M}_{\rho}(A)$ a set such that $\widetilde{\mathcal{M}}_{\rho}(A) \subseteq \mathcal{M}_{\rho}(A) \subset \mathrm{PG}(N, q)$.

Note that by Definition 1.8, a 0-saturating set in $P G(N, q)$ is the whole space. The following proposition is obvious.

Proposition 3.3. Let $q \geq 3$. Let $\Sigma_{0}=\mathrm{PG}(1, q)$. Let the set $\mathcal{S}_{0} \subset \Sigma_{0}$ be as in (3.1), (3.2) see also Example 3.1. Then it holds that
(i) The $(q+1)$-set \mathcal{S}_{0} is a minimal 0 -saturating set in Σ_{0}.
(ii) The point A_{0}^{∞} of \mathcal{S}_{0} is 0 -essential for the set $\widetilde{\mathcal{M}_{0}}\left(A_{0}^{\infty}\right)$ such that

$$
\begin{equation*}
\widetilde{\mathcal{M}_{0}}\left(A_{0}^{\infty}\right)=\mathcal{M}_{0}\left(A_{0}^{\infty}\right)=\left\{A_{0}^{\infty}\right\}=\{(01)\} \tag{3.3}
\end{equation*}
$$

(iii) The q-set $\mathcal{S}_{0} \backslash\left\{A_{0}^{\infty}\right\}$ is 1-saturating in Σ_{0}.

Lemma 3.4. (i) Let $q=4$ or $q \geq 7$. Then all points of $\pi_{u} \backslash\left\{A_{u}^{0}, A_{u}^{\infty}\right\}$ are 1 -covered by $\mathcal{C}_{u}^{*} \cup\left\{T_{u}\right\}, u=1, \ldots, \rho$.
(ii) Let $q \geq 4$. Then all points of $\pi_{\rho} \backslash\left\{A_{\rho}^{0}\right\}$ are 1 -covered by $\mathcal{C}_{\rho}^{*} \cup\left\{T_{\rho}, A_{\rho}^{\infty}\right\}$.

Proof. (i) If q is even, every point of a plane outside of a hyperoval $\mathcal{C}_{u} \cup\left\{T_{u}\right\}$ lies on $(q+2) / 2$ its bisecants. If q is odd, every point of a plane outside of a conic \mathcal{C}_{u} lies on at least $(q-1) / 2$ its bisecants. At most two of aforementioned bisecants will be removed if one removes $A_{u}^{0}, A_{u}^{\infty}$ from \mathcal{C}_{u}. Thus, for $q=4$ and $q \geq 7$, every point of $\pi_{u} \backslash\left\{A_{u}^{0}, A_{u}^{\infty}\right\}$ lies on at least one bisecant of $\mathcal{C}_{u}^{*} \cup\left\{T_{u}\right\}$.
(ii) The proof is similar to the case (i) taking into account that here we remove only one point A_{ρ}^{0} from \mathcal{C}_{ρ}.

Lemma 3.5. Let $q \geq 4, \rho \geq 2$. Then it holds that
(i) The point $A_{u}^{\infty}=A_{u+1}^{0}, u=1, \ldots, \rho-1$, is 2 -covered by \mathcal{C}_{u}^{*} as well as by \mathcal{C}_{u+1}^{*}.
(ii) The plane $\pi_{u}, u=1, \ldots, \rho$, is 2 -covered by \mathcal{C}_{u}^{*}.

Proof. Any three points of a conic generate the plane in which it lies. As $q \geq 4$, we have $\# \mathcal{C}_{u}^{*} \geq 3$.

Proposition 3.6. Let $q=4$ or $q \geq 7$. Let $\Sigma_{1}=\operatorname{PG}(3, q)$. Let the set $\mathcal{S}_{1} \subset \Sigma_{1}$ be as in (3.1), (3.2), see also Example 3.1. Let $\mathcal{M}_{0}\left(A_{0}^{\infty}\right)$ be as in (3.3). Then it holds that
(i) The $(2 q+1)$-set \mathcal{S}_{1} is a minimal 1-saturating set in Σ_{1}.
(ii) The point A_{1}^{∞} of \mathcal{S}_{1} is 1-essential for the set $\widetilde{\mathcal{M}_{1}}\left(A_{1}^{\infty}\right)$ such that

$$
\begin{equation*}
\widetilde{\mathcal{M}_{1}}\left(A_{1}^{\infty}\right)=\mathcal{M}_{1}\left(A_{1}^{\infty}\right)=\left\{\left(x_{0} \ldots x_{3}\right):\left(x_{0} x_{1}\right) \notin \mathcal{M}_{0}\left(A_{0}^{\infty}\right),\left(x_{2} x_{3}\right)=\left(0 \widehat{x}_{3}\right)\right\} . \tag{3.4}
\end{equation*}
$$

(iii) The $2 q$-set $\mathcal{S}_{1} \backslash\left\{A_{1}^{\infty}\right\}$ is 2-saturating in Σ_{1}.

Proof. (i) By Proposition 3.3(iii) and Lemma 3.4, Σ_{0} (points $\left(x_{0} x_{1} 00\right)$) and π_{1} (points $\left.\left(0 x_{1} x_{2} x_{3}\right)\right)$ are 1 -covered by $\left\{A_{0}^{0}\right\} \cup \mathcal{L}_{0}^{*} \cup \mathcal{C}_{1}^{*} \cup\left\{T_{1}, A_{1}^{\infty}\right\}$. So, we should consider points of the form

$$
\begin{equation*}
B=\left(\widehat{x}_{0} x_{1} \overline{x_{2} x_{3}}\right)=\left(1 x_{1} \overline{x_{2} x_{3}}\right) \in \Sigma_{1} \backslash\left(\Sigma_{0} \cup \pi_{1}\right) \tag{3.5}
\end{equation*}
$$

We show that B in (3.5) is a linear combination of at most 2 points of \mathcal{S}_{1}.

1) Let $\left(x_{0} x_{1}\right) \in \mathcal{M}_{0}\left(A_{0}^{\infty}\right)$.

By the hypothesis, $\left(x_{0} x_{1}\right)=(01)$. By (3.5), we have no such points B.
2) Let $\left(x_{0} x_{1}\right) \notin \mathcal{M}_{0}\left(A_{0}^{\infty}\right)$.

By the hypothesis, $\left(x_{0} x_{1} 00\right)$ is 0 -covered by $S_{0} \backslash\left\{A_{0}^{\infty}\right\}$, i.e. $\left(x_{0} x_{1} 00\right)=\left(1 x_{1} 00\right) \in\left\{A_{0}^{0}\right\} \cup \mathcal{L}_{0}^{*}$. For B of (3.5), we have

$$
\begin{align*}
& B=\left(x_{0} x_{1} 0 \widehat{x}_{3}\right)=\left(x_{0} x_{1} 00\right)+\widehat{x}_{3}(0001)=\left(x_{0} x_{1} 00\right)+\widehat{x}_{3} A_{1}^{\infty} ; \tag{3.6}\\
& B=\left(x_{0} x_{1} \widehat{x}_{2} 0\right)=\left(x_{0} x_{1} 00\right)+\widehat{x}_{2}(0010)=\left(x_{0} x_{1} 00\right)+\widehat{x}_{2} T_{1} ; \\
& B=\left(x_{0} x_{1} \widehat{x}_{2} \widehat{x}_{3}\right)=\left(x_{0} z 00\right)+\frac{\widehat{x}_{2}^{2}}{\widehat{x}_{3}}\left(01 y y^{2}\right), z=x_{1}-\frac{\widehat{x}_{2}^{2}}{\widehat{x}_{3}}, y=\frac{\widehat{x}_{3}}{\widehat{x}_{2}} .
\end{align*}
$$

Note that $\left(x_{0} z 00\right)=(1 z 00)$ is 0-covered by $S_{0} \backslash\left\{A_{0}^{\infty}\right\}$ for any z.
From (3.6), we see that all points of S_{1} are 1-essential.
(ii) The assertion follows from (3.6).
(iii) We have, cf. (3.6), $\left(1 x_{1} 0 \widehat{x}_{3}\right)=(1 z 00)+\left(010 \widehat{x}_{3}\right)$, where $z=x_{1}-1$ and $\left(010 \widehat{x}_{3}\right) \in$ $\pi_{1} \backslash\left\{A_{1}^{0}, A_{1}^{\infty}\right\}$ is 1-covered by $\mathcal{C}_{1}^{*} \cup\left\{T_{1}\right\}$, see Lemma 3.4.

Proposition 3.7. Let $q=4$ or $q \geq 7$. Let $\Sigma_{2}=\operatorname{PG}(5, q)$. Let the set $\mathcal{S}_{2} \subset \Sigma_{2}$ be as in (3.1), (3.2), see also Example 3.1. Let $\mathcal{M}_{1}\left(A_{1}^{\infty}\right)$ be as in (3.4). Then it holds that
(i) The $(3 q+1)$-set \mathcal{S}_{2} is a minimal 2 -saturating set in Σ_{2}.
(ii) The point A_{2}^{∞} of \mathcal{S}_{2} is 2-essential for the set $\widetilde{\mathcal{M}_{2}}\left(A_{2}^{\infty}\right)$ such that $\widetilde{\mathcal{M}_{2}}\left(A_{2}^{\infty}\right) \subset \mathcal{M}_{2}\left(A_{2}^{\infty}\right)=\left\{\left(x_{0} \ldots x_{5}\right):\left(x_{0} \ldots x_{3}\right) \notin \mathcal{M}_{1}\left(A_{1}^{\infty}\right),\left(x_{4} x_{5}\right)=\left(0 \widehat{x}_{5}\right)\right\}$.
(iii) The $3 q$-set $\mathcal{S}_{2} \backslash\left\{A_{2}^{\infty}\right\}$ is 3-saturating in Σ_{2}.

Proof. (i) By Propositions 3.3, 3.6 and Lemmas 3.4, 3.5, we have the following: Σ_{0} (points $\left.\left(x_{0} x_{1} 0000\right)\right)$ is 1-covered by $\left\{A_{0}^{0}\right\} \cup \mathcal{L}_{0}^{*} ; \pi_{1}$ (points $\left.\left(0 x_{1} x_{2} x_{3} 00\right)\right)$ and π_{2} (points $\left(000 x_{3} x_{4} x_{5}\right)$) are 2 -covered by \mathcal{C}_{1}^{*} and \mathcal{C}_{2}^{*}, respectively; $\pi_{2} \backslash\left\{A_{2}^{0}\right\}$ is 1-covered by $\mathcal{C}_{2}^{*} \cup\left\{T_{2}, A_{2}^{\infty}\right\} ; \Sigma_{1}$ (points $\left.\left(x_{0} x_{1} x_{2} x_{3} 00\right)\right)$ is 2 -covered by $\mathcal{S}_{1} \backslash\left\{A_{1}^{\infty}\right\}$. Recall that $\Sigma_{0} \cup \pi_{1} \subset \Sigma_{1}$. So, we should consider points of the form

$$
\begin{equation*}
B=\left(\overline{x_{0} x_{1} x_{2}} x_{3} \overline{x_{4} x_{5}}\right) \in \Sigma_{2} \backslash\left(\Sigma_{1} \cup \pi_{2}\right) . \tag{3.8}
\end{equation*}
$$

We show that B in (3.8) is a linear combination of at most 3 points of \mathcal{S}_{2}.

1) Let $\left(x_{0} \ldots x_{3}\right) \in \mathcal{M}_{1}\left(A_{1}^{\infty}\right)$.

By the hypothesis and by (3.4), (3.8), we have

$$
\left(x_{0} x_{1}\right) \notin \mathcal{M}_{0}\left(A_{0}^{\infty}\right), B=\left(x_{0} x_{1} 0 \widehat{x}_{3} \overline{x_{4} x_{5}}\right)=\left(x_{0} x_{1} 0000\right)+\left(000 \widehat{x}_{3} \overline{x_{4} x_{5}}\right),
$$

where $\left(x_{0} x_{1} 0000\right)$ is 0-covered by $S_{0} \backslash\left\{A_{0}^{\infty}\right\}$ and $\left(000 \widehat{x}_{3} \overline{x_{4} x_{5}}\right) \in \pi_{2} \backslash\left\{A_{2}^{0}, A_{2}^{\infty}\right\}$ is 1-covered by $\mathcal{C}_{2}^{*} \cup\left\{T_{2}\right\}$, see Lemma 3.4,
2) Let $\left(x_{0} \ldots x_{3}\right) \notin \mathcal{M}_{1}\left(A_{1}^{\infty}\right)$.

By the hypothesis, $\left(x_{0} \ldots x_{3} 00\right)$ is 1 -covered by $S_{1} \backslash\left\{A_{1}^{\infty}\right\}$. We can write

$$
\begin{equation*}
B=\left(x_{0} \ldots x_{3} 0 \widehat{x}_{5}\right)=\left(x_{0} \ldots x_{3} 00\right)+\widehat{x}_{5}(000001)=\left(x_{0} \ldots x_{3} 00\right)+\widehat{x}_{5} A_{2}^{\infty} ; \tag{3.9}
\end{equation*}
$$

$$
\begin{align*}
& B=\left(x_{0} \ldots x_{3} \widehat{x}_{4} 0\right)=\left(x_{0} \ldots x_{3} 00\right)+\widehat{x}_{4}(000010)=\left(x_{0} \ldots x_{3} 00\right)+\widehat{x}_{4} T_{2} \tag{3.10}\\
& B=\left(x_{0} \ldots x_{3} \widehat{x}_{4} \widehat{x}_{5}\right)=\left(x_{0} x_{1} x_{2} z 00\right)+\frac{\widehat{x}_{4}^{2}}{\widehat{x}_{5}}\left(0001 y y^{2}\right), z=x_{3}-\frac{\widehat{x}_{4}^{2}}{\widehat{x}_{5}}, y=\frac{\widehat{x}_{5}}{\widehat{x}_{4}} . \tag{3.11}
\end{align*}
$$

In (3.9), (3.10), B is a linear combination of at most $(1+1)+1=3$ points. If $\left(x_{0} x_{1} x_{2} z\right) \notin$ $\mathcal{M}_{1}\left(A_{1}^{\infty}\right)$, then the representation (3.11) is the needed linear combination. If $\left(x_{0} x_{1} x_{2} z\right) \in$ $\mathcal{M}_{1}\left(A_{1}^{\infty}\right)$ whereas $\left(x_{0} \ldots x_{3}\right) \notin \mathcal{M}_{1}\left(A_{1}^{\infty}\right)$, then the only possible situation is $\left(x_{0} x_{1}\right) \notin$ $\mathcal{M}_{0}\left(A_{0}^{\infty}\right)$ with $\left(x_{2} x_{3}\right)=(00)$, see (3.4). In this case,

$$
\begin{equation*}
B=\left(x_{0} x_{1} 00 \widehat{x}_{4} \widehat{x}_{5}\right)=\left(1 x_{1} 00 \widehat{x}_{4} \widehat{x}_{5}\right)=\left(1 x_{1} 0000\right)+\left(0000 \widehat{x}_{4} \widehat{x}_{5}\right), \tag{3.12}
\end{equation*}
$$

where $\left(1 x_{1} 0000\right)$ is 0 -covered by $\left\{A_{0}^{0}\right\} \cup \mathcal{L}_{0}^{*}$ and $\left(0000 \widehat{x}_{4} \widehat{x}_{5}\right) \in \pi_{2} \backslash\left\{A_{2}^{0}, A_{2}^{\infty}\right\}$ is 1-covered by $\mathcal{C}_{2}^{*} \cup\left\{T_{2}\right\}$, see Lemma 3.4. Thus, B in (3.12) is a linear combination of at most $(0+1)+(1+1)=3$ points.

From (3.9)-(3.12) we see that all points of $\mathcal{S}_{2} \backslash \mathcal{S}_{1}$ are 2-essential. Also, we take into account that \mathcal{S}_{1} is a minimal 1 -saturating set.
(ii) The assertion follows from (3.9). For some (but not for all) points in (3.9) we could avoid use of A_{2}^{∞}; this explains the sign " \subset " in (3.7). For example, let $B=\left(001 \widehat{x}_{3} 0 \widehat{x}_{5}\right) \notin$ $\mathcal{M}_{1}\left(A_{1}^{\infty}\right)$. Then $B=(001000)+\widehat{x}_{3}\left(00010 \frac{\widehat{x}_{5}}{\widehat{x}_{3}}\right)$, where $(001000)=T_{1}$ and $\left(00010 \frac{\widehat{x}_{5}}{\widehat{x}_{3}}\right) \in$ $\pi_{2} \backslash\left\{A_{2}^{0}, A_{2}^{\infty}\right\}$ is 1-covered by $\mathcal{C}_{2}^{*} \cup\left\{T_{2}\right\}$, see Lemma 3.4. However, if $B=\left(00100 \widehat{x}_{5}\right) \notin$ $\mathcal{M}_{1}\left(A_{1}^{\infty}\right)$, we are not able to avoid use of A_{2}^{∞}.
(iii) We have, cf. (3.9), $B=\left(x_{0} \ldots x_{3} 0 \widehat{x}_{5}\right)=\left(x_{0} x_{1} x_{2} z 00\right)+\left(00010 \widehat{x}_{5}\right)$, where $z=$ $x_{3}-1$ and $\left(00010 \widehat{x}_{5}\right) \in \pi_{2} \backslash\left\{A_{2}^{0}, A_{2}^{\infty}\right\}$ is 1 -covered by $\mathcal{C}_{2}^{*} \cup\left\{T_{2}\right\}$, see Lemma 3.4. This representation of B is the needed linear combination of at most $(1+1)+(1+1)=4$ columns if $\left(x_{0} x_{1} x_{2} z\right) \notin \mathcal{M}_{1}\left(A_{1}^{\infty}\right)$ whence $\left(x_{0} x_{1} x_{2} z 00\right)$ is 1-covered by $\mathcal{S}_{1} \backslash\left\{A_{1}^{\infty}\right\}$.

But if $\left(x_{0} x_{1} x_{2} z\right) \in \mathcal{M}_{1}\left(A_{1}^{\infty}\right)$, then by (3.4), $\left(x_{0} x_{1}\right) \notin \mathcal{M}_{0}\left(A_{0}^{\infty}\right)$ and we have, similarly to (3.12), $B=\left(1 x_{1} 000 \widehat{x}_{5}\right)=\left(1 x_{1} 0000\right)+\widehat{x}_{5}(000001)$, where $\left(1 x_{1} 0000\right)$ is 0 -covered by $\left\{A_{0}^{0}\right\} \cup \mathcal{L}_{0}^{*}$ and $(000001)=A_{2}^{\infty} \in \pi_{2}$ is 2 -covered by \mathcal{C}_{2}^{*}, see Lemma 3.5.

3.3 Saturation of Construction S for any ρ

Theorem 3.8. Let $q=4$ or $q \geq 7$. Let $\Upsilon \geq 1$. Let $\Sigma_{\rho}=\operatorname{PG}(2 \rho+1, q)$. Let \mathcal{S}_{ρ} be a point $((\rho+1) q+1)$-subset of Σ_{ρ} as in Construction S of (3.1), (3.2). Then it holds that
(i) The $((\rho+1) q+1)$-set \mathcal{S}_{ρ} is a minimal ρ-saturating set in $\Sigma_{\rho}, \rho=0,1, \ldots, \Upsilon$.
(ii) The point A_{ρ}^{∞} of \mathcal{S}_{ρ} is ρ-essential for the set $\widetilde{\mathcal{M}}_{\rho}\left(A_{\rho}^{\infty}\right)$ such that

$$
\begin{align*}
& \widetilde{\mathcal{M}_{0}}\left(A_{0}^{\infty}\right)=\mathcal{M}_{0}\left(A_{0}^{\infty}\right)=\{(01)\}, \\
& \widetilde{\mathcal{M}_{1}}\left(A_{1}^{\infty}\right)=\mathcal{M}_{1}\left(A_{1}^{\infty}\right)=\left\{\left(x_{0} \ldots x_{3}\right):\left(x_{0} x_{1}\right) \notin \mathcal{M}_{0}\left(A_{0}^{\infty}\right),\left(x_{2} x_{3}\right)=\left(0 \widehat{x}_{3}\right)\right\}, \\
& \widetilde{\mathcal{M}_{\rho}}\left(A_{\rho}^{\infty}\right) \subset \mathcal{M}_{\rho}\left(A_{\rho}^{\infty}\right)=\left\{\left(x_{0} \ldots x_{2 \rho+1}\right):\left(x_{0} \ldots x_{2 \rho-1}\right) \notin \mathcal{M}_{\rho-1}\left(A_{\rho-1}^{\infty}\right)\right. \tag{3.13}\\
& \left.\left(x_{2 \rho} x_{2 \rho+1}\right)=\left(0 \widehat{x}_{2 \rho+1}\right)\right\}, \rho=2,3, \ldots, \Upsilon .
\end{align*}
$$

(iii) The $(\rho+1) q$-set $\mathcal{S}_{\rho} \backslash\left\{A_{\rho}^{\infty}\right\}$ is $(\rho+1)$-saturating in $\Sigma_{\rho}, \rho=0,1, \ldots, \Upsilon$.

Proof. We prove by induction on Υ.
For $\Upsilon=3$ the theorem is proved in Propositions 3.3, 3.6, 3.7,
Assumption: let the assertions (i)-(iii) hold for some $\Upsilon \geq 3$.
We show that under Assumption, the assertions hold for $\Gamma=\Upsilon+1$.
(i) By Propositions 3.3, 3.6, 3.7, Lemmas 3.4, 3.5, and Assumption, we have the following: $\Sigma_{0}\left(\right.$ points $\left(x_{0} x_{1} 0 \ldots 0\right)$) is 1-covered by $\left\{A_{0}^{0}\right\} \cup \mathcal{L}_{0}^{*} ; \pi_{1} \backslash\left\{A_{1}^{\infty}\right\}, \pi_{u} \backslash\left\{A_{u}^{0}, A_{u}^{\infty}\right\}$, $u=2,3, \ldots, \Gamma$, are 1-covered by $\left\{A_{0}^{0}\right\} \cup \mathcal{L}_{0}^{*} \cup \bigcup_{u=1}^{\Gamma}\left(\mathcal{C}_{u}^{*} \cup\left\{T_{u}\right\}\right) ; \pi_{\Gamma} \backslash\left\{A_{\Gamma}^{0}\right\}$ is 1-covered by $\mathcal{C}_{\Gamma}^{*} \cup\left\{T_{\Gamma}, A_{\Gamma}^{\infty}\right\} ; \pi_{1}\left(\right.$ points $\left.\left(0 x_{1} x_{2} x_{3} 0 \ldots 0\right)\right), \pi_{2}\left(\right.$ points $\left.\left(000 x_{3} x_{4} x_{5} 0 \ldots 0\right)\right), \ldots, \pi_{\Gamma}$ (points $\left.\left(0 \ldots 0 x_{2 \Gamma-1} x_{2 \Gamma} x_{2 \Gamma+1}\right)\right)$ are 2 -covered by $\mathcal{C}_{1}^{*}, \mathcal{C}_{2}^{*}, \ldots, \mathcal{C}_{\Gamma}^{*}$, respectively; Σ_{Υ} is Γ-covered by $\mathcal{S}_{\Upsilon} \backslash\left\{A_{\Upsilon}^{\infty}\right\}$. Recall that $\Sigma_{0} \cup \bigcup_{u=1}^{\Upsilon} \pi_{u} \subset \Sigma_{\Upsilon}$. So, we should consider points of the form

$$
\begin{equation*}
B=\left(\overline{x_{0} \ldots x_{2 \Gamma-2}} x_{2 \Gamma-1} \overline{x_{2 \Gamma} x_{2 \Gamma+1}}\right) \in \Sigma_{\Gamma} \backslash\left(\Sigma_{\Upsilon} \cup \pi_{\Gamma}\right) . \tag{3.14}
\end{equation*}
$$

We show that B in (3.14) is a linear combination of at most $\Gamma+1$ points of \mathcal{S}_{Γ}.
1)Let $\left(x_{0} \ldots x_{2 \Gamma-1}\right) \in \mathcal{M}_{\Upsilon}\left(A_{\Upsilon}^{\infty}\right)$.

By the hypothesis and by (3.13), $\left(x_{0} \ldots x_{2 \Upsilon-1}\right) \notin \mathcal{M}_{\Upsilon-1}\left(A_{\Upsilon-1}^{\infty}\right)$. Therefore, $\left(x_{0} \ldots x_{2 \Upsilon-1} 0000\right)$ is $(\Upsilon-1)$-covered by $\mathcal{S}_{\Upsilon-1} \backslash\left\{A_{\Upsilon-1}^{\infty}\right\}$. Now by (3.14), we have

$$
\begin{equation*}
B=\left(x_{0} \ldots x_{2 \Upsilon-1} 0 \widehat{x}_{2 \Gamma-1} \overline{x_{2 \Gamma} x_{2 \Gamma+1}}\right)=\left(x_{0} \ldots x_{2 \Upsilon-1} 0000\right)+\left(0 \ldots 0 \widehat{x}_{2 \Gamma-1} \overline{x_{2 \Gamma} x_{2 \Gamma+1}}\right), \tag{3.15}
\end{equation*}
$$

where $\left(0 \ldots 0 \widehat{x}_{2 \Gamma-1} \overline{x_{2 \Gamma} x_{2 \Gamma+1}}\right) \in \pi_{\Gamma} \backslash\left\{A_{\Gamma}^{0}, A_{\Gamma}^{\infty}\right\}$ is 1-covered by \mathcal{C}_{Γ}^{*}, see Lemma 3.4. Thus, B in (3.15) is a linear combination of at most $(\Upsilon-1+1)+(1+1)=\Gamma+1$ points.
2) Let $\left(x_{0} \ldots x_{2 \Gamma-1}\right) \notin \mathcal{M}_{\Upsilon}\left(A_{\Upsilon}^{\infty}\right)$.

By the hypothesis, $\left(x_{0} \ldots x_{2 \Gamma-1} 00\right)$ is Υ-covered by $S_{\Upsilon} \backslash\left\{A_{\Upsilon}^{\infty}\right\}$. We can write

$$
\begin{align*}
& B=\left(x_{0} \ldots x_{2 \Gamma-1} 0 \widehat{x}_{2 \Gamma+1}\right)=\left(x_{0} \ldots x_{2 \Gamma-1} 00\right)+\widehat{x}_{2 \Gamma+1} A_{\Gamma}^{\infty} ; \tag{3.16}\\
& B=\left(x_{0} \ldots x_{2 \Gamma-1} \widehat{x}_{2 \Gamma} 0\right)=\left(x_{0} \ldots x_{2 \Gamma-1} 00\right)+\widehat{x}_{2 \Gamma} T_{\Gamma} ; \tag{3.17}\\
& B=\left(x_{0} \ldots x_{2 \Gamma-1} \widehat{x}_{2 \Gamma} \widehat{x}_{2 \Gamma+1}\right)=\left(x_{0} \ldots x_{2 \Gamma-2} z 00\right)+\frac{\widehat{x}_{2 \Gamma}^{2}}{\widehat{x}_{2 \Gamma+1}}\left(0 \ldots 01 y y^{2}\right), \tag{3.18}\\
& z=x_{2 \Gamma-1}-\frac{\widehat{x}_{2 \Gamma}^{2}}{\widehat{x}_{2 \Gamma+1}}, y=\frac{\widehat{x}_{2 \Gamma+1}}{\widehat{x}_{2 \Gamma}} .
\end{align*}
$$

In (3.16), (3.17), B is a linear combination of at most $(\Upsilon+1)+1=\Gamma+1$ points. If $\left(x_{0} \ldots x_{2 \Gamma-2} z\right) \notin \mathcal{M}_{\Upsilon}\left(A_{\Upsilon}^{\infty}\right)$, then the representation (3.18) is the needed linear combination. If $\left(x_{0} \ldots x_{2 \Gamma-2} z\right) \in \mathcal{M}_{\Upsilon}\left(A_{\Upsilon}^{\infty}\right)$ while $\left(x_{0} \ldots x_{2 \Gamma-1}\right) \notin \mathcal{M}_{\Upsilon}\left(A_{\Upsilon}^{\infty}\right)$, then the only possible situation is $\left(x_{0} \ldots x_{2 \Upsilon-1}\right) \notin \mathcal{M}_{\Upsilon-1}\left(A_{\Upsilon-1}^{\infty}\right)$ with $\left(x_{2 \Gamma-2} x_{2 \Gamma-1}\right)=(00)$, see (3.13). In this case,

$$
\begin{equation*}
B=\left(x_{0} \ldots x_{2 \Upsilon-1} 00 \widehat{x}_{2 \Gamma} \widehat{x}_{2 \Gamma+1}\right)=\left(x_{0} \ldots x_{2 \Upsilon-1} 0000\right)+\left(0 \ldots 0 \widehat{x}_{2 \Gamma} \widehat{x}_{2 \Gamma+1}\right), \tag{3.19}
\end{equation*}
$$

where $\left(x_{0} \ldots x_{2 \Upsilon-1} 0000\right)$ is $(\Upsilon-1)$-covered by $S_{\Upsilon-1} \backslash\left\{A_{\Upsilon-1}^{\infty}\right\}$ and $\left(0 \ldots 0 \widehat{x}_{4} \widehat{x}_{2 \Gamma-1}\right) \in$ $\pi_{\Gamma} \backslash\left\{A_{\Gamma}^{0}, A_{\Gamma}^{\infty}\right\}$ is 1-covered by $\mathcal{C}_{\Gamma}^{*} \cup\left\{T_{\Gamma}\right\}$, see Lemma [3.4. Thus, B in (3.19) is a linear combination of at most $(\Upsilon-1+1)+(1+1)=\Gamma+1$ points.

From (3.15)-(3.19) we see that all the points of $\mathcal{S}_{\Gamma} \backslash \mathcal{S}_{\Upsilon}$ are Γ-essential. Also, we take into account that \mathcal{S}_{Υ} is a minimal Υ-saturating set.
(ii) The assertion (3.13) follows from (3.16). For some points in (3.16) we could avoid use of A_{Γ}^{∞}. This explains the sign " \subset " in (3.13).
(iii) We have, cf. (3.16), $B=\left(x_{0} \ldots x_{2 \Gamma-1} 0 \widehat{x}_{2 \Gamma+1}\right)=\left(x_{0} \ldots x_{2 \Gamma-2} z 00\right)+\left(0 \ldots 010 \widehat{x}_{2 \Gamma+1}\right)$, where $z=x_{2 \Gamma-1}-1$ and $\left(0 \ldots 010 \widehat{x}_{2 \Gamma+1}\right) \in \pi_{\Gamma} \backslash\left\{A_{\Gamma}^{0}, A_{\Gamma}^{\infty}\right\}$ is 1 -covered by \mathcal{C}_{Γ}^{*}, see Lemma 3.4. This representation of B is the needed linear combination of at most $(\Upsilon+1)+(1+1)=\Gamma+2$ points if $\left(x_{0} \ldots x_{2 \Gamma-2} z\right) \notin \mathcal{M}_{\Upsilon}\left(A_{\Upsilon}^{\infty}\right)$ whence $\left(x_{0} \ldots x_{2 \Gamma-2} z 00\right)$ is Υ-covered by $\mathcal{S}_{\Upsilon} \backslash A_{\Upsilon}^{\infty}$.

But if $\left(x_{0} \ldots x_{2 \Gamma-2} z\right) \in \mathcal{M}_{\Upsilon}\left(A_{\Upsilon}^{\infty}\right)$, then by (3.13),$\left(x_{0} \ldots x_{2 \Upsilon-1} 0000\right) \notin \mathcal{M}_{\Upsilon-1}\left(A_{\Upsilon-1}^{\infty}\right)$, and we have, cf. (3.19) , $\left(x_{0} \ldots x_{2 \Upsilon-1} 000 \widehat{x}_{2 \Gamma+1}\right)=\left(x_{0} \ldots x_{2 \Upsilon-1} 0000\right)+\widehat{x}_{2 \Gamma+1}(0 \ldots 01)$, where $\left(x_{0} \ldots x_{2 \Upsilon-1} 0000\right)$ is $(\Upsilon-1)$-covered by $\mathcal{S}_{\Upsilon-1} \backslash\left\{A_{\Upsilon-1}^{\infty}\right\}$ and $(0 \ldots 01)=A_{\Gamma}^{\infty} \in \pi_{\Gamma}$ is 2 -covered by \mathcal{C}_{Γ}^{*}, see Lemma 3.5.

By computer search for $q=5$ we have proved the following proposition.
Proposition 3.9. Let $q=5$. Let $0 \leq \rho \leq 4$. Let $\Sigma_{\rho}=\operatorname{PG}(2 \rho+1,5)$. Let the $(5 \rho+1)$-set $\mathcal{S}_{\rho} \subset \Sigma_{\rho}$ be as in (3.1), (3.2). Then \mathcal{S}_{ρ} is a minimal ρ-saturating set in Σ_{ρ}.

3.4 Codes of covering radius R and codimension $2 R$

In the coding theory language, the results of this section give the following theorem.
Theorem 3.10. Let \widehat{V}_{ρ} be the code such that the columns of its parity check matrix are the points (in the homogeneous coordinates) of the ρ-saturating $((\rho+1) q+1)$-set \mathcal{S}_{ρ} of Construction S (3.1), (3.2).
(i) Let $q=4$ or $q \geq 7$. Then for all $R \geq 1$, the code \widehat{V}_{ρ} is a $[R q+1, R q+1-2 R, 3]_{q} R$ locally optimal code of covering radius $R=\rho+1$.
(ii) Let $q=5$. Then for $1 \leq R \leq 5$, the code \widehat{V}_{ρ} is a $\left.5 R+1,5 R+1-2 R, 3\right]_{5} R$ locally optimal code of covering radius $R=\rho+1$.
Proof. We use Theorem 3.8 and Proposition 3.9. The code \widehat{V}_{ρ} is locally optimal as the corresponding ρ-saturating set \mathcal{S}_{ρ} is minimal. Minimum distance $d=3$ is due to \mathcal{L}_{0}^{*}.

Conjecture 3.11. (i) Let $q=5$. Let $\Sigma_{\rho}=\operatorname{PG}(2 \rho+1,5)$. Let the $(5 \rho+1)$-set $\mathcal{S}_{\rho} \subset \Sigma_{\rho}$ be as in (3.1), (3.2). Then for all $\rho \geq 0$ it holds that \mathcal{S}_{ρ} is a minimal ρ-saturating set in Σ_{ρ}.
(ii) Let $q=5$. Let \widehat{V}_{ρ} be as in Theorem 3.10. Then for all $R \geq 1$, the code \widehat{V}_{ρ} is a $[5 R+1,5 R+1-2 R, 3]_{5} R$ locally optimal code with radius $R=\rho+1$.

4 The q^{m}-concatenating constructions for code codimension lifting

The q^{m}-concatenating constructions are proposed in [9] and are developed in [10-12, 14, [17,18], see also [5], [7, Sec. 5.4] and the references in these works. By using a starting code as a "seed", a q^{m}-concatenating construction yields an infinite family of new codes with a fixed covering radius, growing codimension and with almost the same covering density.

We give versions of the q^{m}-concatenating constructions convenient for our goals. Several other versions of such constructions can be found in $9-12,14,17,18$ and the references therein. In Construction QM_{1} below, we use a surface-covering code as a starting one, whereas for Construction QM_{2} we need to start with an $[n, n-r]_{q} R, \ell$ code, $\ell=R-1$. Resulting codes of both the constructions are surface-covering.

Construction $\mathbf{Q M}_{\mathbf{1}}$. Let columns \mathbf{h}_{j} belong to $\mathbb{F}_{q}^{r_{0}}$ and let $\mathbf{H}_{0}=\left[\mathbf{h}_{1} \mathbf{h}_{2} \ldots \mathbf{h}_{n_{0}}\right]$ be a parity check matrix of an $\left[n_{0}, n_{0}-r_{0}\right]_{q} R, R$ starting surface-covering code V_{0} with $R \geq 2$. Let $m \geq 1$ be an integer such that $q^{m} \geq n_{0}-1$. To each column \mathbf{h}_{j} we associate an element $\beta_{j} \in \mathbb{F}_{q^{m}} \cup\{*\}$ so that $\beta_{i} \neq \beta_{j}$ if $i \neq j$. Let a new code V be the $\left[n, n-\left(r_{0}+R m\right)\right]_{q} R_{V}, \ell_{V}$ code with $n=q^{m} n_{0}$ and parity check matrix of the form

$$
\left.\begin{array}{rl}
\mathbf{H}_{V} & =\left[\mathbf{B}_{1} \mathbf{B}_{2} \ldots\right. \\
\mathbf{B}_{n_{0}}
\end{array}\right],\left[\begin{array}{cccc}
\mathbf{h}_{j} & \mathbf{h}_{j} & \cdots & \mathbf{h}_{j} \tag{4.2}\\
\xi_{1} & \xi_{2} & \cdots & \xi_{q^{m}} \\
\beta_{j} \xi_{1} & \beta_{j} \xi_{2} & \cdots & \beta_{j} \xi_{q^{m}} \\
\beta_{j}^{2} \xi_{1} & \beta_{j}^{2} \xi_{2} & \cdots & \beta_{j}^{2} \xi_{q^{m}} \\
\vdots & \vdots & \vdots & \vdots \\
\mathbf{B}_{j}^{R-1} \xi_{1} & \beta_{j}^{R-1} \xi_{2} \cdots & \beta_{j}^{R-1} \xi_{q^{m}}
\end{array}\right] \text { if } \beta_{j} \in \mathbb{F}_{q^{m}}, \quad \mathbf{B}_{j}=\left[\begin{array}{cccc}
\mathbf{h}_{j} & \mathbf{h}_{j} \cdots & \mathbf{h}_{j} \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 \\
\xi_{1} & \xi_{2} \cdots & \xi_{q^{m}}
\end{array}\right] \text { if } \beta_{j}=*,
$$

where \mathbf{B}_{j} is an $\left(r_{0}+R m\right) \times q^{m}$ matrix, 0 is the zero element of $\mathbb{F}_{q^{m}}, \xi_{u}$ is an element of $\mathbb{F}_{q^{m}},\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{q^{m}}\right\}=\mathbb{F}_{q^{m}}$. An element of $\mathbb{F}_{q^{m}}$ written in \mathbf{B}_{j} denotes an m-dimensional q-ary column vector that is a q-ary representation of this element.

We denote $\mathbf{b}_{j}\left(\xi_{u}\right)=\left(\mathbf{h}_{j}, \xi_{u}, \beta_{j} \xi_{u}, \beta_{j}^{2} \xi_{u}, \ldots, \beta_{j}^{R-1} \xi_{u}\right)$ the u-th column of \mathbf{B}_{j} with $\beta_{j} \in$ $\mathbb{F}_{q^{m}}$. If $\beta_{j}=*$, we have $\mathbf{b}_{j}\left(\xi_{u}\right)=\left(\mathbf{h}_{j}, 0, \ldots, 0, \xi_{u}\right)$.

Theorem 4.1. In Construction $Q M_{1}$, the new code V with the parity check matrix (4.1), (4.2) is an $\left[n, n-\left(r_{0}+R m\right), 3\right]_{q} R, R$ surface-covering code with covering radius R and length $n=q^{m} n_{0}$. Moreover, if the starting code V_{0} is locally optimal (non-shortening), then the new code V is locally optimal too.

Proof. The length of the code V directly follows from the construction.
The minimum distance d is equal to 3 since for any pair of columns $\mathbf{b}_{j}\left(\xi_{u_{1}}\right), \mathbf{b}_{j}\left(\xi_{u_{2}}\right)$ of \mathbf{B}_{j}, a 3-rd one can be found such that the column triple corresponds to a codeword of
weight 3. Take $a, b, c \in \mathbb{F}_{q}^{*}$ with $a+b+c=0$. Put $\xi_{u_{3}}=\left(-a \xi_{u_{1}}-b \xi_{u_{2}}\right) / c$. Then for all j we have

$$
\begin{equation*}
a \mathbf{b}_{j}\left(\xi_{u_{1}}\right)+b \mathbf{b}_{j}\left(\xi_{u_{2}}\right)+c \mathbf{b}_{j}\left(\xi_{u_{3}}\right)=\mathbf{0} \tag{4.3}
\end{equation*}
$$

where $\mathbf{0}$ is the zero $\left(r_{0}+R m\right)$-positional column.
We show that covering radius R_{V} of V is equal to R.
Consider an arbitrary column $\mathbf{t}=(\mathbf{f s}) \in \mathbb{F}_{q}^{r_{0}+R m}$ with $\mathbf{f} \in \mathbb{F}_{q}^{r_{0}}$, $\mathbf{s} \in \mathbb{F}_{q}^{R m}$, $\mathbf{s}=$ $\left(s_{1}, s_{2}, \ldots, s_{R m}\right), s_{i} \in \mathbb{F}_{q}$. We partition \mathbf{s} by m-vectors so that $\mathbf{s}=\left(S_{0}, S_{1}, \ldots, S_{R-1}\right)$, $S_{v}=\left(s_{v m+1}, s_{v m+2}, \ldots, s_{v m+m}\right), v=0,1, \ldots, R-1$. We treat S_{v} as an element of $\mathbb{F}_{q^{m}}$.

Since V_{0} is an $\left[n_{0}, n_{0}-r_{0}\right]_{q} R, R$ code, there exists a linear combination of the form

$$
\begin{equation*}
\mathbf{f}=\sum_{k=1}^{R} c_{k} \mathbf{h}_{j_{k}}, c_{k} \in \mathbb{F}_{q}^{*} \text { for all } k \tag{4.4}
\end{equation*}
$$

see Definition 1.4. Now we can represent t as a linear combination (with nonzero coefficients) of R distinct columns of \mathbf{H}_{V}. We have, see (4.2),

$$
\begin{equation*}
\mathbf{t}=\sum_{k=1}^{R} c_{k} \mathbf{b}_{j_{k}}\left(x_{k}\right), c_{k} \in \mathbb{F}_{q}^{*} \text { and } x_{k} \in \mathbb{F}_{q^{m}} \text { for all } k \tag{4.5}
\end{equation*}
$$

where values of x_{k} are obtained from the linear system with nonzero determinant. If for j_{k} in (4.4) we have $\beta_{j_{k}} \in \mathbb{F}_{q^{m}}$ for all k, then the system has the form

$$
\begin{equation*}
\sum_{k=1}^{R} c_{k} \beta_{j_{k}}^{v} x_{k}=S_{v}, v=0,1, \ldots, R-1 \tag{4.6}
\end{equation*}
$$

As usual, we put $0^{0}=1$. If in (4.4) we have, for example, $\beta_{j_{R}}=*$, then the system is as follows:

$$
\begin{equation*}
\sum_{k=1}^{R-1} c_{k} \beta_{j_{k}}^{v} x_{k}=S_{v}, v=0,1, \ldots, R-2 ; \quad \sum_{k=1}^{R-1} c_{k} \beta_{j_{k}}^{R-1} x_{k}+c_{R} x_{R}=S_{R-1} \tag{4.7}
\end{equation*}
$$

If V_{0} is a locally optimal code, then every column \mathbf{h}_{j} of \mathbf{H}_{0} takes part in a representation of the form (4.4). If we remove $\mathbf{b}_{j_{k}}\left(\xi_{u}\right)$ from $\mathbf{B}_{j_{k}}$ then there is $\left(s_{1}, s_{2}, \ldots, s_{R m}\right)$ such that the system (4.6) or (4.7) gives $x_{k}=\xi_{u}$. As a result, for some \mathbf{t} the representation (4.5) becomes impossible. So, all columns of \mathbf{H}_{V} are essential and the code V is locally optimal.
Construction $\mathbf{Q M}_{\mathbf{2}}$. Let $\theta_{m, q}=\frac{q^{m+1}-1}{q-1}$. Let columns \mathbf{h}_{j} belong to $\mathbb{F}_{q}^{r_{0}}$ and let $\mathbf{H}_{0}=$ $\left[\mathbf{h}_{1} \mathbf{h}_{2} \ldots \mathbf{h}_{n_{0}}\right]$ be a parity check matrix of an $\left[n_{0}, n_{0}-r_{0}\right]_{q} R, \ell_{0}$ starting code V_{0} with $\ell_{0}=R-1, R \geq 2$. Let $m \geq 1$ be an integer such that $q^{m} \geq n_{0}$. To each column \mathbf{h}_{j}
we associate an element $\beta_{j} \in \mathbb{F}_{q^{m}}$ so that $\beta_{i} \neq \beta_{j}$ if $i \neq j$. Let a new code V be the $\left[n, n-\left(r_{0}+R m\right)\right]_{q} R_{V}, \ell_{V}$ code with $n=q^{m} n_{0}+\theta_{m, q}$ and parity check matrix of the form

$$
\mathbf{H}_{V}=\left[\begin{array}{lllll}
\mathbf{C l}_{1} & \mathbf{B}_{1} & \mathbf{B}_{2} & \ldots & \mathbf{B}_{n_{0}} \tag{4.8}
\end{array}\right],
$$

where \mathbf{B}_{j} is an $\left(r_{0}+R m\right) \times q^{m}$ matrix as in (4.2), \mathbf{C} is an $\left(r_{0}+R m\right) \times \theta_{m, q}$ matrix,

$$
\mathbf{C}=\left[\begin{array}{c}
\mathbf{0}_{r_{0}+(R-1) m} \tag{4.9}\\
\mathbf{W}_{m}
\end{array}\right]
$$

$\mathbf{0}_{r_{0}+(R-1) m}$ is the zero $\left(r_{0}+(R-1) m\right) \times \theta_{m, q}$ matrix, \mathbf{W}_{m} is a parity check $m \times \theta_{m, q}$ matrix of the $\left[\theta_{m, q}, \theta_{m, q}-m, 3\right]_{q} 1$ Hamming code.

Theorem 4.2. In Construction $Q M_{2}$, the new code V with the parity check matrix (4.8), (4.9), (4.2) is an $\left[n, n-\left(r_{0}+R m\right), 3\right]_{q} R, R$ surface-covering code with covering radius R and length $n=q^{m} n_{0}+\frac{q^{m+1}-1}{q-1}$. Moreover, if the starting code V_{0} is locally optimal (non-shortening), then the new code V is locally optimal too.

Proof. The length of the code V directly follows from the construction.
The minimum distance is equal to 3 as the Hamming code is a code with $d=3$. Also we can use (4.3) from the proof of Theorem 4.1.

We show that covering radius R_{V} of V is equal to R.
Consider an arbitrary column $\mathbf{t}=(\mathbf{f s}) \in \mathbb{F}_{q}^{r_{0}+R m}$ with $\mathbf{f} \in \mathbb{F}_{q}^{r_{0}}, \mathbf{s} \in \mathbb{F}_{q}^{R m}$, $\mathbf{s}=$ $\left(s_{1}, s_{2}, \ldots, s_{R m}\right), s_{i} \in \mathbb{F}_{q}$. We partition \mathbf{s} by m-vectors so that $\mathbf{s}=\left(S_{0}, S_{1}, \ldots, S_{R-1}\right)$, $S_{v}=\left(s_{v m+1}, s_{v m+2}, \ldots, s_{v m+m}\right), v=0,1, \ldots, R-1$. We treat S_{v} as an element of $\mathbb{F}_{q^{m}}$.

Since V_{0} is an $\left[n_{0}, n_{0}-r_{0}\right]_{q} R, \ell_{0}$ code with $\ell_{0}=R-1$, there exists a linear combination of $\varphi(\mathbf{f})$ distinct columns of \mathbf{H}_{0} of the form

$$
\mathbf{f}=\sum_{k=1}^{\varphi(\mathbf{f})} c_{k} \mathbf{h}_{j_{k}}, c_{k} \in \mathbb{F}_{q}^{*} \text { for all } k, \varphi(\mathbf{f}) \in\{R-1, R\}
$$

see Definition 1.4. If $\varphi(\mathbf{f})=R$ we act similarly to the proof of Theorem 4.1,
Let $\varphi(\mathbf{f})=R-1$. We represent \mathbf{t} as a linear combination (with nonzero coefficients) of at most R distinct columns of \mathbf{H}_{V}. We have, see (4.2), (4.9),

$$
\begin{equation*}
\mathbf{t}=\eta \mathbf{c}+\sum_{k=1}^{R-1} c_{k} \mathbf{b}_{j_{k}}\left(x_{k}\right), c_{k} \in \mathbb{F}_{q}^{*} \text { and } x_{k} \in \mathbb{F}_{q^{m}} \text { for all } k, \eta \in \mathbb{F}_{q} \tag{4.10}
\end{equation*}
$$

where \mathbf{c} is a column of \mathbf{C} and $\eta=0$ means that the summand $\eta \mathbf{c}$ is absent. Also, in (4.10), values of x_{k} are obtained from the linear system

$$
\sum_{k=1}^{R-1} c_{k} \beta_{j_{k}}^{v} x_{k}=S_{v}, v=0,1, \ldots, R-2
$$

with nonzero determinant. Finally, in (4.10), $\mathbf{c}=(\mathbf{0 w})$ where $\mathbf{0}$ is the zero $\left(r_{0}+(R-1) m\right)$ positional column and \mathbf{w} is a column of \mathbf{W}_{m} that satisfies the equality

$$
\begin{equation*}
\eta \mathbf{w}+\sum_{k=1}^{R-1} c_{k} \beta_{j_{k}}^{R-1} x_{k}=S_{R-1} . \tag{4.11}
\end{equation*}
$$

In (4.11), if $\sum_{k=1}^{R-1} c_{k} \beta_{j_{k}}^{R-1} x_{k}=S_{R-1}$ we have $\eta=0$. If $\sum_{k=1}^{R-1} c_{k} \beta_{j_{k}}^{R-1} x_{k} \neq S_{R-1}$, the needed column $\eta \mathbf{W}$ always exists as the Hamming code has covering radius 1 .

Now we show that V is an $\left[n, n-\left(r_{0}+R m\right), 3\right]_{q} R, R$ code, i.e. $\ell_{V}=R$. The critical situation is when in (4.10) and (4.11) $\eta=0$, i.e. the summand $\eta \mathbf{c}$ is absent. We use the approach of the proof of Theorem 4.1 regarding (4.3). In (4.3) we put $j=j_{1}, \xi_{u_{1}}=$ $x_{1}, a=-c_{1}$ with j_{1}, x_{1}, c_{1} taken from (4.10). Then

$$
\begin{aligned}
\mathbf{t} & =-c_{1} \mathbf{b}_{j_{1}}\left(x_{1}\right)+b \mathbf{b} j_{1}\left(\xi_{u_{2}}\right)+c \mathbf{b}_{j_{1}}\left(\xi_{u_{3}}\right)+\sum_{k=1}^{R-1} c_{k} \mathbf{b}_{j_{k}}\left(x_{k}\right) \\
& =b \mathbf{b} j_{1}\left(\xi_{u_{2}}\right)+c \mathbf{b}_{j_{1}}\left(\xi_{u_{3}}\right)+\sum_{k=2}^{R-1} c_{k} \mathbf{b}_{j_{k}}\left(x_{k}\right)
\end{aligned}
$$

Thus, we always can represent $\mathbf{t} \in \mathbb{F}_{q}^{r_{0}+R m}$ as a linear combination with nonzero coefficients of exactly R columns of \mathbf{H}_{V}.

By above, if we remove any column of \mathbf{H}_{V}, some representation of \mathbf{t} becomes impossible. So, all columns of \mathbf{H}_{V} are essential and the code V is locally optimal.

5 New infinite code families with fixed radius $R \geq 4$ and growing codimension $t R$

In the minimal ρ-saturating set of Construction S (3.1), (3.2), we consider a point P_{j} (in the homogeneous coordinates) as a column \mathbf{h}_{j} of the parity check matrix $\widehat{\mathbf{H}}_{\rho}$ that defines the $[q R+1, q R+1-2 R, 3]_{q} R$, ℓ locally optimal code \widehat{V}_{ρ} of covering radius $R=\rho+1$.

We consider some properties of $\widehat{\mathbf{H}}_{\rho}$ useful to estimate ℓ. Let $\mathbf{f} \in \mathbb{F}_{q}^{r}$. Let $\mathcal{J}(\mathbf{f})=$ $\left\{\mathbf{h}_{j_{1}}, \ldots, \mathbf{h}_{j_{\beta}}\right\}$ and $\mathcal{I}_{w}=\left\{\mathbf{h}_{i_{1}}, \ldots, \mathbf{h}_{i_{w}}\right\}$ be sets of distinct columns of $\widehat{\mathbf{H}}_{\rho}$ such that

$$
\begin{align*}
& \mathbf{f}=\sum_{k=1}^{\beta} c_{k} \mathbf{h}_{j_{k}}, \mathbf{h}_{j_{k}} \in \mathcal{J}(\mathbf{f}) \text { and } c_{k} \in \mathbb{F}_{q}^{*} \text { for all } k ; \tag{5.1}\\
& \sum_{k=1}^{w} m_{k} \mathbf{h}_{i_{k}}=\mathbf{0}, \mathbf{h}_{i_{k}} \in \mathcal{I}_{w} \text { and } m_{k} \in \mathbb{F}_{q}^{*} \text { for all } k, \mathbf{0} \in \mathbb{F}_{q}^{r} \text { is the zero column; } \tag{5.2}
\end{align*}
$$

$$
\begin{equation*}
\mathbf{f}=\sum_{k=1}^{\beta} c_{k} \mathbf{h}_{j_{k}}+\mu \sum_{k=1}^{w} m_{k} \mathbf{h}_{i_{k}}, \mu \in \mathbb{F}_{q}^{*} . \tag{5.3}
\end{equation*}
$$

Note that \mathcal{I}_{w} is a set of columns corresponding to a weight w codeword of \widehat{V}_{ρ}.
In the representation (5.3), the number of distinct columns of $\widehat{\mathbf{H}}_{\rho}$, say $\beta^{\text {new }}$, depends on the intersection $\mathcal{I}_{w} \cap \mathcal{J}(\mathbf{f})$ and the values of nonzero coefficients c_{k}, m_{k}, μ. For example,

$$
\beta^{\text {new }}=\left\{\begin{array}{lll}
\beta+w & \text { if } & \mathcal{I}_{w} \cap \mathcal{J}(\mathbf{f})=\emptyset \tag{5.4}\\
\beta+w-1 & \text { if } & \left|\mathcal{I}_{w} \cap \mathcal{J}(\mathbf{f})\right|=1, \mathbf{h}_{j_{\beta}}=\mathbf{h}_{i_{w}}, c_{\beta}+\mu m_{w} \neq 0 \\
\beta+w-2 & \text { if } & \left|\mathcal{I}_{w} \cap \mathcal{J}(\mathbf{f})\right|=1, \mathbf{h}_{j_{\beta}}=\mathbf{h}_{i_{w}}, c_{\beta}+\mu m_{w}=0 \\
\beta+w-2 & \text { if } & \left|\mathcal{I}_{w} \cap \mathcal{J}(\mathbf{f})\right|=2, \mathbf{h}_{j_{\beta}}=\mathbf{h}_{i_{w}}, c_{\beta}+\mu m_{w} \neq 0, \\
& & \mathbf{h}_{j_{\beta-1}}=\mathbf{h}_{i_{w-1}}, c_{\beta-1}+\mu m_{w-1} \neq 0
\end{array} .\right.
$$

To use (5.3), (5.4), note that submatrices of $\widehat{\mathbf{H}}_{\rho}$ can be treated as parity check matrices of codes; we call them component codes and write in Table 1 , where $u=1, \ldots, \rho$, "MDS" notes a minimum distance separable code and "AMDS" says on an Almost MDS code.

Table 1: Components codes corresponding to submatrices of $\widehat{\mathbf{H}}_{\rho}$ based on (3.1), (3.2)

rows of $\widehat{\mathbf{H}}_{\rho}$	columns of $\widehat{\mathbf{H}}_{\rho}$	geometrical object	code parameters	q	code name	code type
1,2	$\mathbf{h}_{1} \ldots \mathbf{h}_{q}$	$\left\{A_{0}^{0}\right\} \cup \mathcal{L}_{0}^{*}$	$[q, q-2,3]_{q} 2$	all	\mathbb{L}_{0}	MDS
$2 u, 2 u+1,2 u+2$	$\mathbf{h}_{q u+1} \ldots \mathbf{h}_{q u+q-1}$	\mathcal{C}_{u}^{*}	$[q-1, q-4,4]_{q} 3$	all	\mathbb{C}_{u}	MDS
$2 u, 2 u+1,2 u+2$	$\mathbf{h}_{q u+1} \ldots \mathbf{h}_{q u+q}$	$\mathcal{C}_{u}^{*} \cup\left\{T_{u}\right\}$	$[q, q-3,4]_{q} 3$	even	\mathbb{C}_{u}^{T}	MDS
$2 u, 2 u+1,2 u+2$	$\mathbf{h}_{q u+1} \ldots \mathbf{h}_{q u+q}$	$\mathcal{C}_{u}^{*} \cup\left\{T_{u}\right\}$	$[q, q-3,3]_{q} 3$	odd	\mathbb{C}_{u}^{T}	AMDS
$2 \rho, 2 \rho+1,2 \rho+2$	$\mathbf{h}_{q \rho+1} \ldots \mathbf{h}_{q \rho+q-1}$, $\mathbf{h}_{q \rho+q+1}$	$\mathcal{C}_{\rho}^{*} \cup\left\{A_{\rho}^{\infty}\right\}$	$[q, q-3,4]_{q} 3$	all	$\mathbb{C}_{\rho}^{\infty}$	MDS
$2 \rho, 2 \rho+1,2 \rho+2$	$\mathbf{h}_{q \rho+1} \ldots \mathbf{h}_{q \rho+q+1}$	$\mathcal{C}_{\rho}^{*} \cup\left\{A_{\rho}^{\infty}, T_{\rho}\right\}$	$[q+1, q-2,4]_{q} 3$	even	$\mathbb{C}_{\rho}^{\infty T}$	MDS
$2 \rho, 2 \rho+1,2 \rho+2$	$\mathbf{h}_{q \rho+1} \ldots \mathbf{h}_{q \rho+q+1}$	$\mathcal{C}_{\rho}^{*} \cup\left\{A_{\rho}^{\infty}, T_{\rho}\right\}$	$[q+1, q-2,3]_{q} 3$	odd	$\mathbb{C}_{\rho}^{\infty T}$	AMDS

Remark 5.1. The weight spectrum of MDS codes is known, see e.g. [29]. In particular, in $[n, n-r, d]_{q}$ MDS code any d columns of a parity check matrix correspond to a weight d codeword. If q odd, for AMDS component codes \mathbb{C}_{u}^{T} and $\mathbb{C}_{\rho}^{\infty T}$ we note that T_{u} lies on two tangents to \mathcal{C}_{u} (in $A_{u}^{0}, A_{u}^{\infty}$) and on $\frac{q-1}{2}$ bisecants of \mathcal{C}_{u}^{*}. Every of these bisecants gives rise to a weight 3 codeword. The $(q-1)$-set of points of \mathcal{C}_{u}^{*} is partitioned by $\frac{q-1}{2}$ point pairs; every pair forms a bisecant through T_{u}.

Note that from the proofs of Section 3 it can be seen that for the representation of a column $\mathbf{f} \in \mathbb{F}_{q}^{r}$ it is sufficient to use (for every u) at most 3 columns corresponding to \mathcal{C}_{u}^{*}. Similarly, one can use 2 columns corresponding to $\left\{A_{0}^{0}\right\} \cup \mathcal{L}_{0}^{*}$. Therefore, if $q \geq 7$ we have
in $\left\{A_{0}^{0}\right\} \cup \mathcal{L}_{0}^{*}$ and in every \mathcal{C}_{u}^{*} several points (columns) that can be used to form sets \mathcal{I}_{w} useful to increase β and $\beta^{\text {new }}$ in (5.2)-(5.4).

Assume that for a column $\mathbf{f} \in \mathbb{F}_{q}^{r}$ we have the representation (5.1) with $1 \leq \beta<R$. Then using weight w codewords of the component codes we can increase β by $w, w-1$, $w-2$, see (5.4). The increase by $w-1, w-2$ is possible if some column of $\mathcal{J}(\mathbf{f})$ and \mathcal{I}_{w} corresponds to the same component code. In particular, the situations with $w=3$, $w-2=1$ can be provided if some column or a column pair of $\mathcal{J}(\mathbf{f})$ and \mathcal{I}_{w} correspond to the same code $\mathbb{L}_{0}\left(\right.$ for all q) or to the same code $\mathbb{C}_{u}^{T}, \mathbb{C}_{\rho}^{\infty T}$ (for q odd). There exist columns $\mathbf{f} \in \mathbb{F}_{q}^{r}$ such that \mathbb{L}_{0} is not used for their representation. Therefore, in general, for even q (where MDS codes $\mathbb{C}_{u}^{T}, \mathbb{C}_{\rho}^{\infty T}$ have minimum distance $d=4$) we are not able to do $\beta^{\text {new }}=R$ when $\beta=R-1$, see (5.3), (5.4). In the other side, for odd q, AMDS codes $\mathbb{C}_{u}^{T}, \mathbb{C}_{\rho}^{\infty T}$ have $d=3$ that allows us to increase β by $w-2=1$. Note also, see Remark 5.1, that for $q \geq 7$ the structure of minimum weight codewords in the component codes provides the situation that some columns of $\mathcal{J}(\mathbf{f})$ and \mathcal{I}_{w} correspond to the same code.

By above, we have the following lemma.
Lemma 5.2. Let $q \geq 7$. Let $R \geq 4$. Let an $[n, n-r]_{q} R$, ℓ code be defined as in Definition 1.4. Let \widehat{V}_{ρ} be the $[R q+1, R q+1-2 R, 3]_{q} R, \ell$ locally optimal code such that the columns of its parity check matrix correspond to points (in the homogeneous coordinates) of the minimal ρ-saturating set of Construction S (3.1), (3.2) with $\rho=R-1$. Then $\ell=R$ if q is odd (i.e. we have a surface-covering code) and $\ell=R-1$ if q is even.

In Theorems 5.3 and 5.4 we consider $R \geq 4$ since for $R=1,2,3$, several short covering codes with $r=t R$ are given in detail in [11, 13, 14, 16, 17] and the references therein.

Theorem 5.3. Let $q \geq 7$ be odd. Let t be an integer. Then for all $R \geq 4$ there is an infinite family of $[n, n-r, 3]_{q} R, R$ locally optimal surface-covering codes with the parameters

$$
n=R q^{(r-R) / R}+q^{(r-2 R) / R}, r=t R, t=2 \text { and } t \geq\left\lceil\log _{q} R\right\rceil+3 .
$$

Proof. We take the $[R q+1, R q+1-2 R, 3]_{q} R, R$ code \widehat{V}_{ρ}, see Lemma 5.2, as the starting code V_{0} of Construction QM_{1}. By Theorem 4.1, we obtain an $[n, n-r, 3]_{q}, R, R$ code with $n=(q R+1) q^{m}, r=2 R+m R$. Obviously, $m+1=\frac{r-R}{R}$. The condition $q^{m} \geq n_{0}-1$ implies $q^{m} \geq q R$ whence $m \geq\left\lceil\log _{q} R\right\rceil+1$. Finally, we put $t=m+2$.

Theorem 5.4. Let $q \geq 8$ be even. Let t be an integer. Then for all $R \geq 4$ there are infinite families of $[n, n-r, 3]_{q} R, R$ locally optimal surface-covering codes with the parameters
(i) $n=R q^{(r-R) / R}+2 q^{(r-2 R) / R}+\sum_{j=3}^{t} q^{(r-j R) / R}, r=t R, m_{1}+2<t<3 m_{1}+2$, $m_{1}=\left\lceil\log _{q}(R+1)\right\rceil+1 ;$
(ii) $n=R q^{(r-R) / R}+2 q^{(r-2 R) / R}+\sum_{j=3}^{m_{1}+2} q^{(r-j R) / R}, r=t R, t=m_{1}+2$ and $t \geq 3 m_{1}+2$.

Proof. (i) We take the $[q R+1, q R+1-2 R, 3]_{q} R, \ell$ code \widehat{V}_{ρ} with $\ell=R-1$, see Lemma 5.2 , as the starting code V_{0} of Construction QM_{2}. By Theorem 4.2, we obtain an $[n, n-$ $r, 3]_{q}, R, R$ code with $n=(q R+1) q^{m}+\frac{q^{m+1}-1}{q-1}, r=2 R+m R$. Obviously, $m-(j-2)=\frac{r-j R}{R}$. The condition $q^{m} \geq n_{0}$ implies $q^{m} \geq q R+1$ whence $m \geq\left\lceil\log _{q}(q R+1)\right\rceil=\left\lceil\log _{q}(R+1)\right\rceil+1$. The restriction $m<3 m_{1}$ is introduced as for $m \geq 3 m_{1}$ we have codes of (i) that are better than ones in (ii). For $m=m_{1}$, codes of (i) and (ii) are the same. Finally, we put $t=m+2$.
(ii) In the relation (i), we put $t=m_{1}+2$ and obtain an $\left[n_{1}, n_{1}-r_{1}, 3\right]_{q} R, R$ code with $n_{1}=(q R+1) q^{m_{1}}+\frac{q^{m_{1}+1}-1}{q-1}, r_{1}=2 R+m_{1} R$. We take this code as the starting code V_{0} of Construction QM_{1}. By Theorem 4.1, we obtain an $[n, n-r, 3]_{q}, R, R$ code with $r=2 R+m_{1} R+m_{2} R, q^{m_{2}} \geq n_{1}, n=n_{1} q^{m_{2}}=(q R+1) q^{m_{1}+m_{2}}+\sum_{i=0}^{m_{1}} q^{m_{1}+m_{2}-i}$. Obviously, $m_{1}+m_{2}-i=\frac{r-(i+2) R}{R}$. Since $(R+1) q^{m_{1}+1}>n_{1}$, the condition $q^{m_{2}} \geq n_{1}$ is satisfied when $q^{m_{2}} \geq(R+1) q^{m_{1}+1}$ whence $m_{2} \geq\left\lceil\log _{q}(R+1)\right\rceil+m_{1}+1=2 m_{1}$. Then we denote $2+m_{1}+m_{2}$ by t.

6 New infinite code families with fixed even radius $R \geq 2$ and growing codimension $t R+\frac{R}{2}$

In the projective plane $\operatorname{PG}(2, q)$, a blocking (resp. double blocking) set S is a set of points such that every line of $\mathrm{PG}(2, q)$ contains at least one (resp. two) points of S.

There is an useful connection between double blocking sets and 1-saturating sets.
Proposition 6.1. [14, Cor.3.3], [25] Let q be a square. Any double blocking set in the subplane $\mathrm{PG}(2, \sqrt{q}) \subset \mathrm{PG}(2, q)$ is a 1 -saturating set in the plane $\operatorname{PG}(2, q)$.

In future we use the following results, see also [1-3], [14, Sect. 3.2].
Proposition 6.2. Let p be prime. Let $\phi(q)$ be as in (2.1). The following bounds on the smallest size $\tau_{2}(2, q)$ of a double blocking set in $\operatorname{PG}(2, q)$ hold:

$$
\begin{array}{lll}
\tau_{2}(2, q) \leq 2\left(q+q^{2 / 3}+q^{1 / 3}+1\right), & q=p^{3 h}, p^{h} \equiv 2 \bmod 7 & \text { [3, Th. 5.5]; } \\
\tau_{2}(2, q) \leq 2\left(q+\frac{q-1}{\phi(q)-1}\right), & q=p^{h}, h \geq 2, p \geq 3 & \text { [1, Cor. 1.9]; } \\
\tau_{2}(2, q) \leq 2\left(q+\frac{q}{p}+1\right), & q=p^{h}, h \geq 2, p \geq 7 & \text { [2, Th. 1.8, Cor. 4.10]. }
\end{array}
$$

Now we give a list of 1-saturating sets in the projective plane of square order. The sets (iv)-(vi) are new.

Theorem 6.3. Let q be a square. Let p be prime. Let $\phi(\sqrt{q})$ be as in (2.1). Then in $\mathrm{PG}(2, q)$ there are 1-saturating sets of the following sizes:
(i) $3 \sqrt{q}-1$,
$q=p^{2 h} \geq 4, h \geq 1$
[10, Th. 5.2];
(ii) $2 \sqrt{q}+2 \sqrt[4]{q}+2$,
$q=p^{4 h} \geq 16, h \geq 1$
[13, Th. 3.3], [14, Th. 3.4], [25];
(iii) $2 \sqrt{q}+2 \sqrt[3]{q}+2 \sqrt[6]{q}+2, \quad q=p^{6}, p \leq 73$
[13, Th. 3.4], [14, Th. 3.5];
(iv) $2 \sqrt{q}+2 \sqrt[3]{q}+2 \sqrt[6]{q}+2, \quad q=p^{6 h}, p^{h} \equiv 2 \bmod 7$;
(v) $2 \sqrt{q}+2 \frac{\sqrt{q}-1}{\phi(\sqrt{q})-1}, \quad q=p^{2 h}, h \geq 2, p \geq 3$;
(vi) $2 \sqrt{q}+2 \frac{\sqrt{q}}{p}+2, \quad q=p^{2 h}, h \geq 2, p \geq 7$.

Proof. For (i), a geometric construction is proposed in [10, Th. 5.2]. We describe it in Remark 6.5. The 1 -saturating sets of (ii), (iii) are considered in [13, 14, 25]. For (iv)-(vi) we use Propositions 6.1 and 6.2.

Remark 6.4. In Theorem6.3, if $\sqrt{q}=p^{\eta}$ with $\eta \geq 3$ odd, then the new 1-saturating sets of (iv)-(vi) have smaller sizes than the known ones of (i)-(iii). For example, if $q=p^{6}$, $\eta=3$, then the new size of (vi) is $2 \sqrt{q}+2 \sqrt[3]{q}+2$, cf. (iii). If $\eta \geq 5$ odd, the known sets have size $3 \sqrt{q}-1$ whereas new sizes are $2 \sqrt{q}+o(\sqrt{q})$. For example, if $q=p^{30}, \eta=15$, then the new size of (iv), (v) is $2 \sqrt{q}+2 \sqrt[3]{q}+2 \sqrt[6]{q}+2$, cf. (i). In general, if $\eta \geq 3$ is prime, then the case (vi) gives smaller sizes than other variants. If η is odd non-prime, then the variant (v) is the best.

The case (iv) gives the same size as (v), if $3 \mid \eta$. Therefore, in future we consider new codes and bounds resulting from Theorem 6.3(v),(vi).

Note also that if $q=p^{2}$, i.e. $\eta=1$, then the size (i) is the smallest in Theorem 6.3. It is why we pay attention to this case, see Remarks 6.56 .7 and Problem 5 below.

Remark 6.5. Let a point of $\operatorname{PG}(2, q)$ have the form $\left(x_{0}, x_{1}, x_{2}\right)$ where $x_{i} \in \mathbb{F}_{q}$, the leftmost nonzero coordinate is equal to 1 . Let β be a primitive element of \mathbb{F}_{q}.

In [10, Th. 5.2, eq. (30)], the following construction of a 1 -saturating $(3 \sqrt{q}-1)$-set \mathcal{S} in $\operatorname{PG}(2, q), q$ square, is proposed:

$$
\begin{equation*}
\mathcal{S}=\left\{\left(1,0, x_{2}\right) \mid x_{2} \in \mathbb{F}_{\sqrt{q}}\right\} \cup\left\{(1,0, c \beta) \mid c \in \mathbb{F}_{\sqrt{q}}^{*}\right\} \cup\left\{\left(0,1, x_{2}\right) \mid x_{2} \in \mathbb{F}_{\sqrt{q}}\right\} \tag{6.1}
\end{equation*}
$$

We describe this construction in more detail than in [10] using, for the description, the Baer sublines similarly to [4, Prop. 3.2]. In [10], see (6.1), specific Baer sublines are noted. Here we explain the structure and role of these specific sublines. Two Baer subplanes \mathcal{B}_{1} and \mathcal{B}_{2} are considered. In the points of \mathcal{B}_{1}, all coordinates $x_{i} \in \mathbb{F}_{\sqrt{q}}$. Also, $\mathcal{B}_{2}=\mathcal{B}_{1} \Phi$ where Φ is the collineation such that $\left(x_{0}, x_{1}, x_{2}\right) \Phi=\left(x_{0}, x_{1} \beta, x_{2} \beta\right)$. Let $L_{i} \subset \operatorname{PG}(2, q)$ be the "long" line of equation $x_{i}=0$. Let $\mathcal{L}_{i, j}=L_{i} \cap \mathcal{B}_{j}$ be the Baer subline of L_{i}
in the Baer subplane \mathcal{B}_{j}. We denote points $A_{1}=(0,0,1), A_{2}=(1,0,0)$. Obviously, $\left\{A_{1}, A_{2}\right\} \subset \mathcal{B}_{1} \cap \mathcal{B}_{2}$.

We have $\mathcal{L}_{0,1}=\mathcal{L}_{0,2}, \mathcal{B}_{1} \cap \mathcal{B}_{2}=\mathcal{L}_{0,1} \cup\left\{A_{2}\right\}$. Thus, the Baer subplanes \mathcal{B}_{1} and \mathcal{B}_{2} have the common Baer subline $\mathcal{L}_{0,1}$ and also the common point A_{2} not on $\mathcal{L}_{0,1}$. Also, $\mathcal{L}_{0,1} \cap \mathcal{L}_{1,1} \cap \mathcal{L}_{1,2}=\left\{A_{1}\right\}$. So, we consider three Baer sublines through A_{1}; one of them $\mathcal{L}_{0,1}$ is common for \mathcal{B}_{1} and \mathcal{B}_{2}; the other two ($\mathcal{L}_{1,1}$ and $\mathcal{L}_{1,2}$) belong to the same long line L_{1} that passes through $A_{2} \notin \mathcal{L}_{0,1}$ and $A_{1} \in \mathcal{L}_{0,1}$. The needed set consists of these three Baer sublines without their intersection point, i.e. $\mathcal{S}=\left(\mathcal{L}_{0,1} \cup \mathcal{L}_{1,1} \cup \mathcal{L}_{1,2}\right) \backslash\left\{A_{1}\right\}$. Since $\mathcal{L}_{1,1} \cap \mathcal{L}_{1,2}=\left\{A_{1}, A_{2}\right\}$ it holds that $|\mathcal{S}|=3 \sqrt{q}-1$. Note that if A_{1} is not removed from \mathcal{S} then we have no bisecants of \mathcal{S} through A_{1}.

All points on L_{0} and L_{1} are 1-covered by \mathcal{S}. Consider a point $A=(1, a, b) \notin\left(L_{0} \cup L_{1}\right)$ with $a=a_{1} \beta+a_{0} \in \mathbb{F}_{q}^{*}, b=b_{1} \beta+b_{0} \in \mathbb{F}_{q}$. (If $a=0$ then $A \in L_{1}$.) Let $a_{0} \neq 0$. Then $A=\left(1,0,\left(b_{1}-a_{1} a_{0}^{-1} b_{0}\right) \beta\right)+a\left(0,1, a_{0}^{-1} b_{0}\right)$. Let $a_{0}=0$. Then $a_{1} \neq 0$ and $A=$ $\left(1,0, b_{0}\right)+a\left(0,1, a_{1}^{-1} b_{1}\right)$. Thus, A is 1 -covered by \mathcal{S}. Also, from the above consideration it follows that all points of \mathcal{S} are 1 -essential and \mathcal{S} is a minimal 1 -saturating set.
Remark 6.6. In [30, Ex. B] and [4, Prop. 3.2], constructions of a 1 -saturating $3 \sqrt{q}$-set in $\mathrm{PG}(2, q), q$ square, are proposed. In [30], the set is minimal; it consists of three nonconcurrent Baer sublines in a Baer subplane. In [4], the set is non-minimal; it is similar to one of the construction [10, Th. 5.2], see its description in Remark [6.5. However, in [4], the intersection point of the three Baer sublines is not removed from the 1-saturating set.
Remark 6.7. Let p be prime. To construct a 1 -saturating $(3 p-1)$-set in $\mathrm{PG}\left(2, p^{2}\right)$, another way than in [10] is possible. One can apply Proposition 6.1 to a double blocking set in $\mathrm{PG}(2, p)$. However, double blocking $(3 p-1)$-sets in $\mathrm{PG}(2, p)$ are known only for $q=13,19,31,37,43$, see [8] and the references therein. Moreover, in $\operatorname{PG}(2, p)$, no double blocking sets of size less than $3 p-1$ are known.

In $\mathrm{PG}\left(2, p^{2}\right)$, p prime, by [14, Tab. 2], we have the following sporadic examples of 1 -saturating k-sets with $k<3 p-1: p^{2}=9, k=6 ; p^{2}=25, k=12 ; p^{2}=49, k=18$.

Problem 5. Develop a general construction of a 1 -saturating k-set in $\mathrm{PG}\left(2, p^{2}\right)$, p prime, such that $k<3 p-1$.

In [11, Ex. 6], a lift-construction is given. It provides the following result.
Proposition 6.8. [11, Ex. 6], [14, Th. 4.4] Let an $\left[n_{q}, n_{q}-3\right]_{q} 2$ code exist. Let $n_{q}<q$ and $q+1 \geq 2 n_{q}$. Let $f_{q}(r, 2)$ be as in (2.2). Then there is an infinite family of $[n, n-r]_{q} 2$ codes with growing odd codimension $r=2 t+1 \geq 5$ and length $n=n_{q} q^{(r-3) / 2}+2 q^{(r-5) / 2}+f_{q}(r, 2)$.
Theorem 6.9. Assume that p is prime, $q=p^{2 h}, h \geq 2$, and covering radius $R=2$. Let $\phi(\sqrt{q})$ and $f_{q}(r, 2)$ be as in (2.1), (2.2). Then there exist infinite families of $[n, n-r]_{q} 2$ codes with growing odd codimension $r=2 t+1 \geq 4, t \geq 1$, and length

$$
n=\left(2+2 \frac{\sqrt{q}-1}{\sqrt{q}(\phi(\sqrt{q})-1)}\right) q^{(r-2) / 2}+2\left\lfloor q^{(r-5) / 2}\right\rfloor+f_{q}(r, 2), p \geq 3
$$

$$
n=\left(2+\frac{2}{p}+\frac{2}{\sqrt{q}}\right) q^{(r-2) / 2}+2\left\lfloor q^{(r-5) / 2}\right\rfloor+f_{q}(r, 2), p \geq 7 .
$$

Proof. Let n_{q} be the size of the 1-saturating sets of Theorem 6.3(iii),(iv). We treat every point (in homogeneous coordinates) of the set as a column of an $3 \times n_{q}$ parity check matrix of an $\left[n_{q}, n_{q}-3\right]_{q} 2$ code. For these codes it can be shown that $n_{q}<q$ and $q+1 \geq 2 n_{q}$. Then we use Proposition 6.8.

The direct sum construction [14, Sect.4.2] gives the following lemma.
Lemma 6.10. Let covering radius $R \geq 2$ be even. Let an $\left[n^{\prime \prime}, n^{\prime \prime}-r^{\prime \prime}\right]_{q} 2$ code exist. Then there is an $\left[\frac{R}{2} n^{\prime \prime}, \frac{R}{2} n^{\prime \prime}-\frac{R}{2} r^{\prime \prime}\right]_{q} R$ code.

Theorem 6.11. Assume that p is prime, $q=p^{2 h}, h \geq 2, R \geq 2$ even, and code codimension is $r=t R+\frac{R}{2}$ with growing integer $t \geq 1$. Let $\phi(\sqrt{q})$ and $f_{q}(r, R)$ be as in (2.1), (2.2). Then for all even $R \geq 2$ there are infinite families of $[n, n-r]_{q} R$ codes with fixed covering radius R, growing codimension $r=t R+\frac{R}{2}, t \geq 1$, and length

$$
\begin{aligned}
& n=R\left(1+\frac{\sqrt{q}-1}{\sqrt{q}(\phi(\sqrt{q})-1)}\right) q^{(r-R) / R}+R\left\lfloor q^{(r-2 R) / R-0.5}\right\rfloor+\frac{R}{2} f_{q}(r, R), p \geq 3 ; \\
& n=R\left(1+\frac{1}{p}+\frac{1}{\sqrt{q}}\right) q^{(r-R) / R}+R\left\lfloor q^{(r-2 R) / R-0.5}\right\rfloor+\frac{R}{2} f_{q}(r, R), p \geq 7 .
\end{aligned}
$$

Proof. We take codes of Theorem 6.9 as the codes $\left[n^{\prime \prime}, n^{\prime \prime}-r^{\prime \prime}\right]_{q} 2$ of Lemma 6.10.

References

[1] G. Bacsó, T. Héger, T. Szőnyi, The 2-blocking number and the upper chromatic number of PG(2,q), J. Combin. Designs 21(12), 585-602 (2013)
[2] J. De Beule, T. Héger, T. Szőnyi, G. Van de Voorde, Blocking and Double Blocking Sets in Finite Planes, Electron. J. Combin. 23(2) Paper \#P2.5 (2016)
[3] A. Blokhuis, L. Lovász, L. Storme, T. Szőnyi, On multiple blocking sets in Galois planes, Adv. Geom. 7, 39-53 (2007)
[4] E. Boros, T. Szőnyi, K. Tichler, On Defining Sets for Projective Planes, Discrete Math. 303(1-3), 17-31 (2005)
[5] R.A. Brualdi, S. Litsyn, V.S. Pless, Covering radius. In: V.S. Pless, W.C. Huffman, R.A. Brualdi (eds.) Handbook of coding theory, vol. 1, pp. 755-826. Elsevier, Amsterdam, The Netherlands (1998)
[6] R.A. Brualdi, V.S. Pless, R.M. Wilson, Short codes with a given covering radius, IEEE Trans. Inform. Theory 35, 99-109 (1989)
[7] G. Cohen, I. Honkala, S. Litsyn, A. Lobstein, Covering codes, North-Holland Mathematical Library, vol. 54. Elsevier, Amsterdam, The Netherlands (1997)
[8] B. Csajbók, T. Héger, Double blocking sets of size $3 q-1$ in PG($2, q$, arXiv:1805.01267 [math.CO] (2018)
[9] A.A. Davydov, Construction of linear covering codes, Problems Information Transmission 26, 317-331 (1990)
[10] A.A. Davydov, Constructions and families of covering codes and saturated sets of points in projective geometry, IEEE Trans. Inform. Theory 41, 2071-2080 (1995)
[11] A.A. Davydov, Constructions and families of nonbinary linear codes with covering radius 2, IEEE Trans. Inform. Theory 45(5), 1679-1686 (1999)
[12] A.A. Davydov, G. Faina, S. Marcugini, F. Pambianco, Locally optimal (nonshortening) linear covering codes and minimal saturating sets in projective spaces, IEEE Trans. Inform. Theory 51, 4378-4387 (2005)
[13] A.A. Davydov, M. Giulietti, S. Marcugini, F. Pambianco, Linear covering codes over nonbinary finite fields. In: Proc. XI Int. Workshop on Algebraic and Combintorial Coding Theory, ACCT2008. pp. 70-75. Pamporovo, Bulgaria (2008) http://www.moi.math.bas.bg/acct2008/b12.pdf
[14] A.A. Davydov, M. Giulietti, S. Marcugini, F. Pambianco, Linear nonbinary covering codes and saturating sets in projective spaces, Adv. Math. Commun. 5(1), 119-147 (2011)
[15] A.A. Davydov, S. Marcugini, F. Pambianco, On saturating sets in projective spaces. J. Combin. Theory Ser. A 103(1), 1-15 (2003)
[16] A.A. Davydov, P.R.J. Östergård, On saturating sets in small projective geometries, European J. Combin. 21, 563-570 (2000)
[17] A.A. Davydov, P.R.J. Östergård, Linear codes with covering radius $R=2,3$ and codimension $t R$, IEEE Trans. Inform. Theory 47(1), 416-421 (2001)
[18] A.A. Davydov, P.R.J. Östergård, Linear codes with covering radius 3, Des. Codes Crypt. 54(3), 253-271 (2010)
[19] T. Etzion, L. Storme, Galois geometries and coding theory, Des. Codes Crypt. 78(1), 311350 (2016)
[20] M. Giulietti, The geometry of covering codes: small complete caps and saturating sets in Galois spaces. In: Blackburn, S.R., Holloway, R., Wildon, M. (eds.) Surveys in Combinatorics 2013, London Math. Soc. Lect. Note Series, vol. 409, pp. 51-90. Cambridge Univ Press, Cambridge (2013)
[21] J.W.P. Hirschfeld, Projective Geometries Over Finite Fields. Oxford mathematical monographs, Clarendon Press, Oxford, 2nd edn. (1998)
[22] J.W.P. Hirschfeld, L. Storme, The packing problem in statistics, coding theory and finite projective spaces, J. Statist. Planning Infer. 72(1), 355-380 (1998)
[23] J.W.P. Hirschfeld, L. Storme, The packing problem in statistics, coding theory and finite geometry: update 2001. In: Blokhuis, A., Hirschfeld, J.W.P. et al., (eds.) Finite Geometries, Developments of Mathematics, vol. 3, Proc. of the Fourth Isle of Thorns Conf., Chelwood Gate, 2000, pp. 201-246. Kluwer Academic Publisher, Boston (2001)
[24] H. Janwa, Some optimal codes from algebraic geometry and their covering radii, Europ. J. Combin. 11(3), 249-266 (1990)
[25] G. Kiss, I. Kóvacs, K. Kutnar, J. Ruff, P. Šparl, A note on a geometric construction of large Cayley graphs of given degree and diameter. Studia Univ. Babes-Bolyai Math. 54(3), 77-84 (2009)
[26] A. Klein, L. Storme, Applications of Finite Geometry in Coding Theory and Cryptography. In: D. Crnković, V. Tonchev (eds.) NATO Science for Peace and Security, Ser. - D: Information and Communication Security, vol. 29, Information Security, Coding Theory and Related Combinatorics, pp. 38-58 (2011)
[27] I. Landjev, L. Storme, Galois geometry and coding theory. In: J. De. Beule, L. Storme, (eds.) Current Research Topics in Galois geometry, Chapter 8, pp. 187-214, NOVA Academic Publisher, New York (2012)
[28] A. Lobstein, Covering radius, an online bibliography. https://www.lri.fr/~lobstein/bib-a-jour.pdf
[29] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North- Holland, Amsterdam, The Netherlands, 1981, 3-rd edition.
[30] E. Ughi, Saturated configurations of points in projective Galois spaces. Europ. J. Combin. 8(3), 325-334 (1987)

