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Convergence of formal Dulac series satisfying
an algebraic ordinary differential equation

R. R. Gontsov and I. V. Goryuchkina

Abstract. A sufficient condition is proposed which ensures that a Dulac
series that formally satisfies an algebraic ordinary differential equation
(ODE) is convergent. Such formal solutions of algebraic ODEs are quite
common: in particular, the Painlevé III, V and VI equations have formal
solutions given by Dulac series; they are convergent in view of the sufficient
condition presented.
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§ 1. Introduction

Consider an algebraic ODE of order n

F (x, y, δy, . . . , δny) = 0, (1.1)

where F = F (x, y0, y1, . . . , yn) is a polynomial in n+ 2 complex variables and δ is
the differentiation x(d/dx). Suppose that (1.1) has a formal solution in the form of
a Dulac series

ϕ =
∞∑

k=0

pk(lnx)xk, pk ∈ C[t].

Such series appeared in Dulac’s papers from the 1920s (for instance, [1]) con-
cerning limit cycles of a planar vector field; they were asymptotic expansions of
the monodromy (first return) map in a neighbourhood of a hyperbolic polycycle.
(More precisely, the series in Dulac’s papers have a more general form, involving
the power functions xλk rather than xk, where the real exponents λk increase to
infinity.) Subsequently, in the 1980s Dulac series were important in completing the
proofs of finiteness theorems for limit cycles (see [2] or [3]).
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Dulac series also appear as formal solutions of algebraic ODEs (such as, for
example, Abel’s equations, equations of Emden-Fowler type, Painlevé’s equations
and so on); in this context they are also known as power-logarithmic expansions
(see [4] and [5]). Dulac series treated just as formal solutions of algebraic ODE are
our subject in this paper. The first question, arising here in a natural way, con-
cerns the convergence of such formal solutions. We propose the following sufficient
condition for convergence.

Theorem. Let ϕ be a series that formally satisfies (1.1):

F (x,Φ) := F (x, ϕ, δϕ, . . . , δnϕ) = 0,

and assume that for j = 0, . . . , n

∂F

∂yj
(x,Φ) = ajx

m + bj(lnx)xm+1 + · · · ,

where aj ∈ C, bj ∈ C[t] and m ∈ Z+ is the same integer for all j . If an ̸= 0, then
ϕ is uniformly convergent in each open sector S of sufficiently small radius, with
vertex at zero and opening less than 2π .

For instance, the Painlevé III, V and VI equations have formal solutions given
by Dulac series. Using connections between these equations and isomonodromic
deformations of certain systems of linear ODEs, Shimomura [6], [7] proved that for
the Painlevé V and VI equations these series converge. Our theorem can be used to
show that for all Painlevé equations the formal solutions expressed by Dulac series
converge (see examples in § 6).

Note that when pk = const for all k we obtain a power series ϕ formally sat-
isfying (1.1), and our result becomes the well-known sufficient condition for the
convergence of this series which is due to Malgrange [8]. Note also that combining
our techniques here with the ones in [9] concerning the convergence of generalized
power series satisfying (1.1), a result similar to ours can be established for more
general formal Dulac series (involving power functions xλk , where λk ∈ C, in place
of xk).

The paper is organized as follows. We prove our theorem in § 5, and precede
this by several auxiliary constructions: in § 2, we go over from the original ODE
to a reduced ODE of special form, in § 3 we explain how methods from linear
algebra are used in the proof of the theorem, and in § 4 we construct an ODE which
‘majorizes’ the reduced ODE in § 2. The idea of applying the classical method of
majorants to analyze the convergence of formal solutions of a general ODE (1.1)
in a neighbourhood of a singular point of the equation (so that Cauchy’s theorem
cannot be applied) has been used before by a number of authors. In particular,
an alternative proof of Malgrange’s theorem, mentioned above, was set out in [10]
and [5] on this basis (in Malgrange’s original proof of a sufficient condition for the
convergence of a formal power series satisfying (1.1) the implicit function theorem
for Banach spaces is the main tool). In the final section, § 6, we give two examples
when our theorem can be used.
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§ 2. A reduced ODE of a special form

Lemma 1. Under the assumptions of the theorem in § 1 there exists ℓ′ ∈ Z+ such
that for each ℓ > ℓ′ the transformation

y =
ℓ∑

k=0

pk(lnx)xk + xℓu

takes the original equation (1.1) to the following form:

L(δ)u = xM(x, lnx, u, δu, . . . , δnu), (2.1)

where

L(δ) =
n∑

j=0

aj(δ + ℓ)j , an ̸= 0,

and M is a polynomial in n+ 3 variables. Furthermore, the polynomial L does not
vanish in the open right-hand half-plane.

Proof. The method used in the proof is standard: it is similar to the proof of the
reduction lemma for an ODE having a formal solution in the form of a Taylor series
(see [8]).

For each integer ℓ > 0 the formal Dulac series ϕ can be represented as

ϕ =
ℓ∑

k=0

pk(lnx)xk + xℓ
∞∑

k=1

pk+ℓ(lnx)xk =: ϕℓ + xℓψ,

so that
Φ = (ϕ, δϕ, . . . , δnϕ) = Φℓ + xℓΨ,

where Φℓ = (ϕℓ, δϕℓ, . . . , δ
nϕℓ) and Ψ = (ψ, (δ+ ℓ)ψ, . . . , (δ+ ℓ)nψ). From Taylor’s

formula we obtain

0 = F (x,Φℓ + xℓΨ)

= F (x,Φℓ) + xℓ
n∑

j=0

∂F

∂yj
(x,Φℓ)ψj +

x2ℓ

2

n∑
i,j=0

∂2F

∂yi ∂yj
(x,Φℓ)ψiψj + · · · , (2.2)

where ψj = (δ + ℓ)jψ.
We choose ℓ to satisfy the following two conditions:
1) ℓ > m;
2) L(ξ) :=

∑n
j=0 aj(ξ + ℓ)j ̸= 0 for each ξ ∈ {Re ξ > 0} (recall that the integer

m > 0 is fixed in the assumptions of the theorem in § 1).

Definition. The order of a Dulac series

ϕ =
∞∑

k=0

pk(lnx)xk

is defined by val(ϕ) := min{k | pk ̸≡ 0}.
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By Taylor’s formula

∂F

∂yj
(x,Φ)− ∂F

∂yj
(x,Φℓ) = xℓ

n∑
i=0

∂2F

∂yi ∂yj
(x,Φℓ)ψi + · · · ;

furthermore, val(ψi) > 1 for all i, so that

∂F

∂yj
(x,Φℓ) = ajx

m + b̃j(lnx)xm+1 + · · · , b̃j ∈ C[t],

for each j = 0, 1, . . . , n, and thus substituting the finite sum Φℓ for Φ into ∂F/∂yj

preserves the leading coefficient aj . Now it follows from (2.2) that

val(F (x,Φℓ)) > m+ ℓ+ 1.

Dividing (2.2) by xm+ℓ we obtain an equation of the required form (2.1); it has the
formal solution

ψ =
∞∑

k=1

pk+ℓ(lnx)xk =:
∞∑

k=1

Pk(lnx)xk.

Lemma 1 is proved.

Lemma 2. The formal series ψ is the unique Dulac series (in positive powers of x)
satisfying (2.1). In addition, the degrees νk of the polynomials Pk have the estimate
νk 6 kC , where C is the degree of M in t = lnx.

Proof. We start by pointing out the following rule of differentiation:

δ : Pk(lnx)xk 7→ xk

(
k +

d

dt

)
Pk(t)|t=ln x,

and therefore

(δ + ℓ)j : Pk(lnx)xk 7→ xk

(
k + ℓ+

d

dt

)j

Pk(t)|t=ln x, j = 0, 1, . . . , n,

L(δ) : Pk(lnx)xk 7→ xkL

(
k +

d

dt

)
Pk(t)|t=ln x.

Hence, plugging ψ =
∑∞

k=1 Pk(lnx)xk into

L(δ)u = xM(x, lnx, u, δu, . . . , δnu),

we obtain an equality between two Dulac series. Comparing the polynomials in
t = lnx multiplying each power of x in these Dulac series, for the first power of x
we obtain

L

(
1 +

d

dt

)
P1(t) = M(0, t, 0, . . . , 0).

This is an inhomogeneous linear ODE with constant coefficients with respect to P1.
As L(1) ̸= 0 by Lemma 1, zero is not a root of its characteristic equation. Hence
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this ODE has a unique polynomial solution, whose degree is equal to the degree of
the polynomial on the right-hand side:

degP1(t) = degM(0, t, 0, . . . , 0) 6 C.

Let P j
k (t) denote the polynomial

(
k + d

dt

)j
Pk(t), j = 0, 1, . . . , n (in particular,

P 0
k = Pk). Then

δjψ =
∞∑

k=1

P j
k (lnx)xk.

Assume that M is a linear combination of monomials of the form

xµ(lnx)νuq0(δu)q1 · · · (δnu)qn .

Then for each Pk(t) in succession, k > 2, we obtain inhomogeneous linear ODEs
with constant coefficients

L

(
k +

d

dt

)
Pk(t) = Rk(t), (2.3)

where Rk(t) is a linear combination of polynomials of the form

tν(P 0
k1
· · ·P 0

kq0
)(P 1

l1 · · ·P
1
lq1

) · · · (Pn
m1
· · ·Pn

mqn
),

where

ν 6 C and
q0∑

i=1

ki +
q1∑

i=1

li + · · ·+
qn∑
i=1

mi 6 k − 1.

By the natural induction assumption

degP 0
k1
· · ·P 0

kq0
6 (k1 + · · ·+ kq0)C,

degP 1
l1 · · ·P

1
lq1

6 (l1 + · · ·+ lq1)C,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

degPn
m1
· · ·Pn

mqn
6 (m1 + · · ·+mqn)C,

so that
degRk(t) 6 C + (k − 1)C = kC.

As L(k) ̸= 0 by Lemma 1, zero is not a root of the characteristic polynomial of
the linear ODE (2.3). Hence this ODE has a unique polynomial solution Pk, whose
degree is equal to the degree of the polynomial on the right-hand side:

degPk(t) = degRk(t) 6 kC.

Lemma 2 is proved.



1212 R.R. Gontsov and I.V. Goryuchkina

§ 3. From linear ODEs to linear algebra

We write the formal series as

ψ =
∞∑

k=1

Pk(−ϵ lnx)xk, (3.1)

where we specify ϵ > 0 in what follows (again, we denote the new polynomials
by Pk). Then the operators δ and L(δ) act on the term Pk(−ϵ lnx)xk of this series
as follows:

δ : Pk(−ϵ lnx)xk 7→ xk

(
k − ϵ

d

dt

)
Pk(t)|t=−ϵ ln x,

L(δ) : Pk(−ϵ lnx)xk 7→ xkL

(
k − ϵ

d

dt

)
Pk(t)|t=−ϵ ln x.

These actions have natural coordinate representations in terms of vectors and
matrices: let bk ∈ Cνk+1 be the coefficient column of Pk, and let ck and dk ∈ Cνk+1

be the coefficient columns of
(
k − ϵ d

dt

)
Pk and L

(
k − ϵ d

dt

)
Pk, respectively; then

ck = (kI −Nk)bk and dk = L(kI −Nk)bk,

where I is the identity matrix and Nk is a nilpotent matrix of the following form:

Nk =


0 ϵ 0 . . . 0 0
0 0 2ϵ 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . 0 0 νkϵ
0 . . . . . . . . . 0 0

 , Nνk+1
k = 0.

We factor the polynomial

L(ξ) = a0 + · · ·+ an(ξ + ℓ)n = an

n∏
j=1

(ξ + λj), Reλj > 0.

Then the matrix L(kI −Nk) has the representation

L(kI −Nk) = an

n∏
j=1

(
(k + λj)I −Nk

)
= an

n∏
j=1

(k + λj)
n∏

j=1

(
I − Nk

k + λj

)
= L(k)

n∏
j=1

(
I − Nk

k + λj

)
.

The inverse matrix is

L(kI −Nk)−1 =
1

L(k)

n∏
j=1

(
I − Nk

k + λj

)−1

,
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where (
I − Nk

k + λj

)−1

= I +
Nk

k + λj
+

(
Nk

k + λj

)2

+ · · ·+
(

Nk

k + λj

)νk

.

In what follows, we use the 1-norm ∥A∥ = ∥A∥1 = maxj

∑
i |aij | for the matrices,

which corresponds to the 1-norm ∥x∥1 =
∑

i |xi| for vectors.

Lemma 3. If ϵ > 0 is sufficiently small, then there exists ε, 0 < ε < 1, such
that for each polynomial L of degree n that does not vanish in the open right-hand
half-plane

∥L(kI −Nk)∥ 6 (1 + ε)n|L(k)|

and ∥∥L(kI −Nk)−1
∥∥ 6

1
(1− ε)n|L(k)|

.

In particular,

∥kI −Nk∥ 6 (1 + ε)k and
∥∥(kI −Nk)−1

∥∥ 6
1

(1− ε)k
.

Proof. Fix ε, 0 < ε < 1, and let ϵ be sufficiently small so that ∥Nk∥ = νkϵ 6 εk.
Then for each integer k > 0∥∥∥∥I − Nk

k + λj

∥∥∥∥ 6 1 + ε, j = 1, . . . , n.

Therefore,

∥L(kI −Nk)∥ =
∥∥∥∥L(k)

n∏
j=1

(
I − Nk

k + λj

)∥∥∥∥
6 |L(k)|

n∏
j=1

∥∥∥∥I − Nk

k + λj

∥∥∥∥ 6 |L(k)|(1 + ε)n.

To estimate the norm of the inverse matrix we observe that∥∥∥∥(
I − Nk

k + λj

)−1∥∥∥∥ 6 ∥I∥+
∥∥∥∥ Nk

k + λj

∥∥∥∥ + · · ·+
∥∥∥∥ Nk

k + λj

∥∥∥∥νk

6 1 + ε+ · · ·+ ενk 6
1

1− ε
,

so that

∥∥L(kI −Nk)−1
∥∥ =

∥∥∥∥ 1
L(k)

n∏
j=1

(
I − Nk

k + λj

)−1∥∥∥∥ 6
1

|L(k)|(1− ε)n
.

The proof is complete.
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§ 4. A majorizing ODE

We write (2.1) as

L(δ)u = xM(x,−ϵ lnx, u, δu, . . . , δnu), (4.1)

where M on the right-hand side denotes a new polynomial. We look at another
equation, which (as we will show below) majorizes (4.1) in a certain sense:

σδnu = xM̃(x,−ϵ lnx, δnu), (4.2)

where
1
σ

:= sup
k>1

(∥∥L(kI −Nk)−1
∥∥ · ∥∥(kI −Nk)n

∥∥)
< +∞

by Lemma 3 and the polynomial M̃ is constructed as follows. Let M be the sum
of monomials of the form

αxµ(−ϵ lnx)νuq0(δu)q1 · · · (δnu)qn , α ∈ C. (4.3)

Then we define M̃ simply by replacing each such monomial in M by

|α|xµ(−ϵ lnx)ν(cδnu)q0(cδnu)q1 · · · (cδnu)qn , c =
(

1 + ε

1− ε

)n

. (4.4)

Lemma 4. There exists a unique formal Dulac series in positive powers of x

ψ̃ =
∞∑

k=1

P̃k(−ϵ lnx)xk

that satisfies (4.2). Here the P̃k ∈ R+[t] are polynomials of degree ν̃k = deg P̃k 6 kC
with nonnegative real coefficients.

Proof. Our argument is similar to the proof of Lemma 2: each P̃k is obtained as
a solution of an inhomogeneous linear ODE with constant coefficients. We start
with the first polynomial, which solves the equation

σ

(
1− ϵ

d

dt

)n

P̃1(t) = M̃(0, t, 0) ∈ R+[t],

and then find the other P̃k, k > 2, in succession as the unique polynomial solutions
of the corresponding ODEs

σ

(
k − ϵ

d

dt

)n

P̃k(t) = Q̃k(t) ∈ R+[t],

where we express the polynomial Q̃k in terms of Q̃1 = M̃(0, t, 0), Q̃2, . . . , Q̃k−1

(see the expressions in the proof of the next result, Lemma 5); it has degree at
most kC. Thus the fact that each P̃k has nonnegative coefficients follows because
the corresponding Q̃k has nonnegative coefficients and the matrix (kI −Nk)−1 has
nonnegative entries.

The proof is complete.
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For an arbitrary polynomial P ∈ C[t] we set its norm ∥P∥ to be the 1-norm of
the column of its coefficients. Apart from the standard properties of norms, the
norm defined in this way has the following properties, which are easy to verify:

1) for any P,Q ∈ C[t] we have ∥PQ∥ 6 ∥P∥ · ∥Q∥;
2) if P,Q ∈ R+[t], then ∥P +Q∥ = ∥P∥+ ∥Q∥ and ∥PQ∥ = ∥P∥ · ∥Q∥.

Now we show that equation (4.2) constructed above majorizes the original equa-
tion (4.1) in the following sense.

Lemma 5. The formal Dulac series ψ̃ satisfying (4.2) majorizes the formal Dulac
series ψ in (3.1), which satisfies (4.1): ∥Pk∥ 6 ∥P̃k∥ for all k .

Proof. We have already mentioned that Pk and P̃k are solutions of the correspond-
ing inhomogeneous linear ODEs with constant coefficients

L

(
k − ϵ

d

dt

)
Pk(t) = Qk(t),

σ

(
k − ϵ

d

dt

)n

P̃k(t) = Q̃k(t),
(4.5)

where Q1(t) = M(0, t, 0, . . . , 0) and Q̃1(t) = M̃(0, t, 0), so that ∥Q1∥ = ∥Q̃1∥.
Hence

∥P1∥ 6
∥∥L(I −N1)−1

∥∥ · ∥Q1∥ =
∥∥L(I −N1)−1

∥∥ · ∥Q̃1∥

6 σ
∥∥L(I −N1)−1

∥∥ · ∥∥(I −N1)n
∥∥ · ∥P̃1∥ 6 ∥P̃1∥.

To obtain similar estimates for all k > 2 we look at the relations for the
corresponding Qk and Q̃k more closely. We let P j

k (t) denote the polynomial(
k − ϵ d

dt

)j
Pk(t), j = 0, 1, . . . , n (in particular, P 0

k = Pk). Then

δjψ =
∞∑

k=1

P j
k (−ϵ lnx)xk

and

δnψ̃ =
∞∑

k=1

1
σ
Q̃k(−ϵ lnx)xk.

Returning to (4.3) and (4.4) we conclude that Qk(t) is a sum of polynomials of the
following form:

αtν(P 0
k1
· · ·P 0

kq0
)(P 1

l1 · · ·P
1
lq1

) · · · (Pn
m1
· · ·Pn

mqn
), (4.6)

where
∑q0

i=1 ki +
∑q1

i=1 li + · · · +
∑qn

i=1mi 6 k − 1, and Q̃k(t) is the sum of the
corresponding polynomials

|α|tν
(
c

σ
Q̃k1 · · ·

c

σ
Q̃kq0

)(
c

σ
Q̃l1 · · ·

c

σ
Q̃lq1

)
· · ·

(
c

σ
Q̃m1 · · ·

c

σ
Q̃mqn

)
. (4.7)

The norm of the polynomial (4.6) does not exceed the product

|α| · ∥P 0
k1
∥ · · · ∥P 0

kq0
∥ · ∥P 1

l1∥ · · · ∥P
1
lq1
∥ · · · ∥Pn

m1
∥ · · · ∥Pn

mqn
∥.
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Here, using the inductive assumption and (4.5), we can find estimates for each
factor ∥P j

s ∥, s < k, with the help of Lemma 3:

∥P j
s ∥ 6

∥∥(sI −Ns)j
∥∥ · ∥Ps∥ 6

∥∥(sI −Ns)j
∥∥ · ∥P̃s∥

6
∥∥(sI −Ns)j

∥∥ · ∥∥(sI −Ns)−n
∥∥ · ∥∥∥∥ Q̃s

σ

∥∥∥∥
6 ∥sI −Ns∥j ·

∥∥(sI −Ns)−1
∥∥n ·

∥∥∥∥ Q̃s

σ

∥∥∥∥ 6
(1 + ε)jsj

(1− ε)nsn

∥∥∥∥ Q̃s

σ

∥∥∥∥ 6
c

σ
∥Q̃s∥.

Hence the norm of the polynomial (4.6) does not exceed that of (4.7) (recall that the
norm of a product of polynomials with nonnegative real coefficients is the product
of the norms of the factors) and therefore ∥Qk∥ 6 ∥Q̃k∥ (again, the norm of a sum of
polynomials with nonnegative coefficients is the sum of their norms).

Finally, we conclude that

∥Pk∥ 6
∥∥L(kI −Nk)−1

∥∥ · ∥Qk∥ 6
∥∥L(kI −Nk)−1

∥∥ · ∥Q̃k∥

6 σ
∥∥L(kI −Nk)−1

∥∥ · ∥∥(kI −Nk)n
∥∥ · ∥P̃k∥ 6 ∥P̃k∥.

Lemma 5 is proved.

§ 5. Proof of the convergence theorem

As lnx is a transcendental function, the majorizing equation (4.2) can be
regarded as the algebraic equation

σU = xM̃(x, t, U) (5.1)

(with two independent variables x and t and unknown U = δnu), which has a formal
solution

Û =
∞∑

k=1

1
σ
Q̃k(t)xk, Q̃k ∈ R+[t].

Expanding the products in Û we obtain a power series in two variables

Ûpow =
∞∑

k=1

ν̃k∑
l=0

cklt
lxk, ckl ∈ R+,

which also solves (5.1) formally (expanding the products in Û and plugging the
resulting series Ûpow into both sides of (5.1) is the same as the result of plugging
Û into (5.1) and then multiplying out on both sides). By the implicit function
theorem the series Ûpow is absolutely convergent for small t and x; however, this
is not the result we need, because t corresponds to −ϵ lnx in the Dulac series, and
lnx is unbounded for small x. So we fix an integer r > C and consider an open
sector S with vertex at the origin and opening less than 2π such that

|ϵ lnx| < |x|−1/r ∀x ∈ S,
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which yields
Q̃k(|ϵ lnx|) < Q̃k

(
|x|−1/r

)
∀x ∈ S. (5.2)

Consider the formal Puiseux series

φ =
∞∑

k=1

ν̃k∑
l=0

cklx
k−l/r

obtained by setting t = x−1/r in the power series of two variables Ûpow. This formal
series is well defined because, for fixed k and l such that l 6 kC, there exists only
finitely many pairs (ki, li), li 6 kiC, such that ki− li/r = k− l/r. In fact, otherwise
there would exist two sequences ki →∞ and li →∞ such that

r − li
ki

=
kr − l

ki
,

and this is impossible because the left-hand side of this relation is at least r − C
for each i, which is positive, and the right-hand side tends to zero as i→∞.

The Puiseux series φ is a formal solution of the equation

σU = xM̃(x, x−1/r, U) (5.3)

obtained from (5.1) by the corresponding substitution t = x−1/r. In fact, if we set
t = x−1/r in Ûpow and plug the resulting Puiseux series φ into both sides of (5.3),
then the result is the same as if we first substitute Ûpow into (5.1) and then set
t = x−1/r on both sides of the resulting identity. Hence φ is absolutely convergent
in S for sufficiently small x (to see this it is sufficient to make the change of variable
x = zr in (5.3) and use the implicit function theorem).

Now we observe that the series

φ◦(|x|) =
∞∑

k=1

1
σ
Q̃k

(
|x|−1/r

)
|x|k

is just another way of writing down the real Puiseux series

φ(|x|) =
∞∑

k=1

ν̃k∑
l=0

ckl|x|k−l/r,

so that it also converges in S if x is sufficiently small (for instance, if |x| < ρ) by
the corresponding property of convergent positive series (see [11], Ch. VIII). In view
of (5.2) the series

∞∑
k=1

1
σ
Q̃k(|ϵ lnx|)xk (5.4)

is absolutely convergent in S for |x| < ρ; now we show that, as a consequence, the
series

∞∑
k=1

P̃k(|ϵ lnx|)xk

is also convergent.
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Lemma 6. The series
∑∞

k=1 P̃k(|ϵ lnx|)xk is absolutely convergent in the sector

Sρ = S ∩ {|x|1−C/r < ρ}.

Proof. This follows because the series (5.4) converges and

P̃k(|ϵ lnx|)|xk| 6 ∥P̃k∥ · |ϵ lnx|ν̃k · |x|k 6 ∥P̃k∥ · |x|(1−C/r)k

6
∥∥(kI −Nk)−1

∥∥n ·
∥∥∥∥ Q̃k

σ

∥∥∥∥ · |x|(1−C/r)k

6
1

(1− ε)nkn

∥∥∥∥ Q̃k

σ

∥∥∥∥ · |x|(1−C/r)k

6
1

(1− ε)nknσ
Q̃k

(∣∣ϵ lnx1−C/r
∣∣)|x|(1−C/r)k,

in view of the second relation in (4.5) and Lemma 3. The lemma is proved.

We complete the proof of the theorem in § 1 by showing that the series

ψ =
∞∑

k=1

Pk(−ϵ lnx)xk

is convergent. Taking Lemma 5 into account, we obtain∣∣Pk(−ϵ lnx)xk
∣∣ 6 ∥Pk∥ · |ϵ lnx|νk · |x|k 6 ∥Pk∥ · |x|(1−C/r)k

6 ∥P̃k∥ · |x|(1−C/r)k 6 P̃k

(∣∣ϵ lnx1−C/r
∣∣)·|x|(1−C/r)k.

In view of Lemma 6 this ensures that the series ψ converges for x1−C/r ∈ Sρ. Now
the proof of the theorem in § 1 is complete.

Remark. Using the techniques developed here and in [9] we can prove the following
result, which is similar to the theorem in § 1, but is related to a more general form
of Dulac series (the corresponding proof is technically more complicated).

Let the series

ϕ =
∞∑

k=0

pk(lnx)xλk , λk ∈ C, 0 6 Reλ0 6 Reλ1 6 · · · → +∞,

satisfy equation (1.1) formally :

F (x,Φ) := F (x, ϕ, δϕ, . . . , δnϕ) = 0,

and suppose that for j = 0, . . . , n

∂F

∂yj
(x,Φ) = ajx

α + bj(lnx)xαj + · · · , Reα < Reαj ,

where aj ∈ C, bj ∈ C[t] and α ∈ C is the same for all j.
If an ̸= 0, then the series ϕ is uniformly convergent in each open sector S of

sufficiently small radius, with vertex at zero and opening less than 2π .
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§ 6. Examples

In this section we present two examples, Abel’s equation and the Painlevé III
equation, and we use our theorem in § 1 to prove that formal solutions to these,
given by Dulac series, converge.

6.1. Abel’s equation. Consider the Abel equation of the second kind

w
dw

dx
= −w − xm, m = −3

(see [12], § 1.3). We can show that it has a one-parameter family of formal solutions
given by Dulac series1

ŵ =
1
x

(
1 + (c− lnx)x2 +

∞∑
k=2

Pk(lnx)x2k

)
, c ∈ C.

Making the power transformation w = y/x here, and introducing the operator
δ = x(d/dx) we can write the result in the form of the equation

F (x, y, δy) := yδy − y2 + x2y + 1 = 0

which has a family of formal solutions given by Dulac series

ϕ = 1 + (c− lnx)x2 +
∞∑

k=2

Pk(lnx)x2k.

We use the theorem in § 1 to show that these series are convergent. As F (x, y0, y1) =
y0y1 − y2

0 + x2y0 + 1, we have

∂F

∂y0
= y1 − 2y0 + x2 and

∂F

∂y1
= y0.

Plugging in
y0 = ϕ = 1 + (c− lnx)x2 + · · ·

and
y1 = δϕ = (2c− 1− 2 lnx)x2 + · · · ,

we obtain
∂F

∂y0
= −2 + · · · and

∂F

∂y1
= 1 + (c− lnx)x2 + · · · .

Hence the assumptions of the theorem in § 1 are fulfilled and the series ϕ converges
in each open sector S ⊂ C of sufficiently small radius, with vertex at zero and
opening less than 2π.

1For m = −2,−1, 0, 1 it is shown in [12], § 1.3, that this equation is integrable in quadratures
or in terms of special functions. We can show that for m > 0 this equation has formal solutions
only in the form of Taylor series, while for m 6 −2 it has formal solutions in the form of Dulac
series.
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6.2. The Painlevé III equation. The Painlevé III equation has the following
form:

y′′ =
(y′)2

y
− y′

x
+
ay2 + b

x
+ cy3 +

d

y
, (6.1)

where a, b, c, d∈C. If b, d ̸=0 and b/
√
−d = 2k0∈2N, then (6.1) has a one-parameter

family of formal solutions given by the Dulac series (see [13])

ϕ = −d
b
x+

∞∑
k=1

P2k+1(lnx)x2k+1, (6.2)

where P2k+1 ≡ const for 2k + 1 < 2k0 + 1, P2k0+1 is a polynomial of degree one
whose free term is an arbitrary parameter, and the polynomials P2k+1 with indices
2k + 1 > 2k0 + 1 are uniquely defined.

In terms of the operator δ we can write (6.1) as

F (x, y, δy, δ2y) := −yδ2y + (δy)2 + axy3 + bxy + cx2y4 + dx2 = 0, (6.3)

so that
F (x, y0, y1, y2) = −y0y2 + y2

1 + axy3
0 + bxy0 + cx2y4

0 + dx2.

We show that a formal solution (6.2) of (6.3) is convergent using the theorem in § 1.
Plugging the formal Dulac series

y0 = ϕ = −d
b
x+ · · · , y1 = δϕ = −d

b
x+ · · · and y2 = δ2ϕ = −d

b
x+ · · · ,

into the expressions for the partial derivatives

∂F

∂y0
= −y2 + 3axy2

0 + bx+ 4cx2y3
0 ,

∂F

∂y1
= 2y1 and

∂F

∂y2
= −y0

we obtain

∂F

∂y0
=

(
b+

d

b

)
x+ · · · , ∂F

∂y1
= −2d

b
x+ · · · and

∂F

∂y2
=
d

b
x+ · · · .

Since d ̸= 0, the assumptions of the theorem in § 1 are fulfilled and the series ϕ
converges in each open sector S ⊂ C of sufficiently small radius, with vertex at zero
and opening less than 2π. This is apparently the first time that the convergence of
solutions of the Painlevé III equations given by Dulac series has been established.
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