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8 Homogeneous Sasaki and Vaisman manifolds of

unimodular Lie groups

D. Alekseevsky, K. Hasegawa and Y. Kamishima

Abstract

In this paper we develop some basic strategies to classify homogeneous lo-

cally conformally Kähler and Sasaki manifolds. In particular, we make a complete

classification of simply connected homogeneous Sasaki and Vaisman manifolds of

unimodular Lie groups, up to isomorphisms.

Introduction

In our previous papers [7], [8], [1] we have discussed a basic framework of the structure

of homogeneous locally conformally Kähler manifolds, and classified completely those

of compact Lie group, up to holomorphic isometry, while showing that all of them are

of Vaisman type. In this paper we extend our study to those of unimodular Lie group.

We recall that a locally conformally Kähler manifold, or shortly an l.c.K. manifold,

is a Hermitian manifold (M,g, J), where g is a Hermitian metric with a compatible

integrable complex structure J , which satisfies the condition

dΩ = Ω ∧ θ

for its associated fundamental 2-form Ω and a closed 1-form θ, called the Lee form. M is

of Vaisman type if the Lee form θ is parallel with respect to g, or equivalently if the Lee
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field ξ given by g−1θ is Killing with respect to g. We mean by a homogeneous locally

conformally Kähler manifold a homogeneous Hermitian manifold (M,g, J) satisfying

the above condition for its associated fundamental form Ω; in particular the Lee form θ

is also invariant. We can expressM as G/H in an effective form, where G is a connected

Lie group acting transitively on (M,g, J), and H is a closed subgroup of G. M = G/H

is said to be of unimodular type if G can be taken as a unimodular Lie group.

A homogeneous l.c.K. manifold of compact Lie group is nothing but a compact

homogeneous l.c.K. manifold; and we have already shown in [8] a holomorphic structure

theorem asserting that it has a holomorphic fiber bundle over a flag manifold with fiber

a 1-dimensional complex torus, and a metric structure theorem asserting that all of

them are of Vaisman type. Note that we have an extended version of the above metric

theorem for homogeneous l.c.K. manifolds in [1], showing a sufficient condition for being

of Vaisman type, that is, the normalizer of the isotropy subgroup H in G is compact,

while showing an example of a non-Vaisman l.c.K. structures on a reductive Lie group.

For 4-dimensional case, we know that the only compact homogeneous l.c.K. manifold

is a Hopf manifold of homogeneous type, and as an application of the classification

of unimodular l.c.K. Lie groups with and without lattices, we also have a complete

classification of 4-dimensional compact locally homogeneous l.c.K. manifolds [7].

We say that two homogeneous Hermitian manifolds are isomorphic if they are holo-

morphically isometric. As an essential tool in the classification of homogeneous Her-

mitian manifolds G/H of unimodular type up to isomorphism, we apply modification

of G/H into G′/H ′ (see Section 1 for definition), where they are isomorphic and both

are of unimodular type.

As main results of the paper we classify unimodular Sasaki and Vaisman Lie groups,

and more generally, simply connected homogeneous Sasaki and Vaisman manifolds of

unimodular Lie group, up to isomorpshims.

Theorem 1. A simply connected Vaisman unimodular Lie group is, up to modifi-

cations, isomorphic (as Vaisman Lie group) to one of the following:

R×N,R× SU(2),R × S̃L(2,R),

where N is a real Heisenberg Lie group and S̃L(2,R) is the universal covering Lie group

of SL(2,R).
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Theorem 2. A simply connected homogeneous Vaisman manifold M of unimodular

Lie group is isomorphic to R × M1, where M1 is a simply connected homogeneous

Sasaki manifold of unimodular Lie group, which is a quantization of a simply connected

homogeneous Kähler manifold M2 of reductive Lie group. As a complex manifold M is

a holomorphic principal bundle over a simply connected homogeneous Kähler manifold

M2 with fiber C1 or C∗.

In the above statement we mean by a quantization of a homogeneous Kähler man-

ifold M2, a principal bundle M1 over M2 with fiber R or S1 satisfying dψ = ω for a

contact form ψ on M1 and the Kähler form ω on M2.

A basic idea of the proofs is to show first that, up to modifications, a simply

connected homogeneous Vaisman manifold of unimodular Lie group can be assumed to

have the form M = G/H, where G is a simply connected unimodular Lie group of the

form G = R × G1 and H is a connected compact subgroup of G1; and our previous

results in [8], [1] yields

Proposition 1. Let g, h be the Lie algebras of G,H respectively. Then the pair

{g, h} is of the following form.

g = R× g1,

where g1 = ker θ ⊃ h, and g1 is a central extension of g2:

0 → R → g1 → g2 → 0.

The Lee field ξ and the Reeb field η = Jξ generate Z(g); and the l.c.K. form Ω can

be written as

Ω = −θ ∧ ψ + dψ,

where ψ is the Reeb form defining a contact form on the homogeneous Sasaki manifold

G1/H. Let k = π(h) for the projection π : g1 → g2. Then the pair {g2, k} defines a

homogeneous Kähler manifold with the Kähler form dψ|g2.

We further observe, applying some basic results from the field of homogeneous

Kähler manifolds that the homogeneous Kähler manifold associated to {g2, k} is of re-

ductive type. Hence we can reduce the classification problem of homogeneous Vaisman

manifolds of unimodular type to that of homogeneous Sasaki manifolds of the same

type, which are quantizations of homogeneous Kähler manifolds of reductive Lie group.

3



We already know that a simply connected homogeneous Kähler manifold of reductive

Lie group is a Kählerian product of Ck and a homogeneous Kähler manifold of semi-

simple Lie group (which has a structure of a holomorphic fiber bundle over a symmetric

domain with fiber a flag manifold).

Conversely, starting from a simply connected homogeneous Kähler manifold of re-

ductive Lie group, we may construct its quantization which is to be a simply connected

homogeneous Sasaki manifold and then take a product of R, making it a simply con-

nected homogeneous Vaisman manifold of unimodular type. Here the quantization must

be the one induced from a central extension of a Kähler algebra (g2, k) of reductive Lie

algebra as in the above proposition. We assert that a simply connected homogeneous

Kähler manifold of reductive Lie group is R1-quantizable to a simply connected homo-

geneous Sasaki manifold if and only if it is a product of Ck and a symmetric domain,

which is exactly the case when it contains no flag manifolds; and it is S1-quantizable

in all other cases.

1 Preliminaries

A contact metric structure {ψ, η, J̃ , g} onM2n+1 is a contact structure ψ ,ψ∧(dψ)n 6= 0

with the Reeb field η , i(η)ψ = 1, i(η)dψ = 0, a (1, 1)-tensor J̃ , J̃2 = −I + ψ ⊗ η and

a Riemannian metric g , g(X,Y ) = ψ(X)ψ(Y ) + dψ(X, J̃Y ). A Sasaki structure on

M2n+1 is a contact metric structure {ψ, η, J̃ , g} satisfying Lηg = 0 (Killing field) and

the integrability of J = J̃ |D on D = kerψ (CR-structure). The automorphism group

A(M) of a Sasaki manifold M is the set of all diffeomorphisms ψ with ψ∗η = η, Jψ∗ =

ψ∗J, ψ∗D ⊂ D. M is a homogeneous Sasaki manifold, if A(M) acts transitively on M .

Note that A(M) is a closed Lie subgroup of the isometry group I(M) of M ; and it is

compact if M is compact.

For any Sasaki manifold N , its Kähler cone C(N) is defined as C(N) = R+ × N

with the Kähler form ω = rdr ∧ ψ + r2

2
dψ, where a compatible complex structure Ĵ is

defined by Ĵη = 1
r∂r and Ĵ |D = J . Note that a contact metric manifold N2n+1 with

{ψ, η, J̃} is Sasaki if and only if the Kähler cone C(N) with (ω, J̃) is Kählerian.

For any Sasaki manifold N with contact form ψ, we can define an l.c.K. form

Ω = 2

r2
ω = 2

rdr ∧ ψ + dψ; or taking t = −2 log r, Ω = −dt ∧ ψ + dψ on M = R × N

or S1 ×N , which is of Vaisman type. We can define a family of complex structures J
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compatible with Ω by

J ∂t = b ∂t + (1 + b2) η, Jη = −∂t − b η,

where b ∈ R and the Lee field is Jη. Conversely, any simply connected complete

Vaisman manifold is of the form R×N with an l.c.K. structure as above, where N is

a simply connected complete Sasaki manifold.

Let M = G/H be a homogeneous space of a connected Lie group G with closed

subgroup H. Then the tangent bundle of M is given as a G-bundle G×H g/h over M =

G/H with fiber g/h, where the action of H on the fiber is given by Ad(x) (x ∈ H). A

vector field onM is a section of this bundle; and a p-form onM is a section of G-bundle

G ×H ∧p(g/h)∗, where the action of H on the fiber is given by Ad(x)∗ (x ∈ H). An

invariant vector field (respectively p-form), the one which is invariant by the left action

of G, is canonically identified with an element of (g/h)H (respectively (∧p(g/h)∗)H),

which is the set of elements of g/h (respectively ∧p(g/h)∗) invariant by the adjoint

action of H. A complex structure J on M is likewise considered as an element J of

Aut(g/h) such that J2 = −1 and Ad(x)J = JAd(x) (x ∈ H). Note that we may also

consider an invariant p-form as an element of ∧pg∗ vanishing on h and invariant by the

action Ad(x)∗ (x ∈ H).

Let g be a Lie algebra with a Hermitian structure (h, J), and Der(g) the derivation

algebra of g. For a map of Lie algebras

φ : g → Der(g)

satisfying the condition

h(φ(X)Y,Z) + h(Y, φ(X)(Z)) = 0, Jφ(X) = φ(X)J

for any X,Y,Z ∈ g, we define the Lie algebra gφ by setting

gφ = g⋊ ḡ,

on which the new Lie brackets are defined by

[(X,φ(X ′)), (Y, φ(Y ′))]φ = ([X,Y ] + φ(X ′)Y − φ(Y ′)X, [φ(X ′), φ(Y ′)]),

5



where ḡ = im φ, extending the metric on gφ as h(ḡ, gφ) = 0, and the complex structure

as J(ḡ) = 0. We define a modification ĝ of g as

ĝ = gφ/ḡ,

which is isomorphic to g as Hermitian vector spaces.

We define a new Lie algebra g′ on g, called also a modification of g, by

[X,Y ]′ = [X,Y ] + φ(X)Y − φ(Y )X,

under the additional conditions:

φ([g, g]) = 0, [φ(X), φ(Y )] = 0, φ(φ(X)Y ) = 0

for any X,Y ∈ g. It is easy to check the bracket [X,Y ]′ actually defines a new Lie

algebra structure on g. We can see that we have an isomorphism

g′ ∼= g⋊ ḡ/ḡ = ĝ

mapping X ∈ g′ to (X,φ(X)) ∈ g ⋊ ḡ, and to its projection; and thus we get an

isomorphism

g′ ∼= g

preserving the Hermitian structure (h, J).

Example 1. Let g′ be a Lie algebra with a basis {X,Y,Z,W} for which the bracket

multiplication is defined by

[X,Y ] = −Z, [W,X] = −Y, [W,Y ] = X,

and other brackets vanish. A complex structure J on g′ is defined by

JX = −Y, JY = X,JZ = −W,JW = Z

A Hermitian metric h is defined such thatX,Y,Z,W is an orthogonal basis. Let n be

the Heisenberg Lie algebra with a basis {X,Y,Z} for which the bracket multiplication

is defined by

[X,Y ] = −Z,

6



and other brackets vanish. We see that g′ is a modification of g = n×R. A linear map

φ : g → Dev (g) is defined as

φ(X) = φ(Y ) = φ(Z) = 0, φ(W ) = adW ,

where adW is defined by

adW (X) = −Y, adW (Y ) = X, adW (Z) = 0, adW (W ) = 0.

It is clear that adW is skew-symmetric with respect to h and compatible with J .

Hence, setting ḡ =< adW >, we get a modification ĝ of g:

ĝ = g⋊ ḡ/ḡ.

Since W 6∈ [g, g] and clearly satisfying the additional conditions, it can be identified

with g′ through the map ψ : g′ → g⋊ ḡ → ĝ defined by ψ(X) = pr(X,φ(X)).

We can define a modification of a pair (g, h) of a Hermitian Lie algebra g and a

subalgebra h of g under the additional condition:

φ(h) = 0, φ(X)(h) = 0

for any X ∈ g. We get a modification (g′, h′) of (g, h) as

g′ = g⋊ ḡ, h′ = h× ḡ.

Lemma 1. Let M = G/H be a homogeneous Vasiman manifold, we can modify, if

necessary, g/h into g′/h′ ∼= g/h with dimZ(g′) = 2 and dim h′ = dim h+ 1.

Proof. In fact, the set of invariant vector fields can be identified with (g/h)h; and

since the Lee field ξ and Reeb field η = Jξ are invariant they belong to this set. Since

ξ and η are Killing and compatible with the complex structure J , they define adξ and

adη in Der(g), which commute with each other and are compatible with J . They are

also adh-invariant for h ∈ h.

Let ḡ =< adξ >, and ĝ = g ⋊ ḡ, ĥ = h × ḡ. We have g/h = ĝ/ĥ, where ĝ has a

central element ζ = ξ − adξ in ĝ which is identified with ξ (mod ĥ). Since ξ 6∈ [g, g], we

have ĝ/ḡ ∼= g′ and ĥ/ḡ ∼= h′ = h through the map X → (X,φ(X)). Hence we have

g/h = g′/h′ = g′/h
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with ξ ∈ Z(g′).

Similarly, we can modify g′/h′ into g′′/h′′ with ξ, η ∈ Z(g′′). Note that in case ξ

or η is already in Z(g), adξ or adη is trivial; and thus g′ = g × ḡ, h′ = h × ḡ without

any modification on g and h. Since for homogeneous Vaisman manifolds g′′/h′′ the

dimension of the center is not greater than 2, the Lee and the Reeb fields generate the

center of g′′. Since h′ = h, dim h′′ = dim h+ 1.

We review some basic and historical results on a classification of homogeneous

Kähler manifolds (due to Dorfmeister, Nakajima, Vinberg, Gindikin, Piatetskii-Shapiro,

Matsushima, Borel, Hano, Shima; see [2], [5], [6], [13] and references therein).

Theorem. A homogeneous complex Kähler manifold is a holomorphic fiber bun-

dle over a homogeneous bounded domain with fiber a product of a locally flat complex

manifold and a flag manifold. In particular, due to Grauert-Oka principle [9], it is

biholomorphic to the product of these complex manifolds.

LetM = G/K be a homogeneous Kähler manifold, where K is a closed subgroup of

a simply connected Lie group G. Let g, k be the Lie algebras of G,K respectively. Then,

we can consider a Kähler structure on G/K as a pair (J, ω) of a complex structure J ∈

End(g) and a skew symmetric bilinear form ω on g, satisfying the following condition:

(i) J k ⊂ k, J2 = −I (mod k)

(ii) adXJ = J adX (mod k) for X ∈ k

(iii) [JX, JY ] = [X,Y ] + J [JX, Y ] + J [X,JY ] (mod k)

(iv) ω(k, g) = 0, ω(JX, JY ) = ω(X, , Y )

(v) ω([X,Y ], Z) + ω([Y,Z],X) + ω([Z,X], Y ) = 0

(vi) ω(JX,X) 6= 0 for X 6∈ k

A Kähler algebra (g, k, J, ω) is a Lie algebra g with subalgebra k, J ∈ End(g) and a

skew symmetric bilinear form ω on g, satisfying the above condition. A Kähler algebra

(g, k, J, ω) is effective if k includes no non-trivial ideals of g. A J-algebra is a Kähler

algebra (g, k, J, ω) with a linear form ρ such that dρ = ω. Note that the condition

dρ = ω is often referred to as non-degenerate; for a Kähler algebra of effective form,

it is actually equivalent to non-degeneracy of the Ricci curvature form r of the Kähler

structure (due to Nakajima [11]).
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A key idea of the proof [5] for the above theorem is to show, applying modifications

if necessary, that there exists an abelian ideal a and a J-algebra f containing k such

that

g = a⋊ f

which is a semi-direct sum, and g is quasi-normal, that is, ad(X) has only real eigen-

values for any element X ∈ rad(g), where rad(g) is the radical of g. There also exists a

compact J-subalgebra q of f satisfying f ⊃ q ⊃ k for which we can express M as a fiber

bundle:

P/K →M = G/K → G/P

where P = AQ, setting A,Q be the Lie groups associated to a, q respectively; and

P/K = A/Γ × Q/K0 with K = K0Γ for the connected component K0 of K and

a discrete subgroup Γ of A. The base space G/P defines a homogeneous bounded

domain, A/Γ a locally flat complex manifold, Q/K0 a flag manifold, and the fibration

is holomorphic.

2 Vaisman Unimodular Lie algebras

A Lie group G is a homogeneous space with its own transitive action on the left. It is

a homogeneous l.c.K. manifold if it admits a left-invariant Hermitian structure (g, J)

satisfying

dΩ = Ω ∧ θ

for its associated fundamental form Ω and a closed 1-form θ (Lee form). Note that θ

must be also left-invariant. It is clear that G admits a left-invariant l.c.K. structure if

and only if its Lie algebra g admits an l.c.K. form Ω. We call g with an l.c.K. form Ω

an l.c.K. Lie algebra.

We have already obtained in our previous papers [7], [1] a classification of l.c.K.

reductive Lie algebras and nilpotent Lie algebras, determining at the same time which

l.c.K. structures are of Vaisman type. In this section we determine all Vaisman uni-

modular Lie algebras, up to modifications.
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Theorem 1. A Vaisman unimodular Lie algebra is, up to modification, isomorphic

(as Vaisman Lie algbera) to one of the following:

R× n,R× su(2),R × sl(2,R),

where n is a Heisenberg Lie algebra. In terms of Lie groups, a simply connected Vaisman

unimodular Lie group is, up to modification, isomorphic (as Vaisman Lie group) to one

of the following:

R×N,R× SU(2),R × S̃L(2,R).

Proof. Let g be a Vaisman unimodular Lie algebra of dimension 2k + 2 with an

l.c.K. form Ω and Lee form θ. Applying modification, if necessary, we can assume that

g = R× g0,

where g0 = ker θ, and R is generated by the Lee field ξ. g0 is a Sasaki Lie algebra with

Reeb field η. Let ψ be the contact form and k =< η >, then (g0, k, J |g0, dψ) defines a

Kähler algebra. The Koszul form κ is defined by

κ(X) = Trg0/k (ad JX − JadX).

Then, the Ricci curvature form r of the Kähler structure is given by

r (X,Y ) = −κ([X,Y ]).

Now, in case dimZ(g0) = 1, Z(g0) = k, and g0/k is a unimodular Kähler Lie algebra.

Then due to Hano, g0/k is meta-abelian and locally flat; and thus, up to modification,

isomorphic to Cn. Therefore we get g0 = n, up to modification. In case dimZ(g0) = 0,

we see that the Ricci form κ is non-degenerate. In fact, since ad (η) is not trivial, k is

not an ideal of g0.; and thus the Kähler algebra (g0, k, dψ) is in effective form. Since the

Kähler algebra (g0, k, dψ) is non-degenerate (that is, it defines a J-algebra) the Ricci

form r is non-degenerate [11]; it follows (due to Hano [6]) that g0 must be semi-simple.

Then it is well known that g0 must be either su(2) or sl(2,R).

Remark 1. A Vaisman unimodular solvable Lie algebra g is, up to modification,

isomorphic to R× n (see Example 2.1. for a non-nilpotent case). Since modification φ

is a skew-symmetric operation, its eigenvalues are all pure-imaginary; in particular, a

Vaisman unimodular completely solvable Lie algebra is isomorphich to R× n [12].
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Remark 2. We have determined all homogeneous l.c.K. structures on R × n and

R×su(2), which are all of Vaisman type [7]. We have also determined all homogeneous

l.c.K. structures on R× sl(2,R), some of them are of non-Vaisman type, as we will see

in the next section.

3 l.c.K. unimodular Lie groups of non-Vaisman type

In this section we see examples of l.c.K. reductive Lie algebras of non-Vaisman type

(which we already discussed in our previous papers [8], [1], illustrating how Vaisman

and non-Vaisman structures can defined on R× sl(2,R).

Example 2. There exists a homogeneous l.c.K. structure on g = R×sl(2,R) which

is not of Vaisman type. Take a basis {X,Y,Z} for sl(2,R) with bracket multiplication

defined by

[X,Y ] = −Z, [Z,X] = Y, [Z, Y ] = −X,

and T as a generator of the center R of g, where we set

X =
1

2

(
0 1

1 0

)
, Y =

1

2

(
1 0

0 −1

)
, Z =

1

2

(
0 1

−1 0

)
.

Let t, x, y, z, be the Maurer-Cartan forms corresponding to T,X, Y, Z respectively;

then we have

dt = 0, dx = z ∧ y, dy = x ∧ z, dz = x ∧ y,

and an l.c.K. structure Ω = z ∧ w + x ∧ y compatible with an integrable homogeneous

complex structure J on g defined by

JY = X,JX = −Y, JT = Z, JZ = −T.

We can generalize Ω to an l.c.K. structure of the form

Ωψ = ψ ∧ w + dψ

compatible with the above complex structure J on g, where ψ = ax + by + cz with

a, b, c ∈ R.

We see that the symmetric bilinear form hψ(U, V ) = Ωψ(JU, V ) is represented, with

respect to the basis {T,X, Y, Z}, by the matrix
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A =




c −b a 0

−b c 0 a

a 0 c b

0 a b c



,

which has the characteristic polynomial ΦA(u) = {(u− c)2 − (a2 + b2)}2, and has only

positive eigenvalues if and only if c > 0, c2 > a2 + b2. The Lee form is θ = t and the

Lee field is

ξ =
1

D
(cT + bX − aY ),

with D = c2 − a2 − b2. We have also

hψ(ξ, ξ) =
c

D
.

We can see that hψ([ξ, U ], V )+hψ(U, [ξ, V ]) 6≡ 0 unless a = b = 0. In fact for U = V =

Z,

hψ([ξ, Z], Z) + hψ(Z, [ξ, Z]) = 2hψ([ξ, Z], Z) = −
2

D
(a2 + b2) = 0

if and only if a = b = 0. Conversely for the case a = b = 0, it is easy to check that

hψ([ξ, U ], V ) + hψ(U, [ξ, V ]) ≡ 0. Therefore we have shown

For J and Ωψ defined above, hψ defines a (positive definite) l.c.K. metric if and

only if c > 0, c2 > a2 + b2. It is of Vaisman type if and only if c > 0, a = b = 0. And

it is of non-Vasiman type if and only if c > 0, c2 > a2 + b2 > 0.

We see that g can be modified into g ∼= g′/ < S >, where g′ = R × gl(2,R) for

which the basis consists of X,Y,Z and

W =
1

2

(
1 0

0 1

)
,

and we set

S =
1

2

(
1 −1

1 1

)
.

Since we have W = Z + S ∈ gl(2,R), adS defines a skew-symmetric action on g

and Z =W (modS). Hence we get g ∼= g′/ < S > as an l.c.K. algebra with the original

l.c.K. form Ω, which is of Vaisman type. Note that dimRZ(g
′) = 2. We see that for g
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with the l.c.K. form Ωψ of non-Vaisman type, adS is not compatible with the metric

hψ. In fact for U = bX − aY ,

hψ([S,U ], Z) + hψ(U, [S,Z]) = hψ([Z,U ], Z) = a2 + b2 = 0

if and only if a = b = 0. Hence we can not modify g with the l.c.K. form Ωψ of

non-Vaisman type into g ∼= g′/ < S > with a compatible Vaisman structure.

4 Homogeneous Vaisman manifolds of unimodular Lie group

In this section we show our main results.

Theorem 2. A simply connected homogeneous Vaisman manifold M of unimodular

Lie group is isomorphic to R × M1, where M1 is a simply connected homogeneous

Sasaki manifold of unimodular Lie group, which is a quantization of a simply connected

homogeneous Kähler manifold M2 of reductive Lie group. As a complex manifold M is

a holomorphic principal bundle over a simply connected homogeneous Kähler manifold

M2 with fiber C1 or C∗.

Hence we have reduced the classification problem of homogeneous Vaisman mani-

folds of unimodular Lie groups to that of homogeneous Sasaki manifolds. The following

theorem may be considered independently as a result on classification of homogeneous

Sasaki manifolds of unimodular Lie groups, which extend a known result on compact

homogeneous Sasaki manifolds (cf. [3]). Note that a homogeneous Sasaki manifold,

and more generally a homogeneous contact manifold is necessarily regular (cf. [4], [8]).

Theorem 3. A simply connected homogeneous Sasaki manifold M1 of unimodular

Lie group is a quantization of a simply connected homogeneous Kähler manifold M2

of reductive Lie group; that is, M1 is a principal bundle over M2 with fiber R or S1

satisfying dψ = ω for a contact form ψ on M1 and the Kähler form ω on M2.

The simply connected homogeneous Kähler manifold M2 is a Kählerian product of

Ck, a flag manifold Q/V with a compact semi-simple Lie group Q and a parabolic

subgroup V , and a homogeneous Kähler manifold P/U with a non-compact semisimple

Lie group P and a closed subgroup U . The homogeneous Kähler manifold P/U has a

structure of a holomorphic fiber bundle over a symmetric domain P/L with fiber a flag

manifold L/U for a maximal compact subgroup L of P .
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Furthermore, M1 is R-quantization of M2 if and only if M2 is a product of Ck and

a symmetric domain P/L with L = U , and S1-quantization of M2 in all other cases.

We have shown in Lemma 1 that up to modifications, a simply connected homo-

geneous Vaisman manifold of unimodular Lie group can be assumed to have the form

M = G/H, whereG is a simply connected unimodular Lie group of the formG = R×G1

and H is a connected compact subgroup of G1; and our previous results in [8], [1] yields

Proposition 1. Let g, h be the Lie algebras of G,H respectively. Then the pair

{g, h} is of the following form.

g = R× g1,

where g1 = ker θ ⊃ h, and g1 is a central extension of g2:

0 → R → g1 → g2 → 0.

The Lee field ξ and the Reeb field η = Jξ generate Z(g); and the l.c.K. form Ω can be

written as

Ω = −θ ∧ ψ + dψ,

where ψ is the Reeb form defining a contact form on the homogeneous Sasaki manifold

G1/H. Let k = π(h) for the projection π : g1 → g2. Then the pair {g2, k} defines a

homogeneous Kähler manifold G2/K with the Kähler form ω = dψ|g2, where G1 and

K are the Lie groups corresponding to g1 and k respectively.

We have the following result on homogeneous unimodular Kähler manifolds, which

could be of independent interest.

Proposition 2. A simply connected homogeneous unimodular Kähler manifold

M = G/K is, up to isomorphism, of reductive type; that is, the Kähler algebra {g, k}

of M has, up to modification, a decomposition

g = a⋊ l,

where a is an abelian Kähler subalgebra, l is a semi-simple Kähler subalgebra which

contains k. As a Kähler manifold, M is a product of Ck and a homogeneous Kähler

manifold N = L/K of a semi-simple Lie group L:

M = Ck ×N.
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Furthermore, N can be decomposed into a Kähler product of flag manifolds and non-

compact homogeneous Kähler manifolds each of which is a holomorphic fiber bundle

over a symmetric domain with fiber a flag manifold.

Proof. Let M = G/K be a simply connected homogeneous Kähler manifold with

unimodular Lie group G and a closed subgroup K of G. We have a decomposition

g = a⋊ f,

where a is a maximal abelian J-ideal of g isomorphic to Ck and f is a J-subalgebra

which contains k. Moreover, due to [13], f decomposes into a product of a solvable

J-subalgebra s, a reductive J-subalgebra q,

f = s× q,

where q contains k, and the center of q is contained in k. It is also known that s

corresponds to a homogeneous domain, and applying the De Rham decomposition of

homogeneous Kähler manifolds (cf. [10]) we see that s is actually the radical of f, which

is a maximal solvable ideal of f. We see also that a ⋊ s is the radical of g. Since g is

by assumption a unimodular Lie algebra, so is a⋊ s. It follows, due to Hano [6] that s

must be trivial. Since the center of q is contained in k, we may express g as

g = a⋊ l,

where l is the semi-simple part of q and k is contained in l. Since M is by assumption

simply connected, a corresponds to Ck as a flat Kähler manifold, and thus the action

of L (the Lie group corresponding to l) on Ck is isometric and holomorphic. Thus as

a Kähler manifold M is isomorphic to Ck × L/K (cf. [5]), where L/K is a product of

homogeneous Kähler manifolds of compact semi-simple Lie groups and homogeneous

Kähler manifolds of non-compact semi-simple Lie groups each of which is a holomorphic

fiber bundle over a symmetric domain with fiber a flag manifold (c.f. [2]).

Let g1 be the Sasaki algebra with the Reeb field η and the Kähler form ω in Propo-

sition 2. Then, the Lie bracket on g1 is the extension of g2 given by

[X,Y ]g1 = [X,Y ]g2 − ω(X,Y )η, [η, Z]g2 = 0
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for X,Y,Z ∈ g2. Conversely, given a Kähler algebra {g2, k} with a Kähler form ω we

can define a Sasaki Lie algebra g1, which is a central extension with a generator η

of R by the above formula. Since η is Killing, g1 is unimodular if and only if g2 is

unimodular. Hence M1 = G1/H is of unimodular type if and only if M2 = G2/K is of

the same type.

Now we study a quantization of a homogeneous Kähler manifold M2 = G2/K of

reductive type. In case M2 = Ck, its quantization is the Heisenberg Lie group N ,

which is a central extension of R by Ck. In case M2 = L/K is a flag manifold, where

L is a compact semi-simple Lie group, since M2 is a Hodge manifold it is quantizable

to a compact homogeneous Sasaki manifold with fiber S1. In case L is a non-compact

semi-simple Lie group, M2 is a holomorphic fiber bundle over a symmetric domain

L/B with fiber a flag manifold B/K, where B is a maximal compact Lie subgroup of

L containing K. Since the flag manifold B/K is a Kähler submanifold of M2 = G/K

and S1-quatizable, M2 itself must be S1-quantizable. In general cases, for two or more

homogeneous Kähler manifolds each of which is quantizable, we construct naturally a

quantization of their products in the following way. For two Kähler algebras g2 and

g′2 with their central extension g1 and g′1 respectively, we can define a new central

R-extension of g2 × g′2 by taking R×R/∆ ∼= R with ∆ = {(X,−X)|X ∈ R}::

0 → R → g1 ×∆ g′1 → g2 × g′2 → 0,

where g1 ×∆ g′1 = (g1 × g′1)/∆, the quotient Lie algebra by the canonical action of

∆ on g1 × g′1. Correspondingly, we obtain a quantization G1 ×∆ G′

1 of G2 × G′

2; and

in general the quantization G1/H ×∆ G′

1/H
′ of G2/K × G′

2/K
′. Now, in case M2 is

a product of Ck and a symmetric domain, since M2 is contractible, it must be R-

quantizable. In all other cases, as we have seen in the above for the case in which L is

a non-compact semi-simple Lie group and K is not a maximal compact subgroup, M2

must be S1-quatizable.

We have thus obtained the following result, which could be of independent interest.

Proposition 3. A simply connected homogeneous Kähler manifold of reductive Lie

group is R1-quatizable or S1-quantizable to a simply connected homogeneous Sasaki

manifold, according to whether it is a product of Ck and a symmetric domain, or not.

In other words it is R1-quatizable exactly when it contains no flag manifolds.
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