Large Deviation Limits of Invariant Measures

Anatolii Puhalskii
Institute for Problems in Information Transmission, Moscow

Chebyshev 200

The setup

- Suppose $X_{n}=\left(X_{n}(t), t \geq 0\right)$ are \mathbb{S}-valued stochastic processes on $(\Omega, \mathcal{F}, \mathbf{P})$ with invariant measures P_{n}, i.e., $\mathbf{P}\left(X_{n}(t) \in \Gamma\right)=P_{n}(\Gamma)$
- Suppose the X_{n} satisfy a trajectorial LDP as random elements of $\mathbb{D}\left(\mathbb{R}_{+}, \mathbb{S}\right)$
- What about an LDP for the P_{n} ?

The fundamental example: diffusions in \mathbb{R}^{d}

$$
d X_{n}(t)=b\left(X_{n}(t)\right) d t+\frac{1}{\sqrt{n}} d W(t), X_{n}(0)=x \in \mathbb{R}^{d}
$$

The LDP with I such that, for absolutely continuous $X=(X(t), t \geq 0)$ with $X(0)=x$,

$$
\mathbf{I}(X)=\frac{1}{2} \int_{0}^{\infty}|\dot{X}(t)-b(X(t))|^{2} d t
$$

If the differential equation

$$
\begin{equation*}
\dot{X}(t)=b(X(t)) \tag{1}
\end{equation*}
$$

has a unique equilibrium O which is asymptotically stable, "then" (Freidlin and Wentzell, 1979), the P_{n} satisfy the LDP in \mathbb{R}^{d} with

$$
V(x)=\inf _{t \geq 0 X: X(0)=O, X(t)=x} \inf I(X)
$$

LDP and LD convergence

Measures Q_{n} on $(\mathbb{M}, \mathcal{M})$ satisfy the LDP with deviation function (a.k.a. action functional, a.k.a. rate function) I (for rate n) provided

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} \frac{1}{n} \ln Q_{n}(H) \geq-\inf _{X \in \operatorname{int} H} \mathbf{I}(X) \\
& \limsup _{n \rightarrow \infty} \frac{1}{n} \ln Q_{n}(H) \leq-\inf _{X \in \mathrm{cl} H} \mathbf{I}(X)
\end{aligned}
$$

$\mathbf{I}: \mathbb{M} \rightarrow[0, \infty]$ with $\mathbf{I}^{-1}[0, a]$ compact, $a \geq 0$ For "nice" sets H,

$$
\lim _{n \rightarrow \infty} Q_{n}(H)^{1 / n}=\underbrace{\sup _{x \in H} \underbrace{e^{-\mathbf{l}(x)}}_{\boldsymbol{\Pi}(x)}}_{\boldsymbol{\Pi}(H)}
$$

The Q_{n} LD converge to (deviability, or max measure) Π

Weak Convergence of Invariant Measures

Suppose $Y_{n} \rightarrow Y$ in distribution for certain initial conditions and the Y_{n} have invariant measures μ_{n}
If $\mu_{n} \rightarrow \mu$ weakly along a subsequence, "then" μ is invariant for Y
If the μ_{n} are tight and Y has a unique invariant measure μ then $\mu_{n} \rightarrow \mu$ weakly
Prohorov's theorem is the key

LD Relative Compactness

A sequence Q_{n} is said to be exponentially tight if, for arbitrary $\epsilon>0$, there exists compact $K \subset \mathbb{M}$ such that

$$
\limsup _{n \rightarrow \infty} Q_{n}\left(K^{c}\right)^{1 / n}<\epsilon
$$

If Q_{n} is exponentially tight, then Q_{n} is LD relatively compact, i.e., for any subsequence n^{\prime}, there exists a further subsequence $n^{\prime \prime}$ such that the $Q_{n^{\prime \prime}}$ LD converge at rate $n^{\prime \prime}$ Any such limit is dubbed an LD limit point

Fluxes Across Cuts and Max Balance Equations

 Suppose that $\mathcal{L}\left(X_{n} \mid X_{n}(0)=x_{n}\right)$ LD converge to $\boldsymbol{\Pi}_{x}$ whenever $x_{n} \rightarrow x$ and $\boldsymbol{\Pi}_{x}(X)=0$ unless X is continuous. Then $\mathcal{L}\left(X_{n}(t) \mid X_{n}(0)=x_{n}\right)$ LD converge to $\boldsymbol{\Pi}_{x, t}$, where$$
\boldsymbol{\Pi}_{x, t}(y)=\sup _{\substack{x \in \mathbb{D}(\mathbb{R}+, S): \\ x(0)=x, X(t)=y}} \boldsymbol{\Pi}_{x}(X)
$$

For $\Gamma \in \mathcal{B}(\mathbb{S})$,

$$
\begin{gather*}
\hline \int_{\Gamma} \mathbf{P}\left(X_{n}(t) \in \Gamma^{c} \mid X_{n}(0)=x\right) P_{n}(d x) \tag{2}\\
= \\
\int_{\Gamma^{c}} \mathbf{P}\left(X_{n}(t) \in \Gamma \mid X_{n}(0)=x\right) P_{n}(d x)
\end{gather*}
$$

If Π is an LD limit point of the P_{n}, then, for "nice" sets Γ,

$$
\begin{equation*}
\sup _{x \in \Gamma} \sup _{y \in \Gamma^{c}} \boldsymbol{\Pi}_{x, t}(y) \boldsymbol{\Pi}(x)=\sup _{x \in \Gamma^{c}} \sup _{y \in \Gamma} \boldsymbol{\Pi}_{x, t}(y) \boldsymbol{\Pi}(x) \tag{3}
\end{equation*}
$$

Attractor and Continuity Hypotheses

There exists set A, which is locally finite in the sense that compact subsets of \mathbb{S} contain at most finitely many of the elements of A, such that the following hold:
(1) if $\Pi_{x}(X)=1$, then $\inf _{t \geq 0} d(X(t), A)=0$
(2) if $X(t)=a$, for all $t \geq 0$, then $\Pi_{a}(X)=1$, where $a \in A$
(3) if $a, a^{\prime} \in A$, then $\Pi_{a, t}\left(a^{\prime}\right)>0$, for some $t \geq 0$
(4) for any $\epsilon>0$, there exists $\delta>0$ such that if $d(x, A)<\delta$, then $\boldsymbol{\Pi}_{x, s}(a)>1-\epsilon$ and $\boldsymbol{\Pi}_{a, s^{\prime}}(x)>1-\epsilon$, for some $s \geq 0, s^{\prime} \geq 0$, and $a \in A$
(5) for arbitrary $x \in \mathbb{S}$ and $\epsilon>0$, there exist $\delta>0, t \geq 0$ and $t^{\prime} \geq 0$ such that $\boldsymbol{\Pi}_{x, t}\left(x^{\prime}\right)>1-\epsilon$ and $\boldsymbol{\Pi}_{x^{\prime}, t^{\prime}}(x)>1-\epsilon$ whenever $d\left(x, x^{\prime}\right)<\delta$

Limits of Transition Deviabilities

Suppose, in addition, that
$-\boldsymbol{\Pi}_{x}(X)=\boldsymbol{\Pi}_{x}\left(\pi_{s}^{-1}\left(\pi_{s} X\right)\right) \boldsymbol{\Pi}_{X_{s}}\left(\theta_{s} X\right)$, where

$$
\pi_{s} X=(X(t), t \in[0, s]) \text { and } \theta_{s} X=(X(s+t), t \geq 0)
$$

- The net $\left(\boldsymbol{\Pi}_{x, t}(y), y \in \mathbb{S}\right), t \geq 0$, is tight uniformly over x from compact sets: for arbitrary $\epsilon>0$ and compact K_{1}, there exists compact K_{2} such that

$$
\limsup _{t \rightarrow \infty} \sup _{x \in K_{1}} \Pi_{x, t}\left(K_{2}^{c}\right)<\epsilon
$$

Then, there exist the limits

$$
\boldsymbol{\Pi}(x, y)=\lim _{t \rightarrow \infty} \boldsymbol{\Pi}_{x, t}(y)
$$

LD Limits

Let Π represent an LD limit point of P_{n}. Then we have the max balance equations that, for arbitrary partitions $\left\{A^{\prime}, A^{\prime \prime}\right\}$ of A,

$$
\begin{equation*}
\sup _{x \in A^{\prime}} \sup _{y \in A^{\prime \prime}} \boldsymbol{\Pi}(x, y) \boldsymbol{\Pi}(x)=\sup _{x \in A^{\prime \prime}} \sup _{y \in A^{\prime}} \boldsymbol{\Pi}(x, y) \boldsymbol{\Pi}(x) \tag{4}
\end{equation*}
$$

and we have that $\Pi(A)=1$
These equations specify the restriction of Π to A uniquely Also, for all $x \in \mathbb{S}$,

$$
\begin{equation*}
\boldsymbol{\Pi}(x)=\sup _{y \in A} \boldsymbol{\Pi}(y, x) \boldsymbol{\Pi}(y) \tag{5}
\end{equation*}
$$

Theorem 1
If the sequence P_{n} is exponentially tight and the above hypotheses hold, then the sequence P_{n} is $L D$ convergent

The Solution to the Max Balance Equations (Freidlin and Wentzell (1979))

Given $a \in A$, let $G_{A}(a)$ denote the set of directed graphs that are in-trees with root a on the vertex set A. Thus, if $g \in G_{A}(a)$, then, for every $a^{\prime} \in A$, there exists a unique directed path from a^{\prime} to a in g. Let $E(g)$ denote the set of edges of g. Each edge $e=\left(a^{\prime}, a^{\prime \prime}\right) \in E(g)$ is assigned the weight $v(e)=\Pi\left(a^{\prime}, a^{\prime \prime}\right)$. Let $w(g)=\prod_{e \in E(g)} v(e)$
For $a \in A$,

$$
\Pi(a)=\frac{\sup _{g \in G_{A}(a)} w(g)}{\sup _{a^{\prime} \in A} \sup _{g \in G_{A}\left(a^{\prime}\right)} w(g)}
$$

LDPs for Invariant Measures of Processes in \mathbb{R}^{d}

Suppose that

$$
\mathbf{I}_{x}(X)=\int_{0}^{\infty} L(X(t), \dot{X}(t)) d t
$$

provided X is absolutely continuous and $X(0)=x$, and $\mathbf{I}_{x}(X)=\infty$, otherwise
Examples:

- jump diffusions
- slow-fast diffusions

Let A represent a set of equilibiria of $L(X(t), \dot{X}(t))=0$, which has a nonempty intersection with the set of the ω-limit points of each $x \in \mathbb{R}^{d}$. Assume also that the function $L(x, y)$ is bounded when y belongs to an arbitrary bounded set and when x belongs either to an arbitrary bounded set or to some neighbourhood of A. Then the attractor and continuity hypotheses hold

