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1 Introduction

Let PG(N, q) be the N -dimensional projective space over the Galois field Fq

with q elements. An n-arc in PG(N, q), with n ≥ N + 1 ≥ 3, is a set of n
points such that no N+1 points belong to the same hyperplane of PG(N, q).
An n-arc is complete if it is not contained in an (n + 1)-arc, see [1] and the
references therein. For an introduction to projective geometry over finite
fields see [13, 15, 16].

In PG(N, q), 2 ≤ N ≤ q − 2, a normal rational curve is any (q + 1)-
arc projectively equivalent to the arc {(tN , tN−1, . . . , t2, t, 1) : t ∈ Fq} ∪
{(1, 0, . . . , 0)}. In PG(3, q), the normal rational curve is called a twisted
cubic [14, 16]. Twisted cubics have important connections with a number of
other combinatorial objects.This prompted the twisted cubics to be widely
studied, see e.g. [2,3,5,6,8–10,12,14–17,19] and the references therein. In [14],
the orbits of planes, lines and points under the group of the projectivities
fixing the twisted cubic are considered. Also, in [2], the structure of the point-
plane incidence matrix of PG(3, q) using orbits under the stabilizer group of
the twisted cubic is described.

In this paper, we consider the orbits of lines in PG(3, q) under the sta-
bilizer group Gq of the twisted cubic. We use the partitions of lines into
unions of orbits (called classes) under Gq described in [14]. All types of lines
forming a unique orbit are found. For the rest of the line types (apart from
one of them) it is proved that they form exactly two or three orbits; sizes
and structures of these orbits are determined. Problems remaining open for
one type of lines are formulated. For 5 ≤ q ≤ 37 and q = 64, they are solved.

The theoretic results hold for q ≥ 5. For q = 2, 3, 4 we describe the orbits
by computer search.

The results obtained increase our knowledge on the properties of lines
in PG(3, q). The new results can be useful for feature investigations, in
particular, for considerations of the plane-line incidence matrix of PG(3, q),
see [11].

The paper is organized as follows. Section 2 contains preliminaries. In
Section 3, the main results of this paper are summarized. In Sections 4–7,
orbits of lines in PG(3, q) under Gq are considered. In Section 8, the open
problems are formulated and their solutions for 5 ≤ q ≤ 37 and q = 64 are
considered.
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2 Preliminaries on the twisted cubic in

PG(3, q)

We summarize the results on the twisted cubic of [14] useful in this paper.
Let P(x0, x1, x2, x3) be a point of PG(3, q) with homogeneous coordinates

xi ∈ Fq. Let F∗
q = Fq \ {0}, F

+
q = Fq ∪ {∞}. For For t ∈ F+

q , let P (t) be a
point such that

P (t) = P(t3, t2, t, 1) if t ∈ Fq; P (∞) = P(1, 0, 0, 0). (2.1)

Let C ⊂ PG(3, q) be the twisted cubic consisting of q + 1 points
P1, . . . , Pq+1 no four of which are coplanar. We consider C in the canonical
form

C = {P1, P2, . . . , Pq+1} = {P (t) | t ∈ F
+
q }. (2.2)

A chord of C is a line through a pair of real points of C or a pair of
complex conjugate points. In the last case it is an imaginary chord. If the
real points are distinct, it is a real chord ; if they coincide with each other, it
is a tangent.

Let π(c0, c1, c2, c3) ⊂ PG(3, q), be the plane with equation

c0x0 + c1x1 + c2x2 + c3x3 = 0, ci ∈ Fq. (2.3)

The osculating plane in the point P (t) ∈ C is as follows:

πosc(t) = π(1,−3t, 3t2,−t3) if t ∈ Fq; πosc(∞) = π(0, 0, 0, 1). (2.4)

The q+1 osculating planes form the osculating developable Γ to C , that is a
pencil of planes for q ≡ 0 (mod 3) or a cubic developable for q 6≡ 0 (mod 3).

An axis of Γ is a line of PG(3, q) which is the intersection of a pair of real
planes or complex conjugate planes of Γ. In the last case it is a generator
or an imaginary axis. If the real planes are distinct it is a real axis ; if they
coincide with each other it is a tangent to C .

For q 6≡ 0 (mod 3), the null polarity A [13, Sections 2.1.5, 5.3], [14,
Theorem 21.1.2] is given by

P(x0, x1, x2, x3)A = π(x3,−3x2, 3x1,−x0). (2.5)
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Notation 2.1. In future, we consider q ≡ ξ (mod 3) with ξ ∈ {−1, 0, 1}.
Many values depend of ξ or have sense only for specific ξ. We note this by
remarks or by superscripts “(ξ)”. If a value is the same for all q or a property
holds for all q, or it is not relevant, or it is clear by the context, the remarks
and superscripts “(ξ)” are not used. If a value is the same for ξ = −1, 1,
then one may use “ 6= 0”. In superscripts, instead of “•”, one can write “od”
for odd q or “ev” for even q. If a value is the same for odd and even q, one
may omit “•”.

The following notation is used.

Gq the group of projectivities in PG(3, q) fixing C ;

Zn cyclic group of order n;

Sn symmetric group of degree n;

Atr the transposed matrix of A;

#S the cardinality of a set S;

AB the line through the points A and B;

, the sign “equality by definition”.

Types π of planes:

Γ-plane an osculating plane of Γ;

dC -plane a plane containing exactly d distinct points of C , d = 0, 2, 3;

1C -plane a plane not in Γ containing exactly 1 point of C ;

P the list of possible types π of planes, P , {Γ, 2C , 3C , 1C , 0C};

π-plane a plane of the type π ∈ P;

Nπ the orbit of π-planes under Gq, π ∈ P.

Types λ of lines with respect to the twisted cubic C :

RC-line a real chord of C ;

RA-line a real axis of Γ for ξ 6= 0;

T-line a tangent to C ;

IC-line an imaginary chord of C ;

IA-line an imaginary axis of Γ for ξ 6= 0;

UΓ a non-tangent unisecant in a Γ-plane;

UnΓ-line a unisecant not in a Γ-plane (it is always non-tangent);

EΓ-line an external line in a Γ-plane (it cannot be a chord);
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EnΓ-line an external line, other than a chord, not in a Γ-plane;

A-line the axis of Γ for ξ = 0

(it is the single line of intersection of all the q + 1 Γ-planes);

EA-line an external line meeting the axis of Γ for ξ = 0;

L(ξ) the list of possible types λ of lines,

L(6=0) , {RC,RA,T, IC, IA,UΓ,UnΓ,EΓ,EnΓ} for ξ 6= 0,

L(0) , {RC,T, IC,UΓ,UnΓ,EnΓ,A,EA} for ξ = 0;

λ-line a line of the type λ ∈ L(ξ);

L
(ξ)
Σ the total number of orbits of lines in PG(3, q);

L
(ξ)•
λΣ the total number of orbits of λ-lines, λ ∈ L(ξ);

Oλ the union (class) of all L
(ξ)•
λΣ orbits of λ-lines under Gq, λ ∈ L(ξ).

Types of points with respect to the twisted cubic C :

C -point a point of C ;

µΓ-point a point off C lying on exactly µ distinct osculating planes,

µΓ ∈ {0Γ, 1Γ, 3Γ} for ξ 6= 0, µΓ ∈ {(q + 1)Γ} for ξ = 0;

T-point a point off C on a tangent to C for ξ 6= 0;

TO-point a point off C on a tangent and one osculating plane for ξ = 0;

RC-point a point off C on a real chord;

IC-point a point on an imaginary chord (it is always off C ).

The following theorem summarizes results from [14] useful in this paper.

Theorem 2.2. [14, Chapter 21] The following properties of the twisted cubic
C of (2.2) hold:

(i) The group Gq acts triply transitively on C . Also,

(a) Gq
∼= PGL(2, q) for q ≥ 5;

G4
∼= S5

∼= PΓL(2, 4) ∼= Z2PGL(2, 4), #G4 = 2 ·#PGL(2, 4) = 120;

G3
∼= S4Z

3
2, #G3 = 8 ·#PGL(2, 3) = 192;

G2
∼= S3Z

3
2, #G2 = 8 ·#PGL(2, 2) = 48.

(b) The matrix M corresponding to a projectivity of Gq has the general

form
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M =









a3 a2c ac2 c3

3a2b a2d+ 2abc bc2 + 2acd 3c2d
3ab2 b2c+ 2abd ad2 + 2bcd 3cd2

b3 b2d bd2 d3









, a, b, c, d ∈ Fq, (2.6)

ad− bc 6= 0.

(ii) Under Gq, q ≥ 5, there are five orbits of planes and five orbits of
points.

(a) For all q, the orbits Ni of planes are as follows:

N1 = NΓ = {Γ-planes}, #NΓ = q + 1; (2.7)

N2 = N2C
= {2C -planes}, #N2C

= q2 + q;

N3 = N3C
= {3C -planes}, #N3C

= (q3 − q)/6;

N4 = N1C
= {1C -planes}, #N1C

= (q3 − q)/2;

N5 = N0C
= {0C -planes}, #N0C

= (q3 − q)/3.

(b) For q 6≡ 0 (mod 3), the orbits Mj of points are as follows:

M1 = {C -points}, M2 = {T-points}, M3 = {3Γ-points}, ,

M4 = {1Γ-points}, M5 = {0Γ-points}.

Also, if q ≡ 1 (mod 3) then M3 ∪ M5 = {RC-points}, M4 = {IC-points};

if q ≡ −1 (mod 3) then M3 ∪ M5 = {IC-points}, M4 = {RC-points}.

(c) For q ≡ 0 (mod 3), the orbits Mj of points are as follows:

M1 = {C -points}, M2 = {(q + 1)Γ-points}, M3 = {TO-points},

M4 = {RC-points}, M5 = {IC-points}.

(iii) For q 6≡ 0 (mod 3), the null polarity A (2.5) interchanges C and Γ
and their corresponding chords and axes.

(iv) The lines of PG(3, q) can be partitioned into classes called Oi and
O′

i, each of which is a union of orbits under Gq.

(a) q 6≡ 0 (mod 3), q ≥ 5, O′
i = OiA, #O′

i = #Oi, i = 1, . . . , 6.

O1 = ORC = {RC-lines}, O′
1 = ORA = {RA-lines}, (2.8)

#ORC = #ORA = (q2 + q)/2;

O2 = O′
2 = OT = {T-lines}, #OT = q + 1;
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O3 = OIC = {IC-lines}, O′
3 = OIA = {IA-lines},

#OIC = #OIA = (q2 − q)/2;

O4 = O′
4 = OUΓ = {UΓ-lines}, #OUΓ = q2 + q;

O5 = OUnΓ = {UnΓ-lines},O′
5 = OEΓ = {EΓ-lines},

#OUnΓ = #OEΓ = q3 − q;

O6 = O′
6 = OEnΓ = {EnΓ-lines}, #OEnΓ = (q2 − q)(q2 − 1).

For q > 4 even, the lines in the regulus complementary to that of the tangents
form an orbit of size q + 1 contained in O4 = OUΓ.

(b) q ≡ 0 (mod 3), q > 3.

Classes O1, . . . ,O6 are as in (2.8); O7 = OA = {A-line}, #OA = 1; (2.9)

O8 = OEA = {EA-lines}, #OEA = (q + 1)(q2 − 1).

(v) The following properties of chords and axes hold.
(a) For all q, no two chords of C meet off C .

Every point off C lies on exactly one chord of C .
(b) Let q 6≡ 0 (mod 3).

No two axes of Γ meet unless they lie in the same plane of Γ.
Every plane not in Γ contains exactly one axis of Γ.

(vi) For q > 2, the unisecants of C such that every plane through such a
unisecant meets C in at most one point other than the point of contact are,
for q odd, the tangents, while for q even, the tangents and the unisecants in
the complementary regulus.

3 The main results

Throughout the paper, we consider orbits of lines and planes under Gq.
From now on, we consider q ≥ 5 apart from Theorem 3.2.
Theorem 3.1 summarizes the results of Sections 4–7.

Theorem 3.1. Let q ≥ 5, q ≡ ξ (mod 3). Let notations be as in Section 2
including Notation 2.1. For line orbits under Gq the following holds.

(i) The following classes of lines consist of a single orbit:
O1 = ORC = {RC-lines}, O2 = OT = {T-lines}, and
O3 = OIC = {IC-lines}, for all q;
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O4 = OUΓ = {UΓ-lines}, for odd q;
O5 = OUnΓ = {UnΓ-lines} and O′

5 = OEΓ = {EΓ-lines}, for even q;
O′

1 = ORA = {RA-lines} and O′
3 = OIA = {IA-lines}, for ξ 6= 0;

O7 = OA = {A-lines}, for ξ = 0.

(ii) Let q ≥ 8 be even. The non-tangent unisecants in a Γ-plane (i.e. UΓ-
lines, class O4 = OUΓ) form two orbits of size q + 1 and q2 − 1. The
orbit of size q + 1 consists of the lines in the regulus complementary to
that of the tangents. Also, the (q + 1)-orbit and (q2 − 1)-orbit can be
represented in the form {ℓ1ϕ|ϕ ∈ Gq} and {ℓ2ϕ|ϕ ∈ Gq}, respectively,

where ℓj is a line such that ℓ1 = P0P(0, 1, 0, 0), ℓ2 = P0P(0, 1, 1, 0),
P0 = P(0, 0, 0, 1) ∈ C .

(iii) Let q ≥ 5 be odd. The non-tangent unisecants not in a Γ-plane (i.e.
UnΓ-lines, class O5 = OUnΓ) form two orbits of size 1

2
(q3 − q). These

orbits can be represented in the form {ℓjϕ|ϕ ∈ Gq}, j = 1, 2, where

ℓj is a line such that ℓ1 = P0P(1, 0, 1, 0), ℓ2 = P0P(1, 0, ρ, 0), P0 =
P(0, 0, 0, 1) ∈ C , ρ is not a square.

(iv) Let q ≥ 5 be odd. Let q 6≡ 0 (mod 3). The external lines in a Γ-plane
(class O′

5 = OEΓ) form two orbits of size (q3 − q)/2. These orbits can
be represented in the form {ℓjϕ|ϕ ∈ Gq}, j = 1, 2, where ℓj = p0∩pj is
the intersection line of planes p0 and pj such that p0 = π(1, 0, 0, 0) =
πosc(0), p1 = π(0,−3, 0,−1), p2 = π(0,−3ρ, 0,−1), ρ is not a square,
cf. (2.3), (2.4).

(v) Let q ≡ 0 (mod 3), q ≥ 9. The external lines meeting the axis of
Γ (i.e. EA-lines, class O8 = OEA) form three orbits of size q3 − q,
(q2 − 1)/2, (q2 − 1)/2. The (q3 − q)-orbit and the two (q2 − 1)/2-
orbits can be represented in the form {ℓ1ϕ|ϕ ∈ Gq} and {ℓjϕ|ϕ ∈ Gq},

j = 2, 3, respectively, where ℓj are lines such that ℓ1 = PA
0 P(0, 0, 1, 1),

ℓ2 = PA
0 P(1, 0, 1, 0), ℓ3 = PA

0 P(1, 0, ρ, 0), PA
0 = P(0, 1, 0, 0), ρ is not a

square.

Theorem 3.2 is obtained by an exhaustive computer search using the
symbol calculation system Magma [4].

Theorem 3.2. Let notations be as in Section 2 including Notation 2.1. For
line orbits under Gq the following holds.
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(i) Let q = 2. The group G2
∼= S3Z

3
2 contains 8 subgroups isomorphic to

PGL(2, 2) divided into two conjugacy classes. For one of these sub-
groups, the matrices corresponding to the projectivities of the subgroup
assume the form described by (2.6). For this subgroup (and only for
it) the line orbits under it are the same as in Theorem 3.1 for q ≡ −1
(mod 3).

(ii) Let q = 3. The group G3
∼= S4Z

3
2 contains 24 subgroups isomorphic to

PGL(2, 3) divided into four conjugacy classes. For one of these sub-
groups, the matrices corresponding to the projectivities of the subgroup
assume the form described by (2.6). For this subgroup (and only for
it) the line orbits under it are the same as in Theorem 3.1 for q ≡ 0
(mod 3).

(iii) Let q = 4. The group G4
∼= S5

∼= PΓL(2, 4) contains one subgroup
isomorphic to PGL(2, 4). The matrices corresponding to the projectiv-
ities of this subgroup assume the form described by (2.6) and for this
subgroup the line orbits under it are the same as in Theorem 3.1 for
q ≡ 1 (mod 3).

4 The null polarity A and orbits under Gq of

lines in PG(3, q)

Lemma 4.1. Let M be the general form of the matrix corresponding to a
projectivity of Gq given by (2.6). Then its inverse matrix M−1 has the form

M−1 =









d3A−1 cd2A−1 c2dA−1 c3A−1

3bd2A−1 d(ad+ 2bc)A−1 c(2ad+ bc)A−1 3ac2B−1

3b2dB−1 b(2ad + bc)B−1 a(ad+ 2bc)B−1 3a2cA−1

b3A−1 ab2A−1 a2bA−1 a3A−1









, (4.1)

A = a3d3 − b3c3 + 3ab2c2d− 3a2bcd2, B = (a2d2 − 2abcd+ b2c2)(ad− bc).

Proof. The assertion is obtained with the help of the system of symbolic
computation Maple [18]. Note that by (2.6), we have ad− bc 6= 0.

Lemma 4.2. Let q 6≡ 0 (mod 3). Let A be the null polarity [14, Theorem
21.1.2] given by (2.5). Let P = P(x0, x1, x2, x3) be a point of PG(3, q), PA
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be its polar plane, and Ψ be a projectivity belonging to Gq. Then

(PA)Ψ = (PΨ)A. (4.2)

Proof. Let “×” note the matrix multiplication. Using the matrices M and
M−1 of (2.6) and (4.1), respectively, we define x′

i and ci as follows:
[x′

0, x
′
1, x

′
2, x

′
3] = [x0, x1, x2, x3] × M, [c0, c1, c2, c3]

tr = M−1 × [c0, c1, c2, c3]
tr.

Then it is well known (see e.g. [7, Chapter 4, Note 23]) that:

π(c0, c1, c2, c3)Ψ = π(c0, c1, c2, c3).

By above and by (2.5), (2.6), (4.1), we have PΨ = P(x′
0, x

′
1, x

′
2, x

′
3);

(PΨ)A = π(x′
3,−3x′

2, 3x
′
1,−x′

0); PA = π(x3,−3x2, 3x1,−x0);

(PA)Ψ = π(v0, v1, v2, v3), [v0, v1, v2, v3]
tr = M−1 × [x3,−3x2, 3x1,−x0]

tr.

By direct symbolic computation using the system Maple, we verified that

M−1 × [x3,−3x2, 3x1,−x0]
tr = [x′

3,−3x′
2, 3x

′
1,−x′

0]
tr.

Theorem 4.3. Let q 6≡ 0 (mod 3). Let L be an orbit of lines under Gq.
Then LA also is an orbit of lines under Gq.

Proof. We take the line ℓ1 through the points P1 and P2 of PG(3, q) and a
projectivity Ψ ∈ Gq. Let ℓ2 be the line through Q1 = P1Ψ and Q2 = P2Ψ.
Then ℓ1 and ℓ2 belong to the same orbit and ℓ2 = ℓ1Ψ.

We show that ℓ2A = (ℓ1A)Ψ. Let pi = PiA, p
′
i = QiA, i = 1, 2. By (4.2),

p′1 = Q1A = (P1Ψ)A = (P1A)Ψ = p1Ψ,

p′2 = Q2A = (P2Ψ)A = (P2A)Ψ = p2Ψ.

So, we have ℓ2A = p′1 ∩ p′2 = p1Ψ ∩ p2Ψ = (p1 ∩ p2)Ψ = (ℓ1A)Ψ.

5 Orbits under Gq of chords of the cubic C

and axes of the osculating developable Γ

(orbits of RC-, T-, IC-, RA-, and IA-lines)

Theorem 5.1. For any q ≥ 5, the real chords (i.e. RC-lines, class O1 =
ORC) of the twisted cubic C (2.2) form an orbit under Gq.
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Proof. We consider real chords RC1 = P (t1)P (t2) and RC2 = P (t3)P (t4)
through the real points of C , respectively, P (t1), P (t2) and P (t3), P (t4) such
that tl 6= t2, t3 6= t4, {t1, t2} 6= {t3, t4}. The group Gq acts triply transitively
on C , see Theorem 2.2(i). So, there is a projectivity Ψ ∈ Gq such that
{P (t1), P (t2)}Ψ = {P (t3), P (t4)}. This projectivity maps also RC1 to RC2,
i.e. RC1Ψ = RC2. So, the real chords form an orbit under Gq.

Corollary 5.2. Let q 6≡ 0 (mod 3). In PG(3, q), for the osculating devel-
opable Γ of the twisted cubic C (2.2), the real axes (i.e. RA-lines, class
O′

1 = ORA) form an orbit under Gq.

Proof. The assertion follows from Theorems 2.2(iv)(a), 4.3, and 5.1.

Theorem 5.3. For any q ≥ 5, the tangents (i.e. T-lines, class O2 = OT) to
the twisted cubic C (2.2) form an orbit under Gq. Moreover, the group Gq

acts triply transitively on this orbit.

Proof. We consider two tangents Tt1 = P (t1)P (t1) and Tt2 = P (t2)P (t2)
through the real points P (t1), P (t1) and P (t2), P (t2) such that tl 6= t2. As
the points of C form an orbit under Gq, there is a projectivity Ψ ∈ Gq such
that P (t1)Ψ = P (t2). This projectivity maps also Tt1 to Tt2 , i.e. Tt1Ψ = Tt2 .
Thus, the tangents form an orbit under Gq. On this orbit, Gq acts triply
transitively since Gq acts triply transitively on C .

Theorem 5.4. For any q ≥ 5, in PG(3, q), the imaginary chords (i.e. IC-
lines, class O3 = OIC) of the twisted cubic C (2.2) form an orbit under Gq.

Proof. Let q ≡ ξ (mod 3). By Theorem 2.2(ii)(b)(c), for ξ = 1 (resp. ξ = 0),
points on imaginary chords form the orbit M4 (resp. M5). If ξ = −1, points
on IC-lines are divided into two orbits M3 = {points on three osculating pla-
nes} and M5 = {points on no osculating plane}. As in PG(3, q) a plane
and a line always meet, for ξ = −1 every imaginary chord contains a point
belonging to an osculating plane and therefore to M3.

Now, for any q, suppose that there exist at least two orbits O1 and O2

of imaginary chords. Consider IC-lines ℓ1 ∈ O1 and ℓ2 ∈ O2. By Theorem
2.2(v)(a), no two chords of C meet off C . Thus, ℓ1 ∩ ℓ2 = ∅ and there exist
at least two points P1 ∈ ℓ1 and P2 ∈ ℓ2 belonging to the same orbit; it is M4,
M5, and M3 for ξ = 1, 0, and −1, respectively. So, there is ϕ ∈ Gq such that
P1ϕ = P2. A projectivity maps a line to a line; as all points on IC-lines are
placed in “own” orbits (one or two) that do not contain points of other types,
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ℓ1ϕ is an IC-line. Moreover, by Theorem 2.2(v)(a), every point off C lies on
exactly one chord; thus, ℓ1ϕ is the only imaginary chord containing P2, i.e.
ℓ1ϕ = ℓ2. So, O1 = O2.

Corollary 5.5. Let q 6≡ 0 (mod 3). In PG(3, q), for the osculating devel-
opable Γ of the twisted cubic C (2.2), the imaginary axes (class O′

3 = OIA)
form an orbit under Gq.

Proof. The assertion follows from Theorems 2.2(iv)(a), 4.3, and 5.4.

6 Orbits under Gq of non-tangent unisecants

and external lines with respect to the cubic

C (orbits of UΓ-, UnΓ-, and EΓ-lines)

Notation 6.1. In addition to Notation 2.1, the following notation is used.

Pt the point P (t) of C with t ∈ F
+
q , cf. (2.1), (2.2);

Tt the tangent line to C at the point Pt;

GPt

q the subgroup of Gq fixing Pt;

Oλi
the set of lines from Oλ through Pi, i.e. Oλi

, {ℓ ∈ Oλ|Pi ∈ ℓ}.

Lemma 6.2. The tangent Tt to C at the point Pt has the following equation:

T∞ has equation

{

x2 = 0

x3 = 0
; T1 has equation

{

x0 = x1 + x2 − x3

x0 = 3x2 − 2x3

;

Tt, t ∈ Fq, t 6= 1, has equation

{

x0 = tx1 + t2x2 − t3x3

x1 = tx0 + (2t− 3t3)x2 + (2t4 − t2)x3

.

Proof. The point Pt = P(t3, t2, t, 1), t ∈ Fq, can be considered as an affine
point with respect to the infinite plane x3 = 0. Then the slope of the tangent
line to C at Pt is obtained by deriving the parametric equation of C and is
(3t2, 2t, 1). It means that Tt contains the infinite point Qt = P(3t2, 2t, 1, 0).
The planes p1 of equation x0 = tx1 + t2x2 − t3x3 and p2 of equation x1 =
tx0 + (2t− 3t3)x2 + (2t4 − t2)x3 contain both the points Pt and Qt.

However, if t = 1, p1 = p2, so we consider p3 of equation x0 = 3x2 − 2x3

as second plane containing both Pt and Qt. In particular T0 has equation
x0 = 0, x1 = 0.
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Now consider the projectivity Ψ of equation x′
0 = x3, x

′
1 = x2, x

′
2 =

x1, x
′
3 = x0. Then P0Ψ = P∞, P∞Ψ = P0, and PtΨ = P1/t if t 6= 0. It means

that Ψ ∈ Gq and T∞ = T0Ψ has equation x2 = 0, x3 = 0.

Lemma 6.3. The general form of the matrix MP0 corresponding to a pro-
jectivity of GP0

q is as follows:

MP0 =









1 c c2 c3

0 d 2cd 3c2d
0 0 d2 3cd2

0 0 0 d3









, c ∈ Fq, d ∈ F
∗
q . (6.1)

Proof. Let M of (2.6) correspond to a projectivity Ψ ∈ Gq. We have
[0, 0, 0, 1]×M = [b3, b2d, bd2, d3]. Then Ψ ∈ GP0

q if and only if b = 0, d 6= 0.
Also, we should put a 6= 0, to provide ad− bc 6= 0, see (2.6). One may choose
a = 1, see (6.1), as we consider points in homogeneous coordinates.

Lemma 6.4. GPi
q and G

Pj
q are conjugate subgroups of Gq, i, j ∈ F+

q .

Proof. As Gq acts transitively on C , there exists Ψ ∈ Gq such that PiΨ = Pj .

Then Ψ−1GPi
q Ψ = G

Pj
q . In fact, let ϕ ∈ GPi

q . Then PjΨ
−1ϕΨ = PiϕΨ =

PiΨ = Pj . On the other hand, let γ ∈ G
Pj
q . Then PiΨγΨ−1 = PjγΨ

−1 =
PjΨ

−1 = Pi. It means that ΨγΨ−1 ∈ GPi
q , i.e. γ ∈ Ψ−1GPi

q Ψ.

Corollary 6.5. For all t ∈ F+
q , we have #GPt

q = q(q − 1).

Proof. By (6.1), #GP0
q = q(q − 1). By Lemma 6.4, there exists Ψ ∈ Gq such

that Ψ−1GP0
q Ψ = GPt

q , t ∈ F+
q . Then GP0

q Ψ = ΨGPt
q . As a finite group and its

cosets have the same cardinality, #GP0
q = #GP0

q Ψ = #ΨGPt
q = #GPt

q .

Lemma 6.6. Let λ ∈ {RC,T,UΓ,UnΓ}. Then Oλi
GPi

q = Oλi
.

Proof. Let ℓ ∈ Oλi
, ϕ ∈ GPi

q . As Pi ∈ ℓ, Piϕ = Pi ∈ ℓϕ. For λ ∈ {RC,T,UΓ,
UnΓ}, ℓ of type λ implies ℓϕ of type λ. Therefore, ℓϕ ∈ Oλi

. On the other
hand, if I is the identity element of GPi

q , Oλi
GPi

q ⊇ Oλi
I = Oλi

.

Lemma 6.7. Let ℓ be a line such that Pi ∈ ℓ. Let Oℓ =
{

ℓϕ|ϕ ∈ GPi
q

}

,
Ψ1,Ψ2 ∈ Gq. If PiΨ1 = PiΨ2 = Pj then OℓΨ1 = OℓΨ2.

Proof. As PiΨ1Ψ
−1
2 = PjΨ

−1
2 = Pi, we have Ψ1Ψ

−1
2 ∈ GPi

q . Let ℓ ∈ OℓΨ1.

Then ℓ = ℓϕΨ1, ϕ ∈ GPi
q . This implies ℓΨ−1

2 = ℓϕΨ1Ψ
−1
2 ∈ Oℓ, whence

ℓ ∈ OℓΨ2. The proof of the other inclusion is analogous.
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Lemma 6.8. Let λ ∈ {UΓ,UnΓ}, ℓ1, ℓ2,∈ Oλi
, Oℓ1 =

{

ℓ1ϕ|ϕ ∈ GPi
q

}

, Oℓ2 =
{

ℓ2ϕ|ϕ ∈ GPi
q

}

. If Oℓ1 ∩ Oℓ2 = ∅ then Oℓ1Gq ∩ Oℓ2Gq = ∅.

Proof. Suppose ℓ ∈ Oℓ1Gq ∩ Oℓ2Gq. Then ℓ is a line of the same type λ as
ℓ1 and ℓ2, i.e. it is a unisecant of C , so there exists Pj such that Pj ∈ ℓ. As
ℓ ∈ Oℓ1Gq, ℓ = ℓ1ϕ1Ψ1, ϕ1 ∈ GPi

q , Ψ1 ∈ Gq. The point Pi belongs to the

line ℓ′ = ℓ1ϕ1. As Pj ∈ ℓ = ℓ′Ψ1 and ℓ1, ℓ
′, ℓ are unisecants and Ψ1 ∈ Gq,

PiΨ1 is the only point of ℓ belonging to C , i.e. PiΨ1 = Pj. Analogously,
ℓ ∈ Oℓ2Gq implies ℓ = ℓ2ϕ2Ψ2, ϕ2 ∈ GPi

q , PiΨ2 = Pj . Then PiΨ1Ψ
−1
2 =

PjΨ
−1
2 = Pi, that implies Ψ1Ψ

−1
2 ∈ GPi

q . Finally, ℓ1ϕ1Ψ1 = ℓ2ϕ2Ψ2 implies

ℓ1ϕ1Ψ1Ψ
−1
2 ϕ−1

2 = ℓ2, whence ℓ2 ∈ Oℓ1.

Lemma 6.9. Let λ ∈ {T,UΓ,UnΓ}, ℓ ∈ Oλ, Oℓ =
{

ℓϕ|ϕ ∈ GPi
q

}

. Then
#OℓGq = (q + 1) ·#Oℓ.

Proof. Let Gj
i = {ϕ ∈ Gq|Piϕ = Pj}. The sets Gj

i , j ∈ F+
q form a partition

of Gq. In fact, let ϕ ∈ Gq. As Gq is the stabilizer group of C , Piϕ = Pj ∈ C ,

so ϕ ∈ Gj
i . On the other hand, if ϕ ∈ Gj

i ∩ Gk
i , then Pj = Piϕ = Pk, so

j = k. If Ψ ∈ Gj
i , then OℓΨ = OℓG

j
i . In fact, by Lemma 6.7, if Ψ′ ∈ Gj

i

then OℓΨ
′ = OℓΨ. Finally, consider Ψj ∈ Gj

i , j ∈ F+
q . Then OℓGq =

⋃

j∈F+
q

OℓG
j
i =

⋃

j∈F+
q

OℓΨj . The sets OℓΨj , j ∈ F+
q , are disjoint. In fact, a line

ℓ′ ∈ OℓΨm ∩ OℓΨn, m 6= n, would be a line of type λ, i.e. a unisecant of
C , passing through the distinct points Pm, Pn ∈ C . Moreover, as Ψj is a
bijection, #OℓΨj = #Oℓ. Therefore, #OℓGq =

∑

j∈F+
q

#OℓΨj =
∑

j∈F+
q

#Oℓ =

(q + 1) ·#Oℓ.

Lemma 6.10. Let λ ∈ {UΓ,UnΓ}, ℓ ∈ Oλ. Let Pi be a point of C . Then
there exists a line ℓ ∈ Oλi

such that ℓ ∈ OℓGq, where Oℓ =
{

ℓϕ|ϕ ∈ GPi
q

}

.

Proof. The line ℓ is a unisecant, so there exists Pj such that Pj ∈ ℓ. As Gq

acts transitively on C , there exists Ψ ∈ Gq such that PjΨ = Pi. Let ℓ = ℓΨ.
Then ℓ is of the same type λ as ℓ, i.e. ℓ is a unisecant, and Pj ∈ ℓ implies
PjΨ = Pi ∈ ℓΨ = ℓ, i.e. ℓ ∈ Oλi

. Finally, ℓ = ℓΨ−1 implies ℓ ∈ OℓGq.

Lemma 6.11. Let λ ∈ {UΓ,UnΓ}, let Pi ∈ C , ℓ1, . . . , ℓm ∈ Oλi
, Oℓj =

{

ℓjϕ|ϕ ∈ GPi
q

}

, j ∈ 1, . . . , m . If {Oℓ1, . . . ,Oℓm} is a partition of Oλi
, then

{Oℓ1Gq, . . . ,OℓmGq} is a partition of Oλ.
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Proof. Let ℓ ∈ Oλ. By Lemma 6.10, there exists ℓ′ ∈ Oλi
such that ℓ ∈ Oℓ′Gq,

Oℓ′ =
{

ℓ′ϕ|ϕ ∈ GPi
q

}

. By hypothesis, there exists ℓj, j ∈ {1, . . . , m}, such
that Oℓ′ = Oℓj . By Lemma 6.8, Oℓj 6= Oℓk , j 6= k, implies OℓjGq 6= OℓkGq.

In the rest of the section we denote by c, d or ci, di the elements of the
matrix of the form (6.1) corresponding to a projectivity ϕ ∈ GP0

q or ϕi ∈
GP0

q , respectively. Also, given a 3 × 4 matrix D, we denote by deti(D) the
determinant of the 3× 3 matrix obtained deleting the i-th column of D.

Theorem 6.12. For any q ≥ 5, in PG(3, q), for the twisted cubic C of (2.2),
the non-tangent unisecants in a Γ-plane (i.e. UΓ-lines, class O4 = OUΓ) form
an orbit under Gq if q is odd and two orbits of size q + 1 and q2 − 1 if q is
even. Moreover, for q even, the orbit of size q+1 consists of the lines in the
regulus complementary to that of the tangents. Also, for q even, the (q + 1)-
orbit and (q2 − 1)-orbit can be represented in the form {ℓ1ϕ|ϕ ∈ Gq} and

{ℓ2ϕ|ϕ ∈ Gq}, respectively, where ℓj is a line such that ℓ1 = P0P(0, 1, 0, 0),

ℓ2 = P0P(0, 1, 1, 0), P0 = P(0, 0, 0, 1) ∈ C .

Proof. Let OUΓ0
= {ℓ ∈ OUΓ|P0 ∈ ℓ} be the set of UΓ-lines through P0. By

Lemma 6.6, OUΓ0
GP0

q = OUΓ0
, so we can consider the orbits of OUΓ0

under
the group GP0

q . In πosc(0), there are q+1 unisecants through P0, one of which
is a tangent whereas the other q are UΓ-lines; so #OUΓ0

= q. By (2.3), (2.4),
πosc(0) has equation x0 = 0. By Lemma 6.2, the tangent T0 to C at P0 has
equation x0 = x1 = 0.

Let P ′ = P(0, 1, 0, 0), ℓ′ = P ′P0. By above, P ′ ∈ πosc(0), P ′ 6∈ T0,
whence ℓ′ ∈ OUΓ0

. Let Oℓ′ =
{

ℓ′ϕ|ϕ ∈ GP0
q

}

. If ϕ ∈ GP0
q , then , by (6.1),

P ′ϕ = P(0, d, 2cd, 3c2d) = P(0, 1, 2c, 3c2) 6∈ T0. So, ℓ′ϕ is of type UΓ and
P0 ∈ ℓ′ implies P0ϕ = P0 ∈ ℓ′ϕ , whence Oℓ′ ⊆ OUΓ0

.
Now we determine #Oℓ′ . Let ϕ1, ϕ2 ∈ GP0

q , ϕ1 6= ϕ2, Q
′ = P ′ϕ1, R

′ =
P ′ϕ2. By (6.1) with d1, d2 6= 0, we have

Q′ = P(0, d1, 2c1d1, 3c
2
1d1) = P(0, 1, 2c1, 3c

2
1),

R′ = P(0, d2, 2c2d2, 3c
2
2d2) = P(0, 1, 2c2, 3c

2
2).

Obviously, ℓ′ϕ1 6= ℓ′ϕ2 if and only if P0, Q
′, R′ are not collinear, i.e. the

matrix D′ = [P0, Q
′, R′]tr has the maximum rank. We obtain

det1(D
′) = 2c2 − 2c1, det2(D

′) = det3(D
′) = det4(D

′) = 0.
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If q is odd, fixed d 6= 0 in (6.1), and varying c ∈ Fq, we obtain q different
images of ℓ′, i.e. OUΓ0

= Oℓ′. Then, by Lemma 6.11, Oℓ′Gq = OUΓ.
Let q be even.
We have det1(D

′) = 0, so Oℓ′ = {ℓ′}.
Consider P ′′ = P(0, 1, 1, 0) 6∈ T0 and ℓ′′ = P ′′P0. As ℓ

′ has equation x0 =
x2 = 0, we have P ′′ /∈ ℓ′; so ℓ′′ 6= ℓ′, i.e. ℓ′′ /∈ Oℓ′. Let Oℓ′′ =

{

ℓ′′ϕ|ϕ ∈ GP0
q

}

.
If ϕ ∈ GP0

q , then ℓ′′ϕ is of type UΓ and P0 ∈ ℓ′′ implies P0ϕ = P0 ∈ ℓ′′ϕ ,
whence Oℓ′′ ⊆ OUΓ0

. Let ϕ1, ϕ2 ∈ GP0
q , ϕ1 6= ϕ2, Q

′′ = Pϕ1, R
′′ = Pϕ2.

By (6.1) with d1, d2 6= 0, we have

Q′′ = P(0, 1, d1, c
2
1 + c1d1), R′′ = P(0, 1, d2, c

2
2 + c2d2).

As above, ℓ′′ϕ1 6= ℓ′′ϕ2 if and only if P0, Q
′′, R′′ are not collinear, i.e. the

matrix D′′ = [P0, Q
′′, R′′]tr has the maximum rank. We obtain

det1(D
′′) = d2 − d1, det2(D

′′) = det3(D
′′) = det4(D

′′) = 0.

Fixed c and varying d ∈ F∗, we obtain q − 1 different images of ℓ′′, i.e.
#Oℓ′′ = q − 1.

As Oℓ′ ∩ Oℓ′′ = ∅ and #OUΓ0
= q, {Oℓ′,Oℓ′′} is a partition of OUΓ0

.
Then, by Lemma 6.11, {Oℓ′Gq,Oℓ′′Gq} is a partition of OUΓ. By Lemma 6.9,
#Oℓ′Gq = q + 1, #Oℓ′′Gq = (q − 1)(q + 1).

Finally, on content of the (q+1)-orbit Oℓ′Gq see Theorem 2.2(iv)(a).

Theorem 6.13. Let q ≥ 5. In PG(3, q), for the twisted cubic C of (2.2), the
non-tangent unisecants not in a Γ-plane (i.e. UnΓ-lines, class O5 = OUnΓ)
form an orbit under Gq if q is even and two orbits of size 1

2
(q3 − q) if q

is odd. Moreover, for q odd, the two orbits can be represented in the form
{ℓjϕ|ϕ ∈ Gq}, j = 1, 2, where ℓj is a line such that ℓ1 = P0P(1, 0, 1, 0),

ℓ2 = P0P(1, 0, ρ, 0), P0 = P(0, 0, 0, 1) ∈ C , ρ is not a square.

Proof. We act similarly to the proof of Theorem 6.12. Let OUnΓ0
= {ℓ ∈

OUnΓ|P0 ∈ ℓ}. By Lemma 6.6, OUnΓ0
GP0

q = OUnΓ0
, so we can consider the

orbits of OUnΓ0
under GP0

q . In total, through P0 there are q
2+q+1 lines, q+1

of which are unisecants in πosc(0), other q are real chords, and the remaining
q2− q are UnΓ-lines. So, #OUnΓ0

= q2− q. The equation of πosc(0) is x0 = 0.
The tangent T0 to C in P0 has equation x0 = x1 = 0.

Let P ′ = P(1, 0, 1, 0) and ℓ′ = P ′P0 6∈ πosc(0). Also, ℓ
′ is not a real chord,

as ℓ′ has equation x0 = x2, x1 = 0 and C ∩ ℓ′ = P0. Thus, ℓ′ is a UnΓ-line.

16



Let Oℓ′ =
{

ℓ′ϕ|ϕ ∈ GP0
q

}

. We have Oℓ′ ⊆ OUnΓ0
, as ℓ′ϕ is a UnΓ-line and

P0 ∈ ℓ′ implies P0ϕ = P0 ∈ ℓ′ϕ.
We find #Oℓ′ . Let ϕ1, ϕ2 ∈ GP0

q , ϕ1 6= ϕ2, Q′ = P ′ϕ1, R′ = P ′ϕ2.
By (6.1),

Q′ = P(1, c1, c
2
1 + d21, c

3
1 + 3c1d

2
1), R′ = P(1, c2, c

2
2 + d22, c

3
2 + 3c2d

2
2).

Obviously, ℓ′ϕ1 6= ℓ′ϕ2 if and only if P0, Q
′, R′ are not collinear, i.e. the

matrix D′ = [P0, Q
′, R′]tr has the maximum rank. We obtain

det1(D
′) = c1(c

2
2 + d22)− c2(c

2
1 + d21), det2(D

′) = c22 + d22 − (c21 + d21),

det3(D
′) = c2 − c1, det4(D

′) = 0.

If c2 6= c1, then det3(D
′) 6= 0.

If q is even and c2 = c1, then det2(D
′) = d22−d21 = (d2−d1)

2, so det2(D
′) =

0 if and only if d2 = d1. Therefore, ϕ1 6= ϕ2 implies ℓ′ϕ1 6= ℓ′ϕ2. It means
that Oℓ′ = OUnΓ0

and #Oℓ′ = #GP0
q = q(q − 1), see Corollary 6.5. Then, by

Lemma 6.11, Oℓ′Gq = OUΓ and by Lemma 6.9, #Oℓ′Gq = q(q − 1)(q + 1).
Let q be odd.
If c2 = c1, then det2(D

′) = (d2−d1)(d2+d1), so det2(D
′) = 0 if d1 = −d2.

In this case also det1(D
′) = 0. Therefore, given ϕ1 ∈ GP0

q , if and only if we
take ϕ2 ∈ GP0

q with c2 = c1, d2 = −d1, then ϕ1 6= ϕ2 and ℓ′ϕ1 = ℓ′ϕ2. It
means that #Oℓ′ =

1
2
q(q − 1), see (6.1).

Consider P ′′ = P(1, 0, ρ, 0), ρ is not a square, and ℓ′′ = P ′′P0 6∈ πosc(0).
Also, ℓ′′ is not a real chord, as ℓ′′ has equation ρx0 = x2, x1 = 0 and C ∩ ℓ′′ =
P0. Thus, ℓ

′′ is a UnΓ-line. Also ℓ′′ /∈ Oℓ′. In fact, if ℓ′′ ∈ Oℓ′, then ϕ ∈ GP0
q

such that P0, P
′ϕ, P ′′ are collinear would exist. It means that the matrix

Dϕ = [P0, P
′ϕ, P ′′]tr should have rank 2. As P ′ϕ = P(0, c, c2+ d2, c3+3cd2),

we have

det1(Dϕ) = −ρc, det2(Dϕ) = c2 + d2 − ρ, det3(Dϕ) = c, det4(Dϕ) = 0.

Thus, det3(Dϕ) = 0 implies c = 0. Then det2(Dϕ) = d2 − ρ, that cannot be
equal to 0 as ρ is not a square; contradiction.

Let Oℓ′′ =
{

ℓ′′ϕ|ϕ ∈ GP0
q

}

. Let ϕ1, ϕ2 ∈ GP0
q , ϕ1 6= ϕ2, Q′′ = P ′′ϕ1,

R′′ = P ′′ϕ2. By (6.1),

Q′′ = P(1, c1, c
2
1 + ρd21, c

3
1 + 3ρc1d

2
1), R′′ = P(1, c2, c

2
2 + ρd22, c

3
2 + 3ρc2d

2
2).

Obviously, ℓ′′ϕ1 6= ℓ′′ϕ2 if and only if P0, Q
′′, R′′ are not collinear, i.e. the

matrix D′′ = [P0, Q
′′, R′′]tr has the maximum rank. We have

det1(D
′′) = c1(c

2
2 + ρd22)− c2(c

2
1 + ρd21), det2(D

′′) = c22 + ρd22 − (c21 + ρd21),
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det3(D
′′) = c2 − c1, det4(D

′′) = 0.

If c2 6= c1, then det3(D
′′) 6= 0. If c2 = c1 then det2(D

′′) = ρ(d2− d1)(d2+ d1),
so det2(D

′′) = 0 if d1 = −d2. In this case also det1(D
′′) = 0. Therefore, given

ϕ1 ∈ GP0
q if and only if we take ϕ2 ∈ GP0

q with c2 = c1, d2 = −d1 then we
obtain ϕ1 6= ϕ2 and ℓ′′ϕ1 = ℓ′ϕ2. It means that #Oℓ′′ =

1
2
q(q − 1), see (6.1).

As Oℓ′ ∩ Oℓ′′ = ∅ and #OUnΓ0
= q(q − 1), {Oℓ′,Oℓ′′} is a partition of

OUnΓ0
. Then, by Lemma 6.11,{Oℓ′Gq,Oℓ′′Gq} is a partition of OUnΓ. By

Lemma 6.9, #Oℓ′Gq = #Oℓ′′Gq =
1
2
q(q − 1)(q + 1).

Corollary 6.14. Let q 6≡ 0 (mod 3). In PG(3, q), for the twisted cubic
C of (2.2), the external lines in a Γ-plane (class O′

5 = OEΓ) form an orbit
under Gq if q is even and two orbits of size (q3−q)/2 if q is odd. Moreover, for
q odd, the two orbits can be represented in the form {ℓjϕ|ϕ ∈ Gq}, j = 1, 2,
where ℓj = p0 ∩ pj is the intersection line of planes p0 and pj such that
p0 = π(1, 0, 0, 0) = πosc(0), p1 = π(0,−3, 0,−1), p2 = π(0,−3ρ, 0,−1), ρ is
not a square, cf. (2.3), (2.4).

Proof. The assertion follows from Theorems 2.2(iv)(a), 4.3, and 6.13. The
null polarity A (2.5) maps the points P0 = P(0, 0, 0, 1), P ′ = P(1, 0, 1, 0), and
P ′′ = P(1, 0, ρ, 0) of Proof of Theorem 6.13 to the planes p0 = π(1, 0, 0, 0),
p1 = π(0,−3, 0,−1), and p2 = π(0,−3ρ, 0,−1), respectively. The UnΓ-lines
ℓ′ = P0P ′ and ℓ′′ = P0P ′′ are mapped to EA-lines so that ℓ′A = p0 ∩ p1 , ℓ1
and ℓ′′A = p0 ∩ p2 , ℓ2.

7 Orbits under Gq of external lines with re-

spect to the cubic C meeting the axis of the

pencil of osculating planes, q ≡ 0 (mod 3)

(orbits of EA-lines)

In the following we consider q ≡ 0 (mod 3), q ≥ 9, and denote by ℓA the axis
of Γ and by PA the point P(0, 1, 0, 0). The line ℓA is the intersection of the
osculating planes, so has equation x0 = x3 = 0, and PA ∈ ℓA. Recall that by
Theorem 2.2(iv)(b), ℓA is fixed by Gq.

Notation 7.1. In addition to Notations 2.1 and 6.1, the following notation
is used.

PA
t the point P(0, 1, t, 0) of ℓA with t ∈ Fq;
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PA
∞ the point P(0, 0, 1, 0) of ℓA;

GPA
t

q the subgroup of Gq fixing PA
t with t ∈ F

+
q ;

OEAi
the set of lines from OEA through PA

i ,

i.e. OEAi
, {ℓ ∈ OEA|P

A
i ∈ ℓ}.

Lemma 7.2. Let q ≡ 0 (mod 3), q ≥ 9. The group Gq acts transitively on
ℓA.

Proof. If we take ϕ ∈ Gq whose matrix in the form (2.6) has a = 0, b = c =
d = 1, then PA

0 ϕ = P(0, 0, 1, 0) = PA
∞. If we take ϕ ∈ Gq whose matrix in the

form (2.6) has a = d = 1, b = 0, c = −n, then PA
0 ϕ = P(0, 1, n, 0) = PA

n .

Lemma 7.3. The general form of the matrix M corresponding to a projec-

tivity of G
PA
0

q is as follows:

M =









1 0 0 0
0 d 0 0
0 −bd d2 0
b3 b2d bd2 d3









, b ∈ Fq, d ∈ F
∗
q. (7.1)

Proof. Let M be the matrix corresponding to a projectivity Ψ ∈ Gq; by (2.6),

[0, 1, 0, 0]×M = [0, a2d− abc, bc2 − acd, 0]. Then Ψ ∈ G
PA
0

q if and only if

bc2 − acd = 0, a2d− abc 6= 0. (7.2)

If a = 0, then bc2 = 0 that implies det(M) = 0, contradiction, so we can
fix a = 1. Then the 1-st equality of (7.2) becomes c(bc − d) = 0. If a = 1
and bc− d = 0, also a2d− abc = 0. Therefore, c = 0, d 6= 0.

Lemma 7.2 allows to prove the following lemmas and corollary in analo-
gous way to Lemmas 6.4, 6.6–6.11, and Corollary 6.5.

Lemma 7.4. G
PA
i

q and G
PA
j

q are conjugate subgroups of Gq.

Proof. By Lemma 7.2, Gq acts transitively on ℓA, so there exists Ψ ∈ Gq

such that PA
i Ψ = PA

j . Then Ψ−1G
PA
i

q Ψ = G
PA
j

q . In fact, let ϕ ∈ G
PA
i

q . Then

PA
j Ψ

−1ϕΨ = PA
i ϕΨ = PA

i Ψ = PA
j . On the other hand, let γ ∈ G

PA
j

q . Then

PA
i ΨγΨ−1 = PA

j γΨ−1 = PA
j Ψ

−1 = PA
i . It means that ΨγΨ−1 ∈ G

PA
i

q , i.e.

γ ∈ Ψ−1G
PA
i

q Ψ.
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Corollary 7.5. For all t ∈ F+
q , we have #G

PA
t

q = q(q − 1).

Proof. By (7.1), #G
PA
0

q = q(q− 1). By Lemma 7.4, there exists Ψ ∈ Gq such

that Ψ−1G
PA
0

q Ψ = G
PA
t

q , t ∈ F+
q . Then G

PA
0

q Ψ = ΨG
PA
t

q . As a finite group

and its cosets have the same cardinality, #G
PA
0

q = #G
PA
0

q Ψ = #ΨG
PA
t

q =

#G
PA
t

q .

Lemma 7.6. We have OEAi
G

PA
i

q = OEAi
.

Proof. Let ℓ ∈ OEAi
, ϕ ∈ G

PA
i

q . Then PA
i ∈ ℓ, so PA

i ϕ = PA
i ∈ ℓϕ. As ℓ of

type EA implies ℓϕ of type EA, ℓϕ ∈ OEAi
. On the other hand, if I is the

identity element of GPi
q , Oλi

GPi
q ⊇ Oλi

I = Oλi
.

Lemma 7.7. Let ℓ ∈ OEAi
, Oℓ =

{

ℓϕ|ϕ ∈ G
PA
i

q

}

, Ψ1,Ψ2 ∈ Gq. If PA
i Ψ1 =

PA
i Ψ2 = PA

j then OℓΨ1 = OℓΨ2.

Proof. As PA
i Ψ1Ψ

−1
2 = PA

j Ψ
−1
2 = PA

i , Ψ1Ψ
−1
2 ∈ G

PA
i

q . Let ℓ ∈ OℓΨ1. Then

ℓ = ℓϕΨ1, ϕ ∈ G
PA
i

q . This implies ℓΨ−1
2 = ℓϕΨ1Ψ

−1
2 ∈ Oℓ, whence ℓ ∈ OℓΨ2.

The proof of the other inclusion is analogous.

Lemma 7.8. Let ℓ1, ℓ2,∈ OEAi
, Oℓ1 =

{

ℓ1ϕ|ϕ ∈ G
PA
i

q

}

,

Oℓ2 =
{

ℓ2ϕ|ϕ ∈ G
PA
i

q

}

. If Oℓ1 ∩ Oℓ2 = ∅ then Oℓ1Gq ∩ Oℓ2Gq = ∅.

Proof. Suppose ℓ ∈ Oℓ1Gq ∩ Oℓ2Gq. Then also ℓ is a line of type EA; let

PA
j = ℓA ∩ ℓ. As ℓ ∈ Oℓ1Gq, ℓ = ℓ1ϕ1Ψ1, ϕ1 ∈ G

PA
i

q , Ψ1 ∈ Gq. Let ℓ
′ = ℓ1ϕ1.

As PA
i ∈ ℓ1, PA

i ϕ1 = PA
i ∈ ℓ1ϕ1 = ℓ′. As PA

j ∈ ℓ = ℓ′Ψ1 and ℓ1, ℓ
′, ℓ

are of type EA and Ψ1 ∈ Gq, P
A
i Ψ1 is the only point of ℓ belonging to ℓA,

i.e. PA
i Ψ1 = PA

j . Analogously, ℓ ∈ Oℓ2Gq implies ℓ = ℓ2ϕ2Ψ2, ϕ2 ∈ G
PA
i

q ,

PA
i Ψ2 = PA

j . Then PA
i Ψ1Ψ

−1
2 = PA

j Ψ−1
2 = PA

i that implies Ψ1Ψ
−1
2 ∈ G

PA
i

q .

Finally, ℓ1ϕ1Ψ1 = ℓ2ϕ2Ψ2 implies ℓ1ϕ1Ψ1Ψ
−1
2 ϕ−1

2 = ℓ2, whence ℓ2 ∈ Oℓ1.

Lemma 7.9. Let ℓ ∈ OEAi
, Oℓ =

{

ℓϕ|ϕ ∈ G
PA
i

q

}

. Then #OℓGq = (q + 1) ·

#Oℓ.
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Proof. Let Gj
i = {ϕ ∈ Gq|P

A
i ϕ = PA

j }. The sets Gj
i , j ∈ F+

q form a partition
of Gq. In fact, let ϕ ∈ Gq. By Theorem 2.2(iv)(b), the line ℓA is fixed by Gq,

so PA
i ϕ = PA

j
∈ ℓA: it means that ϕ ∈ Gj

i . On the other hand, if ϕ ∈ Gj
i∩G

k
i ,

then PA
j = PA

i ϕ = PA
k , so j = k. If Ψ ∈ Gj

i , then OℓΨ = OℓG
j
i . In fact,

by Lemma 7.7, if Ψ′ ∈ Gj
i then OℓΨ

′ = OℓΨ. Finally, consider Ψj ∈ Gj
i ,

j ∈ F+
q . Then OℓGq =

⋃

j∈F+
q

OℓG
j
i =

⋃

j∈F+
q

OℓΨj. The sets OℓΨj , j ∈ F+
q , are

disjoint. In fact, a line ℓ ∈ OℓΨm ∩ OℓΨn, m 6= n, would be a line of type
EA passing through the distinct points PA

m , PA
n ∈ ℓA. Moreover, as Ψj is a

bijection, #OℓΨj = #Oℓ. Therefore, #OℓGq =
∑

j∈F+
q

#OℓΨj =
∑

j∈F+
q

#Oℓ =

(q + 1) ·#Oℓ.

Lemma 7.10. Let ℓ ∈ OEA. Let PA
i be a point of ℓA. Then there exists a

line ℓ ∈ OEAi
such that ℓ ∈ OℓGq, where Oℓ =

{

ℓϕ|ϕ ∈ G
PA
i

q

}

.

Proof. As ℓ ∈ OEA, there exists PA
j ∈ ℓA, such that PA

j ∈ ℓ. By Lemma 7.2,
Gq acts transitively on ℓA, so there exists Ψ ∈ Gq such that PA

j Ψ = PA
i . Let

ℓ = ℓΨ. Then ℓ is of type EA and PA
j ∈ ℓ implies PA

j Ψ = PA
i ∈ ℓΨ = ℓ, i.e.

ℓ ∈ OEAi
. Finally, ℓ = ℓΨ−1 implies ℓ ∈ OℓGq.

Lemma 7.11. Let PA
i ∈ ℓA, ℓ

1, . . . , ℓm,∈ OEAi
, Oℓj =

{

ℓjϕ|ϕ ∈ G
PA
i

q

}

, j ∈

1, . . . , m. If {Oℓ1, . . . ,Oℓm} is a partition of OEAi
, then {Oℓ1Gq, . . . ,OℓmGq}

is a partition of OEA.

Proof. Let ℓ ∈ OEA. By Lemma 7.10, there exists ℓ′ ∈ OEAi
such that ℓ ∈

Oℓ′Gq, Oℓ′ =
{

ℓ′ϕ|ϕ ∈ G
PA
i

q

}

. By hypothesis, there exists ℓj , j ∈ {1, . . . , m},

such that Oℓ′ = Oℓj . By Lemma 7.8, Oℓj 6= Oℓk , j 6= k, implies OℓjGq 6=
OℓkGq.

Lemma 7.12. We have #OEAi
= q2 − 1.

Proof. No real cord contains the point PA
0 . In fact, the line PA

0 P∞ has
equation x2 = x3 = 0 and contains no point Pt, t ∈ F. The points PA

0 , Pt1 , Pt2 ,
with t1, t2 ∈ F, t1 6= t2 are collinear if and only if the matrix MPA

0 ,Pt1
,Pt2

=

[PA
0 , Pt1 , Pt2 ]

tr has rank 2, but det1(MPA
0 ,Pt1

,Pt2
) = t1 − t2 6= 0.

In total q2+ q+1 lines pass through the point PA
0 . One is ℓA, other q+1

are unisecants to C . Therefore, the remaining q2 − 1 lines are of type EA.
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The same holds for every point of ℓA. In fact, let ℓ be a RC-line through a
point PA

i . Then by Lemma 7.2, as Gq acts transitively on ℓA, there exists
Ψ ∈ Gq such that PA

i Ψ = PA
0 and ℓΨ would be an RC-line through PA

0 ,
contradiction.

Theorem 7.13. For any q ≡ 0 (mod 3), q ≥ 9, in PG(3, q), for the twisted
cubic C of (2.2), the external lines meeting the axis of Γ (i.e. EA-lines, class
O8 = OEA) form three orbits under Gq of size q3 − q, (q2 − 1)/2, (q2 − 1)/2.
Moreover, the (q3−q)-orbit and the two (q2−1)/2-orbits can be represented in
the form {ℓ1ϕ|ϕ ∈ Gq} and {ℓjϕ|ϕ ∈ Gq}, j = 2, 3, respectively, where ℓj are

lines such that ℓ1 = PA
0 P(0, 0, 1, 1), ℓ2 = PA

0 P(1, 0, 1, 0), ℓ3 = PA
0 P(1, 0, ρ, 0),

PA
0 = P(0, 1, 0, 0), ρ is not a square.

Proof. Let OEA0
=

{

ℓ ∈ EA|PA
0 ∈ ℓ

}

. By Lemma 7.6, OEA0
G

PA
0

q = OEA0
,

so we can consider the orbits of OEA0
under the group G

PA
0

q . Let P ′ =

P(0, 0, 1, 1) and ℓ′ = P ′PA
0 . The line ℓ′ has equation x0 = 0, x2 = x3, so

ℓ′∩C = ∅. Let Oℓ′ =
{

ℓ′ϕ|ϕ ∈ G
PA
0

q

}

. We find #Oℓ′. Let ϕ1, ϕ2 ∈ G
PA
0

q , ϕ1 6=

ϕ2, Q
′ = P ′ϕ1, R

′ = P ′ϕ2. By (7.1) with d1, d2 6= 0,

Q′ = P(b31,−b1d1 + b21d1, d
2
1 + b1d

2
1, d

3
1),

R′ = P(b32,−b2d2 + b22d2, d
2
2 + b2d

2
2, d

3
2).

Obviously, ℓ′ϕ1 6= ℓ′ϕ2 if and only if PA
0 , Q′, R′ are not collinear, i.e. if and

only if the matrix D′ = [PA
0 , Q

′, R′]tr has maximum rank. Then

det1(D
′) = (d21 + b1d

2
1)d

3
2 − (d22 + b2d

2
2)d

3
1, det2(D

′) = 0

det3(D
′) = d31b

3
2 − d32b

3
1 = (d1b2 − d2b1)

3,

det4(D
′) = (d21 + b1d

2
1)b

3
2 − (d22 + b2d

2
2)b

3
1.

If d1b2 − d2b1 6= 0, then det3(D
′) 6= 0. If b2 = d2b1/d1, then det1(D

′) =
d21d

2
2(d1 − d2). Therefore, det1(D

′) = 0 if and only if d1 = d2 that implies

b1 = b2, i.e. ϕ1 = ϕ2. Therefore, #Oℓ′ = #G
PA
0

q = q(q − 1).

Now, let P ′′ = P(1, 0, 1, 0), ℓ′′ = PA
0 P ′′, P ′′′ = P(1, 0, ρ, 0), ρ not a

square in Fq, ℓ
′′′ = PA

0 P
′′′. As ℓ′′ has equation x3 = 0, x0 = x2, and ℓ′′′ has

equation x3 = 0, ρx0 = x2, no point of C belongs to ℓ′′, ℓ′′′ and ℓ′′, ℓ′′′ ∈ EA.
Moreover, ℓ′′, ℓ′′′ /∈ Oℓ′. In fact, let P = P(1, 0, s, 0), s 6= 0, ℓ = PA

0 P ; if

ℓ ∈ Oℓ′, ϕ ∈ G
PA
0

q such that PA
0 , P ′ϕ, P are collinear would exist. It means
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that the matrix D′
ϕ = [PA

0 , P ′ϕ, P ]tr should have rank 2, but as P ′ϕ =
P(b3,−bd + b2d, d2 + bd2, d3) with d 6= 0, det1(D

′
ϕ) = −sd3 6= 0.

Let Oℓ′′ =
{

ℓ′′ϕ|ϕ ∈ G
PA
0

q

}

. We find #Oℓ′′. Let ϕ1, ϕ2 ∈ G
PA
0

q , ϕ1 6= ϕ2,

Q′′ = P ′′ϕ1, R
′′ = P ′′ϕ2. By (7.1) with d1, d2 6= 0,

Q′′ = P(1,−b1d1, d
2
1, 0), R′′ = P(1,−b2d2, d

2
2, 0).

Obviously, ℓ′′ϕ1 6= ℓ′′ϕ2 if and only if PA
0 , Q

′′, R′′ are not collinear, i.e. if and
only if the matrix D′′ = [PA

0 , Q
′′, R′′]tr has maximum rank. We have

det1(D
′′) = det2(D

′′) = det3(D
′′) = 0, det4(D

′′) = (d1 + d2)(d1 − d2).

If d1 = d2, det4(D
′′) = 0 ∀b; if d1 = −d2, det4(D

′′) = 0 ∀b. It means

that #Oℓ′′ =
1
2
(q − 1). It holds ℓ′′′ /∈ Oℓ′′. In fact, if ℓ′′′ ∈ Oℓ′′, ϕ ∈ G

PA
0

q

such that PA
0 , P ′′ϕ, P ′′′ are collinear would exist. It means that the matrix

D′′
ϕ = [PA

0 , P
′′ϕ, P ′]tr should have rank 2, but as P ′′ϕ = P(1,−bd, d2, 0), we

have det4(D
′′
ϕ) = d2 − ρ 6= 0 as ρ is not a square.

Let Oℓ′′′ =
{

ℓ′′′ϕ|ϕ ∈ G
PA
0

q

}

. We find #Oℓ′′′ . Let ϕ1, ϕ2 ∈ G
PA
0

q , ϕ1 6= ϕ2,

Q′′′ = P ′′′ϕ1, R
′′′ = P ′′′ϕ2. By (7.1) with d1, d2 6= 0, we have

Q′′′ = P(1,−ρb1d1, ρd
2
1, 0), R′′′ = P(1,−ρb2d2, ρd

2
2, 0).

Obviously, ℓ′′′ϕ1 6= ℓ′′′ϕ2 if and only if PA
0 , Q

′′′, R′′′ are not collinear, i.e. if
and only if the matrix D′′′ = [PA

0 , Q
′′′, R′′′]tr has maximum rank. We have

det1(D
′′′) = det2(D

′′′) = det3(D
′′′) = 0, det4(D

′′′) = ρ(d1 + d2)(d1 − d2).

If d1 = d2, det4(D
′′′) = 0 ∀b; if d1 = −d2, det4(D

′′′) = 0 ∀b. It means
that #Oℓ′′′ =

1
2
(q − 1). As Oℓ′,Oℓ′′,Oℓ′′′ are pairwise disjoint and by Lemma

7.12 #OEA0
= q(q − 1), {Oℓ′,Oℓ′′,Oℓ′′′} is a partition of OEA0

. Then, by
Lemma 7.11, {Oℓ′Gq,Oℓ′′Gq, Oℓ′′′Gq} is a partition of OEA. By Lemma 7.9,
#Oℓ′Gq = q(q − 1)(q + 1), #Oℓ′′Gq = #Oℓ′′′Gq =

1
2
(q − 1)(q + 1).

8 Open problems for EnΓ-lines and their so-

lutions for 5 ≤ q ≤ 37 and q = 64

We introduce sets Q
(ξ)
• of q values with the natural subscripts “od” and “ev”.

Q
(0)
od = {9, 27}, Q

(1)
od = {7, 13, 19, 25, 31, 37}, Q

(−1)
od = {5, 11, 17, 23, 29};
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Qev = {8, 16, 32, 64}.

Theorem 8.1 has been proved by an exhaustive computer search using the
symbol calculation system Magma [4].

Theorem 8.1. For q ∈ Q
(1)
od ∪ Q

(−1)
od ∪ Q

(0)
od and q ∈ Qev, all the results of

Sections 3–7 are confirmed by computer search. In addition, the following
holds, see Notation 2.1.

(i) Let q ≡ ξ (mod 3), ξ ∈ {1,−1, 0}. Let q ∈ Q
(1)
od ∪ Q

(−1)
od ∪ Q

(0)
od be odd.

Then we have the following:

The total number of EnΓ-line orbits is L
(ξ)od
EnΓΣ = 2q − 3 + ξ.

The total number of line orbits in PG(3, q) is L
(ξ)
Σ = 2q + 7 + ξ.

Under Gq, for EnΓ-lines with ξ ∈ {1,−1, 0}, there are
(2q − 6− 4.5ξ2 − 0.5ξ)/3 orbits of length (q3 − q)/4,
q − 1 orbits of length (q3 − q)/2,
(q − ξ)/3 orbits of length q3 − q.

In addition, for q ∈ Q
(1)
od , there are

1 orbit of length (q3 − q)/12,
2 orbits of length (q3 − q)/3.

(ii) Let q ≡ ξ (mod 3), ξ ∈ {1,−1}. Let q ∈ Qev be even. Then we have the
following:

The total number of EnΓ-line orbits is L
(ξ)ev
EnΓΣ = 2q − 2 + ξ.

The total number of line orbits in PG(3, q) is L
(ξ)
Σ = 2q + 7 + ξ.

Under Gq, for EnΓ-lines, there are

2 + ξ orbits of length (q3 − q)/(2 + ξ);

2q − 4 orbits of length (q3 − q)/2.

Conjecture 8.2. The results of Theorem 8.1 hold for all q ≥ 5 with the
corresponding parity and ξ value.

Open problems. Find the number, sizes and the structures of orbits of the
class O6 = OEnΓ (i.e. external lines, other than chord, not in a Γ-plane).
Prove the corresponding results of Theorem 8.1 for all q ≥ 5.
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