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Nous considérons les systémes d’équations de réaction-diffusion avec termes aléatoirement

Mots-clés: o oscillants. Nous construisons le systéme homogénéisé déterministe d’équations et prouvons
intemes de réaction-diffusion que les attracteurs trajectoires des systémes initiaux convergent vers les attracteurs trajec-
ttracteurs

PPN toires des systémes d’équations homogénéisées.
Homogeéneéisation

Fonctions aléatoires
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1. Introduction

In this paper, we study an asymptotic behavior of attractors of the reaction-diffusion systems with randomly oscillating
terms. To study such a phenomenon, we apply the homogenization method (cf.,, for example, [1-7], for the random case
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Fig. 1. Thomas’ cyclically symmetric attractor (Model: Clint Sprott) and a 4-spiral strange attractor exhibited by the modified Chua’s circuit (Model: M.A. Aziz
Alaoui).

cf., for instance, [8-11]), as well as a delicate analysis of trajectory and global attractors (see, for example, [12-14] and
references therein), see Fig. 1.

In this paper, we prove that the trajectory attractor 2 of the autonomous reaction-diffusion system with a randomly
oscillating term converges almost surely as ¢ — 0 to the trajectory attractor 2 of the homogenized reaction-diffusion system
in an appropriate functional space.

2. Homogenization

Assume that (€2, 3, ) is a probability space, i.e. the set 2 is endowed with a o -algebra B of its subsets and a o -additive
nonnegative measure @ on B such that u(Q) =1.
We consider the system of reaction-diffusion equations with randomly oscillating terms of the form

8tu:aAu—b<x,g,a))f(u)+g(x,g,a)), ulsgp=0 (1)

where x e D € R, u=(u',...,uM), f=(f1,....fN), and g = (g!,...,g"). Here a is an N x N matrix with positive
symmetric part and b(x, z, ) € C(D x RN x Q) is a real positive function. The Laplace operator A :=97 + ...+ dz acts in
X-space.

We note that all the results can be extended to the systems with nonlinear terms of the form ZT:] bj (x, g, w) fi),
where b; are positively defined matrices and f;(u) are vector functions. For brevity, we consider the case m =1 and
by (x, £, w) =b (x, %, w) I, where [ is the identity matrix and b is a real function.

For the sake of simplicity, we assume that the vector function f(v) € C(RN;RN) satisfies the following inequalities:

f@ vz yvP = 1f W =€ (WP +1), p =2 )

Notice that we do not assume that the function f(v) satisfies the Lipschitz condition with respect to v.

Assume that Tg, £ € R", is an ergodic dynamical system. The function b(x, g w) and the vector function g(x, % w) are

statistically homogeneous, i.e. b(x, &, w) =B(x, Tew) and g(x,£, w) =G(x, Tzw), where B: D x @ - R and G: D x Q — RN
are measurable. o
We also assume that b(x, z, w) € Cp(D x R x ) and

B1>bx,z,w)>pPp>0,VxeD, zeR", weQ (3)
the function b (x, g, a)) has the average b"°™(x) = E(B)(x) as € — 0+ in Loo «w(D), that is, almost surely

/b (x, g a)) @(x)dx — /bh"m %) p(x)dx (¢ — 0+) (4)
D

D

for any function ¢ € L1(D). For the vector function g (x, % a)), we assume that it has the average gh°™(x) = E(G)(x) in the
space V' = (H”(D))N:

X
g (X, 2 a)) — g°M(x) (¢ - 04) weakly in V’
that is, almost surely

(g (x5 0).000) = (8" 0. 00) (¢ > 04) (5)
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forany p e V = (H&(D))N. In particular, the following functions are available:

(e 20 = (o 20) + S v K

where the functions gi( )5 ) have the averages g; hom vy (L, (D)N in H = (Ly(D))N and almost surely
. f hom
<g, (x, . a)) : <p(x)> ( ), (p(x)> (6> 04)YpeH, i=1,

We note that the H-norms of the functions dy, g; (x, £, ) = gix; (x. %, )+ 8iz (x. £, w) can tend to infinity as & — 0+.
These functions are bounded in the space V' only.

As in [15,13] we study weak solutions (trajectories) of the system (1), that is, the functions u(x,t) € LL%C(R+; H)Nn
LRy V)N Lg’c (]R+; (Lp(D))N> that satisfy (1) in the sense of distributions of the space D’ (R+; (H*r(D))N>, where

r=max{1,n(1/2 —1/p)} (the number r is defined by the corresponding Sobolev embedding theorem). For every ug € H,
there exists at least one weak solution u(x, t) of the system (1) such that u(0) = ug (see [12,15,13]). This solution is not
necessarily unique because we do not assume the Lipschitz condition for f(v) with respect to v. We denote by K} the set
of all weak solutions to the system (1).

Consider the translation semigroup {T(h)} acting on the trajectory space K by the formula T (h)u(x,t) = u(x, t + h) for
h>0.

We study the trajectory attractor 2 of the system (1), which, by definition, coincides with the global <.F$,®1£c>—
attractor of the translation semigroup {T(h)} acting on K} (see [12-14]). Here we denote

@9 = [!% (Ry; H)NLYS, (R V)N LI, (R+; (Lp(D))N>
n{vioveLs, (R (o))
F =12 Ry HNLYR VINLY (R+; (Lp(D))N)
n [v lovelb (R+; (H’r(D))N)}

Recall that @)'j_’c is the local weak topology, which is determined by the weak and x-weak convergence of sequences {vp,}

and {3;vm} in the corresponding spaces. The trajectory space K} is supplied with topology @L‘r’c. The Banach space }"ﬂ’r is
used to define bounded sets in K.

By K¢, we denote the kernel of the system (1) that is the set of all complete solutions (complete trajectories) u(x,t)
defined for all t € R that are bounded in the space F?, where

P =15 ®: H) N LS@®: V)N LY (R; (L)) 0
n{viavery(r: (17 m)"))

Proposition 2.1. Under conditions (2), (4), and (5), the system (1) has the trajectory attractors 2. in the topology ®'ﬁc. The set 2 is
almost surely uniformly (w.r.t. € € (0, 1)) bounded in f_l; and compact in (»:)ljr’c. Moreover,

mg = HJ,_ICS (6)

the kernel K is non-empty, uniformly (w.r.t. & € (0, 1)) bounded in F® and compact in the topology ®'°°, where

0 = L2, (R; H) ML, R: V) N LS, (R: (Lp(D)")
n{viawerss, (R (1 @)")}

The proof of this proposition almost coincides with the proof given in [13] for a deterministic case.

Recall that ®1fc C leoc <R+; (H 1-8 (D))N>, 0 < é <1, and therefore the trajectory attractor 2(, attracts bounded sets of
trajectories of the system (1) in the local strong topology of the space leoc <R+; (Hlfa(D))N>.

Along with the random system (1), we consider the averaged deterministic system

dll = aAll — b™™ (x) f(@1) + g"°™ (x), ©ilysp =0 (7)

Clearly system (7) also has a trajectory attractor 2( in the trajectory space k' corresponding to the system (7) and
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A=TI, K

where K is the kernel of system (7) in F?. The set 2 is bounded in ]—"f; and compact in (?*)lf‘.
The following statement holds true.

Theorem 2.1. The following limit holds almost surely in the topology ®1£C

A — A as e — 0+ (8)
Moreover, almost surely

Ke — Kase — 0+ in ©°° (9)
Proof. It is clear that (9) implies (8). Therefore it is sufficient to prove (9), that is, for every neighborhood O(K) in ®'°,
there exists €1 = £1(0) > 0 such that almost surely

Ke COK) fore < & (10)

Suppose that (10) is not true. Consider the corresponding subset Q' c Q with u(2") > 0 and (10) does not hold for all
€ . Then, for each w € €/, there exists a neighborhood @’ (K) in ©!°¢, a sequence &, — 0+ (n — o00), and a sequence
Ug, (1) = Ug, (w, t) € K¢, such that

Ug, ¢ O'(K) forallneN,w e Q' (11)

For each w € ', the function ug, (t), t € R is the solution to the system

X X
Otlg, =aAug, —b (x, 8—,60) flug,) +g <x, S—,w) , Ug,lap =0 (12)

n n

on the entire time axis t € R. Moreover, the sequence {ug,(t)} is bounded in FP for each w € €/, that is,

llte, Il 7p = SUPrer [[te, (O) [|H+

t+1 172 t+1 1/p
supier | [ s @ ds | +supcn | [ s o0l 0]+
! ! (13)
t+1 1/4

SUDP¢eRr / [0 ue, (s)||';"_H ds <C forallneN
t

Here, the constant C is independent of n. Hence there exists a subsequence {ug (t)} C {ug, ()} that we label the same, such
that

Ug, (t) — ii(t) asn — oo in ®'° (14)
where ii(-) € F? and ii(t) satisfies (13) with the same constant C. In detail we have that Ug, () — u(t) (n — oo)
weakly in le‘ff/v(R; V), weakly in Lll,‘{cw (]R; (Lp(D))N>, x-weakly in LI, (R H) and dug, (t) — 3;ii(t) (n — oo0) weakly
in LS, (R; (H*r(D))N). We claim that () € K. We have already proved that ||ii]| z» < C. So we have to establish that (t)

is a weak solution to (7). Using (13) and (5), we obtain that

hom

X
Otllg, — AAlg, —g(x,g—,w) — 0l —aAu — g™ (x) asn — oo (15)
n

in the space D’ (R; (H *r(D))N> because the derivative operators d; and A are continuous in the space of distributions. Let
us prove that

b<x, g) Fug,) — b1™ (x) f (@) asn — oo (16)

n
weakly in szcw (R; (Lq(D))N). We fix an arbitrary number M > 0. The sequence f{ug,(t)} is bounded in
Lp (]—M,M[; (LP(D))N> (see (13)). Hence by (2), the sequence {f(ug,(t))} is bounded in Lg (]—M,M[; (Lq(D))N). Since
{ug, ()} is bounded in L <]—M,M[; (Hé(D))N) and {dug, ()} is bounded in Lg <]—M,M[; (H‘r(D))N), we can assume
that ug, (t) — i(t) as n — oo strongly in Ly (]-M, M[; (L2(D))) = Ly (D x ]-M, M[)" and therefore
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Ug, (X, t) > u(x,t)asn — ocoa.e.in (x,t) € D x |-M, M|
Since the function f(v) is continuous with respect to v € RN, we conclude that

fug, (x,£)) = f(u(x,t))asn — oo a.e.in (x,t) € D x ][-M, M[ (17)
We have

b (x, 85 w) fug,) —b"™ (x) f (1) =

n

b <x, gi a)) (f (e — F(@) + (b (x, ; a)) _ phom (x)> F(@) (18)

n n
Let us show that both summands in the right-hand side of (18) converge to zero as n — oo weakly in
Lg (]—M, Ml; (Lq(D))N) = (Lg(D x ]-M, M[))N. The sequence b(x X u)) (f(ug,) — f(@)) tends to zero as n — oo al-

e
most everywhere in (x,t) € D x |[-M, M| (see (17)) and is bounded in the space (Lq (D x |—-M, M[))N (see (3)). Therefore
Lemma 1.3 from [16, Chapter 1, Section 1] implies that

b<Xv 8160) (fug,) — f@@) —0asn— oo

weakly in (Lq (D x ]fM,M[))N. The sequence (b (x X w) — phom (x)) f(u) also approaches zero as n — oo weakly in

 En’

(Lq (D x 1—-M, M[))N because, by our assumption, b (x, ﬁ a)) — oM (x) as n — oo s-weakly in the space Leo sw(1—M, M[;

Ly(D)) and f(u) € (Lq (D x |—-M, M[))N. We have proved (16). Using (15) and (16) we pass to the limit in the equation (12)
as n — oo in the space D’ <]R+; (H*r(D))N) and we obtain that the function u(x, t) satisfies the equation
il = aAil —b"™ (x) f(il) + g™ (x), @llsp =0, teR

Consequently, ii € K. We have proved above that ug, (t) = u(t) as n — oo in ®'°¢ for each w € €. The hypotheses ug, (t) ¢
O'(K) implies that i ¢ O'(K) and moreover i ¢ K for all w € ©'. We have arrived to the contradiction. The theorem is
proved. O

Corollary 2.2. For every 0 < § < 1 and for any M > 0 almost surely

diSth([O,M];I'ﬂ*‘S) (HO’MQ[S, HOJ\/[@) -0 (8 — O+)

Here distaq(X,Y) := supycx distaq(x,Y) denotes the Hausdorff semidistance from a set X to a set Y in a metric
space M.

Remark 2.1. The analogous theorem holds for random non-autonomous reaction-diffusion systems of the form (1) that

contain the terms b (x, £.t, w) and g (x, £,t, ®) having the uniform averages in time as & — 0+.

In conclusion, we briefly consider the reaction-diffusion systems for which the uniqueness theorem of the Cauchy prob-
lem takes place. It is sufficient to assume that the nonlinear term f(u) in the equation (1) satisfies the condition

(F(v1) = f(v2),v1 —v2) = —Ca|vy — va|? forall vy, vy e RN (19)

where C; > 0 (see [13]). In this case, the limit in (8) holds in a stronger topology
N N
®1ﬁc,1 - LL%C,*W (R+; (Hg(D)) ) N L‘;fcw <R+; (HZ(D)) ) N Lg’fw <R+; (LP(D))N)
n {v | ov e L%, (R+; (Lq(D))N)}

In particular,

disty, o, t2-5) (Tlo.w e, o) — 0 (6 — 0+)

diste o_ . #1-9) (HO,MQLE, no,Mﬁ) S 0(—>0H)YM>0(0<35<1) (20)

In [15] and [13] it was proved that if (19) holds, then equations (1) and (7) generate the semigroups {S(t)} and {S(t)} in

H = (L»(D))N, which have the global attractors .4, and A bounded in the space (H(l)(D))N (see also [12,14]). We clearly
have:
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A ={u0) |ue A}, A={u(0) |ue}

Convergence (20) implies the following assertion.

Corollary 2.3. The following limit almost surely holds:
disty1-s (Ag, A) > 0 (e > 0+) V8 €10, 1] (21)
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