
C. R. Mecanique 344 (2016) 753–758
Contents lists available at ScienceDirect

Comptes Rendus Mecanique

www.sciencedirect.com

Homogenization of random attractors for reaction–diffusion 

systems ✩

Homogénéisation des attracteurs aléatoires pour les systèmes d’équations 

de réaction–diffusion

Kuanysh A. Bekmaganbetov a, Gregory A. Chechkin b,∗, Vladimir 
V. Chepyzhov c,d

a M.V. Lomonosov Moscow State University, Kazakhstan Branch, Kazhymukan st. 11, Astana, 010010, Kazakhstan
b Department of Differential Equations, Faculty of Mechanics and Mathematics, M.V. Lomonosov Moscow State University, Moscow 119991, 
Russia
c Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
d National Research University Higher School of Economics, Moscow 101000, Russia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 October 2016
Accepted 24 October 2016
Available online 4 November 2016

Keywords:
Reaction–diffusion systems
Attractors
Homogenization
Random functions

Mots-clés :
Systèmes de réaction–diffusion
Attracteurs
Homogénéisation
Fonctions aléatoires

We consider reaction–diffusion systems with randomly oscillating terms. We construct the 
deterministic homogenized reaction–diffusion system and prove that the trajectory attrac-
tors of the initial systems converge to the trajectory attractors of the homogenized systems.
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r é s u m é

Nous considérons les systèmes d’équations de réaction–diffusion avec termes aléatoirement 
oscillants. Nous construisons le système homogénéisé déterministe d’équations et prouvons 
que les attracteurs trajectoires des systèmes initiaux convergent vers les attracteurs trajec-
toires des systèmes d’équations homogénéisées.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper, we study an asymptotic behavior of attractors of the reaction–diffusion systems with randomly oscillating 
terms. To study such a phenomenon, we apply the homogenization method (cf., for example, [1–7], for the random case 
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Fig. 1. Thomas’ cyclically symmetric attractor (Model: Clint Sprott) and a 4-spiral strange attractor exhibited by the modified Chua’s circuit (Model: M.A. Aziz 
Alaoui).

cf., for instance, [8–11]), as well as a delicate analysis of trajectory and global attractors (see, for example, [12–14] and 
references therein), see Fig. 1.

In this paper, we prove that the trajectory attractor Aε of the autonomous reaction–diffusion system with a randomly 
oscillating term converges almost surely as ε → 0 to the trajectory attractor A of the homogenized reaction–diffusion system 
in an appropriate functional space.

2. Homogenization

Assume that (�, B, μ) is a probability space, i.e. the set � is endowed with a σ -algebra B of its subsets and a σ -additive 
nonnegative measure μ on B such that μ(�) = 1.

We consider the system of reaction–diffusion equations with randomly oscillating terms of the form

∂t u = a�u − b
(

x,
x

ε
,ω

)
f (u) + g

(
x,

x

ε
,ω

)
, u|∂ D = 0 (1)

where x ∈ D � R
n , u = (u1, . . . , uN), f = ( f 1, . . . , f N), and g = (g1, . . . , gN). Here a is an N × N matrix with positive 

symmetric part and b(x, z, ω) ∈ C(D ×R
N × �) is a real positive function. The Laplace operator � := ∂2

x1
+ . . . + ∂2

xn
acts in 

x-space.
We note that all the results can be extended to the systems with nonlinear terms of the form 

∑m
j=1 b j

(
x, x

ε ,ω
)

f j(u), 
where b j are positively defined matrices and f j(u) are vector functions. For brevity, we consider the case m = 1 and 
b1

(
x, x

ε ,ω
) = b 

(
x, x

ε ,ω
)

I , where I is the identity matrix and b is a real function.
For the sake of simplicity, we assume that the vector function f (v) ∈ C(RN ; RN ) satisfies the following inequalities:

f (v) · v ≥ γ |v|p − C, | f (v)| ≤ C1

(
|v|p−1 + 1

)
, p ≥ 2 (2)

Notice that we do not assume that the function f (v) satisfies the Lipschitz condition with respect to v .
Assume that Tξ , ξ ∈ R

n , is an ergodic dynamical system. The function b(x, x
ε , ω) and the vector function g(x, x

ε , ω) are 
statistically homogeneous, i.e. b(x, ξ, ω) = B(x, Tξω) and g(x, ξ, ω) = G(x, Tξω), where B : D × � → R and G : D × � → R

N

are measurable.
We also assume that b(x, z, ω) ∈ Cb(D ×R × �) and

β1 ≥ b(x, z,ω) ≥ β0 > 0, ∀x ∈ D, z ∈R
n, ω ∈ � (3)

the function b 
(
x, x

ε ,ω
)

has the average bhom(x) = E(B)(x) as ε → 0+ in L∞,∗w(D), that is, almost surely∫
D

b
(

x,
x

ε
,ω

)
ϕ(x)dx →

∫
D

bhom (x)ϕ(x)dx (ε → 0+) (4)

for any function ϕ ∈ L1(D). For the vector function g
(
x, x

ε ,ω
)
, we assume that it has the average ghom(x) = E(G)(x) in the 

space V ′ = (
H−1(D)

)N
:

g
(

x,
x

ε
,ω

)
⇀ ghom(x) (ε → 0+) weakly in V ′

that is, almost surely〈
g
(

x,
x
,ω

)
,ϕ(x)

〉
→

〈
ghom (x) ,ϕ(x)

〉
(ε → 0+) (5)
ε
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for any ϕ ∈ V = (
H1

0(D)
)N

. In particular, the following functions are available:

g
(

x,
x

ε
,ω

)
= g0

(
x,

x

ε
,ω

)
+

n∑
i=1

∂xi gi

(
x,

x

ε
,ω

)

where the functions gi
(
x, x

ε ,ω
)

have the averages ghom
i (x) ∈ (L2(D))N in H = (L2(D))N and almost surely

〈
gi

(
x,

x

ε
,ω

)
,ϕ(x)

〉
→

〈
ghom

i (x) ,ϕ(x)
〉

(ε → 0+) ∀ϕ ∈ H, i = 1, . . . ,n

We note that the H-norms of the functions ∂xi gi
(
x, x

ε ,ω
) = gixi

(
x, x

ε ,ω
)+ 1

ε gizi

(
x, x

ε ,ω
)

can tend to infinity as ε → 0+. 
These functions are bounded in the space V ′ only.

As in [15,13] we study weak solutions (trajectories) of the system (1), that is, the functions u(x, t) ∈ Lloc∞ (R+; H) ∩
Lloc

2 (R+; V ) ∩ Lloc
p

(
R+; (Lp(D)

)N
)

that satisfy (1) in the sense of distributions of the space D ′
(
R+; (H−r(D)

)N
)

, where 
r = max {1,n(1/2 − 1/p)} (the number r is defined by the corresponding Sobolev embedding theorem). For every u0 ∈ H , 
there exists at least one weak solution u(x, t) of the system (1) such that u(0) = u0 (see [12,15,13]). This solution is not 
necessarily unique because we do not assume the Lipschitz condition for f (v) with respect to v . We denote by K+

ε the set 
of all weak solutions to the system (1).

Consider the translation semigroup {T (h)} acting on the trajectory space K+
ε by the formula T (h)u(x, t) = u(x, t + h) for 

h ≥ 0.

We study the trajectory attractor Aε of the system (1), which, by definition, coincides with the global 
(
Fb+,
loc+

)
-

attractor of the translation semigroup {T (h)} acting on K+
ε (see [12–14]). Here we denote


loc+ = Lloc∞,∗w(R+; H) ∩ Lloc
2,w(R+; V ) ∩ Lloc

p,w

(
R+; (Lp(D)

)N
)

∩
{

v | ∂t v ∈ Lloc
q,w

(
R+; (H−r(D)

)N
)}

Fb+ = Lb∞(R+; H) ∩ Lb
2(R+; V ) ∩ Lb

p

(
R+; (Lp(D)

)N
)

∩
{

v | ∂t v ∈ Lb
q

(
R+; (H−r(D)

)N
)}

Recall that 
loc+ is the local weak topology, which is determined by the weak and ∗-weak convergence of sequences {vm}
and {∂t vm} in the corresponding spaces. The trajectory space K+

ε is supplied with topology 
loc+ . The Banach space Fb+ is 
used to define bounded sets in K+

ε .
By Kε , we denote the kernel of the system (1) that is the set of all complete solutions (complete trajectories) u(x, t)

defined for all t ∈ R that are bounded in the space Fb , where

Fb = Lb∞(R; H) ∩ Lb
2(R; V ) ∩ Lb

p

(
R; (Lp(D)

)N
)

∩
∩

{
v | ∂t v ∈ Lb

q

(
R; (H−r(D)

)N
)}

Proposition 2.1. Under conditions (2), (4), and (5), the system (1) has the trajectory attractors Aε in the topology 
loc+ . The set Aε is 
almost surely uniformly (w.r.t. ε ∈ (0, 1)) bounded in Fb+ and compact in 
loc+ . Moreover,

Aε = �+Kε (6)

the kernel Kε is non-empty, uniformly (w.r.t. ε ∈ (0, 1)) bounded in Fb and compact in the topology 
loc, where


loc = Lloc∞,∗w(R; H) ∩ Lloc
2,w(R; V ) ∩ Lloc

p,w

(
R; (Lp(D)

)N
)

∩
∩

{
v | ∂t v ∈ Lloc

q,w

(
R; (H−r(D)

)N
)}

The proof of this proposition almost coincides with the proof given in [13] for a deterministic case.

Recall that 
loc+ ⊂ Lloc
2

(
R+; (H1−δ(D)

)N
)

, 0 < δ ≤ 1, and therefore the trajectory attractor Aε attracts bounded sets of 

trajectories of the system (1) in the local strong topology of the space Lloc
2

(
R+; (H1−δ(D)

)N
)

.

Along with the random system (1), we consider the averaged deterministic system

∂t ū = a�ū − bhom (x) f (ū) + ghom (x) , ū|∂ D = 0 (7)

Clearly system (7) also has a trajectory attractor A in the trajectory space K+
corresponding to the system (7) and
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A= �+K
where K is the kernel of system (7) in Fb . The set A is bounded in Fb+ and compact in 
loc+ .

The following statement holds true.

Theorem 2.1. The following limit holds almost surely in the topology 
loc+

Aε → A as ε → 0+ (8)

Moreover, almost surely

Kε → K as ε → 0 + in 
loc (9)

Proof. It is clear that (9) implies (8). Therefore it is sufficient to prove (9), that is, for every neighborhood O(K) in 
loc, 
there exists ε1 = ε1(O) > 0 such that almost surely

Kε ⊂ O(K) for ε < ε1 (10)

Suppose that (10) is not true. Consider the corresponding subset �′ ⊂ � with μ(�′) > 0 and (10) does not hold for all 
ω ∈ �′ . Then, for each ω ∈ �′ , there exists a neighborhood O′(K) in 
loc, a sequence εn → 0+ (n → ∞), and a sequence 
uεn (·) = uεn (ω, t) ∈Kεn such that

uεn /∈ O′(K) for all n ∈N,ω ∈ �′ (11)

For each ω ∈ �′ , the function uεn (t), t ∈R is the solution to the system

∂t uεn = a�uεn − b

(
x,

x

εn
,ω

)
f (uεn ) + g

(
x,

x

εn
,ω

)
, uεn |∂ D = 0 (12)

on the entire time axis t ∈R. Moreover, the sequence {uεn (t)} is bounded in Fb for each ω ∈ �′ , that is,

‖uεn‖Fb = supt∈R ‖uεn (t)‖H+

supt∈R

⎛
⎝

t+1∫
t

‖uεn (s)‖2
V ds

⎞
⎠

1/2

+ supt∈R

⎛
⎝

t+1∫
t

‖uεn (s)‖p
L p

ds

⎞
⎠

1/p

+

supt∈R

⎛
⎝

t+1∫
t

‖∂t uεn (s)‖q
H−r ds

⎞
⎠

1/q

≤ C for all n ∈N

(13)

Here, the constant C is independent of n. Hence there exists a subsequence {uε′
n
(t)} ⊂ {uεn (t)} that we label the same, such 

that

uεn(t) → ū(t) as n → ∞ in 
loc (14)

where ū(·) ∈ Fb and ū(t) satisfies (13) with the same constant C . In detail we have that uεn (t) ⇀ ū(t) (n → ∞) 
weakly in Lloc

2,w(R; V ), weakly in Lloc
p,w

(
R; (Lp(D)

)N
)

, ∗-weakly in Lloc∞,∗w(R+; H) and ∂t uεn (t) ⇀ ∂t ū(t) (n → ∞) weakly 

in Lloc
q,w

(
R; (H−r(D)

)N
)

. We claim that ū(·) ∈K. We have already proved that ‖ū‖Fb ≤ C . So we have to establish that ū(t)

is a weak solution to (7). Using (13) and (5), we obtain that

∂t uεn − a�uεn − g

(
x,

x

εn
,ω

)
→ ∂t ū − a�ū − ghom (x) as n → ∞ (15)

in the space D ′
(
R; (H−r(D)

)N
)

because the derivative operators ∂t and � are continuous in the space of distributions. Let 
us prove that

b

(
x,

x

εn

)
f (uεn ) ⇀ bhom (x) f (ū) as n → ∞ (16)

weakly in Lloc
q,w

(
R; (Lq(D)

)N
)

. We fix an arbitrary number M > 0. The sequence {uεn (t)} is bounded in

Lp

(
]−M, M[; (Lp(D)

)N
)

(see (13)). Hence by (2), the sequence { f (uεn (t))} is bounded in Lq

(
]−M, M[; (Lq(D)

)N
)

. Since 

{uεn (t)} is bounded in L2

(
]−M, M[; (H1

0(D)
)N

)
and {∂t uεn (t)} is bounded in Lq

(
]−M, M[; (H−r(D)

)N
)

, we can assume 

that uεn (t) → ū(t) as n → ∞ strongly in L2
(]−M, M[; (L2(D))N) = L2 (D × ]−M, M[)N and therefore
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uεn (x, t) → ū(x, t) as n → ∞ a.e. in (x, t) ∈ D × ]−M, M[
Since the function f (v) is continuous with respect to v ∈ R

N , we conclude that

f (uεn(x, t)) → f (ū(x, t)) as n → ∞ a.e. in (x, t) ∈ D × ]−M, M[ (17)

We have

b

(
x,

x

εn
,ω

)
f (uεn) − bhom (x) f (ū) =

b

(
x,

x

εn
,ω

)(
f (uεn) − f (ū)

) +
(

b

(
x,

x

εn
,ω

)
− bhom (x)

)
f (ū) (18)

Let us show that both summands in the right-hand side of (18) converge to zero as n → ∞ weakly in

Lq

(
]−M, M[; (Lq(D)

)N
)

= (
Lq (D × ]−M, M[)

)N . The sequence b 
(

x, x
εn

,ω
)(

f (uεn ) − f (ū)
)

tends to zero as n → ∞ al-

most everywhere in (x, t) ∈ D × ]−M, M[ (see (17)) and is bounded in the space 
(

Lq (D × ]−M, M[)
)N (see (3)). Therefore 

Lemma 1.3 from [16, Chapter 1, Section 1] implies that

b

(
x,

x

εn
,ω

)(
f (uεn) − f (ū)

)
⇀ 0 as n → ∞

weakly in 
(
Lq (D × ]−M, M[)

)N . The sequence 
(

b
(

x, x
εn

,ω
)

− bhom (x)
)

f (ū) also approaches zero as n → ∞ weakly in (
Lq (D × ]−M, M[)

)N because, by our assumption, b 
(

x, x
εn

,ω
)

⇀ bhom (x) as n → ∞ ∗-weakly in the space L∞,∗w(]−M, M[;
L2(D)) and f (ū) ∈ (

Lq (D × ]−M, M[)
)N

. We have proved (16). Using (15) and (16) we pass to the limit in the equation (12)

as n → ∞ in the space D ′
(
R+; (H−r(D)

)N
)

and we obtain that the function ū(x, t) satisfies the equation

∂t ū = a�ū − bhom (x) f (ū) + ghom (x) , ū|∂ D = 0, t ∈R

Consequently, ū ∈ K. We have proved above that uεn (t) → ū(t) as n → ∞ in 
loc for each ω ∈ �′ . The hypotheses uεn (t) /∈
O′(K) implies that ū /∈ O′(K) and moreover ū /∈ K for all ω ∈ �′ . We have arrived to the contradiction. The theorem is 
proved. �
Corollary 2.2. For every 0 < δ ≤ 1 and for any M > 0 almost surely

distL2([0,M];H1−δ)

(
�0,MAε,�0,MA

)
→ 0 (ε → 0+)

Here distM(X, Y ) := supx∈X distM(x, Y ) denotes the Hausdorff semidistance from a set X to a set Y in a metric 
space M.

Remark 2.1. The analogous theorem holds for random non-autonomous reaction–diffusion systems of the form (1) that 
contain the terms b 

(
x, t

ε , t,ω
)

and g
(
x, t

ε , t,ω
)

having the uniform averages in time as ε → 0+.

In conclusion, we briefly consider the reaction–diffusion systems for which the uniqueness theorem of the Cauchy prob-
lem takes place. It is sufficient to assume that the nonlinear term f (u) in the equation (1) satisfies the condition

( f (v1) − f (v2), v1 − v2) ≥ −C2|v1 − v2|2 for all v1, v2 ∈R
N (19)

where C2 ≥ 0 (see [13]). In this case, the limit in (8) holds in a stronger topology



loc,1
+ = Lloc∞,∗w

(
R+;

(
H1

0(D)
)N

)
∩ Lloc

2,w

(
R+;

(
H2(D)

)N
)

∩ Lloc
p,w

(
R+; (Lp(D)

)N
)

∩
{

v | ∂t v ∈ Lloc
q,w

(
R+; (Lq(D)

)N
)}

In particular,

distL2([0,M];H2−δ)

(
�0,MAε,�0,MA

)
→ 0 (ε → 0+)

distC([0,M];H1−δ)

(
�0,MAε,�0,MA

)
→ 0 (ε → 0+) ∀M > 0 (0 < δ ≤ 1) (20)

In [15] and [13] it was proved that if (19) holds, then equations (1) and (7) generate the semigroups {S(t)} and {S(t)} in 
H = (L2(D))N , which have the global attractors Aε and A bounded in the space 

(
H1

0(D)
)N

(see also [12,14]). We clearly 
have:
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Aε = {u(0) | u ∈Aε}, A = {u(0) | u ∈A}
Convergence (20) implies the following assertion.

Corollary 2.3. The following limit almost surely holds:

distH1−δ

(
Aε,A

) → 0 (ε → 0+) ∀δ ∈ ]0,1] (21)
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