Twisted cubic and orbits of lines in $\mathrm{PG}(3, q)$

Alexander A. Davydov ${ }^{1}$
Institute for Information Transmission Problems (Kharkevich
institute)
Russian Academy of Sciences
Moscow, 127051, Russian Federation
E-mail address: adav@iitp.ru
Stefano Marcugini ${ }^{2}$, Fernanda Pambianco ${ }^{3}$
Department of Mathematics and Computer Science, Perugia University, Perugia, 06123, Italy
E-mail address: \{stefano.marcugini, fernanda.pambianco\}@unipg.it

Abstract

In the projective space $\mathrm{PG}(3, q)$, we consider the orbits of lines under the stabilizer group of the twisted cubic. It is well known that the lines can be partitioned into classes every of which is a union of line orbits. All types of lines forming a unique orbit are found. For the rest of the line types (apart from one of them) it is proved that they form exactly two or three orbits; sizes and structures of these orbits are determined. Problems remaining open for one type of lines are formulated. For $5 \leq q \leq 37$ and $q=64$, they are solved.

Keywords: Twisted cubic, Projective space, Orbits of lines
Mathematics Subject Classification (2010). 51E21, 51 E 22

[^0]
1 Introduction

Let $\mathrm{PG}(N, q)$ be the N-dimensional projective space over the Galois field \mathbb{F}_{q} with q elements. An n-arc in $\operatorname{PG}(N, q)$, with $n \geq N+1 \geq 3$, is a set of n points such that no $N+1$ points belong to the same hyperplane of $\operatorname{PG}(N, q)$. An n-arc is complete if it is not contained in an $(n+1)$-arc, see [1] and the references therein. For an introduction to projective geometry over finite fields see $[13,15,16]$.

In $\operatorname{PG}(N, q), 2 \leq N \leq q-2$, a normal rational curve is any $(q+1)$ arc projectively equivalent to the $\operatorname{arc}\left\{\left(t^{N}, t^{N-1}, \ldots, t^{2}, t, 1\right): t \in \mathbb{F}_{q}\right\} \cup$ $\{(1,0, \ldots, 0)\}$. In $\operatorname{PG}(3, q)$, the normal rational curve is called a twisted cubic $[14,16]$. Twisted cubics have important connections with a number of other combinatorial objects.This prompted the twisted cubics to be widely studied, see e.g. [2,3,5,6,8-10,12,14-17,19] and the references therein. In [14], the orbits of planes, lines and points under the group of the projectivities fixing the twisted cubic are considered. Also, in [2], the structure of the pointplane incidence matrix of $\operatorname{PG}(3, q)$ using orbits under the stabilizer group of the twisted cubic is described.

In this paper, we consider the orbits of lines in $\operatorname{PG}(3, q)$ under the stabilizer group G_{q} of the twisted cubic. We use the partitions of lines into unions of orbits (called classes) under G_{q} described in [14]. All types of lines forming a unique orbit are found. For the rest of the line types (apart from one of them) it is proved that they form exactly two or three orbits; sizes and structures of these orbits are determined. Problems remaining open for one type of lines are formulated. For $5 \leq q \leq 37$ and $q=64$, they are solved.

The theoretic results hold for $q \geq 5$. For $q=2,3,4$ we describe the orbits by computer search.

The results obtained increase our knowledge on the properties of lines in $\mathrm{PG}(3, q)$. The new results can be useful for feature investigations, in particular, for considerations of the plane-line incidence matrix of $\operatorname{PG}(3, q)$, see [11].

The paper is organized as follows. Section 2 contains preliminaries. In Section 3, the main results of this paper are summarized. In Sections 4-7, orbits of lines in $\mathrm{PG}(3, q)$ under G_{q} are considered. In Section 8, the open problems are formulated and their solutions for $5 \leq q \leq 37$ and $q=64$ are considered.

2 Preliminaries on the twisted cubic in $\operatorname{PG}(3, q)$

We summarize the results on the twisted cubic of [14] useful in this paper.
Let $\mathbf{P}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ be a point of $\operatorname{PG}(3, q)$ with homogeneous coordinates $x_{i} \in \mathbb{F}_{q}$. Let $\mathbb{F}_{q}^{*}=\mathbb{F}_{q} \backslash\{0\}, \mathbb{F}_{q}^{+}=\mathbb{F}_{q} \cup\{\infty\}$. For For $t \in \mathbb{F}_{q}^{+}$, let $P(t)$ be a point such that

$$
\begin{equation*}
P(t)=\mathbf{P}\left(t^{3}, t^{2}, t, 1\right) \text { if } t \in \mathbb{F}_{q} ; \quad P(\infty)=\mathbf{P}(1,0,0,0) \tag{2.1}
\end{equation*}
$$

Let $\mathscr{C} \subset \operatorname{PG}(3, q)$ be the twisted cubic consisting of $q+1$ points P_{1}, \ldots, P_{q+1} no four of which are coplanar. We consider \mathscr{C} in the canonical form

$$
\begin{equation*}
\mathscr{C}=\left\{P_{1}, P_{2}, \ldots, P_{q+1}\right\}=\left\{P(t) \mid t \in \mathbb{F}_{q}^{+}\right\} . \tag{2.2}
\end{equation*}
$$

A chord of \mathscr{C} is a line through a pair of real points of \mathscr{C} or a pair of complex conjugate points. In the last case it is an imaginary chord. If the real points are distinct, it is a real chord; if they coincide with each other, it is a tangent.

Let $\boldsymbol{\pi}\left(c_{0}, c_{1}, c_{2}, c_{3}\right) \subset \mathrm{PG}(3, q)$, be the plane with equation

$$
\begin{equation*}
c_{0} x_{0}+c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}=0, c_{i} \in \mathbb{F}_{q} . \tag{2.3}
\end{equation*}
$$

The osculating plane in the point $P(t) \in \mathscr{C}$ is as follows:

$$
\begin{equation*}
\pi_{\mathrm{osc}}(t)=\boldsymbol{\pi}\left(1,-3 t, 3 t^{2},-t^{3}\right) \text { if } t \in \mathbb{F}_{q} ; \pi_{\mathrm{osc}}(\infty)=\boldsymbol{\pi}(0,0,0,1) \tag{2.4}
\end{equation*}
$$

The $q+1$ osculating planes form the osculating developable Γ to \mathscr{C}, that is a pencil of planes for $q \equiv 0(\bmod 3)$ or a cubic developable for $q \not \equiv 0(\bmod 3)$.

An axis of Γ is a line of $\operatorname{PG}(3, q)$ which is the intersection of a pair of real planes or complex conjugate planes of Γ. In the last case it is a generator or an imaginary axis. If the real planes are distinct it is a real axis; if they coincide with each other it is a tangent to \mathscr{C}.

For $q \not \equiv 0(\bmod 3)$, the null polarity $\mathfrak{A}[13$, Sections 2.1.5, 5.3], [14, Theorem 21.1.2] is given by

$$
\begin{equation*}
\mathbf{P}\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \mathfrak{A}=\boldsymbol{\pi}\left(x_{3},-3 x_{2}, 3 x_{1},-x_{0}\right) . \tag{2.5}
\end{equation*}
$$

Notation 2.1. In future, we consider $q \equiv \xi(\bmod 3)$ with $\xi \in\{-1,0,1\}$. Many values depend of ξ or have sense only for specific ξ. We note this by remarks or by superscripts " (ξ) ". If a value is the same for all q or a property holds for all q, or it is not relevant, or it is clear by the context, the remarks and superscripts " (ξ) " are not used. If a value is the same for $\xi=-1,1$, then one may use " $\neq 0$ ". In superscripts, instead of " \bullet ", one can write "od" for odd q or "ev" for even q. If a value is the same for odd and even q, one may omit "•".

The following notation is used.
$G_{q} \quad$ the group of projectivities in $\operatorname{PG}(3, q)$ fixing \mathscr{C};
$\mathbf{Z}_{n} \quad$ cyclic group of order n;
$\mathbf{S}_{n} \quad$ symmetric group of degree n;
$A^{t r} \quad$ the transposed matrix of A;
$\# S \quad$ the cardinality of a set S;
$\overline{A B} \quad$ the line through the points A and B;
$\triangleq \quad$ the sign "equality by definition".
Types π of planes:
Γ-plane an osculating plane of Γ;
$d_{\mathscr{C}}$-plane a plane containing exactly d distinct points of $\mathscr{C}, d=0,2,3$;
$\overline{1_{\mathscr{C}}}$-plane a plane not in Γ containing exactly 1 point of \mathscr{C};
$\mathfrak{P} \quad$ the list of possible types π of planes, $\mathfrak{P} \triangleq\left\{\Gamma, 2_{\mathscr{C}}, 3_{\mathscr{C}}, \overline{1_{\mathscr{C}}}, 0_{\mathscr{C}}\right\}$;
π-plane \quad a plane of the type $\pi \in \mathfrak{P}$;
$\mathscr{N}_{\pi} \quad$ the orbit of π-planes under $G_{q}, \pi \in \mathfrak{P}$.

Types λ of lines with respect to the twisted cubic \mathscr{C} :

RC-line a real chord of \mathscr{C};
RA-line a real axis of Γ for $\xi \neq 0$;
T-line a tangent to \mathscr{C};
IC-line an imaginary chord of \mathscr{C};
IA-line an imaginary axis of Γ for $\xi \neq 0$;
UГ a non-tangent unisecant in a Γ-plane;
Un Γ-line a unisecant not in a Γ-plane (it is always non-tangent);
EГ-line an external line in a Γ-plane (it cannot be a chord);

En Γ-line an external line, other than a chord, not in a Γ-plane;
A-line the axis of Γ for $\xi=0$
(it is the single line of intersection of all the $q+1 \Gamma$-planes);
EA-line an external line meeting the axis of Γ for $\xi=0$;
$\mathfrak{L}^{(\xi)} \quad$ the list of possible types λ of lines,
$\mathfrak{L}^{(\neq 0)} \triangleq\{\mathrm{RC}, \mathrm{RA}, \mathrm{T}, \mathrm{IC}, \mathrm{IA}, \mathrm{U} \Gamma, \mathrm{Un} \Gamma, \mathrm{E} \Gamma, \mathrm{En} \Gamma\}$ for $\xi \neq 0$,
$\mathfrak{L}^{(0)} \triangleq\{\mathrm{RC}, \mathrm{T}, \mathrm{IC}, \mathrm{U} \Gamma, \mathrm{Un} \Gamma, \mathrm{En} \Gamma, \mathrm{A}, \mathrm{EA}\}$ for $\xi=0$;
λ-line \quad a line of the type $\lambda \in \mathfrak{L}^{(\xi)}$;
$L_{\Sigma}^{(\xi)} \quad$ the total number of orbits of lines in $P G(3, q)$;
$L_{\lambda \Sigma}^{(\xi) \bullet} \quad$ the total number of orbits of λ-lines, $\lambda \in \mathfrak{L}^{(\xi)}$;
$\mathcal{O}_{\lambda} \quad$ the union (class) of all $L_{\lambda \Sigma}^{(\xi) \bullet}$ orbits of λ-lines under $G_{q}, \lambda \in \mathfrak{L}^{(\xi)}$. Types of points with respect to the twisted cubic \mathscr{C} :
\mathscr{C}-point a point of \mathscr{C};
μ_{Γ}-point a point off \mathscr{C} lying on exactly μ distinct osculating planes, $\mu_{\Gamma} \in\left\{0_{\Gamma}, 1_{\Gamma}, 3_{\Gamma}\right\}$ for $\xi \neq 0, \mu_{\Gamma} \in\left\{(q+1)_{\Gamma}\right\}$ for $\xi=0$;
T-point a point off \mathscr{C} on a tangent to \mathscr{C} for $\xi \neq 0$;
TO-point a point off \mathscr{C} on a tangent and one osculating plane for $\xi=0$;
RC-point a point off \mathscr{C} on a real chord;
IC-point a point on an imaginary chord (it is always off \mathscr{C}).
The following theorem summarizes results from [14] useful in this paper.
Theorem 2.2. [14, Chapter 21] The following properties of the twisted cubic \mathscr{C} of (2.2) hold:
(i) The group G_{q} acts triply transitively on \mathscr{C}. Also,
(a) $G_{q} \cong P G L(2, q)$ for $q \geq 5$;
$G_{4} \cong \mathbf{S}_{5} \cong P \Gamma L(2,4) \cong \mathbf{Z}_{2} P G L(2,4), \# G_{4}=2 \cdot \# P G L(2,4)=120 ;$
$G_{3} \cong \mathbf{S}_{4} \mathbf{Z}_{2}^{3}, \quad \# G_{3}=8 \cdot \# P G L(2,3)=192 ;$
$G_{2} \cong \mathbf{S}_{3} \mathbf{Z}_{2}^{3}, \quad \# G_{2}=8 \cdot \# P G L(2,2)=48$.
(b) The matrix \mathbf{M} corresponding to a projectivity of G_{q} has the general form

$$
\mathbf{M}=\left[\begin{array}{cccc}
a^{3} & a^{2} c & a c^{2} & c^{3} \\
3 a^{2} b & a^{2} d+2 a b c & b c^{2}+2 a c d & 3 c^{2} d \\
3 a b^{2} & b^{2} c+2 a b d & a d^{2}+2 b c d & 3 c d^{2} \\
b^{3} & b^{2} d & b d^{2} & d^{3}
\end{array}\right], a, b, c, d \in \mathbb{F}_{q},
$$

$$
a d-b c \neq 0
$$

(ii) Under $G_{q}, q \geq 5$, there are five orbits of planes and five orbits of points.
(a) For all q, the orbits \mathscr{N}_{i} of planes are as follows:

$$
\begin{align*}
& \mathscr{N}_{1}=\mathscr{N}_{\Gamma}=\{\Gamma \text {-planes }\}, \quad \# \mathscr{N}_{\Gamma}=q+1 ; \tag{2.7}\\
& \mathscr{N}_{2}=\mathscr{N}_{2_{\mathscr{C}}}=\left\{2_{\mathscr{C}} \text {-planes }\right\}, \# \mathscr{N}_{2_{\mathscr{C}}}=q^{2}+q ; \\
& \mathscr{N}_{3}=\mathscr{N}_{3_{\mathscr{C}}}=\{3 \mathscr{C} \text {-planes }\}, \# \mathscr{N}_{3_{\mathscr{C}}}=\left(q^{3}-q\right) / 6 ; \\
& \mathscr{N}_{4}=\mathscr{N}_{1_{\mathscr{C}}}=\left\{\overline{\left.1_{\mathscr{C}}-\text { planes }\right\},} \# \mathscr{N}_{1_{\mathscr{C}}}=\left(q^{3}-q\right) / 2\right. \\
& \mathscr{N}_{5}=\mathscr{N}_{\mathscr{C}}=\left\{0_{\mathscr{C}} \text {-planes }\right\}, \# \mathscr{N}_{0_{\mathscr{C}}}=\left(q^{3}-q\right) / 3 .
\end{align*}
$$

(b) For $q \not \equiv 0(\bmod 3)$, the orbits \mathscr{M}_{j} of points are as follows:
$\mathscr{M}_{1}=\{\mathscr{C}$-points $\}, \mathscr{M}_{2}=\{\mathrm{T}$-points $\}, \mathscr{M}_{3}=\left\{3_{\Gamma}\right.$-points $\},$,
$\mathscr{M}_{4}=\left\{1_{\Gamma}\right.$-points $\}, \mathscr{M}_{5}=\left\{0_{\Gamma}\right.$-points $\}$.
Also, if $q \equiv 1 \quad(\bmod 3)$ then $\mathscr{M}_{3} \cup \mathscr{M}_{5}=\{$ RC-points $\}, \mathscr{M}_{4}=\{$ IC-points $\}$;
if $q \equiv-1 \quad(\bmod 3)$ then $\mathscr{M}_{3} \cup \mathscr{M}_{5}=\{$ IC-points $\}, \mathscr{M}_{4}=\{$ RC-points $\}$.
(c) For $q \equiv 0(\bmod 3)$, the orbits \mathscr{M}_{j} of points are as follows:

$$
\begin{aligned}
\mathscr{M}_{1} & =\{\mathscr{C} \text {-points }\}, \mathscr{M}_{2}=\left\{(q+1)_{\Gamma}-\text { points }\right\}, \mathscr{M}_{3}=\{\text { TO-points }\} \\
\mathscr{M}_{4} & =\{\mathrm{RC} \text {-points }\}, \mathscr{M}_{5}=\{\mathrm{IC} \text {-points }\} .
\end{aligned}
$$

(iii) For $q \not \equiv 0(\bmod 3)$, the null polarity $\mathfrak{A}(2.5)$ interchanges \mathscr{C} and Γ and their corresponding chords and axes.
(iv) The lines of $\operatorname{PG}(3, q)$ can be partitioned into classes called \mathcal{O}_{i} and \mathcal{O}_{i}^{\prime}, each of which is a union of orbits under G_{q}.
(a) $q \not \equiv 0 \quad(\bmod 3), q \geq 5, \mathcal{O}_{i}^{\prime}=\mathcal{O}_{i} \mathfrak{A}, \# \mathcal{O}_{i}^{\prime}=\# \mathcal{O}_{i}, i=1, \ldots, 6$.
$\mathcal{O}_{1}=\mathcal{O}_{\mathrm{RC}}=\{\mathrm{RC}$-lines $\}, \mathcal{O}_{1}^{\prime}=\mathcal{O}_{\mathrm{RA}}=\{$ RA-lines $\}$,
$\# \mathcal{O}_{\mathrm{RC}}=\# \mathcal{O}_{\mathrm{RA}}=\left(q^{2}+q\right) / 2 ;$
$\mathcal{O}_{2}=\mathcal{O}_{2}^{\prime}=\mathcal{O}_{\mathrm{T}}=\{\mathrm{T}$-lines $\}, \# \mathcal{O}_{\mathrm{T}}=q+1 ;$

$$
\begin{aligned}
& \mathcal{O}_{3}=\mathcal{O}_{\mathrm{IC}}=\{\mathrm{IC} \text {-lines }\}, \mathcal{O}_{3}^{\prime}=\mathcal{O}_{\mathrm{IA}}=\{\text { IA-lines }\} \\
& \# \mathcal{O}_{\mathrm{IC}}=\# \mathcal{O}_{\mathrm{IA}}=\left(q^{2}-q\right) / 2 ; \\
& \mathcal{O}_{4}=\mathcal{O}_{4}^{\prime}=\mathcal{O}_{\mathrm{U} \Gamma}=\{\mathrm{U} \Gamma \text {-lines }\}, \# \mathcal{O}_{\mathrm{U} \Gamma}=q^{2}+q ; \\
& \mathcal{O}_{5}=\mathcal{O}_{\mathrm{Un} \Gamma}=\{\mathrm{Un} \Gamma \text {-lines }\}, \mathcal{O}_{5}^{\prime}=\mathcal{O}_{\mathrm{E} \Gamma}=\{\mathrm{E} \Gamma \text {-lines }\}, \\
& \# \mathcal{O}_{\mathrm{Un} \Gamma}=\# \mathcal{O}_{\mathrm{E} \Gamma}=q^{3}-q ; \\
& \mathcal{O}_{6}=\mathcal{O}_{6}^{\prime}=\mathcal{O}_{\mathrm{En} \Gamma}=\{\text { En } \Gamma \text {-lines }\}, \# \mathcal{O}_{\mathrm{En} \Gamma}=\left(q^{2}-q\right)\left(q^{2}-1\right) .
\end{aligned}
$$

For $q>4$ even, the lines in the regulus complementary to that of the tangents form an orbit of size $q+1$ contained in $\mathcal{O}_{4}=\mathcal{O}_{\mathrm{U} \mathrm{\Gamma}}$.
(b) $q \equiv 0 \quad(\bmod 3), q>3$.

Classes $\mathcal{O}_{1}, \ldots, \mathcal{O}_{6}$ are as in (2.8); $\mathcal{O}_{7}=\mathcal{O}_{\mathrm{A}}=\{$ A-line $\}, \# \mathcal{O}_{\mathrm{A}}=1$;
$\mathcal{O}_{8}=\mathcal{O}_{\mathrm{EA}}=\{$ EA-lines $\}, \# \mathcal{O}_{\mathrm{EA}}=(q+1)\left(q^{2}-1\right)$.
(v) The following properties of chords and axes hold.
(a) For all q, no two chords of \mathscr{C} meet off \mathscr{C}.

Every point off \mathscr{C} lies on exactly one chord of \mathscr{C}.
(b) Let $q \not \equiv 0(\bmod 3)$.

No two axes of Γ meet unless they lie in the same plane of Γ.
Every plane not in Γ contains exactly one axis of Γ.
(vi) For $q>2$, the unisecants of \mathscr{C} such that every plane through such a unisecant meets \mathscr{C} in at most one point other than the point of contact are, for q odd, the tangents, while for q even, the tangents and the unisecants in the complementary regulus.

3 The main results

Throughout the paper, we consider orbits of lines and planes under G_{q}.
From now on, we consider $q \geq 5$ apart from Theorem 3.2.
Theorem 3.1 summarizes the results of Sections 4-7.
Theorem 3.1. Let $q \geq 5, q \equiv \xi(\bmod 3)$. Let notations be as in Section 2 including Notation 2.1. For line orbits under G_{q} the following holds.
(i) The following classes of lines consist of a single orbit:

$$
\begin{aligned}
& \mathcal{O}_{1}=\mathcal{O}_{\mathrm{RC}}=\{\text { RC-lines }\}, \mathcal{O}_{2}=\mathcal{O}_{\mathrm{T}}=\{\mathrm{T} \text {-lines }\} \text {, and } \\
& \mathcal{O}_{3}=\mathcal{O}_{\mathrm{IC}}=\{\mathrm{IC} \text {-lines }\}, \text { for all } q ;
\end{aligned}
$$

$\mathcal{O}_{4}=\mathcal{O}_{\mathrm{U} \mathrm{\Gamma}}=\{\mathrm{U}$-lines $\}$, for odd $q ;$
$\mathcal{O}_{5}=\mathcal{O}_{\mathrm{Un} \Gamma}=\{\mathrm{Un} \mathrm{\Gamma}$-lines $\}$ and $\mathcal{O}_{5}^{\prime}=\mathcal{O}_{\mathrm{E} \Gamma}=\{\mathrm{E} \Gamma$-lines $\}$, for even $q ;$
$\mathcal{O}_{1}^{\prime}=\mathcal{O}_{\mathrm{RA}}=\{$ RA-lines $\}$ and $\mathcal{O}_{3}^{\prime}=\mathcal{O}_{\mathrm{IA}}=\{$ IA-lines $\}$, for $\xi \neq 0$;
$\mathcal{O}_{7}=\mathcal{O}_{\mathrm{A}}=\{$ A-lines $\}$, for $\xi=0$.
(ii) Let $q \geq 8$ be even. The non-tangent unisecants in a Γ-plane (i.e. UГlines, class $\mathcal{O}_{4}=\mathcal{O}_{\mathrm{U} \mathrm{\Gamma}}$) form two orbits of size $q+1$ and $q^{2}-1$. The orbit of size $q+1$ consists of the lines in the regulus complementary to that of the tangents. Also, the $(q+1)$-orbit and $\left(q^{2}-1\right)$-orbit can be represented in the form $\left\{\ell_{1} \varphi \mid \varphi \in G_{q}\right\}$ and $\left\{\ell_{2} \varphi \mid \varphi \in G_{q}\right\}$, respectively, where ℓ_{j} is a line such that $\ell_{1}=\overline{P_{0} \mathbf{P}(0,1,0,0)}, \ell_{2}=\overline{P_{0} \mathbf{P}(0,1,1,0)}$, $P_{0}=\mathbf{P}(0,0,0,1) \in \mathscr{C}$.
(iii) Let $q \geq 5$ be odd. The non-tangent unisecants not in a Γ-plane (i.e. UnГ-lines, class $\left.\mathcal{O}_{5}=\mathcal{O}_{\mathrm{Un} \Gamma}\right)$ form two orbits of size $\frac{1}{2}\left(q^{3}-q\right)$. These orbits can be represented in the form $\left\{\ell_{j} \varphi \mid \varphi \in G_{q}\right\}, j=1,2$, where ℓ_{j} is a line such that $\ell_{1}=\overline{P_{0} \mathbf{P}(1,0,1,0)}, \ell_{2}=\overline{P_{0} \mathbf{P}(1,0, \rho, 0)}, P_{0}=$ $\mathbf{P}(0,0,0,1) \in \mathscr{C}, \rho$ is not a square.
(iv) Let $q \geq 5$ be odd. Let $q \not \equiv 0(\bmod 3)$. The external lines in a Γ-plane (class $\mathcal{O}_{5}^{\prime}=\mathcal{O}_{\text {ЕГ }}$) form two orbits of size $\left(q^{3}-q\right) / 2$. These orbits can be represented in the form $\left\{\ell_{j} \varphi \mid \varphi \in G_{q}\right\}, j=1,2$, where $\ell_{j}=\mathfrak{p}_{0} \cap \mathfrak{p}_{j}$ is the intersection line of planes \mathfrak{p}_{0} and \mathfrak{p}_{j} such that $\mathfrak{p}_{0}=\boldsymbol{\pi}(1,0,0,0)=$ $\pi_{\text {osc }}(0), \mathfrak{p}_{1}=\boldsymbol{\pi}(0,-3,0,-1), \mathfrak{p}_{2}=\boldsymbol{\pi}(0,-3 \rho, 0,-1), \rho$ is not a square, $c f$. (2.3), (2.4).
(v) Let $q \equiv 0(\bmod 3), q \geq 9$. The external lines meeting the axis of Γ (i.e. EA-lines, class $\mathcal{O}_{8}=\mathcal{O}_{\mathrm{EA}}$) form three orbits of size $q^{3}-q$, $\left(q^{2}-1\right) / 2,\left(q^{2}-1\right) / 2$. The $\left(q^{3}-q\right)$-orbit and the two $\left(q^{2}-1\right) / 2$ orbits can be represented in the form $\left\{\ell_{1} \varphi \mid \varphi \in G_{q}\right\}$ and $\left\{\ell_{j} \varphi \mid \varphi \in G_{q}\right\}$, $j=2,3$, respectively, where ℓ_{j} are lines such that $\ell_{1}=\overline{P_{0}^{\mathrm{A}} \mathbf{P}(0,0,1,1)}$, $\ell_{2}=\overline{P_{0}^{\mathrm{A}} \mathbf{P}(1,0,1,0)}, \ell_{3}=\overline{P_{0}^{\mathrm{A}} \mathbf{P}(1,0, \rho, 0)}, P_{0}^{\mathrm{A}}=\mathbf{P}(0,1,0,0), \rho$ is not a square.

Theorem 3.2 is obtained by an exhaustive computer search using the symbol calculation system Magma [4].

Theorem 3.2. Let notations be as in Section 2 including Notation 2.1. For line orbits under G_{q} the following holds.
(i) Let $q=2$. The group $G_{2} \cong \mathbf{S}_{3} \mathbf{Z}_{2}^{3}$ contains 8 subgroups isomorphic to $P G L(2,2)$ divided into two conjugacy classes. For one of these subgroups, the matrices corresponding to the projectivities of the subgroup assume the form described by (2.6). For this subgroup (and only for it) the line orbits under it are the same as in Theorem 3.1 for $q \equiv-1$ $(\bmod 3)$.
(ii) Let $q=3$. The group $G_{3} \cong \mathbf{S}_{4} \mathbf{Z}_{2}^{3}$ contains 24 subgroups isomorphic to $P G L(2,3)$ divided into four conjugacy classes. For one of these subgroups, the matrices corresponding to the projectivities of the subgroup assume the form described by (2.6). For this subgroup (and only for it) the line orbits under it are the same as in Theorem 3.1 for $q \equiv 0$ $(\bmod 3)$.
(iii) Let $q=4$. The group $G_{4} \cong \mathbf{S}_{5} \cong P \Gamma L(2,4)$ contains one subgroup isomorphic to $P G L(2,4)$. The matrices corresponding to the projectivities of this subgroup assume the form described by (2.6) and for this subgroup the line orbits under it are the same as in Theorem 3.1 for $q \equiv 1(\bmod 3)$.

4 The null polarity \mathfrak{A} and orbits under G_{q} of lines in $\operatorname{PG}(3, q)$

Lemma 4.1. Let \mathbf{M} be the general form of the matrix corresponding to a projectivity of G_{q} given by (2.6). Then its inverse matrix \mathbf{M}^{-1} has the form

$$
\begin{align*}
& \mathbf{M}^{-1}=\left[\begin{array}{cccc}
d^{3} A^{-1} & c d^{2} A^{-1} & c^{2} d A^{-1} & c^{3} A^{-1} \\
3 b d^{2} A^{-1} & d(a d+2 b c) A^{-1} & c(2 a d+b c) A^{-1} & 3 a c^{2} B^{-1} \\
3 b^{2} d B^{-1} & b(2 a d+b c) B^{-1} & a(a d+2 b c) B^{-1} & 3 a^{2} c A^{-1} \\
b^{3} A^{-1} & a b^{2} A^{-1} & a^{2} b A^{-1} & a^{3} A^{-1}
\end{array}\right], \tag{4.1}\\
& A=a^{3} d^{3}-b^{3} c^{3}+3 a b^{2} c^{2} d-3 a^{2} b c d^{2}, B=\left(a^{2} d^{2}-2 a b c d+b^{2} c^{2}\right)(a d-b c) .
\end{align*}
$$

Proof. The assertion is obtained with the help of the system of symbolic computation Maple [18]. Note that by (2.6), we have $a d-b c \neq 0$.

Lemma 4.2. Let $q \not \equiv 0(\bmod 3)$. Let \mathfrak{A} be the null polarity [14, Theorem 21.1.2] given by (2.5). Let $P=\mathbf{P}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ be a point of $\mathrm{PG}(3, q), P \mathfrak{A}$
be its polar plane, and Ψ be a projectivity belonging to G_{q}. Then

$$
\begin{equation*}
(P \mathfrak{A}) \Psi=(P \Psi) \mathfrak{A} . \tag{4.2}
\end{equation*}
$$

Proof. Let " \times " note the matrix multiplication. Using the matrices \mathbf{M} and \mathbf{M}^{-1} of (2.6) and (4.1), respectively, we define x_{i}^{\prime} and $\overline{c_{i}}$ as follows:
$\left[x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right]=\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \times \mathbf{M},\left[\overline{c_{0}}, \overline{c_{1}}, \overline{c_{2}}, \overline{c_{3}}\right]^{t r}=\mathbf{M}^{-1} \times\left[c_{0}, c_{1}, c_{2}, c_{3}\right]^{t r}$. Then it is well known (see e.g. [7, Chapter 4, Note 23]) that:

$$
\boldsymbol{\pi}\left(c_{0}, c_{1}, c_{2}, c_{3}\right) \Psi=\boldsymbol{\pi}\left(\overline{c_{0}}, \overline{c_{1}}, \overline{c_{2}}, \overline{c_{3}}\right) .
$$

By above and by (2.5), (2.6), (4.1), we have $P \Psi=\mathbf{P}\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$;

$$
\begin{aligned}
& (P \Psi) \mathfrak{A}=\boldsymbol{\pi}\left(x_{3}^{\prime},-3 x_{2}^{\prime}, 3 x_{1}^{\prime},-x_{0}^{\prime}\right) ; \quad P \mathfrak{A}=\boldsymbol{\pi}\left(x_{3},-3 x_{2}, 3 x_{1},-x_{0}\right) ; \\
& (P \mathfrak{A}) \Psi=\boldsymbol{\pi}\left(v_{0}, v_{1}, v_{2}, v_{3}\right),\left[v_{0}, v_{1}, v_{2}, v_{3}\right]^{t r}=\mathbf{M}^{-1} \times\left[x_{3},-3 x_{2}, 3 x_{1},-x_{0}\right]^{t r} .
\end{aligned}
$$

By direct symbolic computation using the system Maple, we verified that

$$
\mathbf{M}^{-1} \times\left[x_{3},-3 x_{2}, 3 x_{1},-x_{0}\right]^{t r}=\left[x_{3}^{\prime},-3 x_{2}^{\prime}, 3 x_{1}^{\prime},-x_{0}^{\prime}\right]^{t r} .
$$

Theorem 4.3. Let $q \not \equiv 0(\bmod 3)$. Let \mathscr{L} be an orbit of lines under G_{q}. Then $\mathscr{L} \mathfrak{A}$ also is an orbit of lines under G_{q}.

Proof. We take the line ℓ_{1} through the points P_{1} and P_{2} of $\operatorname{PG}(3, q)$ and a projectivity $\Psi \in G_{q}$. Let ℓ_{2} be the line through $Q_{1}=P_{1} \Psi$ and $Q_{2}=P_{2} \Psi$. Then ℓ_{1} and ℓ_{2} belong to the same orbit and $\ell_{2}=\ell_{1} \Psi$.

We show that $\ell_{2} \mathfrak{A}=\left(\ell_{1} \mathfrak{A}\right) \Psi$. Let $\mathfrak{p}_{i}=P_{i} \mathfrak{A}, \mathfrak{p}_{i}^{\prime}=Q_{i} \mathfrak{A}, i=1,2$. By (4.2),

$$
\begin{aligned}
& \mathfrak{p}_{1}^{\prime}=Q_{1} \mathfrak{A}=\left(P_{1} \Psi\right) \mathfrak{A}=\left(P_{1} \mathfrak{A}\right) \Psi=\mathfrak{p}_{1} \Psi, \\
& \mathfrak{p}_{2}^{\prime}=Q_{2} \mathfrak{A}=\left(P_{2} \Psi\right) \mathfrak{A}=\left(P_{2} \mathfrak{A}\right) \Psi=\mathfrak{p}_{2} \Psi .
\end{aligned}
$$

So, we have $\ell_{2} \mathfrak{A}=\mathfrak{p}_{1}^{\prime} \cap \mathfrak{p}_{2}^{\prime}=\mathfrak{p}_{1} \Psi \cap \mathfrak{p}_{2} \Psi=\left(\mathfrak{p}_{1} \cap \mathfrak{p}_{2}\right) \Psi=\left(\ell_{1} \mathfrak{A}\right) \Psi$.

5 Orbits under G_{q} of chords of the cubic \mathscr{C} and axes of the osculating developable Γ (orbits of RC-, T-, IC-, RA-, and IA-lines)

Theorem 5.1. For any $q \geq 5$, the real chords (i.e. RC-lines, class $\mathcal{O}_{1}=$ $\left.\mathcal{O}_{\mathrm{RC}}\right)$ of the twisted cubic \mathscr{C} (2.2) form an orbit under G_{q}.

Proof. We consider real chords $\mathcal{R C}_{1}=\overline{P\left(t_{1}\right) P\left(t_{2}\right)}$ and $\mathcal{R C}_{2}=\overline{P\left(t_{3}\right) P\left(t_{4}\right)}$ through the real points of \mathscr{C}, respectively, $P\left(t_{1}\right), P\left(t_{2}\right)$ and $P\left(t_{3}\right), P\left(t_{4}\right)$ such that $t_{l} \neq t_{2}, t_{3} \neq t_{4},\left\{t_{1}, t_{2}\right\} \neq\left\{t_{3}, t_{4}\right\}$. The group G_{q} acts triply transitively on \mathscr{C}, see Theorem 2.2(i). So, there is a projectivity $\Psi \in G_{q}$ such that $\left\{P\left(t_{1}\right), P\left(t_{2}\right)\right\} \Psi=\left\{P\left(t_{3}\right), P\left(t_{4}\right)\right\}$. This projectivity maps also $\mathcal{R} \mathcal{C}_{1}$ to $\mathcal{R} \mathcal{C}_{2}$, i.e. $\mathcal{R \mathcal { C } _ { 1 }} \Psi=\mathcal{R C}_{2}$. So, the real chords form an orbit under G_{q}.

Corollary 5.2. Let $q \not \equiv 0(\bmod 3)$. In $\mathrm{PG}(3, q)$, for the osculating developable Γ of the twisted cubic \mathscr{C} (2.2), the real axes (i.e. RA-lines, class $\left.\mathcal{O}_{1}^{\prime}=\mathcal{O}_{\mathrm{RA}}\right)$ form an orbit under G_{q}.

Proof. The assertion follows from Theorems 2.2(iv)(a), 4.3, and 5.1.
Theorem 5.3. For any $q \geq 5$, the tangents (i.e. T-lines, class $\mathcal{O}_{2}=\mathcal{O}_{\mathrm{T}}$) to the twisted cubic \mathscr{C} (2.2) form an orbit under G_{q}. Moreover, the group G_{q} acts triply transitively on this orbit.

Proof. We consider two tangents $\mathcal{T}_{t_{1}}=\overline{P\left(t_{1}\right) P\left(t_{1}\right)}$ and $\mathcal{T}_{t_{2}}=\overline{P\left(t_{2}\right) P\left(t_{2}\right)}$ through the real points $P\left(t_{1}\right), P\left(t_{1}\right)$ and $P\left(t_{2}\right), P\left(t_{2}\right)$ such that $t_{l} \neq t_{2}$. As the points of \mathscr{C} form an orbit under G_{q}, there is a projectivity $\Psi \in G_{q}$ such that $P\left(t_{1}\right) \Psi=P\left(t_{2}\right)$. This projectivity maps also $\mathcal{T}_{t_{1}}$ to $\mathcal{T}_{t_{2}}$, i.e. $\mathcal{T}_{t_{1}} \Psi=\mathcal{T}_{t_{2}}$. Thus, the tangents form an orbit under G_{q}. On this orbit, G_{q} acts triply transitively since G_{q} acts triply transitively on \mathscr{C}.

Theorem 5.4. For any $q \geq 5$, in $\mathrm{PG}(3, q)$, the imaginary chords (i.e. IClines, class $\mathcal{O}_{3}=\mathcal{O}_{\mathrm{IC}}$) of the twisted cubic \mathscr{C} (2.2) form an orbit under G_{q}.

Proof. Let $q \equiv \xi(\bmod 3)$. By Theorem $2.2(\mathrm{ii})(\mathrm{b})(\mathrm{c})$, for $\xi=1($ resp. $\xi=0)$, points on imaginary chords form the orbit \mathscr{M}_{4} (resp. \mathscr{M}_{5}). If $\xi=-1$, points on IC-lines are divided into two orbits $\mathscr{M}_{3}=\{$ points on three osculating planes $\}$ and $\mathscr{M}_{5}=$ \{points on no osculating plane $\}$. As in $\mathrm{PG}(3, q)$ a plane and a line always meet, for $\xi=-1$ every imaginary chord contains a point belonging to an osculating plane and therefore to \mathscr{M}_{3}.

Now, for any q, suppose that there exist at least two orbits $\overline{\mathcal{O}}_{1}$ and $\overline{\mathcal{O}}_{2}$ of imaginary chords. Consider IC-lines $\ell_{1} \in \overline{\mathcal{O}}_{1}$ and $\ell_{2} \in \overline{\mathcal{O}}_{2}$. By Theorem $2.2(\mathrm{v})(\mathrm{a})$, no two chords of \mathscr{C} meet off \mathscr{C}. Thus, $\ell_{1} \cap \ell_{2}=\emptyset$ and there exist at least two points $P_{1} \in \ell_{1}$ and $P_{2} \in \ell_{2}$ belonging to the same orbit; it is \mathscr{M}_{4}, \mathscr{M}_{5}, and \mathscr{M}_{3} for $\xi=1,0$, and -1 , respectively. So, there is $\varphi \in G_{q}$ such that $P_{1} \varphi=P_{2}$. A projectivity maps a line to a line; as all points on IC-lines are placed in "own" orbits (one or two) that do not contain points of other types,
$\ell_{1} \varphi$ is an IC-line. Moreover, by Theorem $2.2(\mathrm{v})(\mathrm{a})$, every point off \mathscr{C} lies on exactly one chord; thus, $\ell_{1} \varphi$ is the only imaginary chord containing P_{2}, i.e. $\ell_{1} \varphi=\ell_{2}$. So, $\overline{\mathcal{O}}_{1}=\overline{\mathcal{O}}_{2}$.

Corollary 5.5. Let $q \not \equiv 0(\bmod 3)$. In $\mathrm{PG}(3, q)$, for the osculating developable Γ of the twisted cubic $\mathscr{C}(2.2)$, the imaginary axes (class $\left.\mathcal{O}_{3}^{\prime}=\mathcal{O}_{\mathrm{IA}}\right)$ form an orbit under G_{q}.
Proof. The assertion follows from Theorems 2.2(iv)(a), 4.3, and 5.4.

6 Orbits under G_{q} of non-tangent unisecants and external lines with respect to the cubic \mathscr{C} (orbits of UГ-, UnГ-, and $\mathrm{E} \Gamma$-lines)

Notation 6.1. In addition to Notation 2.1, the following notation is used.
$P_{t} \quad$ the point $P(t)$ of \mathscr{C} with $t \in \mathbb{F}_{q}^{+}$, cf. (2.1), (2.2);
$\mathcal{T}_{t} \quad$ the tangent line to \mathscr{C} at the point \mathcal{P}_{t};
$G_{q}^{P_{t}} \quad$ the subgroup of G_{q} fixing P_{t};
$\mathbb{O}_{\lambda_{i}}$ the set of lines from \mathcal{O}_{λ} through P_{i}, i.e. $\mathbb{O}_{\lambda_{i}} \triangleq\left\{\ell \in \mathcal{O}_{\lambda} \mid P_{i} \in \ell\right\}$.
Lemma 6.2. The tangent \mathcal{T}_{t} to \mathscr{C} at the point P_{t} has the following equation:

$$
\begin{aligned}
& \mathcal{T}_{\infty} \text { has equation }\left\{\begin{array} { l }
{ x _ { 2 } = 0 } \\
{ x _ { 3 } = 0 }
\end{array} ; \quad \mathcal { T } _ { 1 } \text { has equation } \left\{\begin{array}{l}
x_{0}=x_{1}+x_{2}-x_{3} \\
x_{0}=3 x_{2}-2 x_{3}
\end{array}\right.\right. \\
& \mathcal{T}_{t}, t \in \mathbb{F}_{q}, t \neq 1, \text { has equation }\left\{\begin{array}{l}
x_{0}=t x_{1}+t^{2} x_{2}-t^{3} x_{3} \\
x_{1}=t x_{0}+\left(2 t-3 t^{3}\right) x_{2}+\left(2 t^{4}-t^{2}\right) x_{3}
\end{array} .\right.
\end{aligned}
$$

Proof. The point $P_{t}=\mathbf{P}\left(t^{3}, t^{2}, t, 1\right), t \in \mathbb{F}_{q}$, can be considered as an affine point with respect to the infinite plane $x_{3}=0$. Then the slope of the tangent line to \mathscr{C} at P_{t} is obtained by deriving the parametric equation of \mathscr{C} and is $\left(3 t^{2}, 2 t, 1\right)$. It means that \mathcal{T}_{t} contains the infinite point $Q_{t}=\mathbf{P}\left(3 t^{2}, 2 t, 1,0\right)$. The planes \mathfrak{p}_{1} of equation $x_{0}=t x_{1}+t^{2} x_{2}-t^{3} x_{3}$ and \mathfrak{p}_{2} of equation $x_{1}=$ $t x_{0}+\left(2 t-3 t^{3}\right) x_{2}+\left(2 t^{4}-t^{2}\right) x_{3}$ contain both the points P_{t} and Q_{t}.

However, if $t=1, \mathfrak{p}_{1}=\mathfrak{p}_{2}$, so we consider \mathfrak{p}_{3} of equation $x_{0}=3 x_{2}-2 x_{3}$ as second plane containing both P_{t} and Q_{t}. In particular \mathcal{T}_{0} has equation $x_{0}=0, x_{1}=0$.

Now consider the projectivity Ψ of equation $x_{0}^{\prime}=x_{3}, x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=$ $x_{1}, x_{3}^{\prime}=x_{0}$. Then $P_{0} \Psi=P_{\infty}, P_{\infty} \Psi=P_{0}$, and $P_{t} \Psi=P_{1 / t}$ if $t \neq 0$. It means that $\Psi \in G_{q}$ and $\mathcal{T}_{\infty}=\mathcal{T}_{0} \Psi$ has equation $x_{2}=0, x_{3}=0$.

Lemma 6.3. The general form of the matrix $\mathbf{M}^{P_{0}}$ corresponding to a projectivity of $G_{q}^{P_{0}}$ is as follows:

$$
\mathbf{M}^{P_{0}}=\left[\begin{array}{cccc}
1 & c & c^{2} & c^{3} \tag{6.1}\\
0 & d & 2 c d & 3 c^{2} d \\
0 & 0 & d^{2} & 3 c d^{2} \\
0 & 0 & 0 & d^{3}
\end{array}\right], c \in \mathbb{F}_{q}, d \in \mathbb{F}_{q}^{*}
$$

Proof. Let M of (2.6) correspond to a projectivity $\Psi \in G_{q}$. We have $[0,0,0,1] \times \mathbf{M}=\left[b^{3}, b^{2} d, b d^{2}, d^{3}\right]$. Then $\Psi \in G_{q}^{P_{0}}$ if and only if $b=0, d \neq 0$. Also, we should put $a \neq 0$, to provide $a d-b c \neq 0$, see (2.6). One may choose $a=1$, see (6.1), as we consider points in homogeneous coordinates.

Lemma 6.4. $G_{q}^{P_{i}}$ and $G_{q}^{P_{j}}$ are conjugate subgroups of $G_{q}, i, j \in \mathbb{F}_{q}^{+}$.
Proof. As G_{q} acts transitively on \mathscr{C}, there exists $\Psi \in G_{q}$ such that $P_{i} \Psi=P_{j}$. Then $\Psi^{-1} G_{q}^{P_{i}} \Psi=G_{q}^{P_{j}}$. In fact, let $\varphi \in G_{q}^{P_{i}}$. Then $P_{j} \Psi^{-1} \varphi \Psi=P_{i} \varphi \Psi=$ $P_{i} \Psi=P_{j}$. On the other hand, let $\gamma \in G_{q}^{P_{j}}$. Then $P_{i} \Psi \gamma \Psi^{-1}=P_{j} \gamma \Psi^{-1}=$ $P_{j} \Psi^{-1}=P_{i}$. It means that $\Psi \gamma \Psi^{-1} \in G_{q}^{P_{i}}$, i.e. $\gamma \in \Psi^{-1} G_{q}^{P_{i}} \Psi$.
Corollary 6.5. For all $t \in \mathbb{F}_{q}^{+}$, we have $\# G_{q}^{P_{t}}=q(q-1)$.
Proof. By (6.1), $\# G_{q}^{P_{0}}=q(q-1)$. By Lemma 6.4, there exists $\Psi \in G_{q}$ such that $\Psi^{-1} G_{q}^{P_{0}} \Psi=G_{q}^{P_{t}}, t \in \mathbb{F}_{q}^{+}$. Then $G_{q}^{P_{0}} \Psi=\Psi G_{q}^{P_{t}}$. As a finite group and its cosets have the same cardinality, $\# G_{q}^{P_{0}}=\# G_{q}^{P_{0}} \Psi=\# \Psi G_{q}^{P_{t}}=\# G_{q}^{P_{t}}$.
Lemma 6.6. Let $\lambda \in\{\mathrm{RC}, \mathrm{T}, \mathrm{U} \Gamma, \mathrm{Un} \Gamma\}$. Then $\mathbb{O}_{\lambda_{i}} G_{q}^{P_{i}}=\mathbb{O}_{\lambda_{i}}$.
Proof. Let $\ell \in \mathbb{O}_{\lambda_{i}}, \varphi \in G_{q}^{P_{i}}$. As $P_{i} \in \ell, P_{i} \varphi=P_{i} \in \ell \varphi$. For $\lambda \in\{\mathrm{RC}, \mathrm{T}, \mathrm{U} \Gamma$, Un $\Gamma\}$, ℓ of type λ implies $\ell \varphi$ of type λ. Therefore, $\ell \varphi \in \mathbb{O}_{\lambda_{i}}$. On the other hand, if I is the identity element of $G_{q}^{P_{i}}, \mathbb{O}_{\lambda_{i}} G_{q}^{P_{i}} \supseteq \mathbb{O}_{\lambda_{i}} I=\mathbb{O}_{\lambda_{i}}$.

Lemma 6.7. Let ℓ be a line such that $P_{i} \in \ell$. Let $\mathscr{O}_{\ell}=\left\{\ell \varphi \mid \varphi \in G_{q}^{P_{i}}\right\}$, $\Psi_{1}, \Psi_{2} \in G_{q}$. If $P_{i} \Psi_{1}=P_{i} \Psi_{2}=P_{j}$ then $\mathscr{O}_{\ell} \Psi_{1}=\mathscr{O}_{\ell} \Psi_{2}$.
Proof. As $P_{i} \Psi_{1} \Psi_{2}^{-1}=P_{j} \Psi_{2}^{-1}=P_{i}$, we have $\Psi_{1} \Psi_{2}^{-1} \in G_{q}^{P_{i}}$. Let $\bar{\ell} \in \mathscr{O}_{\ell} \Psi_{1}$. Then $\bar{\ell}=\ell \varphi \Psi_{1}, \varphi \in G_{q}^{P_{i}}$. This implies $\bar{\ell} \Psi_{2}^{-1}=\ell \varphi \Psi_{1} \Psi_{2}^{-1} \in \mathscr{O}_{\ell}$, whence $\bar{\ell} \in \mathscr{O}_{\ell} \Psi_{2}$. The proof of the other inclusion is analogous.

Lemma 6.8. Let $\lambda \in\{\mathrm{U} \Gamma, \mathrm{Un} \Gamma\}, \ell_{1}, \ell_{2}, \in \mathbb{O}_{\lambda_{i}}, \mathscr{O}_{\ell_{1}}=\left\{\ell_{1} \varphi \mid \varphi \in G_{q}^{P_{i}}\right\}, \mathscr{O}_{\ell_{2}}=$ $\left\{\ell_{2} \varphi \mid \varphi \in G_{q}^{P_{i}}\right\}$. If $\mathscr{O}_{\ell_{1}} \cap \mathscr{O}_{\ell_{2}}=\emptyset$ then $\mathscr{O}_{\ell_{1}} G_{q} \cap \mathscr{O}_{\ell_{2}} G_{q}=\emptyset$.

Proof. Suppose $\bar{\ell} \in \mathscr{O}_{\ell_{1}} G_{q} \cap \mathscr{O}_{\ell_{2}} G_{q}$. Then $\bar{\ell}$ is a line of the same type λ as ℓ_{1} and ℓ_{2}, i.e. it is a unisecant of \mathscr{C}, so there exists P_{j} such that $P_{j} \in \bar{\ell}$. As $\bar{\ell} \in \mathscr{O}_{\ell_{1}} G_{q}, \bar{\ell}=\ell_{1} \varphi_{1} \Psi_{1}, \varphi_{1} \in G_{q}^{P_{i}}, \Psi_{1} \in G_{q}$. The point P_{i} belongs to the line $\ell^{\prime}=\ell_{1} \varphi_{1}$. As $P_{j} \in \bar{\ell}=\ell^{\prime} \Psi_{1}$ and $\ell_{1}, \ell^{\prime}, \bar{\ell}$ are unisecants and $\Psi_{1} \in G_{q}$, $P_{i} \Psi_{1}$ is the only point of $\bar{\ell}$ belonging to \mathscr{C}, i.e. $P_{i} \Psi_{1}=P_{j}$. Analogously, $\bar{\ell} \in \mathscr{O}_{\ell_{2}} G_{q}$ implies $\bar{\ell}=\ell_{2} \varphi_{2} \Psi_{2}, \varphi_{2} \in G_{q}^{P_{i}}, P_{i} \Psi_{2}=P_{j}$. Then $P_{i} \Psi_{1} \Psi_{2}^{-1}=$ $P_{j} \Psi_{2}^{-1}=P_{i}$, that implies $\Psi_{1} \Psi_{2}^{-1} \in G_{q}^{P_{i}}$. Finally, $\ell_{1} \varphi_{1} \Psi_{1}=\ell_{2} \varphi_{2} \Psi_{2}$ implies $\ell_{1} \varphi_{1} \Psi_{1} \Psi_{2}^{-1} \varphi_{2}^{-1}=\ell_{2}$, whence $\ell_{2} \in \mathscr{O}_{\ell_{1}}$.

Lemma 6.9. Let $\lambda \in\{\mathrm{T}, \mathrm{U} \Gamma, \mathrm{Un} \Gamma\}, \ell \in \mathbb{O}_{\lambda}, \mathscr{O}_{\ell}=\left\{\ell \varphi \mid \varphi \in G_{q}^{P_{i}}\right\}$. Then $\# \mathscr{O}_{\ell} G_{q}=(q+1) \cdot \# \mathscr{O}_{\ell}$.

Proof. Let $G_{i}^{j}=\left\{\varphi \in G_{q} \mid P_{i} \varphi=P_{j}\right\}$. The sets $G_{i}^{j}, j \in \mathbb{F}_{q}^{+}$form a partition of G_{q}. In fact, let $\varphi \in G_{q}$. As G_{q} is the stabilizer group of $\mathscr{C}, P_{i} \varphi=P_{\bar{j}} \in \mathscr{C}$, so $\varphi \in G_{i}^{\bar{j}}$. On the other hand, if $\varphi \in G_{i}^{j} \cap G_{i}^{k}$, then $P_{j}=P_{i} \varphi=P_{k}$, so $j=k$. If $\Psi \in G_{i}^{j}$, then $\mathscr{O}_{\ell} \Psi=\mathscr{O}_{\ell} G_{i}^{j}$. In fact, by Lemma 6.7, if $\Psi^{\prime} \in G_{i}^{j}$ then $\mathscr{O}_{\ell} \Psi^{\prime}=\mathscr{O}_{\ell} \Psi$. Finally, consider $\Psi_{j} \in G_{i}^{j}, j \in \mathbb{F}_{q}^{+}$. Then $\mathscr{O}_{\ell} G_{q}=$ $\bigcup_{j \in \mathbb{F}_{q}^{+}} \mathscr{O}_{\ell} G_{i}^{j}=\bigcup_{j \in \mathbb{F}_{q}^{+}} \mathscr{O}_{\ell} \Psi_{j}$. The sets $\mathscr{O}_{\ell} \Psi_{j}, j \in \mathbb{F}_{q}^{+}$, are disjoint. In fact, a line $\ell^{\prime} \in \mathscr{O}_{\ell} \Psi_{m} \cap \mathscr{O}_{\ell} \Psi_{n}, m \neq n$, would be a line of type λ, i.e. a unisecant of \mathscr{C}, passing through the distinct points $P_{m}, P_{n} \in \mathscr{C}$. Moreover, as Ψ_{j} is a bijection, $\# \mathscr{O}_{\ell} \Psi_{j}=\# \mathscr{O}_{\ell}$. Therefore, $\# \mathscr{O}_{\ell} G_{q}=\sum_{j \in \mathbb{F}_{q}^{+}} \# \mathscr{O}_{\ell} \Psi_{j}=\sum_{j \in \mathbb{F}_{q}^{+}} \# \mathscr{O}_{\ell}=$ $(q+1) \cdot \# \mathscr{O}_{\ell}$.

Lemma 6.10. Let $\lambda \in\{\mathrm{U} \Gamma, \mathrm{Un} \Gamma\}, \ell \in \mathcal{O}_{\lambda}$. Let P_{i} be a point of \mathscr{C}. Then there exists a line $\bar{\ell} \in \mathbb{O}_{\lambda_{i}}$ such that $\ell \in \mathscr{O}_{\bar{\ell}} G_{q}$, where $\mathscr{O}_{\bar{\ell}}=\left\{\bar{\ell} \varphi \mid \varphi \in G_{q}^{P_{i}}\right\}$.

Proof. The line ℓ is a unisecant, so there exists P_{j} such that $P_{j} \in \ell$. As G_{q} acts transitively on \mathscr{C}, there exists $\Psi \in G_{q}$ such that $P_{j} \Psi=P_{i}$. Let $\bar{\ell}=\ell \Psi$. Then $\bar{\ell}$ is of the same type λ as ℓ, i.e. $\bar{\ell}$ is a unisecant, and $P_{j} \in \ell$ implies $P_{j} \Psi=P_{i} \in \ell \Psi=\bar{\ell}$, i.e. $\bar{\ell} \in \mathbb{O}_{\lambda_{i}}$. Finally, $\ell=\bar{\ell} \Psi^{-1}$ implies $\ell \in \mathscr{O}_{\bar{\ell}} G_{q}$.

Lemma 6.11. Let $\lambda \in\{\mathrm{U} \Gamma, \mathrm{Un} \Gamma\}$, let $P_{i} \in \mathscr{C}, \ell^{1}, \ldots, \ell^{m} \in \mathbb{O}_{\lambda_{i}}, \mathscr{O}_{\ell^{j}}=$ $\left\{\ell^{j} \varphi \mid \varphi \in G_{q}^{P_{i}}\right\}, j \in 1, \ldots, m$. If $\left\{\mathscr{O}_{\ell^{1}}, \ldots, \mathscr{O}_{\ell^{m}}\right\}$ is a partition of $\mathbb{O}_{\lambda_{i}}$, then $\left\{\mathscr{O}_{\ell^{1}} G_{q}, \ldots, \mathscr{O}_{\ell^{m}} G_{q}\right\}$ is a partition of \mathcal{O}_{λ}.

Proof. Let $\bar{\ell} \in \mathcal{O}_{\lambda}$. By Lemma 6.10, there exists $\ell^{\prime} \in \mathbb{O}_{\lambda_{i}}$ such that $\bar{\ell} \in \mathscr{O}_{\ell^{\prime}} G_{q}$, $\mathscr{O}_{\ell^{\prime}}=\left\{\ell^{\prime} \varphi \mid \varphi \in G_{q}^{P_{i}}\right\}$. By hypothesis, there exists $\ell^{\bar{j}}, \bar{j} \in\{1, \ldots, m\}$, such that $\mathscr{O}_{\ell^{\prime}}=\mathscr{O}_{\ell^{j}}$. By Lemma 6.8, $\mathscr{O}_{\ell^{j}} \neq \mathscr{O}_{\ell^{k}}, j \neq k$, implies $\mathscr{O}_{\ell^{j}} G_{q} \neq \mathscr{O}_{\ell^{k}} G_{q}$.

In the rest of the section we denote by c, d or c_{i}, d_{i} the elements of the matrix of the form (6.1) corresponding to a projectivity $\varphi \in G_{q}^{P_{0}}$ or $\varphi_{i} \in$ $G_{q}^{P_{0}}$, respectively. Also, given a 3×4 matrix \mathbf{D}, we denote by $\operatorname{det}_{i}(\mathbf{D})$ the determinant of the 3×3 matrix obtained deleting the i-th column of \mathbf{D}.

Theorem 6.12. For any $q \geq 5$, in $\mathrm{PG}(3, q)$, for the twisted cubic \mathscr{C} of (2.2), the non-tangent unisecants in a Γ-plane (i.e. UГ-lines, class $\mathcal{O}_{4}=\mathcal{O}_{\mathrm{U} \mathrm{\Gamma}}$) form an orbit under G_{q} if q is odd and two orbits of size $q+1$ and $q^{2}-1$ if q is even. Moreover, for q even, the orbit of size $q+1$ consists of the lines in the regulus complementary to that of the tangents. Also, for q even, the $(q+1)$ orbit and $\left(q^{2}-1\right)$-orbit can be represented in the form $\left\{\ell_{1} \varphi \mid \varphi \in G_{q}\right\}$ and $\left\{\ell_{2} \varphi \mid \varphi \in G_{q}\right\}$, respectively, where ℓ_{j} is a line such that $\ell_{1}=\overline{P_{0} \mathbf{P}(0,1,0,0)}$, $\ell_{2}=\overline{P_{0} \mathbf{P}(0,1,1,0)}, P_{0}=\mathbf{P}(0,0,0,1) \in \mathscr{C}$.

Proof. Let $\mathbb{O}_{\mathrm{U} \Gamma_{0}}=\left\{\ell \in \mathcal{O}_{\mathrm{U} \mathrm{\Gamma}} \mid P_{0} \in \ell\right\}$ be the set of UΓ-lines through P_{0}. By Lemma 6.6, $\mathbb{O}_{\mathrm{U} \Gamma_{0}} G_{q}^{P_{0}}=\mathbb{O}_{\mathrm{U} \Gamma_{0}}$, so we can consider the orbits of $\mathbb{O}_{\mathrm{U} \Gamma_{0}}$ under the group $G_{q}^{P_{0}}$. In $\pi_{\text {osc }}(0)$, there are $q+1$ unisecants through P_{0}, one of which is a tangent whereas the other q are UГ-lines; so $\# \mathbb{O}_{\mathrm{U} \mathrm{\Gamma}_{0}}=q$. By (2.3), (2.4), $\pi_{\text {osc }}(0)$ has equation $x_{0}=0$. By Lemma 6.2 , the tangent \mathcal{T}_{0} to \mathscr{C} at P_{0} has equation $x_{0}=x_{1}=0$.

Let $P^{\prime}=\mathbf{P}(0,1,0,0), \ell^{\prime}=\overline{P^{\prime} P_{0}}$. By above, $P^{\prime} \in \pi_{\text {osc }}(0), P^{\prime} \notin \mathcal{T}_{0}$, whence $\ell^{\prime} \in \mathbb{O}_{\mathrm{U} \Gamma_{0}}$. Let $\mathscr{O}_{\ell^{\prime}}=\left\{\ell^{\prime} \varphi \mid \varphi \in G_{q}^{P_{0}}\right\}$. If $\varphi \in G_{q}^{P_{0}}$, then, by (6.1), $P^{\prime} \varphi=\mathbf{P}\left(0, d, 2 c d, 3 c^{2} d\right)=\mathbf{P}\left(0,1,2 c, 3 c^{2}\right) \notin \mathcal{T}_{0}$. So, $\ell^{\prime} \varphi$ is of type UГ and $P_{0} \in \ell^{\prime}$ implies $P_{0} \varphi=P_{0} \in \ell^{\prime} \varphi$, whence $\mathscr{O}_{\ell^{\prime}} \subseteq \mathbb{O}_{\mathrm{U} \Gamma_{0}}$.

Now we determine $\# \mathscr{O}_{\ell^{\prime}}$. Let $\varphi_{1}, \varphi_{2} \in G_{q}^{P_{0}}, \varphi_{1} \neq \varphi_{2}, Q^{\prime}=P^{\prime} \varphi_{1}, R^{\prime}=$ $P^{\prime} \varphi_{2}$. By (6.1) with $d_{1}, d_{2} \neq 0$, we have

$$
\begin{aligned}
& Q^{\prime}=\mathbf{P}\left(0, d_{1}, 2 c_{1} d_{1}, 3 c_{1}^{2} d_{1}\right)=\mathbf{P}\left(0,1,2 c_{1}, 3 c_{1}^{2}\right) \\
& R^{\prime}=\mathbf{P}\left(0, d_{2}, 2 c_{2} d_{2}, 3 c_{2}^{2} d_{2}\right)=\mathbf{P}\left(0,1,2 c_{2}, 3 c_{2}^{2}\right)
\end{aligned}
$$

Obviously, $\ell^{\prime} \varphi_{1} \neq \ell^{\prime} \varphi_{2}$ if and only if $P_{0}, Q^{\prime}, R^{\prime}$ are not collinear, i.e. the matrix $\mathbf{D}^{\prime}=\left[P_{0}, Q^{\prime}, R^{\prime}\right]^{t r}$ has the maximum rank. We obtain

$$
\operatorname{det}_{1}\left(\mathbf{D}^{\prime}\right)=2 c_{2}-2 c_{1}, \operatorname{det}_{2}\left(\mathbf{D}^{\prime}\right)=\operatorname{det}_{3}\left(\mathbf{D}^{\prime}\right)=\operatorname{det}_{4}\left(\mathbf{D}^{\prime}\right)=0
$$

If q is odd, fixed $d \neq 0$ in (6.1), and varying $c \in \mathbb{F}_{q}$, we obtain q different images of ℓ^{\prime}, i.e. $\mathbb{O}_{\mathrm{U} \mathrm{\Gamma}}^{0} 10=\mathscr{O}_{\ell^{\prime}}$. Then, by Lemma 6.11, $\mathscr{O}_{\ell^{\prime}} G_{q}=\mathcal{O}_{\mathrm{U} \mathrm{\Gamma}}$.

Let q be even.
We have $\operatorname{det}_{1}\left(\mathbf{D}^{\prime}\right)=0$, so $\mathscr{O}_{\ell^{\prime}}=\left\{\ell^{\prime}\right\}$.
Consider $P^{\prime \prime}=\mathbf{P}(0,1,1,0) \notin \mathcal{T}_{0}$ and $\ell^{\prime \prime}=\overline{P^{\prime \prime} P_{0}}$. As ℓ^{\prime} has equation $x_{0}=$ $x_{2}=0$, we have $P^{\prime \prime} \notin \ell^{\prime}$; so $\ell^{\prime \prime} \neq \ell^{\prime}$, i.e. $\ell^{\prime \prime} \notin \mathscr{O}_{\ell^{\prime}}$. Let $\mathscr{O}_{\ell^{\prime \prime}}=\left\{\ell^{\prime \prime} \varphi \mid \varphi \in G_{q}^{P_{0}}\right\}$. If $\varphi \in G_{q}^{P_{0}}$, then $\ell^{\prime \prime} \varphi$ is of type UГ and $P_{0} \in \ell^{\prime \prime}$ implies $P_{0} \varphi=P_{0} \in \ell^{\prime \prime} \varphi$, whence $\mathscr{O}_{\ell^{\prime \prime}} \subseteq \mathbb{O}_{\mathrm{U} \Gamma_{0}}$. Let $\varphi_{1}, \varphi_{2} \in G_{q}^{P_{0}}, \varphi_{1} \neq \varphi_{2}, Q^{\prime \prime}=P \varphi_{1}, R^{\prime \prime}=P \varphi_{2}$. By (6.1) with $d_{1}, d_{2} \neq 0$, we have

$$
Q^{\prime \prime}=\mathbf{P}\left(0,1, d_{1}, c_{1}^{2}+c_{1} d_{1}\right), R^{\prime \prime}=\mathbf{P}\left(0,1, d_{2}, c_{2}^{2}+c_{2} d_{2}\right)
$$

As above, $\ell^{\prime \prime} \varphi_{1} \neq \ell^{\prime \prime} \varphi_{2}$ if and only if $P_{0}, Q^{\prime \prime}, R^{\prime \prime}$ are not collinear, i.e. the matrix $\mathbf{D}^{\prime \prime}=\left[P_{0}, Q^{\prime \prime}, R^{\prime \prime}\right]^{t r}$ has the maximum rank. We obtain

$$
\operatorname{det}_{1}\left(\mathbf{D}^{\prime \prime}\right)=d_{2}-d_{1}, \operatorname{det}_{2}\left(\mathbf{D}^{\prime \prime}\right)=\operatorname{det}_{3}\left(\mathbf{D}^{\prime \prime}\right)=\operatorname{det}_{4}\left(\mathbf{D}^{\prime \prime}\right)=0
$$

Fixed c and varying $d \in \mathbb{F}^{*}$, we obtain $q-1$ different images of $\ell^{\prime \prime}$, i.e. $\# \mathscr{O}_{\ell^{\prime \prime}}=q-1$.

As $\mathscr{O}_{\ell^{\prime}} \cap \mathscr{O}_{\ell^{\prime \prime}}=\emptyset$ and $\# \mathbb{O}_{\mathrm{U} \mathrm{\Gamma}}^{0} 10 ~=q,\left\{\mathscr{O}_{\ell^{\prime}}, \mathscr{O}_{\ell^{\prime \prime}}\right\}$ is a partition of $\mathbb{O}_{\mathrm{U} \mathrm{\Gamma}}^{0}$. Then, by Lemma 6.11, $\left\{\mathscr{O}_{\ell^{\prime}} G_{q}, \mathscr{O}_{\ell^{\prime \prime}} G_{q}\right\}$ is a partition of $\mathcal{O}_{\mathrm{Ur}}$. By Lemma 6.9, $\# \mathscr{O}_{\ell^{\prime}} G_{q}=q+1, \# \mathscr{O}_{\ell^{\prime \prime}} G_{q}=(q-1)(q+1)$.

Finally, on content of the $(q+1)$-orbit $\mathscr{O}_{\ell^{\prime}} G_{q}$ see Theorem 2.2(iv)(a).
Theorem 6.13. Let $q \geq$ 5. In $\mathrm{PG}(3, q)$, for the twisted cubic \mathscr{C} of (2.2), the non-tangent unisecants not in a Γ-plane (i.e. UnГ-lines, class $\mathcal{O}_{5}=\mathcal{O}_{\mathrm{Un} \Gamma}$) form an orbit under G_{q} if q is even and two orbits of size $\frac{1}{2}\left(q^{3}-q\right)$ if q is odd. Moreover, for q odd, the two orbits can be represented in the form $\left\{\ell_{j} \varphi \mid \varphi \in G_{q}\right\}, j=1,2$, where ℓ_{j} is a line such that $\ell_{1}=\overline{P_{0} \mathbf{P}(1,0,1,0)}$, $\ell_{2}=\overline{P_{0} \mathbf{P}(1,0, \rho, 0)}, P_{0}=\mathbf{P}(0,0,0,1) \in \mathscr{C}, \rho$ is not a square.

Proof. We act similarly to the proof of Theorem 6.12. Let $\mathbb{O}_{\mathrm{Un} \Gamma_{0}}=\{\ell \in$ $\left.\mathcal{O}_{\mathrm{Un} \Gamma} \mid P_{0} \in \ell\right\}$. By Lemma 6.6, $\mathbb{O}_{\mathrm{Un} \Gamma_{0}} G_{q}^{P_{0}}=\mathbb{O}_{\mathrm{Un} \Gamma_{0}}$, so we can consider the orbits of $\mathbb{O}_{\mathrm{Un} \Gamma_{0}}$ under $G_{q}^{P_{0}}$. In total, through P_{0} there are $q^{2}+q+1$ lines, $q+1$ of which are unisecants in $\pi_{\text {osc }}(0)$, other q are real chords, and the remaining $q^{2}-q$ are Un Γ-lines. So, $\# \mathbb{O}_{\mathrm{Unn}_{0}}=q^{2}-q$. The equation of $\pi_{\text {osc }}(0)$ is $x_{0}=0$. The tangent \mathcal{T}_{0} to \mathscr{C} in P_{0} has equation $x_{0}=x_{1}=0$.

Let $P^{\prime}=\mathbf{P}(1,0,1,0)$ and $\ell^{\prime}=\overline{P^{\prime} P_{0}} \notin \pi_{\text {osc }}(0)$. Also, ℓ^{\prime} is not a real chord, as ℓ^{\prime} has equation $x_{0}=x_{2}, x_{1}=0$ and $\mathscr{C} \cap \ell^{\prime}=P_{0}$. Thus, ℓ^{\prime} is a Un Γ-line.

Let $\mathscr{O}_{\ell^{\prime}}=\left\{\ell^{\prime} \varphi \mid \varphi \in G_{q}^{P_{0}}\right\}$. We have $\mathscr{O}_{\ell^{\prime}} \subseteq \mathbb{O}_{\mathrm{Un} \Gamma_{0}}$, as $\ell^{\prime} \varphi$ is a Un Γ-line and $P_{0} \in \ell^{\prime}$ implies $P_{0} \varphi=P_{0} \in \ell^{\prime} \varphi$.

We find $\# \mathscr{O}_{\ell^{\prime}}$. Let $\varphi_{1}, \varphi_{2} \in G_{q}^{P_{0}}, \varphi_{1} \neq \varphi_{2}, Q^{\prime}=P^{\prime} \varphi_{1}, R^{\prime}=P^{\prime} \varphi_{2}$. By (6.1),

$$
Q^{\prime}=\mathbf{P}\left(1, c_{1}, c_{1}^{2}+d_{1}^{2}, c_{1}^{3}+3 c_{1} d_{1}^{2}\right), R^{\prime}=\mathbf{P}\left(1, c_{2}, c_{2}^{2}+d_{2}^{2}, c_{2}^{3}+3 c_{2} d_{2}^{2}\right)
$$

Obviously, $\ell^{\prime} \varphi_{1} \neq \ell^{\prime} \varphi_{2}$ if and only if $P_{0}, Q^{\prime}, R^{\prime}$ are not collinear, i.e. the matrix $\mathbf{D}^{\prime}=\left[P_{0}, Q^{\prime}, R^{\prime}\right]^{t r}$ has the maximum rank. We obtain

$$
\begin{aligned}
\operatorname{det}_{1}\left(\mathbf{D}^{\prime}\right) & =c_{1}\left(c_{2}^{2}+d_{2}^{2}\right)-c_{2}\left(c_{1}^{2}+d_{1}^{2}\right), \operatorname{det}_{2}\left(\mathbf{D}^{\prime}\right)=c_{2}^{2}+d_{2}^{2}-\left(c_{1}^{2}+d_{1}^{2}\right), \\
\operatorname{det}_{3}\left(\mathbf{D}^{\prime}\right) & =c_{2}-c_{1}, \operatorname{det}_{4}\left(\mathbf{D}^{\prime}\right)=0
\end{aligned}
$$

If $c_{2} \neq c_{1}$, then $\operatorname{det}_{3}\left(\mathbf{D}^{\prime}\right) \neq 0$.
If q is even and $c_{2}=c_{1}$, then $\operatorname{det}_{2}\left(\mathbf{D}^{\prime}\right)=d_{2}^{2}-d_{1}^{2}=\left(d_{2}-d_{1}\right)^{2}$, so $\operatorname{det}_{2}\left(\mathbf{D}^{\prime}\right)=$ 0 if and only if $d_{2}=d_{1}$. Therefore, $\varphi_{1} \neq \varphi_{2}$ implies $\ell^{\prime} \varphi_{1} \neq \ell^{\prime} \varphi_{2}$. It means that $\mathscr{O}_{\ell^{\prime}}=\mathbb{O}_{\mathrm{Un} \Gamma_{0}}$ and $\# \mathscr{O}_{\ell^{\prime}}=\# G_{q}^{P_{0}}=q(q-1)$, see Corollary 6.5. Then, by Lemma 6.11, $\mathscr{O}_{\ell^{\prime}} G_{q}=\mathcal{O}_{\mathrm{U} \mathrm{\Gamma}}$ and by Lemma 6.9, $\# \mathscr{O}_{\ell^{\prime}} G_{q}=q(q-1)(q+1)$.

Let q be odd.
If $c_{2}=c_{1}$, then $\operatorname{det}_{2}\left(\mathbf{D}^{\prime}\right)=\left(d_{2}-d_{1}\right)\left(d_{2}+d_{1}\right)$, so $\operatorname{det}_{2}\left(\mathbf{D}^{\prime}\right)=0$ if $d_{1}=-d_{2}$. In this case also $\operatorname{det}_{1}\left(\mathbf{D}^{\prime}\right)=0$. Therefore, given $\varphi_{1} \in G_{q}^{P_{0}}$, if and only if we take $\varphi_{2} \in G_{q}^{P_{0}}$ with $c_{2}=c_{1}, d_{2}=-d_{1}$, then $\varphi_{1} \neq \varphi_{2}$ and $\ell^{\prime} \varphi_{1}=\ell^{\prime} \varphi_{2}$. It means that $\# \mathscr{O}_{\ell^{\prime}}=\frac{1}{2} q(q-1)$, see (6.1).

Consider $P^{\prime \prime}=\mathbf{P}(1,0, \rho, 0), \rho$ is not a square, and $\ell^{\prime \prime}=\overline{P^{\prime \prime} P_{0}} \notin \pi_{\text {osc }}(0)$. Also, $\ell^{\prime \prime}$ is not a real chord, as $\ell^{\prime \prime}$ has equation $\rho x_{0}=x_{2}, x_{1}=0$ and $\mathscr{C} \cap \ell^{\prime \prime}=$ P_{0}. Thus, $\ell^{\prime \prime}$ is a Un Γ-line. Also $\ell^{\prime \prime} \notin \mathscr{O}_{\ell^{\prime}}$. In fact, if $\ell^{\prime \prime} \in \mathscr{O}_{\ell^{\prime}}$, then $\varphi \in G_{q}^{P_{0}}$ such that $P_{0}, P^{\prime} \varphi, P^{\prime \prime}$ are collinear would exist. It means that the matrix $\mathbf{D}_{\varphi}=\left[P_{0}, P^{\prime} \varphi, P^{\prime \prime}\right]^{t r}$ should have rank 2. As $P^{\prime} \varphi=\mathbf{P}\left(0, c, c^{2}+d^{2}, c^{3}+3 c d^{2}\right)$, we have

$$
\operatorname{det}_{1}\left(\mathbf{D}_{\varphi}\right)=-\rho c, \operatorname{det}_{2}\left(\mathbf{D}_{\varphi}\right)=c^{2}+d^{2}-\rho, \operatorname{det}_{3}\left(\mathbf{D}_{\varphi}\right)=c, \operatorname{det}_{4}\left(\mathbf{D}_{\varphi}\right)=0
$$

Thus, $\operatorname{det}_{3}\left(\mathbf{D}_{\varphi}\right)=0$ implies $c=0$. Then $\operatorname{det}_{2}\left(\mathbf{D}_{\varphi}\right)=d^{2}-\rho$, that cannot be equal to 0 as ρ is not a square; contradiction.

Let $\mathscr{O}_{\ell^{\prime \prime}}=\left\{\ell^{\prime \prime} \varphi \mid \varphi \in G_{q}^{P_{0}}\right\}$. Let $\varphi_{1}, \varphi_{2} \in G_{q}^{P_{0}}, \varphi_{1} \neq \varphi_{2}, Q^{\prime \prime}=P^{\prime \prime} \varphi_{1}$, $R^{\prime \prime}=P^{\prime \prime} \varphi_{2}$. By (6.1),

$$
Q^{\prime \prime}=\mathbf{P}\left(1, c_{1}, c_{1}^{2}+\rho d_{1}^{2}, c_{1}^{3}+3 \rho c_{1} d_{1}^{2}\right), R^{\prime \prime}=\mathbf{P}\left(1, c_{2}, c_{2}^{2}+\rho d_{2}^{2}, c_{2}^{3}+3 \rho c_{2} d_{2}^{2}\right)
$$

Obviously, $\ell^{\prime \prime} \varphi_{1} \neq \ell^{\prime \prime} \varphi_{2}$ if and only if $P_{0}, Q^{\prime \prime}, R^{\prime \prime}$ are not collinear, i.e. the matrix $\mathbf{D}^{\prime \prime}=\left[P_{0}, Q^{\prime \prime}, R^{\prime \prime}\right]^{\text {tr }}$ has the maximum rank. We have

$$
\operatorname{det}_{1}\left(\mathbf{D}^{\prime \prime}\right)=c_{1}\left(c_{2}^{2}+\rho d_{2}^{2}\right)-c_{2}\left(c_{1}^{2}+\rho d_{1}^{2}\right), \operatorname{det}_{2}\left(\mathbf{D}^{\prime \prime}\right)=c_{2}^{2}+\rho d_{2}^{2}-\left(c_{1}^{2}+\rho d_{1}^{2}\right),
$$

$$
\operatorname{det}_{3}\left(\mathbf{D}^{\prime \prime}\right)=c_{2}-c_{1}, \operatorname{det}_{4}\left(\mathbf{D}^{\prime \prime}\right)=0
$$

If $c_{2} \neq c_{1}$, then $\operatorname{det}_{3}\left(\mathbf{D}^{\prime \prime}\right) \neq 0$. If $c_{2}=c_{1}$ then $\operatorname{det}_{2}\left(\mathbf{D}^{\prime \prime}\right)=\rho\left(d_{2}-d_{1}\right)\left(d_{2}+d_{1}\right)$, so $\operatorname{det}_{2}\left(\mathbf{D}^{\prime \prime}\right)=0$ if $d_{1}=-d_{2}$. In this case also $\operatorname{det}_{1}\left(\mathbf{D}^{\prime \prime}\right)=0$. Therefore, given $\varphi_{1} \in G_{q}^{P_{0}}$ if and only if we take $\varphi_{2} \in G_{q}^{P_{0}}$ with $c_{2}=c_{1}, d_{2}=-d_{1}$ then we obtain $\varphi_{1} \neq \varphi_{2}$ and $\ell^{\prime \prime} \varphi_{1}=\ell^{\prime} \varphi_{2}$. It means that $\# \mathscr{O}_{\ell^{\prime \prime}}=\frac{1}{2} q(q-1)$, see (6.1).

As $\mathscr{O}_{\ell^{\prime}} \cap \mathscr{O}_{\ell^{\prime \prime}}=\emptyset$ and $\# \mathbb{O}_{\mathrm{Un} \Gamma_{0}}=q(q-1),\left\{\mathscr{O}_{\ell^{\prime}}, \mathscr{O}_{\ell^{\prime \prime}}\right\}$ is a partition of $\mathbb{O}_{\mathrm{Un} \Gamma_{0}}$. Then, by Lemma $6.11,\left\{\mathscr{O}_{\ell^{\prime}} G_{q}, \mathscr{O}_{\ell^{\prime \prime}} G_{q}\right\}$ is a partition of $\mathcal{O}_{\mathrm{Un} \Gamma}$. By Lemma 6.9, $\# \mathscr{O}_{\ell^{\prime}} G_{q}=\# \mathscr{O}_{\ell^{\prime \prime}} G_{q}=\frac{1}{2} q(q-1)(q+1)$.
Corollary 6.14. Let $q \not \equiv 0(\bmod 3)$. In $\operatorname{PG}(3, q)$, for the twisted cubic \mathscr{C} of (2.2), the external lines in a Γ-plane (class $\mathcal{O}_{5}^{\prime}=\mathcal{O}_{\mathrm{E} \mathrm{\Gamma}}$) form an orbit under G_{q} if q is even and two orbits of size $\left(q^{3}-q\right) / 2$ if q is odd. Moreover, for q odd, the two orbits can be represented in the form $\left\{\ell_{j} \varphi \mid \varphi \in G_{q}\right\}, j=1,2$, where $\ell_{j}=\mathfrak{p}_{0} \cap \mathfrak{p}_{j}$ is the intersection line of planes \mathfrak{p}_{0} and \mathfrak{p}_{j} such that $\mathfrak{p}_{0}=\boldsymbol{\pi}(1,0,0,0)=\pi_{\text {osc }}(0), \mathfrak{p}_{1}=\boldsymbol{\pi}(0,-3,0,-1), \mathfrak{p}_{2}=\boldsymbol{\pi}(0,-3 \rho, 0,-1), \rho$ is not a square, cf. (2.3), (2.4).
Proof. The assertion follows from Theorems 2.2(iv)(a), 4.3, and 6.13. The null polarity \mathfrak{A} (2.5) maps the points $P_{0}=\mathbf{P}(0,0,0,1), P^{\prime}=\mathbf{P}(1,0,1,0)$, and $P^{\prime \prime}=\mathbf{P}(1,0, \rho, 0)$ of Proof of Theorem 6.13 to the planes $\mathfrak{p}_{0}=\boldsymbol{\pi}(1,0,0,0)$, $\mathfrak{p}_{1}=\boldsymbol{\pi}(0,-3,0,-1)$, and $\mathfrak{p}_{2}=\boldsymbol{\pi}(0,-3 \rho, 0,-1)$, respectively. The Un Γ-lines $\ell^{\prime}=\overline{P_{0} P^{\prime}}$ and $\ell^{\prime \prime}=\overline{P_{0} P^{\prime \prime}}$ are mapped to EA-lines so that $\ell^{\prime} \mathfrak{A}=\mathfrak{p}_{0} \cap \mathfrak{p}_{1} \triangleq \ell_{1}$ and $\ell^{\prime \prime} \mathfrak{A}=\mathfrak{p}_{0} \cap \mathfrak{p}_{2} \triangleq \ell_{2}$.

7 Orbits under G_{q} of external lines with respect to the cubic \mathscr{C} meeting the axis of the pencil of osculating planes, $q \equiv 0(\bmod 3)$ (orbits of EA-lines)

In the following we consider $q \equiv 0(\bmod 3), q \geq 9$, and denote by ℓ_{A} the axis of Γ and by P_{A} the point $\mathbf{P}(0,1,0,0)$. The line ℓ_{A} is the intersection of the osculating planes, so has equation $x_{0}=x_{3}=0$, and $P_{\mathrm{A}} \in \ell_{\mathrm{A}}$. Recall that by Theorem 2.2(iv)(b), ℓ_{A} is fixed by G_{q}.
Notation 7.1. In addition to Notations 2.1 and 6.1, the following notation is used.

$$
P_{t}^{\mathrm{A}} \quad \text { the point } \mathbf{P}(0,1, t, 0) \text { of } \ell_{\mathrm{A}} \text { with } t \in \mathbb{F}_{q}
$$

$$
\begin{array}{ll}
P_{\infty}^{\mathrm{A}} & \text { the point } \mathbf{P}(0,0,1,0) \text { of } \ell_{\mathrm{A}} ; \\
G_{q}^{P_{t}^{\mathrm{A}}} & \text { the subgroup of } G_{q} \text { fixing } P_{t}^{\mathrm{A}} \text { with } t \in \mathbb{F}_{q}^{+} ; \\
\mathbb{O}_{\mathrm{EA}_{i}} & \text { the set of lines from } \mathcal{O}_{\mathrm{EA}} \text { through } P_{i}^{\mathrm{A}}, \\
& \text { i.e. } \mathbb{O}_{\mathrm{EA}_{i}} \triangleq\left\{\ell \in \mathcal{O}_{\mathrm{EA}} \mid P_{i}^{\mathrm{A}} \in \ell\right\} .
\end{array}
$$

Lemma 7.2. Let $q \equiv 0(\bmod 3), q \geq 9$. The group G_{q} acts transitively on ℓ_{A}.

Proof. If we take $\varphi \in G_{q}$ whose matrix in the form (2.6) has $a=0, b=c=$ $d=1$, then $P_{0}^{\mathrm{A}} \varphi=\mathbf{P}(0,0,1,0)=P_{\infty}^{\mathrm{A}}$. If we take $\varphi \in G_{q}$ whose matrix in the form (2.6) has $a=d=1, b=0, c=-n$, then $P_{0}^{\mathrm{A}} \varphi=\mathbf{P}(0,1, n, 0)=P_{n}^{\mathrm{A}}$.

Lemma 7.3. The general form of the matrix \mathbf{M} corresponding to a projectivity of $G_{q}^{P_{0}^{\mathrm{A}}}$ is as follows:

$$
\mathbf{M}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{7.1}\\
0 & d & 0 & 0 \\
0 & -b d & d^{2} & 0 \\
b^{3} & b^{2} d & b d^{2} & d^{3}
\end{array}\right], b \in \mathbb{F}_{q}, d \in \mathbb{F}_{q}^{*}
$$

Proof. Let M be the matrix corresponding to a projectivity $\Psi \in G_{q}$; by (2.6), $[0,1,0,0] \times \mathbf{M}=\left[0, a^{2} d-a b c, b c^{2}-a c d, 0\right]$. Then $\Psi \in G_{q}^{P_{\mathrm{A}}}$ if and only if

$$
\begin{equation*}
b c^{2}-a c d=0, a^{2} d-a b c \neq 0 \tag{7.2}
\end{equation*}
$$

If $a=0$, then $b c^{2}=0$ that implies $\operatorname{det}(\mathbf{M})=0$, contradiction, so we can fix $a=1$. Then the 1 -st equality of (7.2) becomes $c(b c-d)=0$. If $a=1$ and $b c-d=0$, also $a^{2} d-a b c=0$. Therefore, $c=0, d \neq 0$.

Lemma 7.2 allows to prove the following lemmas and corollary in analogous way to Lemmas 6.4, 6.6-6.11, and Corollary 6.5.

Lemma 7.4. $G_{q}^{P_{i}^{\mathrm{A}}}$ and $G_{q}^{P_{i}^{\mathrm{A}}}$ are conjugate subgroups of G_{q}.
Proof. By Lemma 7.2, G_{q} acts transitively on ℓ_{A}, so there exists $\Psi \in G_{q}$ such that $P_{i}^{\mathrm{A}} \Psi=P_{j}^{\mathrm{A}}$. Then $\Psi^{-1} G_{q}^{P_{i}^{\mathrm{A}}} \Psi=G_{q}^{P_{j}^{\mathrm{A}}}$. In fact, let $\varphi \in G_{q}^{P_{i}^{\mathrm{A}}}$. Then $P_{j}^{\mathrm{A}} \Psi^{-1} \varphi \Psi=P_{i}^{\mathrm{A}} \varphi \Psi=P_{i}^{\mathrm{A}} \Psi=P_{j}^{\mathrm{A}}$. On the other hand, let $\gamma \in G_{q}^{P_{j}^{\mathrm{A}}}$. Then $P_{i}^{\mathrm{A}} \Psi \gamma \Psi^{-1}=P_{j}^{\mathrm{A}} \gamma \Psi^{-1}=P_{j}^{\mathrm{A}} \Psi^{-1}=P_{i}^{\mathrm{A}}$. It means that $\Psi \gamma \Psi^{-1} \in G_{q}^{P_{i}^{\mathrm{A}}}$, i.e. $\gamma \in \Psi^{-1} G_{q}^{P_{i}^{A}} \Psi$.

Corollary 7.5. For all $t \in \mathbb{F}_{q}^{+}$, we have $\# G_{q}^{P_{t}^{\mathrm{A}}}=q(q-1)$.
Proof. By $(7.1), \# G_{q}^{P^{\mathrm{A}}}=q(q-1)$. By Lemma 7.4 , there exists $\Psi \in G_{q}$ such that $\Psi^{-1} G_{q}^{P_{0}^{A}} \Psi=G_{q}^{P_{t}^{A}}, t \in \mathbb{F}_{q}^{+}$. Then $G_{q}^{P_{0}^{A}} \Psi=\Psi G_{q}^{P_{t}^{A}}$. As a finite group and its cosets have the same cardinality, $\# G_{q}^{P^{\mathrm{A}}}=\# G_{q}^{P_{0}^{\mathrm{A}}} \Psi=\# \Psi G_{q}^{P^{\mathrm{A}}}=$ $\# G_{q}^{P^{\mathrm{A}}}$.

Lemma 7.6. We have $\mathbb{O}_{\mathrm{EA}_{i}} G_{q}^{P_{i}^{\mathrm{A}}}=\mathbb{O}_{\mathrm{EA}_{i}}$.
Proof. Let $\ell \in \mathbb{O}_{\mathrm{EA}_{i}}, \varphi \in G_{q}^{P^{\mathrm{A}}}$. Then $P_{i}^{\mathrm{A}} \in \ell$, so $P_{i}^{\mathrm{A}} \varphi=P_{i}^{\mathrm{A}} \in \ell \varphi$. As ℓ of type EA implies $\ell \varphi$ of type EA, $\ell \varphi \in \mathbb{O}_{\mathrm{EA}_{i}}$. On the other hand, if I is the identity element of $G_{q}^{P_{i}}, \mathbb{O}_{\lambda_{i}} G_{q}^{P_{i}} \supseteq \mathbb{O}_{\lambda_{i}} I=\mathbb{O}_{\lambda_{i}}$.

Lemma 7.7. Let $\ell \in \mathbb{O}_{\mathrm{EA}_{i}}, \mathscr{O}_{\ell}=\left\{\ell \varphi \mid \varphi \in G_{q}^{P_{i}^{\mathrm{A}}}\right\}, \Psi_{1}, \Psi_{2} \in G_{q}$. If $P_{i}^{\mathrm{A}} \Psi_{1}=$ $P_{i}^{\mathrm{A}} \Psi_{2}=P_{j}^{\mathrm{A}}$ then $\mathscr{O}_{\ell} \Psi_{1}=\mathscr{O}_{\ell} \Psi_{2}$.

Proof. As $P_{i}^{\mathrm{A}} \Psi_{1} \Psi_{2}^{-1}=P_{j}^{\mathrm{A}} \Psi_{2}^{-1}=P_{i}^{\mathrm{A}}, \Psi_{1} \Psi_{2}^{-1} \in G_{q}^{P_{i}^{\mathrm{A}}}$. Let $\bar{\ell} \in \mathscr{O}_{\ell} \Psi_{1}$. Then $\bar{\ell}=\ell \varphi \Psi_{1}, \varphi \in G_{q}^{P^{\mathrm{A}}}$. This implies $\bar{\ell} \Psi_{2}^{-1}=\ell \varphi \Psi_{1} \Psi_{2}^{-1} \in \mathscr{O}_{\ell}$, whence $\bar{\ell} \in \mathscr{O}_{\ell} \Psi_{2}$. The proof of the other inclusion is analogous.

Lemma 7.8. Let $\ell_{1}, \ell_{2}, \in \mathbb{O}_{\mathrm{EA}_{i}}, \mathscr{O}_{\ell_{1}}=\left\{\ell_{1} \varphi \mid \varphi \in G_{q}^{P_{i}^{\mathrm{A}}}\right\}$, $\mathscr{O}_{\ell_{2}}=\left\{\ell_{2} \varphi \mid \varphi \in G_{q}^{P_{i}^{\mathrm{A}}}\right\}$. If $\mathscr{O}_{\ell_{1}} \cap \mathscr{O}_{\ell_{2}}=\emptyset$ then $\mathscr{O}_{\ell_{1}} G_{q} \cap \mathscr{O}_{\ell_{2}} G_{q}=\emptyset$.

Proof. Suppose $\bar{\ell} \in \mathscr{O}_{\ell_{1}} G_{q} \cap \mathscr{O}_{\ell_{2}} G_{q}$. Then also $\bar{\ell}$ is a line of type EA; let $P_{j}^{\mathrm{A}}=\ell_{\mathrm{A}} \cap \bar{\ell}$. As $\bar{\ell} \in \mathscr{O}_{\ell_{1}} G_{q}, \bar{\ell}=\ell_{1} \varphi_{1} \Psi_{1}, \varphi_{1} \in G_{q}^{P_{i}^{\mathrm{A}}}, \Psi_{1} \in G_{q}$. Let $\ell^{\prime}=\ell_{1} \varphi_{1}$. As $P_{i}^{\mathrm{A}} \in \ell_{1}, P_{i}^{\mathrm{A}} \varphi_{1}=P_{i}^{\mathrm{A}} \in \ell_{1} \varphi_{1}=\ell^{\prime}$. As $P_{j}^{\mathrm{A}} \in \bar{\ell}=\ell^{\prime} \Psi_{1}$ and $\ell_{1}, \ell^{\prime}, \bar{\ell}$ are of type EA and $\Psi_{1} \in G_{q}, P_{i}^{\mathrm{A}} \Psi_{1}$ is the only point of $\bar{\ell}$ belonging to ℓ_{A}, i.e. $P_{i}^{\mathrm{A}} \Psi_{1}=P_{j}^{\mathrm{A}}$. Analogously, $\bar{\ell} \in \mathscr{O}_{\ell_{2}} G_{q}$ implies $\bar{\ell}=\ell_{2} \varphi_{2} \Psi_{2}, \varphi_{2} \in G_{q}^{P_{i}^{\mathrm{A}}}$, $P_{i}^{\mathrm{A}} \Psi_{2}=P_{j}^{\mathrm{A}}$. Then $P_{i}^{\mathrm{A}} \Psi_{1} \Psi_{2}^{-1}=P_{j}^{\mathrm{A}} \Psi_{2}^{-1}=P_{i}^{\mathrm{A}}$ that implies $\Psi_{1} \Psi_{2}^{-1} \in G_{q}^{P_{i}^{\mathrm{A}}}$. Finally, $\ell_{1} \varphi_{1} \Psi_{1}=\ell_{2} \varphi_{2} \Psi_{2}$ implies $\ell_{1} \varphi_{1} \Psi_{1} \Psi_{2}^{-1} \varphi_{2}^{-1}=\ell_{2}$, whence $\ell_{2} \in \mathscr{O}_{\ell_{1}}$.

Lemma 7.9. Let $\ell \in \mathbb{O}_{\mathrm{EA}_{i}}, \mathscr{O}_{\ell}=\left\{\ell \varphi \mid \varphi \in G_{q}^{P_{i}^{\mathrm{A}}}\right\}$. Then $\# \mathscr{O}_{\ell} G_{q}=(q+1)$. $\# \mathscr{O}_{\ell}$.

Proof. Let $G_{i}^{j}=\left\{\varphi \in G_{q} \mid P_{i}^{\mathrm{A}} \varphi=P_{j}^{\mathrm{A}}\right\}$. The sets $G_{i}^{j}, j \in \mathbb{F}_{q}^{+}$form a partition of G_{q}. In fact, let $\varphi \in G_{q}$. By Theorem 2.2(iv)(b), the line ℓ_{A} is fixed by G_{q}, so $P_{i}^{\mathrm{A}} \varphi=P_{\bar{j}}^{\mathrm{A}} \in \ell_{\mathrm{A}}$: it means that $\varphi \in G_{i}^{\bar{j}}$. On the other hand, if $\varphi \in G_{i}^{j} \cap G_{i}^{k}$, then $P_{j}^{\mathrm{A}}=P_{i}^{\mathrm{A}} \varphi=P_{k}^{\mathrm{A}}$, so $j=k$. If $\Psi \in G_{i}^{j}$, then $\mathscr{O}_{\ell} \Psi=\mathscr{O}_{\ell} G_{i}^{j}$. In fact, by Lemma 7.7, if $\Psi^{\prime} \in G_{i}^{j}$ then $\mathscr{O}_{\ell} \Psi^{\prime}=\mathscr{O}_{\ell} \Psi$. Finally, consider $\Psi_{j} \in G_{i}^{j}$, $j \in \mathbb{F}_{q}^{+}$. Then $\mathscr{O}_{\ell} G_{q}=\bigcup_{j \in \mathbb{F}_{q}^{+}} \mathscr{O}_{\ell} G_{i}^{j}=\bigcup_{j \in \mathbb{F}_{q}^{+}} \mathscr{O}_{\ell} \Psi_{j}$. The sets $\mathscr{O}_{\ell} \Psi_{j}, j \in \mathbb{F}_{q}^{+}$, are disjoint. In fact, a line $\ell \in \mathscr{O}_{\ell} \Psi_{m} \cap \mathscr{O}_{\ell} \Psi_{n}, m \neq n$, would be a line of type EA passing through the distinct points $P_{m}^{\mathrm{A}}, P_{n}^{\mathrm{A}} \in \ell_{\mathrm{A}}$. Moreover, as Ψ_{j} is a bijection, $\# \mathscr{O}_{\ell} \Psi_{j}=\# \mathscr{O}_{\ell}$. Therefore, $\# \mathscr{O}_{\ell} G_{q}=\sum_{j \in \mathbb{F}_{q}^{+}} \# \mathscr{O}_{\ell} \Psi_{j}=\sum_{j \in \mathbb{F}_{q}^{+}} \# \mathscr{O}_{\ell}=$ $(q+1) \cdot \# \mathscr{O}_{\ell}$.

Lemma 7.10. Let $\ell \in \mathbb{O}_{\mathrm{EA}}$. Let P_{i}^{A} be a point of ℓ_{A}. Then there exists a line $\bar{\ell} \in \mathbb{O}_{\mathrm{EA}_{i}}$ such that $\ell \in \mathscr{O}_{\bar{\ell}} G_{q}$, where $\mathscr{O}_{\bar{\ell}}=\left\{\bar{\ell} \varphi \mid \varphi \in G_{q}^{P_{i}^{A}}\right\}$.

Proof. As $\ell \in \mathbb{O}_{\mathrm{EA}}$, there exists $P_{j}^{\mathrm{A}} \in \ell_{\mathrm{A}}$, such that $P_{j}^{\mathrm{A}} \in \ell$. By Lemma 7.2, G_{q} acts transitively on ℓ_{A}, so there exists $\Psi \in G_{q}$ such that $P_{j}^{\mathrm{A}} \Psi=P_{i}^{\mathrm{A}}$. Let $\bar{\ell}=\ell \Psi$. Then $\bar{\ell}$ is of type EA and $P_{j}^{\mathrm{A}} \in \ell$ implies $P_{j}^{\mathrm{A}} \Psi=P_{i}^{\mathrm{A}} \in \ell \Psi=\bar{\ell}$, i.e. $\bar{\ell} \in \mathbb{O}_{\mathrm{EA}_{i}}$. Finally, $\ell=\bar{\ell} \Psi^{-1}$ implies $\ell \in \mathscr{O}_{\bar{\ell}} G_{q}$.
Lemma 7.11. Let $P_{i}^{\mathrm{A}} \in \ell_{\mathrm{A}}, \ell^{1}, \ldots, \ell^{m}, \in \mathbb{O}_{\mathrm{EA}_{i}}, \mathscr{O}_{\ell^{j}}=\left\{\ell^{j} \varphi \mid \varphi \in G_{q}^{P_{i}^{\mathrm{A}}}\right\}, j \in$ $1, \ldots$, m. If $\left\{\mathscr{O}_{\ell^{1}}, \ldots, \mathscr{O}_{\ell^{m}}\right\}$ is a partition of $\mathbb{O}_{\mathrm{EA}_{i}}$, then $\left\{\mathscr{O}_{\ell^{1}} G_{q}, \ldots, \mathscr{O}_{\ell^{m}} G_{q}\right\}$ is a partition of $\mathcal{O}_{\mathrm{EA}}$.

Proof. Let $\bar{\ell} \in \mathcal{O}_{\mathrm{EA}}$. By Lemma 7.10, there exists $\ell^{\prime} \in \mathbb{O}_{\mathrm{EA}_{i}}$ such that $\bar{\ell} \in$ $\mathscr{O}_{\ell^{\prime}} G_{q}, \mathscr{O}_{\ell^{\prime}}=\left\{\ell^{\prime} \varphi \mid \varphi \in G_{q}^{P_{i}^{\mathrm{A}}}\right\}$. By hypothesis, there exists $\ell^{\bar{j}}, \bar{j} \in\{1, \ldots, m\}$, such that $\mathscr{O}_{\ell^{\prime}}=\mathscr{O}_{\ell^{j}}$. By Lemma 7.8, $\mathscr{O}_{\ell^{j}} \neq \mathscr{O}_{\ell^{k}}, j \neq k$, implies $\mathscr{O}_{\ell^{j}} G_{q} \neq$ $\mathscr{O}_{\ell^{k}} G_{q}$.

Lemma 7.12. We have $\# \mathbb{O}_{\mathrm{EA}_{i}}=q^{2}-1$.
Proof. No real cord contains the point P_{0}^{A}. In fact, the line $\overline{P_{0}^{\mathrm{A}} P_{\infty}}$ has equation $x_{2}=x_{3}=0$ and contains no point $P_{t}, t \in \mathbb{F}$. The points $P_{0}^{\mathrm{A}}, P_{t_{1}}, P_{t_{2}}$, with $t_{1}, t_{2} \in \mathbb{F}, t_{1} \neq t_{2}$ are collinear if and only if the matrix $\mathbf{M}_{P_{0}^{\mathrm{A}}, P_{t_{1}}, P_{t_{2}}}=$ $\left[P_{0}^{\mathrm{A}}, P_{t_{1}}, P_{t_{2}}\right]^{t r}$ has rank 2, but $\operatorname{det}_{1}\left(\mathbf{M}_{P_{0}^{\mathrm{A}}, P_{t_{1}}, P_{t_{2}}}\right)=t_{1}-t_{2} \neq 0$.

In total $q^{2}+q+1$ lines pass through the point P_{0}^{A}. One is ℓ_{A}, other $q+1$ are unisecants to \mathscr{C}. Therefore, the remaining $q^{2}-1$ lines are of type EA.

The same holds for every point of ℓ_{A}. In fact, let $\bar{\ell}$ be a RC-line through a point P_{i}^{A}. Then by Lemma 7.2, as G_{q} acts transitively on ℓ_{A}, there exists $\Psi \in G_{q}$ such that $P_{i}^{\mathrm{A}} \Psi=P_{0}^{\mathrm{A}}$ and $\bar{\ell} \Psi$ would be an RC-line through P_{0}^{A}, contradiction.

Theorem 7.13. For any $q \equiv 0(\bmod 3), q \geq 9$, in $\mathrm{PG}(3, q)$, for the twisted cubic \mathscr{C} of (2.2), the external lines meeting the axis of Γ (i.e. EA-lines, class $\left.\mathcal{O}_{8}=\mathcal{O}_{\mathrm{EA}}\right)$ form three orbits under G_{q} of size $q^{3}-q,\left(q^{2}-1\right) / 2,\left(q^{2}-1\right) / 2$. Moreover, the $\left(q^{3}-q\right)$-orbit and the two $\left(q^{2}-1\right) / 2$-orbits can be represented in the form $\left\{\ell_{1} \varphi \mid \varphi \in G_{q}\right\}$ and $\left\{\ell_{j} \varphi \mid \varphi \in G_{q}\right\}, j=2,3$, respectively, where ℓ_{j} are lines such that $\ell_{1}=\overline{P_{0}^{\mathrm{A}} \mathbf{P}(0,0,1,1)}, \ell_{2}=\overline{P_{0}^{\mathrm{A}} \mathbf{P}(1,0,1,0)}, \ell_{3}=\overline{P_{0}^{\mathrm{A}} \mathbf{P}(1,0, \rho, 0)}$, $P_{0}^{\mathrm{A}}=\mathbf{P}(0,1,0,0), \rho$ is not a square.

Proof. Let $\mathbb{O}_{\mathrm{EA}_{0}}=\left\{\ell \in \mathrm{EA} \mid P_{0}^{\mathrm{A}} \in \ell\right\}$. By Lemma 7.6, $\mathbb{O}_{\mathrm{EA}_{0}} G_{q}^{P_{\mathrm{A}}^{\mathrm{A}}}=\mathbb{O}_{\mathrm{EA}_{0}}$, so we can consider the orbits of $\mathbb{O}_{\mathrm{EA}}^{0}$ under the group $G_{q}^{P^{\mathrm{A}}}$. Let $P^{\prime}=$ $\mathbf{P}(0,0,1,1)$ and $\ell^{\prime}=\overline{P^{\prime} P_{0}^{\mathrm{A}}}$. The line ℓ^{\prime} has equation $x_{0}=0, x_{2}=x_{3}$, so $\ell^{\prime} \cap \mathscr{C}=\emptyset$. Let $\mathscr{O}_{\ell^{\prime}}=\left\{\ell^{\prime} \varphi \mid \varphi \in G_{q}^{P_{0}^{\mathrm{A}}}\right\}$. We find $\# \mathscr{O}_{\ell^{\prime}}$. Let $\varphi_{1}, \varphi_{2} \in G_{q}^{P_{\mathrm{O}}^{\mathrm{A}}}, \varphi_{1} \neq$ $\varphi_{2}, Q^{\prime}=P^{\prime} \varphi_{1}, R^{\prime}=P^{\prime} \varphi_{2}$. By (7.1) with $d_{1}, d_{2} \neq 0$,

$$
\begin{aligned}
& Q^{\prime}=\mathbf{P}\left(b_{1}^{3},-b_{1} d_{1}+b_{1}^{2} d_{1}, d_{1}^{2}+b_{1} d_{1}^{2}, d_{1}^{3}\right) \\
& R^{\prime}=\mathbf{P}\left(b_{2}^{3},-b_{2} d_{2}+b_{2}^{2} d_{2}, d_{2}^{2}+b_{2} d_{2}^{2}, d_{2}^{3}\right)
\end{aligned}
$$

Obviously, $\ell^{\prime} \varphi_{1} \neq \ell^{\prime} \varphi_{2}$ if and only if $P_{0}^{\mathrm{A}}, Q^{\prime}, R^{\prime}$ are not collinear, i.e. if and only if the matrix $\mathbf{D}^{\prime}=\left[P_{0}^{\mathrm{A}}, Q^{\prime}, R^{\prime}\right]^{\text {tr }}$ has maximum rank. Then

$$
\begin{aligned}
\operatorname{det}_{1}\left(\mathbf{D}^{\prime}\right) & =\left(d_{1}^{2}+b_{1} d_{1}^{2}\right) d_{2}^{3}-\left(d_{2}^{2}+b_{2} d_{2}^{2}\right) d_{1}^{3}, \operatorname{det}_{2}\left(\mathbf{D}^{\prime}\right)=0 \\
\operatorname{det}_{3}\left(\mathbf{D}^{\prime}\right) & =d_{1}^{3} b_{2}^{3}-d_{2}^{3} b_{1}^{3}=\left(d_{1} b_{2}-d_{2} b_{1}\right)^{3} \\
\operatorname{det}_{4}\left(\mathbf{D}^{\prime}\right) & =\left(d_{1}^{2}+b_{1} d_{1}^{2}\right) b_{2}^{3}-\left(d_{2}^{2}+b_{2} d_{2}^{2}\right) b_{1}^{3}
\end{aligned}
$$

If $d_{1} b_{2}-d_{2} b_{1} \neq 0$, then $\operatorname{det}_{3}\left(\mathbf{D}^{\prime}\right) \neq 0$. If $b_{2}=d_{2} b_{1} / d_{1}$, then $\operatorname{det}_{1}\left(\mathbf{D}^{\prime}\right)=$ $d_{1}^{2} d_{2}^{2}\left(d_{1}-d_{2}\right)$. Therefore, $\operatorname{det}_{1}\left(\mathbf{D}^{\prime}\right)=0$ if and only if $d_{1}=d_{2}$ that implies $b_{1}=b_{2}$, i.e. $\varphi_{1}=\varphi_{2}$. Therefore, $\# \mathscr{O}_{\ell^{\prime}}=\# G_{q}^{P_{0}^{A}}=q(q-1)$.

Now, let $P^{\prime \prime}=\mathbf{P}(1,0,1,0), \ell^{\prime \prime}=\overline{P_{0}^{\mathrm{A}} P^{\prime \prime}}, P^{\prime \prime \prime}=\mathbf{P}(1,0, \rho, 0), \rho$ not a square in $\mathbb{F}_{q}, \ell^{\prime \prime \prime}=\overline{P_{0}^{\mathrm{A}} P^{\prime \prime \prime}}$. As $\ell^{\prime \prime}$ has equation $x_{3}=0, x_{0}=x_{2}$, and $\ell^{\prime \prime \prime}$ has equation $x_{3}=0, \rho x_{0}=x_{2}$, no point of \mathscr{C} belongs to $\ell^{\prime \prime}, \ell^{\prime \prime \prime}$ and $\ell^{\prime \prime}, \ell^{\prime \prime \prime} \in \mathrm{EA}$. Moreover, $\ell^{\prime \prime}, \ell^{\prime \prime \prime} \notin \mathscr{O}_{\ell^{\prime}}$. In fact, let $P=\mathbf{P}(1,0, s, 0), s \neq 0, \ell=\overline{P_{0}^{\mathrm{A}} P}$; if $\ell \in \mathscr{O}_{\ell^{\prime}}, \varphi \in G_{q}^{P_{0}^{\mathrm{A}}}$ such that $P_{0}^{\mathrm{A}}, P^{\prime} \varphi, P$ are collinear would exist. It means
that the matrix $\mathbf{D}_{\varphi}^{\prime}=\left[P_{0}^{\mathrm{A}}, P^{\prime} \varphi, P\right]^{t r}$ should have rank 2 , but as $P^{\prime} \varphi=$ $\mathbf{P}\left(b^{3},-b d+b^{2} d, d^{2}+b d^{2}, d^{3}\right)$ with $d \neq 0, \operatorname{det}_{1}\left(\mathbf{D}_{\varphi}^{\prime}\right)=-s d^{3} \neq 0$.

Let $\mathscr{O}_{\ell^{\prime \prime}}=\left\{\ell^{\prime \prime} \varphi \mid \varphi \in G_{q}^{P_{0}^{\mathrm{A}}}\right\}$. We find $\# \mathscr{O}_{\ell^{\prime \prime}}$. Let $\varphi_{1}, \varphi_{2} \in G_{q}^{P_{0}^{\mathrm{A}}}, \varphi_{1} \neq \varphi_{2}$, $Q^{\prime \prime}=P^{\prime \prime} \varphi_{1}, R^{\prime \prime}=P^{\prime \prime} \varphi_{2}$. By (7.1) with $d_{1}, d_{2} \neq 0$,

$$
Q^{\prime \prime}=\mathbf{P}\left(1,-b_{1} d_{1}, d_{1}^{2}, 0\right), R^{\prime \prime}=\mathbf{P}\left(1,-b_{2} d_{2}, d_{2}^{2}, 0\right)
$$

Obviously, $\ell^{\prime \prime} \varphi_{1} \neq \ell^{\prime \prime} \varphi_{2}$ if and only if $P_{0}^{\mathrm{A}}, Q^{\prime \prime}, R^{\prime \prime}$ are not collinear, i.e. if and only if the matrix $\mathbf{D}^{\prime \prime}=\left[P_{0}^{\mathrm{A}}, Q^{\prime \prime}, R^{\prime \prime}\right]^{t r}$ has maximum rank. We have

$$
\operatorname{det}_{1}\left(\mathbf{D}^{\prime \prime}\right)=\operatorname{det}_{2}\left(\mathbf{D}^{\prime \prime}\right)=\operatorname{det}_{3}\left(\mathbf{D}^{\prime \prime}\right)=0, \operatorname{det}_{4}\left(\mathbf{D}^{\prime \prime}\right)=\left(d_{1}+d_{2}\right)\left(d_{1}-d_{2}\right)
$$

If $d_{1}=d_{2}, \operatorname{det}_{4}\left(\mathbf{D}^{\prime \prime}\right)=0 \forall b$; if $d_{1}=-d_{2}, \operatorname{det}_{4}\left(\mathbf{D}^{\prime \prime}\right)=0 \forall b$. It means that $\# \mathscr{O}_{\ell^{\prime \prime}}=\frac{1}{2}(q-1)$. It holds $\ell^{\prime \prime \prime} \notin \mathscr{O}_{\ell^{\prime \prime}}$. In fact, if $\ell^{\prime \prime \prime} \in \mathscr{O}_{\ell^{\prime \prime}}, \varphi \in G_{q}^{P_{\mathrm{O}}^{\mathrm{A}}}$ such that $P_{0}^{\mathrm{A}}, P^{\prime \prime} \varphi, P^{\prime \prime \prime}$ are collinear would exist. It means that the matrix $\mathbf{D}_{\varphi}^{\prime \prime}=\left[P_{0}^{\mathrm{A}}, P^{\prime \prime} \varphi, P^{\prime}\right]^{t r}$ should have rank 2 , but as $P^{\prime \prime} \varphi=\mathbf{P}\left(1,-b d, d^{2}, 0\right)$, we have $\operatorname{det}_{4}\left(\mathbf{D}_{\varphi}^{\prime \prime}\right)=d^{2}-\rho \neq 0$ as ρ is not a square.

Let $\mathscr{O}_{\ell^{\prime \prime \prime}}=\left\{\ell^{\prime \prime \prime} \varphi \mid \varphi \in G_{q}^{P_{0}^{\mathrm{A}}}\right\}$. We find $\# \mathcal{O}_{\ell^{\prime \prime \prime}}$. Let $\varphi_{1}, \varphi_{2} \in G_{q}^{P^{\mathrm{A}}}, \varphi_{1} \neq \varphi_{2}$, $Q^{\prime \prime \prime}=P^{\prime \prime \prime} \varphi_{1}, R^{\prime \prime \prime}=P^{\prime \prime \prime} \varphi_{2}$. By (7.1) with $d_{1}, d_{2} \neq 0$, we have

$$
Q^{\prime \prime \prime}=\mathbf{P}\left(1,-\rho b_{1} d_{1}, \rho d_{1}^{2}, 0\right), R^{\prime \prime \prime}=\mathbf{P}\left(1,-\rho b_{2} d_{2}, \rho d_{2}^{2}, 0\right)
$$

Obviously, $\ell^{\prime \prime \prime} \varphi_{1} \neq \ell^{\prime \prime \prime} \varphi_{2}$ if and only if $P_{0}^{\mathrm{A}}, Q^{\prime \prime \prime}, R^{\prime \prime \prime}$ are not collinear, i.e. if and only if the matrix $\mathbf{D}^{\prime \prime \prime}=\left[P_{0}^{\mathrm{A}}, Q^{\prime \prime \prime}, R^{\prime \prime \prime}\right]^{t r}$ has maximum rank. We have

$$
\operatorname{det}_{1}\left(\mathbf{D}^{\prime \prime \prime}\right)=\operatorname{det}_{2}\left(\mathbf{D}^{\prime \prime \prime}\right)=\operatorname{det}_{3}\left(\mathbf{D}^{\prime \prime \prime}\right)=0, \operatorname{det}_{4}\left(\mathbf{D}^{\prime \prime \prime}\right)=\rho\left(d_{1}+d_{2}\right)\left(d_{1}-d_{2}\right)
$$

If $d_{1}=d_{2}, \operatorname{det}_{4}\left(\mathbf{D}^{\prime \prime \prime}\right)=0 \forall b$; if $d_{1}=-d_{2}, \operatorname{det}_{4}\left(\mathbf{D}^{\prime \prime \prime}\right)=0 \forall b$. It means that $\# \mathcal{O}_{\ell^{\prime \prime \prime}}=\frac{1}{2}(q-1)$. As $\mathscr{O}_{\ell^{\prime}}, \mathscr{O}_{\ell^{\prime \prime}}, \mathscr{O}_{\ell^{\prime \prime \prime}}$ are pairwise disjoint and by Lemma $7.12 \# \mathbb{O}_{\mathrm{EA}_{0}}=q(q-1),\left\{\mathscr{O}_{\ell^{\prime}}, \mathscr{O}_{\ell^{\prime \prime}}, \mathscr{O}_{\ell^{\prime \prime \prime}}\right\}$ is a partition of $\mathbb{O}_{\mathrm{EA}_{0}}$. Then, by Lemma 7.11, $\left\{\mathscr{O}_{\ell^{\prime}} G_{q}, \mathscr{O}_{\ell^{\prime \prime}} G_{q}, \mathscr{O}_{\ell^{\prime \prime \prime}} G_{q}\right\}$ is a partition of $\mathcal{O}_{\text {EA }}$. By Lemma 7.9, $\# \mathscr{O}_{\ell^{\prime}} G_{q}=q(q-1)(q+1), \# \mathscr{O}_{\ell^{\prime \prime}} G_{q}=\# \mathscr{O}_{\ell^{\prime \prime \prime}} G_{q}=\frac{1}{2}(q-1)(q+1)$.

8 Open problems for EnГ-lines and their solutions for $5 \leq q \leq 37$ and $q=64$

We introduce sets $Q_{\bullet}^{(\xi)}$ of q values with the natural subscripts "od" and "ev".

$$
Q_{\mathrm{od}}^{(0)}=\{9,27\}, Q_{\mathrm{od}}^{(1)}=\{7,13,19,25,31,37\}, Q_{\mathrm{od}}^{(-1)}=\{5,11,17,23,29\} ;
$$

$$
Q_{\mathrm{ev}}=\{8,16,32,64\} .
$$

Theorem 8.1 has been proved by an exhaustive computer search using the symbol calculation system Magma [4].

Theorem 8.1. For $q \in Q_{\mathrm{od}}^{(1)} \cup Q_{\mathrm{od}}^{(-1)} \cup Q_{\mathrm{od}}^{(0)}$ and $q \in Q_{\mathrm{ev}}$, all the results of Sections 3-7 are confirmed by computer search. In addition, the following holds, see Notation 2.1.
(i) Let $q \equiv \xi(\bmod 3), \xi \in\{1,-1,0\}$. Let $q \in Q_{\text {od }}^{(1)} \cup Q_{\text {od }}^{(-1)} \cup Q_{\text {od }}^{(0)}$ be odd. Then we have the following:
The total number of $\mathrm{En} \Gamma$-line orbits is $L_{\mathrm{En} \Gamma \Sigma}^{(\xi) \mathrm{od}}=2 q-3+\xi$.
The total number of line orbits in $\mathrm{PG}(3, q)$ is $L_{\Sigma}^{(\xi)}=2 q+7+\xi$.
Under G_{q}, for $\mathrm{En} \Gamma$-lines with $\xi \in\{1,-1,0\}$, there are $\left(2 q-6-4.5 \xi^{2}-0.5 \xi\right) / 3$ orbits of length $\left(q^{3}-q\right) / 4$, $q-1 \quad$ orbits of length $\left(q^{3}-q\right) / 2$, $(q-\xi) / 3 \quad$ orbits of length $q^{3}-q$.
In addition, for $q \in Q_{\mathrm{od}}^{(1)}$, there are
1 orbit of length $\left(q^{3}-q\right) / 12$,
2 orbits of length $\left(q^{3}-q\right) / 3$.
(ii) $\operatorname{Let} q \equiv \xi(\bmod 3), \xi \in\{1,-1\}$. Let $q \in Q_{\mathrm{ev}}$ be even. Then we have the following:
The total number of EnГ-line orbits is $L_{\mathrm{En} \mathrm{\Gamma} \mathrm{\Sigma}}^{(\xi) \mathrm{ev}}=2 q-2+\xi$.
The total number of line orbits in $\mathrm{PG}(3, q)$ is $L_{\Sigma}^{(\xi)}=2 q+7+\xi$.
Under G_{q}, for $\mathrm{En} \Gamma$-lines, there are
$2+\xi$ orbits of length $\left(q^{3}-q\right) /(2+\xi)$;
$2 q-4$ orbits of length $\left(q^{3}-q\right) / 2$.
Conjecture 8.2. The results of Theorem 8.1 hold for all $q \geq 5$ with the corresponding parity and ξ value.

Open problems. Find the number, sizes and the structures of orbits of the class $\mathcal{O}_{6}=\mathcal{O}_{\mathrm{En} \mathrm{\Gamma}}$ (i.e. external lines, other than chord, not in a Γ-plane). Prove the corresponding results of Theorem 8.1 for all $q \geq 5$.

Acknowledgments

The research of S. Marcugini, and F. Pambianco was supported in part by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INDAM) and by University of Perugia (Project: Curve, codici e configurazioni di punti, Base Research Fund 2018).

References

[1] S. Ball, M. Lavrauw, Arcs in finite projective spaces, EMS Surv. Math. Sci. 6(1/2) (2019) 133-172, https : //dx.doi.org/10.4171/EMSS/33.
[2] D. Bartoli, A.A. Davydov, S. Marcugini, F. Pambianco, On planes through points off the twisted cubic in $\mathrm{PG}(3, \mathrm{q})$ and multiple covering codes, Finite Fields Appl. 67, Oct. 2020, paper 101710, https : //doi.org/10.1016/j.ffa.2020.101710.
[3] G. Bonoli, O. Polverino, The twisted cubic in $\mathrm{PG}(3, q)$ and translation spreads in $H(q)$, Discrete Math. 296 (2005) 129-142,
https : //doi.org/10.1016/j.disc.2005.03.010.
[4] W. Bosma, J. Cannon, C. Playoust, The Magma Algebra System. I. The User Language, J. Symbolic Comput. 24 (1997) 235-265, https : //doi.org/10.1006/jsco.1996.0125.
[5] A.A. Bruen and J.W.P. Hirschfeld, Applications of line geometry over finite fields I: The twisted cubic, Geom. Dedicata 6 (1977) 495-509, https : //doi.org/10.1007/BF00147786.
[6] I. Cardinali, G. Lunardon, O. Polverino, R. Trombetti, Spreads in $H(q)$ and 1-systems of $Q(6, q)$, European J. Combin. 23 (2002) 367-376, https : //dx.doi.org/10.1006/eujc.2001.0578.
[7] L.R.A. Casse, Projective Geometry: An Introduction, Oxford Univ. Press, New-York, 2006.
[8] L.R.A. Casse and D.G. Glynn, The solution to Beniamino Segre's problem $I_{r, q}, r=3, q=2^{h}$, Geom. Dedicata 13 (1982) 157-163, https : //doi.org/10.1007/BF00147659.
[9] L.R.A. Casse, D.G. Glynn, On the uniqueness of $(q+1)_{4}$-arcs of $\mathrm{PG}(4, q)$, $q=2^{h}, h \geq 3$, Discrete Math. 48(2-3) (1984) 173-186, https : //doi.org/10.1016/0012 - 365X(84)90180-8.
[10] A. Cossidente, J.W.P. Hirschfeld, L. Storme, Applications of line geometry, III: The quadric Veronesean and the chords of a twisted cubic, Austral. J. Combin. 16 (1997) 99-111, https : //ajc.maths.uq.edu.au/pdf/16/ocr - ajc - v16 - p99.pdf.
[11] A.A. Davydov, S. Marcugini, F. Pambianco, Twisted cubic and planeline incidence matrix in $\mathrm{PG}(3, q)$, arXiv:2103.11248 [math.CO] (2021), https: //arxiv.org/abs/2103.11248.
[12] M. Giulietti, R. Vincenti, Three-level secret sharing schemes from the twisted cubic, Discrete Math. 310 (2010) 3236-3240, https : //dx.doi.org/10.1016/j.disc.2009.11.040.
[13] J.W.P. Hirschfeld, Projective Geometries over Finite Fields, 2nd edition, Oxford University Press, Oxford, 1999.
[14] J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford University Press, Oxford, 1985.
[15] J.W.P. Hirschfeld, L. Storme, The packing problem in statistics, coding Theory and finite projective spaces: Update 2001, in: A. Blokhuis, J.W.P. Hirschfeld, D. Jungnickel, J.A. Thas (Eds.), Finite Geometries (Proc. 4th Isle of Thorns Conf., July 16-21, 2000), Dev. Math., vol. 3, Dordrecht: Kluwer, 2001, pp. 201-246, https : //dx.doi.org/10.1007/978-1-4613-0283-4_13.
[16] J.W.P. Hirschfeld, J.A. Thas, Open problems in finite projective spaces, Finite Fields Appl. 32 (2015) 44-81, https : //dx.doi.org/10.1016/j.ffa.2014.10.006.
[17] G. Lunardon, O. Polverino, On the Twisted Cubic of $\mathrm{PG}(3, q)$, J. Algebr. Combin. 18 (2003) 255-262, https : //dx.doi.org/10.1023/B : JACO.0000011940.77655.b4.
[18] Maple 16. Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario. https: //www.maplesoft.com/products/maple/.
[19] M. Zannetti, F. Zuanni, Note on three-character $(q+1)$-sets in $\operatorname{PG}(3, q)$, Austral. J. Combin. 47 (2010) 37-40, https: //ajc.maths.uq.edu.au/pdf/47/ajc_v47_p037.pdf.

[^0]: ${ }^{1}$ A.A. Davydov ORCID https : //orcid.org/0000-0002-5827-4560
 ${ }^{2}$ S. Marcugini ORCID https : //orcid.org/0000 - 0002-7961-0260
 ${ }^{3}$ F. Pambianco ORCID https : //orcid.org/0000-0001-5476-5365

