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Abstract

We consider the structure of the point-line incidence matrix of the projective
space PG(3, q) connected with orbits of points and lines under the stabilizer group
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of two or three line orbits, the original submatrices are split into new ones, in
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1 Introduction

Let Fq be the Galois field with q elements. Let PG(N, q) be the N -dimensional projective
space over Fq. An n-arc in PG(N, q), with n ≥ N + 1 ≥ 3, is a set of n points such that
no N + 1 points belong to the same hyperplane of PG(N, q), see [1] and the references
therein. For an introduction to projective geometry over finite fields see [20, 22, 23].

In PG(N, q), 2 ≤ N ≤ q − 2, a normal rational curve is a (q + 1)-arc projectively
equivalent to the arc {(tN , tN−1, . . . , t2, t, 1) : t ∈ Fq} ∪ {(1, 0, . . . , 0)}. In PG(3, q), the
normal rational curve is called a twisted cubic [21, 23].

The twisted cubic has many interesting properties and is connected with distinct com-
binatorial and applied problems, see e.g. [3–5,7–11,14–18,21–23,26,28] and the references
therein. In particular, using properties of the twisted cubic, spreads in PG(3, q) are stud-
ied [7,8,26], optimal multiple covering codes are constructed [3], the weight distributions
of cosets and their leaders for the Reed-Solomon codes are obtained [4,14], the three-level
secret sharing schemes are considered [17].

In investigations of the twisted cubic, an important direction is to determine the
matrices of the incidences between points, planes, and lines partitioned into orbits under
the group Gq fixing the cubic. The orbits of planes and points are known and described
in detail [21]. The point-plane incidence matrix of PG(3, q) for all q ≥ 2 is given in [3]
where the numbers of distinct planes through distinct points and, conversely, the numbers
of distinct points lying in distinct planes are obtained. (By “distinct planes” we mean
“planes from distinct orbits”, and similarly for points and lines.)

For plane-line and point-line incidence matrices a description of line orbits is needed.
In [21], the lines in PG(3, q) are partitioned into classes, each of which is a union of
line orbits under Gq; see Section 2.2. Apart from one class (which is denoted by O6), the
number and the structure of the orbits forming those unions are independently considered
by distinct methods in [16, Sections 3, 8] (for all q ≥ 2), [4, Section 7] (for all q ≥ 23),
and [18] (for finite fields of characteristic > 3); see also the references therein.

The classification of the line orbits in the class O6 is an open problem.
The results on line orbits from [4, 16, 18] are in accordance with each other. The

representation and description of the orbits in these papers are distinct; in particular,
in [16], the orbits are given in a form which is convenient for the investigations in [15].
More precisely, using the representation of the line orbits in [16], the plane-line incidence
matrix of PG(3, q) is given in [15] where, apart from O6, for all q ≥ 2, the numbers of
distinct planes through distinct lines and, vice versa, the numbers of distinct lines lying
in distinct planes are obtained. For O6, the corresponding average values are calculated.

In [18], apart from O6, for odd q 6≡ 0 (mod 3) the numbers of distinct planes through
distinct lines (called “the plane orbit distribution of a line”) and the numbers of distinct
points lying on distinct lines (called “the point orbit distribution of a line”) are obtained.
For finite fields of characteristic > 3, the results of [18] on “the plane orbit distribution
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of a line” are in accordance with those from [15] on plane-line incidence matrix.
The results of [18] on “the point orbit distribution of a line” are an important step

towards the point-line incidence matrix. However, these results are obtained only for odd
q 6≡ 0 (mod 3) and the computation of the numbers of distinct lines through distinct
points has been left open.

In this paper, we obtain the point-plane incidence matrix for all q ≥ 2, leaving open
the questions related to O6.

We consider the structure of the point-line incidence matrix with respect to Gq. We
use the partitions of planes and lines into orbits and unions of orbits under the group
Gq, as described in [16, 21]. We search the structures of the submatrices with incidences
between an orbit of points and a union of line orbits. For the unions consisting of two or
three line orbits, the original submatrices are split into new ones, in which the incidences
are also considered. For each submatrix (apart from the ones related to O6), the numbers
of distinct points lying on distinct lines and, conversely, the numbers of distinct lines
through distinct points are obtained. This corresponds to the numbers of ones in columns
and rows of the submatrices.

The results noted are obtained for all q ≥ 2 including even q and q ≡ 0 (mod 3).
Thus, the gaps of [18] in the point-line incidence matrix are filled.

For O6, some average and cumulative values are calculated.
Many submatrices considered are configurations in the sense of [19], see Definition 2

in Section 2.4. Such configurations are useful in several distinct areas, in particular, to
construct bipartite graph codes without the so-called 4-cycles, see e.g. [2, 13, 24] and the
references therein.

The paper is organized as follows. Section 2 contains preliminaries. In Section 3, the
main results of this paper are summarized. Some useful relations are given in Section 4.
The numbers of distinct points lying on distinct lines and, vice versa, the numbers of
distinct lines through distinct points are obtained in Sections 5 (for even and odd q 6≡ 0
(mod 3)) and 6 (for q ≡ 0 (mod 3)). Some general results are given in Section 7.

2 Preliminaries

Throughout the paper, we consider orbits of lines and points under Gq apart from Theorem
6 in Section 3.

2.1 Twisted cubic

In this subsection, including Theorem 1, we summarize some results from [21] useful in
this paper.
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The space PG(N, q) contains θN,q points and hyperplanes, and βN,q lines;

θN,q =
qN+1 − 1

q − 1
, βN,q =

(qN+1 − 1)(qN+1 − q)

(q2 − 1)(q2 − q)
. (2.1)

Let π(c0, c1, c2, c3) be the plane of PG(3, q) with equation

c0x0 + c1x1 + c2x2 + c3x3 = 0, ci ∈ Fq. (2.2)

We denote F
∗
q = Fq \ {0}, F+

q = Fq ∪ {∞}. Let P(x0, x1, x2, x3) ∈ PG(3, q) be a point
with homogeneous coordinates xi ∈ Fq. Let P (t) be a point with

t ∈ F
+
q ; P (t) = P(t3, t2, t, 1) if t ∈ Fq; P (∞) = P(1, 0, 0, 0). (2.3)

Let C ⊂ PG(3, q) be the twisted cubic in the canonical form

C = {P1, P2, . . . , Pq+1} = {P (t) | t ∈ F
+
q }. (2.4)

where P1, . . . , Pq+1 are points no four of which are coplanar.
The osculating plane πosc(t) at the point P (t) ∈ C has the form

πosc(t) = π(1,−3t, 3t2,−t3) if t ∈ Fq; πosc(∞) = π(0, 0, 0, 1). (2.5)

The q + 1 osculating planes form the osculating developable Γ to C . For q ≡ 0 (mod 3),
the osculating developable is a pencil of planes.

Definition 1. (i) A chord of C is a line through a pair of real points of C or a pair of
complex conjugate points. If the real points coincide with each other, the chord is
a tangent to C ; if they are distinct, we have a real chord. For a pair of complex
conjugate points, we have an imaginary chord.

(ii) An axis of Γ is a line of PG(3, q) which is the intersection of a pair of real planes
or complex conjugate planes of Γ. If the real planes coincide with each other, the
axis is a tangent to C ; if they are distinct it is a real axis. For complex conjugate
planes, we have an imaginary axis.

The null polarity A [20, Sections 2.1.5, 5.3], [21, Theorem 21.1.2] is given by

P(x0, x1, x2, x3)A = π(x3,−3x2, 3x1,−x0), q 6≡ 0 (mod 3). (2.6)

Notation 1 We consider q ≡ ξ (mod 3), ξ ∈ {−1, 0, 1}. Values depending of ξ are
noted by remarks or by superscripts “(ξ)”. The remarks and superscripts “(ξ)” are not
used if a value is the same for all q or a property holds for all q, or it is not relevant,
or it is clear by the context. If a value is the same for ξ = −1, 1, then one may use the
superscript “ 6= 0”. Also, in superscripts, instead of “•”, one can write “ev” for even q or
“od” for odd q. If a value is the same for even and odd q, we may omit “•”.

The following notation is used.

Gq the group of projectivities in PG(3, q) fixing C ;
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Zn cyclic group of order n;

Sn symmetric group of degree n;

Atr the transposed matrix of A;

#S the cardinality of a set S;

AB the line through the points A and B;

, the sign “equality by definition”.

Types π of planes:

Γ-plane an osculating plane of Γ;

dC -plane a plane containing exactly d distinct points of C , d = 0, 2, 3;

1C -plane a plane not in Γ containing exactly 1 point of C ;

P the list of possible types π of planes, P , {Γ, 2C , 3C , 1C , 0C};

π-plane a plane of type π ∈ P;

Nπ the orbit of π-planes under Gq, π ∈ P.

Types p of points with respect to the twisted cubic C :

C -point a point of C ;

µΓ-point a point off C lying on exactly µ distinct osculating planes;

T-point a point off C on a tangent to C for ξ 6= 0;

TO-point a point off C on a tangent and one osculating plane for ξ = 0;

RC-point a point off C on a real chord;

IC-point a point on an imaginary chord (it always is off C );

M(ξ) the list of possible types p of points,

M(6=0) , {C , 0Γ, 1Γ, 3Γ,T,RC, IC},

M(0) , {C , (q + 1)Γ,TO,RC, IC};

M
(ξ)
p the orbit of p-points under Gq, p ∈ M(ξ).

Types λ of lines with respect to the twisted cubic C :

RC-line a real chord of C ;

RA-line a real axis of Γ for ξ 6= 0;

T-line a tangent to C ;

IC-line an imaginary chord of C ;

IA-line an imaginary axis of Γ for ξ 6= 0;

UΓ a non-tangent unisecant in a Γ-plane;

UnΓ-line a unisecant not in a Γ-plane (it is always non-tangent);
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EΓ-line an external line in a Γ-plane (it cannot be a chord);

EnΓ-line an external line, other than a chord, not in a Γ-plane;

A-line the axis of the pencil of Γ-planes for ξ = 0;

EA-line an external line meeting the axis of Γ for ξ = 0;

L(ξ) the list of possible types λ of lines,

L(6=0) , {RC,RA,T, IC, IA,UΓ,UnΓ,EΓ,EnΓ} for ξ 6= 0,

L(0) , {RC,T, IC,UΓ,UnΓ,EnΓ,A,EA} for ξ = 0;

λ-line a line of type λ ∈ L(ξ);

Orbits of lines. Plane-line incidence matrix. π ∈ P, λ ∈ L(ξ)

L
(ξ)•
λΣ the total number of orbits of λ-lines;

Oλ the union (class) of all L
(ξ)•
λΣ orbits of λ-lines;

Oλj
the j-th orbit of the class Oλ, j = 1, . . . , L

(ξ)•
λΣ , Oλ =

L
(ξ)•
λΣ⋃

j=1

Oλj
;

Oij the j-th orbit of the class Oi;

λj-lines λ-lines forming the j-th orbit Oλj
of the class Oλ;

Λ
(ξ)•
λj ,π

the number of lines from an orbit Oλj
in a π-plane;

Λ
(ξ)•
λ,π the total number of λ-lines in a π-plane;

Π
(ξ)•
π,λj

the exact number of π-planes through a line of an orbit Oλj
;

Π
(ξ)•
π,λ the average number of π-planes through a λ-line over all the

λ-lines; if the class Oλ consists of a single orbit then Π
(ξ)
π,λ

is the exact number of π-planes through each λ-line;

IΠΛ the β3,q × θ3,q plane-line incidence matrix of PG(3, q);

IΠΛ
π,λ the #Oλ ×#Nπ submatrix of IΠΛ with incidences between

π-planes and λ-lines;

IΠΛ
π,λj

the #Oλj
×#Nπ submatrix of IΠΛ

π,λ with incidences between

π-planes and λj-lines.

Theorem 1. [21, Chapter 21] The following properties of the twisted cubic C of (2.4)
hold:

(i) The group Gq acts triply transitively on C .

Also, Gq
∼= PGL(2, q) for q ≥ 5;

6



G4
∼= S5

∼= PΓL(2, 4) ∼= Z2PGL(2, 4); G3
∼= S4Z

3
2; G2

∼= S3Z
3
2.

The matrix M corresponding to a projectivity of Gq has the general form

M =




a3 a2c ac2 c3

3a2b a2d+ 2abc bc2 + 2acd 3c2d
3ab2 b2c+ 2abd ad2 + 2bcd 3cd2

b3 b2d bd2 d3


 , a, b, c, d ∈ Fq, ad− bc 6= 0. (2.7)

(ii) (a) Under Gq, q ≥ 5, there are the following five orbits Nj of planes:

N1 = NΓ = {Γ-planes}, #N1 = #NΓ = q + 1; (2.8)

N2 = N2C
= {2C -planes}, #N2 = #N2C

= q2 + q;

N3 = N3C
= {3C -planes}, #N3 = #N3C

= (q3 − q)/6;

N4 = N1C
= {1C -planes}, #N4 = #N1C

= (q3 − q)/2;

N5 = N0C
= {0C -planes}, #N5 = #N0C

= (q3 − q)/3.

(b) For q 6≡ 0 (mod 3), the five orbits M
(6=0)
j of points are as follows:

M
(6=0)
1 = M

(6=0)
C

= {C -points}, M
(6=0)
2 = M

(6=0)
T = {T-points}, (2.9)

M
(6=0)
3 = M

(6=0)
3Γ

= {3Γ-points}, M
(6=0)
4 = M

(6=0)
1Γ

= {1Γ-points},

M
(6=0)
5 = M

(6=0)
0Γ

= {0Γ-points}; #M
(6=0)
j = #Nj , j = 1, . . . , 5.

For q ≡ 1 (mod 3), M
(1)
3Γ

∪ M
(1)
0Γ

= {RC-points}, M
(1)
1Γ

= {IC-points}; (2.10)

for q ≡ −1 (mod 3), M
(−1)
3Γ

∪ M
(−1)
0Γ

= {IC-points}, M
(−1)
1Γ

= {RC-points}.

(c) For q ≡ 0 (mod 3), the five orbits M
(0)
j of points are as follows:

M
(0)
1 = M

(0)
C

= {C -points}, M
(0)
2 = M

(0)
(q+1)Γ

= {(q + 1)Γ-points}, (2.11)

#M
(0)
1 = #M

(0)
C

= #M
(0)
2 = #M

(0)
(q+1)Γ

= q + 1;

M
(0)
3 = M

(0)
TO = {TO-points}, #M

(0)
3 = #M

(0)
TO = q2 − 1;

M
(0)
4 = M

(0)
RC = {RC-points}, M

(0)
5 = M

(0)
IC = {IC-points},

#M
(0)
4 = #M

(0)
RC = #M

(0)
5 = #M

(0)
IC = (q3 − q)/2.

(iii) Let q 6≡ 0 (mod 3). The null polarity A (2.6) interchanges C and Γ and their
corresponding chords and axes. We have

M
(6=0)
j A = Nj, j = 1, . . . , 5; M

(6=0)
C

A = NΓ, M
(6=0)
T A = N2C

, (2.12)
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M
(6=0)
3Γ

A = N3C
, M

(6=0)
1Γ

A = N1C
, M

(6=0)
0Γ

A = N0C
.

(iv) For all q, no two chords of C meet off C . Every point off C lies on exactly one
chord of C .

(v) Let q 6≡ 0 (mod 3). No two axes of Γ meet unless they lie in the same plane of Γ.
Every plane not in Γ contains exactly one axis of Γ.

2.2 Orbits of lines under the stabilizer group Gq of the twisted
cubic

Theorem 2. [16, Section 8] Let q ≡ ξ (mod 3), ξ ∈ {1,−1, 0}.

(i) Let 5 ≤ q ≤ 37 and q = 64. Then

(a) For the total number L
(ξ)•
EnΓΣ of orbits of EnΓ-lines we have

L
(ξ)od
EnΓΣ = 2q − 3 + ξ, L

(ξ)ev
EnΓΣ = 2q − 2 + ξ. (2.13)

(b) The total number of line orbits in PG(3, q) is 2q + 7 + ξ.

(ii) Let q be odd, 5 ≤ q ≤ 37. Then under Gq, for EnΓ-lines, there are

(q − ξ)/3 orbits of length q3 − q,

q − 1 orbits of length (q3 − q)/2,

n(ξ)
q orbits of length (q3 − q)/4,

where n
(1)
q = (2q − 11)/3, n

(−1)
q = (2q − 10)/3, n

(0)
q = (2q − 6)/3.

In addition, for q ∈ {7, 13, 19, 25, 31, 37} where q ≡ 1 (mod 3), there are

one orbit of length (q3 − q)/12 and two orbits of length (q3 − q)/3.

(iii) Let q = 8, 16, 32, 64. Then under Gq, for EnΓ-lines, there are

2 + ξ orbits of length (q3 − q)/(2 + ξ) and 2q − 4 orbits of length (q3 − q)/2.

Conjecture 1. [16] The results of Theorem 2 hold for all q ≥ 5 with the corresponding
parity and ξ value.

For odd q 6≡ 0 (mod 3), the conjecture on (2.13) is given also in [18].
The unions (classes) of line orbits are considered in [21, Chapter 21]; they are called

Oi and O′
i = OiA. In [16] (for all q ≥ 2), [4] (for all q ≥ 23), and [18] (for odd q 6≡ 0

(mod 3)), these classes (apart from O6) are investigated; the sizes and the structures of
the orbits forming each class are obtained.

Theorem 3 and Table 1 summarize some results from [4,16,18,21] useful in this paper.
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Table 1: Unions (classes) Oi and O′
i = OiA of line orbits under Gq in PG(3, q), q ≡ ξ

(mod 3), q ≥ 5. Oi = O′
i, i = 2, 4, 6. L

(ξ)•
λΣ is the total number of orbits in the class Oλ.

#Oλj
is the size of the j-th orbit of a class Oλ consisting of 2 or 3 orbits

content #Oλ1

Oi of the size of #Oλ2

O′
i Oλ class the class ξ L

(ξ)od
λΣ L

(ξ)ev
λΣ #Oλ3

O1 ORC RC-lines (q2 + q)/2 any 1 1
O′

1 ORA RA-lines (q2 + q)/2 6= 0 1 1
O2 OT T-lines q + 1 any 1 1
O3 OIC IC-lines (q2 − q)/2 any 1 1
O′

3 OIA IA-lines (q2 − q)/2 6= 0 1 1
O4 OUΓ UΓ-lines q2 + q any 1 2 q + 1

q2 − 1
O5 OUnΓ UnΓ-lines q3 − q any 2 1 (q3 − q)/2

(q3 − q)/2
O′

5 OEΓ EΓ-lines q3 − q 6= 0 2 1 (q3 − q)/2
(q3 − q)/2

O6 OEnΓ EnΓ-lines (q2 − q)(q2 − 1) any L
(ξ)od
EnΓΣ L

(ξ)ev
EnΓΣ

O7 OA A-line 1 0 1 –
O8 OEA EA-lines (q + 1)(q2 − 1) 0 3 – q3 − q

(q2 − 1)/2
(q2 − 1)/2

In the last column of Table 1, the sizes of the orbits Oλj
of a class Oλ consisting

of 2 or 3 orbits are given from top to bottom, e.g. for OEA we have OEA1 = q3 − q,
OEA2 = (q2 − 1)/2, OEA3 = (q2 − 1)/2.

Theorem 3. [4,16,18,21] Let q ≥ 5. The lines of PG(3, q) can be partitioned into classes
called Oi and O′

i, each of which is a union of orbits under Gq. The classification of the
unions (classes) of line orbits is given in Table 1.

If q 6≡ 0 (mod 3) we have

O′
i = OiA, #O′

i = #Oi, i = 1, . . . , 6; Oi = O′
i, i = 2, 4, 6; (2.14)

ORA = ORCA, OIA = OICA, OEΓ = OUnΓA, Oλ = OλA, λ ∈ {T,UΓ,EnΓ}.

In [16, Theorem 3.2], the cases when Table 1 holds for q = 2, 3, 4 are noted.

Theorem 4. [16, Theorem 4.3] Let q 6≡ 0 (mod 3). Let L be an orbit of lines under Gq.
Then LA also is an orbit of lines under Gq.
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In [18], the line orbits are denoted by Li and L⊥
i = LiA, i = 1, . . . , 10. We give the

correspondence between Li and the notations of this paper (in [15, 16] the notations are
the same as in this paper).

L1 = O′
1 = ORA, L2 = O2 = O′

2 = OT, L3 = O4 = O′
1 = OUΓ, (2.15)

L4 = O′
52

= OEΓ2, L5 = O′
51

= OEΓ1 , L6 = L⊥
1 = O1 = ORC,

L7 = L⊥
4 = O52 = OUnΓ2, L8 = L⊥

5 = O51 = OUnΓ1 , L9 = O3 = OIC,

L10 = L⊥
9 = O′

3 = OIA.

2.3 The plane-line incidence matrix of PG(3, q)

The β3,q × θ3,q plane-line incidence matrix IΠΛ of PG(3, q) is considered in [15, 18].
In [15], all q ≥ 2 are considered, including even q and q ≡ 0 (mod 3), see [15, Section

3], where the results of the paper are summarized. In IΠΛ, columns correspond to planes,
rows correspond to lines, and there is an entry “1” if the corresponding line lies in the
corresponding plane. In [15], IΠΛ is partitioned into #Oλ × #Nπ submatrices IΠΛ

π,λ ,

λ ∈ L(ξ), π ∈ P. If L
(ξ)•
λΣ > 1, see Table 1, then IΠΛ

π,λ splits into L
(ξ)•
λΣ submatrices IΠΛ

π,λj
,

j = 1, . . . , L
(ξ)•
λΣ .

The values of Π
(ξ)•
π,λ , Λ

(ξ)•
λ,π for all L

(ξ)•
λΣ and Π

(ξ)•
π,λj

, Λ
(ξ)•
λj ,π

for L
(ξ)•
λΣ = 2, 3 are obtained

in [15] and collected in [15, Tables 1, 2]. For the class O6, the values of Π
(ξ)•
π,λ are average

over all EnΓ-lines.
In [18], for odd q 6≡ 0 (mod 3), the ten orbits Li, see (2.15), are considered and the

corresponding values Π
(ξ)od
π,λ are obtained (they are denoted by OD2(ℓ) and are called “the

plane orbit distribution of a line ℓ”). These results of [18] are in accordance with the ones
of [15].

2.4 The point-line incidence matrix of PG(3, q)

Notation 2 According to Notation 1, let p and λ be the type of a point and of a line
and let M(ξ) and L(ξ) be the lists of the possible types. By default, p ∈ M(ξ), λ ∈ L(ξ).
A p-point is a point of the orbit Mp; a λ-line is a line of the class Oλ. In addition to
Notation 1, the following notation is used:

L
(ξ)•
λj ,p

the number of lines from an orbit Oλj
through a p-point;

L
(ξ)•
λ,p the total number of λ-lines through a p-point;

P
(ξ)•
p,λj

the number of p-points on a line of an orbit Oλj
;

P
(ξ)•
p,λ the average number of p-points on a λ-line over all the λ-lines;
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if the class Oλ consists of a single orbit then P
(ξ)
p,λ is the exact number

of p-points on each λ-line;

IPL the β3,q × θ3,q point-line incidence matrix of PG(3, q);

IPL

p,λ the #Oλ ×#Mp submatrix of IPL with incidences between

p-points and λ-lines;

IPL

p,λj
the #Oλj

×#Mp submatrix of IPL

p,λ with incidences between

p-points and λj-lines.

In IPL, columns correspond to points, rows correspond to lines, and there is an entry
“1” if the corresponding point lies on the corresponding line. Every column and every row
of IPL contains θ2,q and θ1,q ones, respectively, as in PG(3, q), there are θ2,q lines through
every point and θ1,q points in every line. Thus, IPL is a tactical configuration [20, Chapter
2.3], [25, Chapter 7, Section 2]. Moreover, IPL gives a 2-(θ3,q, θ1,q, 1) design [27] since there
is exactly one line through any two points.

Definition 2. [19] A configuration (vr, bk) is an incidence structure of v points and b
lines such that each line contains k points, each point lies on r lines, and two different
points are connected by at most one line. If v = b and, hence, r = k, the configuration is
symmetric, denoted by vk.

For an introduction to configurations see [12, 19] and the references therein.
The transposition (IPL)tr gives the θ3,q × β3,q line-point incidence matrix. It can be

viewed as a (vr, bk) configuration with v = β3,q, b = θ3,q, r = θ1,q, k = θ2,q, as there is at
most one point as the intersection of two different lines.

In [18], for odd q 6≡ 0 (mod 3), the ten orbits Li, see (2.15), are considered and the

corresponding values P
(ξ)od
p,λ , P

(ξ)od
p,λj

are obtained (they are denoted by OD0(ℓ) and are

called “the point orbit distribution of a line ℓ”).
These results of [18] are obtained also in this paper by another way. In this process

we also obtained the values of P
(ξ)ev
p,λ , P

(ξ)ev
p,λj

for even q 6≡ 0 (mod 3) and the values of

L
(ξ)•
λ,p , L

(ξ)•
λj ,p

for all odd and even q 6≡ 0 (mod 3), see the first two tables of Section 3 and
Section 5.

Moreover, in this paper we obtained also values P
(0)od
p,λ , P

(0)od
p,λj

, L
(0)od
λ,p , and L

(0)od
λj ,p

for

q ≡ 0 (mod 3), see the last two tables of Section 3 and Section 6.
As we mentioned above, for the class O6, in this paper only average and cumulative

results are obtained.
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3 The main results

Remark 1. We call P
(ξ)•
p,λ the average number of p-points on a λ-line over all the λ-lines.

If the class Oλ of λ-lines consists of a single orbit, i.e. L
(ξ)•
λΣ = 1, then P

(ξ)•
p,λ is the exact

number of p-points on each λ-line, see Lemma 1. The situation is always clear by the
context. If L

(ξ)•
λΣ = 1 then P

(ξ)•
p,λ certainly is an integer. If λ-lines form two or more orbits,

i.e. L
(ξ)•
λΣ ≥ 2, then P

(ξ)•
p,λ may be not integer as well as an integer.

On the other hand, regardless of the number of orbits in Oλ, for all pairs (p, λ), we

always have the same total number of λ-lines through each p-point, i.e. Λ
(ξ)•
λ,p always is an

integer, again see Lemma 1.

From now on, we consider q ≥ 5, apart from Theorem 6. Theorem 6 is obtained by
an exhaustive computer search using the computer algebra system Magma [6].

Tables 2–5 and Theorem 5 summarize the results of Sections 4–7 for q ≥ 5.
For the point-line incidence matrix IPL of PG(3, q), q ≡ ξ (mod 3), Tables 2 (for q 6≡ 0

(mod 3)) and 4 (for q ≡ 0 (mod 3)) show the values P
(ξ)
p,λ (top entry) and L

(ξ)
λ,p (bottom

entry) for each pair (p, λ), p ∈ M(ξ), λ ∈ L(ξ), where P
(ξ)
p,λ is the exact (if L

(ξ)•
λΣ = 1) or

average (if L
(ξ)•
λΣ ≥ 2) number of p-points on every λ-line, whereas L

(ξ)
λ,p always is the exact

number of λ-lines through every p-point. In other words, P
(ξ)
p,λ is the exact or average

number of ones in every row of the submatrix IPL

p,λ of IPL, whereas L
(ξ)
λ,p always is the

exact number of ones in every column of IPL

p,λ. In Table 2, the superscript (ξ) is ( 6= 0) for

λ ∈ {RA,T, IA,UΓ,EΓ} where the values P
(ξ)
p,λ, L

(ξ)
λ,p are the same for all q 6≡ 0 (mod 3).

The total number of orbits of λ-lines is given in Table 1.
In Table 3, the values P

(ξ)•
p,λj

and L
(ξ)•
λj ,p

are given for the following cases: q ≥ 5, p ∈ M(6=0);

λ = UΓ with even q 6≡ 0 (mod 3) (UΓ1- and UΓ2-lines); λ = UnΓ with odd q ≡ ξ
(mod 3), ξ ∈ {1,−1} (UnΓ1- and UnΓ2-lines for ξ = 1 and ξ = −1); λ = EΓ with odd
q 6≡ 0 (mod 3) (EΓ1- and EΓ2-lines).

In Table 5, the values P
(0)
p,λj

and L
(0)
λj ,p

are given for the following cases: q ≡ 0 (mod 3),

q ≥ 9, p ∈ M(0), λ ∈ {UnΓ,EA}, j = 1, 2 if λ = UnΓ, j = 1, 2, 3 if λ = EA.

Theorem 5. Let q ≥ 5, q ≡ ξ (mod 3). Let notations be as in Section 2 and Nota-
tions 1, 2. The following holds:

(i) In PG(3, q), for the submatrices IPL

p,λ of the point-line incidence matrix IPL, the values

P
(ξ)
p,λ (i.e. the exact or average number of p-points on a λ-line) and L

(ξ)
λ,p (i.e. the

exact number of λ-lines through a p-point) are given in Table 2 (for ξ 6= 0) and
Table 4 (for ξ = 0).

For the submatrices IPL

p,λj
corresponding to each of two orbits of the classes O4 =

OUΓ, O5 = OUnΓ, and O′
5 = OEΓ, the values P

(ξ)•
p,λj

, L
(ξ)•
λj ,p

are given in Table 3 (for

12



Table 2: Values P
(ξ)
p,λ (top entry) and L

(ξ)
λ,p (bottom entry) for submatrices IPL

p,λ of the

point-line incidence matrix of PG(3, q), q ≡ ξ (mod 3), ξ ∈ {1,−1}, q ≥ 5, p ∈ M(6=0),
λ ∈ L(6=0). The superscript (ξ) is ( 6= 0) if a value is the same for all q 6≡ 0 (mod 3)

M
(6=0)
1 M

(6=0)
2 M

(6=0)
3 M

(6=0)
4 M

(6=0)
5

C - T- 3Γ- 1Γ- 0Γ-

Oj λ-lines P
(ξ)
p,λ points points points points points

O′
j #Oλ L

(ξ)
λ,p q + 1 q2 + q 1

6
(q3 − q) 1

2
(q3 − q) 1

3
(q3 − q)

O1 RC-lines P
(1)
p,RC 2 0 1

3
(q − 1) 0 2

3
(q − 1)

1
2
(q2 + q) L

(1)
RC,p q 0 1 0 1

O1 RC-lines P
(−1)
p,RC 2 0 0 q − 1 0

1
2
(q2 + q) L

(−1)
RC,p q 0 0 1 0

O′
1 RA-lines P

(6=0)
p,RA 0 2 q − 1 0 0

1
2
(q2 + q) L

(6=0)
RA,p 0 1 3 0 0

O2 T-lines P
(6=0)
p,T 1 q 0 0 0

O′
2 q + 1 L

(6=0)
T,p 1 1 0 0 0

O3 IC-lines P
(1)
p,IC 0 0 0 q + 1 0

1
2
(q2 − q) L

(1)
IC,p 0 0 0 1 0

O3 IC-lines P
(−1)
p,IC 0 0 1

3
(q + 1) 0 2

3
(q + 1)

1
2
(q2 − q) L

(−1)
IC,p 0 0 1 0 1

O′
3 IA-lines P

(6=0)
p,IA 0 0 0 q + 1 0

1
2
(q2 − q) L

(6=0)
IA,p 0 0 0 1 0

O4 UΓ-lines P
(6=0)
p,UΓ 1 1 1

2
(q − 1) 1

2
(q − 1) 0

O′
4 q2 + q L

(6=0)
UΓ,p q 1 3 1 0

O5 UnΓ-lines P
(1)
p,UnΓ 1 1 1

6
(q − 4) 1

2
q 1

3
(q − 1)

q3 − q L
(1)
UnΓ,p q2 − q q − 1 q − 4 q q − 1

O5 UnΓ-lines P
(−1)
p,UnΓ 1 1 1

6
(q − 2) 1

2
(q − 2) 1

3
(q + 1)

q3 − q L
(−1)
UnΓ,p q2 − q q − 1 q − 2 q − 2 q + 1

O′
5 EΓ-lines P

(6=0)
p,EΓ 0 2 1

2
(q − 2) 1

2
q 0

q3 − q L
(6=0)
EΓ,p 0 2(q − 1) 3(q − 2) q 0

O6 EnΓ-lines P
(1)
p,EnΓ 0 1 q2−3q+4

6(q−1)
(q+1)(q−2)

2(q−1)
q2+1
3(q−1)

O′
6 (q2 − q)· L

(1)
EnΓ,p 0 (q − 1)2 q2− (q + 1)· q2 + 1

(q2 − 1) 3q + 4 (q − 2)

O6 EnΓ-lines P
(−1)
p,EnΓ 0 1 1

6
(q − 2) 1

2
q 1

3
(q + 1)

O′
6 (q2 − q)· L

(−1)
EnΓ,p 0 (q − 1)2 (q − 1)· q2 − q q2 − 1

(q2 − 1) (q − 2)
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Table 3: Values P
(ξ)•
p,λj

(top entry) and L
(ξ)•
λj ,p

(bottom entry) for submatrices IPL

p,λj
of the

point-line incidence matrix of PG(3, q), q ≥ 5, p ∈ M(6=0); j = 1, 2; λ = UΓ with even
q 6≡ 0 (mod 3) (UΓ1- and UΓ2-lines); λ = UnΓ with odd q ≡ ξ (mod 3), ξ ∈ {1,−1}
(UnΓ1- and UnΓ2-lines for ξ = 1 and ξ = −1); λ = EΓ with odd q 6≡ 0 (mod 3) (EΓ1-
and EΓ2-lines)

M
(6=0)
1 M

(6=0)
2 M

(6=0)
3 M

(6=0)
4 M

(6=0)
5

C - T- 3Γ- 1Γ- 0Γ-

Oij λj-lines P
(ξ)
p,λj

points points points points points

O′
ij

#Oλj
L
(ξ)
λj ,p

q + 1 q2 + q q3−q

6
q3−q

2
q3−q

3

O41 UΓ1-lines P
(6=0)ev
p,UΓ1

1 q 0 0 0

q + 1 L
(6=0)ev
UΓ1,p

1 1 0 0 0

O42 UΓ2-lines P
(6=0)ev
p,UΓ2

1 0 1
2
q 1

2
q 0

q2 − 1 L
(6=0)ev
UΓ2,p

q − 1 0 3 1 0

O51 UnΓ1- P
(1)od
p,UnΓ1

1 0 1
6
(q − 1) 1

2
(q + 1) 1

3
(q − 1)

ξ = lines

1 1
2
(q3 − q) L

(1)od
UnΓ1,p

1
2
(q2 − q) 0 1

2
(q − 1) 1

2
(q + 1) 1

2
(q − 1)

O52 UnΓ2- P
(1)od
p,UnΓ2

1 2 1
6
(q − 7) 1

2
(q − 1) 1

3
(q − 1)

ξ = lines

1 1
2
(q3 − q) L

(1)od
UnΓ2,p

1
2
(q2 − q) q − 1 1

2
(q − 7) 1

2
(q − 1) 1

2
(q − 1)

O51 UnΓ1- P
(−1)od
p,UnΓ1

1 0 1
6
(q + 1) 1

2
(q − 1) 1

3
(q + 1)

ξ = lines

−1 1
2
(q3 − q) L

(−1)od
UnΓ1,p

1
2
(q2 − q) 0 1

2
(q + 1) 1

2
(q − 1) 1

2
(q + 1)

O52 UnΓ2- P
(−1)od
p,UnΓ2

1 2 1
6
(q − 5) 1

2
(q − 3) 1

3
(q + 1)

ξ = lines

−1 1
2
(q3 − q) L

(−1)od
UnΓ2,p

1
2
(q2 − q) q − 1 1

2
(q − 5) 1

2
(q − 3) 1

2
(q + 1)

O′
51 EΓ1-lines P

(6=0)od
p,EΓ1

0 1 1
2
(q − 1) 1

2
(q + 1) 0

1
2
(q3 − q) L

(6=0)od
EΓ1,p

0 1
2
(q − 1) 3

2
(q − 1) 1

2
(q + 1) 0

O′
52

EΓ2-lines P
(6=0)od
p,EΓ2

0 3 1
2
(q − 3) 1

2
(q − 1) 0

1
2
(q3 − q) L

(6=0)od
EΓ2,p

0 3
2
(q − 1) 3

2
(q − 3) 1

2
(q − 1) 0
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Table 4: Values P
(0)
p,λ (top entry) and L

(0)
λ,p (bottom entry) for submatrices IPL

p,λ of the

point-line incidence matrix IPL of PG(3, q), q ≡ 0 (mod 3), q ≥ 9, λ ∈ L(0), p ∈ M(0)

M
(0)
1 M

(0)
2 M

(0)
3 M

(0)
4 M

(0)
5

C - (q + 1)Γ- TO- RC- IC-

λ-lines P
(0)
p,λ points points points points points

Oj #Oλ L
(0)
λ,p q + 1 q + 1 q2 − 1 1

2
(q3 − q) 1

2
(q3 − q)

O1 RC-lines P
(0)
p,RC 2 0 0 q − 1 0

1
2
(q2 + q) L

(0)
RC,p q 0 0 1 0

O2 T-lines P
(0)
p,T 1 1 q − 1 0 0

q + 1 L
(0)
T,p 1 1 1 0 0

O3 IC-lines P
(0)
p,IC 0 0 0 0 q + 1

1
2
(q2 − q) L

(0)
IC,p 0 0 0 0 1

O4 UΓ-lines P
(0)
p,UΓ 1 1 0 1

2
(q − 1) 1

2
(q − 1)

q2 + q L
(0)
UΓ,p q q 0 1 1

O5 UnΓ-lines P
(0)
p,UnΓ 1 0 1 1

2
(q − 2) 1

2
q

q3 − q L
(0)
UnΓ,p q2 − q 0 q q − 2 q

O6 EnΓ-lines P
(0)
p,EnΓ 0 0 1 q2−q+1

2(q−1)
q2−q−1
2(q−1)

(q2 − q)· L
(0)
EnΓ,p 0 0 q2 − q q2 − q + 1 q2 − q − 1

(q2 − 1)

O7 A-lines P
(0)
p,A 0 q + 1 0 0 0

1 L
(0)
A,p 0 1 0 0 0

O8 EA-lines P
(0)
p,EA 0 1 q

q+1
q2

2(q+1)
q2

2(q+1)

(q + 1)· L
(0)
EA,p 0 q2 − 1 q q q

(q2 − 1)
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Table 5: Values P
(0)
p,λj

(top entry) and L
(0)
λj ,p

(bottom entry) for submatrices IPL

p,λj
of the

point-line incidence matrix IPL of PG(3, q), q ≡ 0 (mod 3), q ≥ 9, p ∈ M(0), λ ∈
{UnΓ,EA}, j = 1, 2 if λ = UnΓ, j = 1, 2, 3 if λ = EA

M
(0)
1 M

(0)
2 M

(0)
3 M

(0)
4 M

(0)
5

C - (q + 1)Γ- TO- RC- IC-

λj-lines P
(0)
p,λ points points points points points

Oij #Oλj
L
(0)
λ,p q + 1 q + 1 q2 − 1 q3−q

2
q3−q

2

O51 UnΓ1- P
(0)
p,UnΓ1

1 0 0 1
2
(q − 1) 1

2
(q + 1)

ξ = lines

0 1
2
(q3 − q) L

(0)
UnΓ1,p

1
2
(q2 − q) 0 0 1

2
(q − 1) 1

2
(q + 1)

O52 UnΓ2- P
(0)
p,UnΓ2

1 0 2 1
2
(q − 3) 1

2
(q − 1)

ξ = lines

0 1
2
(q3 − q) L

(0)
UnΓ2,p

1
2
(q2 − q) 0 q 1

2
(q − 3) 1

2
(q − 1)

O81 EA1-lines P
(0)
p,EA1

0 1 1 1
2
(q − 1) 1

2
(q − 1)

q3 − q L
(0)
EA1,p

0 q2 − q q q − 1 q − 1

O82 EA2-lines P
(0)
p,EA2

0 1 0 q 0
1
2
(q2 − 1) L

(0)
EA2,p

0 1
2
(q − 1) 0 1 0

O83 EA3-lines P
(0)
p,EA3

0 1 0 0 q
1
2
(q2 − 1) L

(0)
EA3,p

0 1
2
(q − 1) 0 0 1

ξ 6= 0). For the submatrices IPL

p,λj
corresponding to each of two orbits of the class

O5 = OUnΓ and to each of three orbits of the class O8 = OEA, the values P
(0)
p,λj

, L
(0)
λj ,p

are given in Table 5 (for ξ = 0).

(ii) Let a class Oλ consist of a single orbit according to Table 1. Then, in Tables 2 and

4, the values of P
(ξ)
p,λ, p ∈ M(ξ), are the exact numbers of p-points on every λ-line.

(iii) Let q ≡ 1 (mod 3). Let V (1) = {O1 = ORC,O2 = OT,O
′
3 = OIA}. Then, cf.

Theorem 1(iv), no two lines of V (1) meet off C . Every point off C lies on exactly
one line of V (1).

(iv) Let q ≡ 0 (mod 3). Let W(0) = {O2 = OT,O4 = OUΓ}. Let M = C ∪ A-line be the
union of the twisted cubic and the A-line. Then no two lines of W(0) meet off M.
Every point off M lies on exactly one line of W(0), cf. Theorems 1(iv) and 5(iii).

(v) Let p ∈ M(ξ). Let a class Oλ consist of a single orbit. Then the submatrix IPL

p,λ of

IPL is a (vr, bk) configuration of Definition 2 with v = #Mp, b = #Oλ, r = L
(ξ)
λ,p,
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k = P
(ξ)
p,λ. Also, up to rearrangement of rows and columns, the submatrices IPL

p,λ with

L
(ξ)
λ,p = 1 can be viewed as a concatenation of P

(ξ)
p,λ identity matrices of order #Oλ.

The same holds for the submatrices IPL

p,λj
.

(vi) Let (λ, p) ∈ {(UΓ,C ), (UnΓ,C )} if ξ 6= 0, and (λ, p) ∈ {(UnΓ,C ), (EA, (q + 1)Γ)}
if ξ = 0. Then, independently of the number of orbits in the class Oλ, we have
exactly one p-point on every λ-line. Up to rearrangement of rows and columns, the
submatrices IPL

p,λ can be viewed as a vertical concatenation of L
(ξ)
λ,p identity matrices

of order #Mp.

Theorem 6. Let the types of lines and points be as in Tables 1− 5.

(i) Let q = 2. The group G2
∼= S3Z

3
2 contains 8 subgroups isomorphic to PGL(2, 2)

divided into two conjugacy classes. For one of these subgroups, the matrices cor-
responding to the projectivities of the subgroup assume the form described by (2.7).
For line and point orbits under this subgroup (and only under it) the point-line in-
cidence matrix has the form of Tables 2 and 3 for even q ≡ −1 (mod 3) and also
Table 1 holds.

(ii) Let q = 3. The group G3
∼= S4Z

3
2 contains 24 subgroups isomorphic to PGL(2, 3)

divided into four conjugacy classes. For one of these subgroups, the matrices cor-
responding to the projectivities of the subgroup assume the form described by (2.7).
For line and point orbits under this subgroup (and only under it) the point-line in-
cidence matrix has the form of Tables 4 and 5 for q ≡ 0 (mod 3) and also Table 1
holds.

(iii) Let q = 4. The group G4
∼= S5

∼= PΓL(2, 4) contains one subgroup isomorphic to
PGL(2, 4). The matrices corresponding to the projectivities of this subgroup assume
the form described by (2.7) and for line and point orbits under this subgroup the
point-line incidence matrix has the form of Tables 2 and 3 for even q ≡ 1 (mod 3)
and also Table 1 holds.

(iv) For line orbits under the subgroups of Gq noted in the points (i)–(iii) of this theorem,
Theorem 2 holds also if q = 2, 3, 4.

4 Some useful relations

In this section, we omit the superscripts “(ξ)”, “od”, and “ev” as they are the same for all

terms in a formula; in particular, we use L and LλΣ instead of L(ξ) and L
(ξ)od
λΣ , L

(ξ)ev
λΣ . In

the rest of the paper, when relations of this section are applied, we add the superscripts
if they are necessary by the context.
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Lemma 1. The following holds:

(i) The number Lλj ,p of lines from an orbit Oλj
through a point of an orbit Mp is the

same for all points of Mp.

(ii) The total number Lλ,p of lines from an orbit union Oλ through a point of an orbit
Mp is the same for all points of Mp. We have

Lλ,p =

LλΣ∑

j=1

Lλj ,p. (4.1)

(iii) The number Pp,λj
of points from an orbit Mp on a line of an orbit Oλj

is the same
for all lines of Oλj

.

(iv) The average number Pp,λ of points from an orbit Mp on a line of a union Oλ over
all lines of Oλ satisfies the following relations:

Lλ,p ·#Mp = Pp,λ ·#Oλ; (4.2)

Pp,λ =
1

#Oλ

LλΣ∑

j=1

(
Pp,λj

·#Oλj

)
. (4.3)

(v) If LλΣ = 1, then Oλ is an orbit and the number of points from Mp on a line of Oλ is
the same for all the lines of Oλ. In this case, Pp,λ is certainly an integer. If Pp,λ is
not an integer then the class Oλ contains more than one orbit, i.e. LλΣ ≥ 2.

Proof. (i) Consider points p1 and p2 of Mp. Denote by ℓ a line ofOλj
. Let S(p1) and S(p2)

be the subsets of Oλj
such that S(p1) = {ℓ ∈ Oλj

|p1 ∈ ℓ}, S(p2) = {ℓ ∈ Oλj
|p2 ∈ ℓ}.

There exists ϕ ∈ Gq such that p2 = p1ϕ. Clearly, ϕ embeds S(p1) in S(p2), i.e.
S(p1)ϕ ⊆ S(p2) and #S(p1) ≤ #S(p2). In the same way, ϕ−1 embeds S(p2) in
S(p1), i.e. #S(p2) ≤ #S(p1). Thus, #S(p2) = #S(p1).

(ii) For a fixed λ, orbits Oλj
do not intersect each other.

(iii) The assertion can be proved similarly to the case (i).

(iv) The cardinality C1 of the multiset consisting of the lines of Oλ through all the points
of Mp is equal to Lλ,p · #Mp. The cardinality C2 of the multiset consisting of the
points of Mp on all the lines of Oλ is Pp,λ ·#Oλ. Every Ci is the number of ones in
the incidence submatrix IPL

p,λ of IPL. Thus, C1 = C2.

The assertion (4.3) holds as Oλ is partitioned into LλΣ orbits Oλj
.
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(v) The assertion follows from the case (iii).

Corollary 1. If Pp,λ = 0 then Lλ,p = 0 and vice versa.

Proof. The assertions follow from (4.2).

Theorem 7. Let the lines of PG(3, q) be partitioned under Gq into #L classes Oλ where
every class is a union of orbits of λ-lines, λ ∈ L. Also, let PG(3, q) be partitioned under
Gq by #M orbits Mp of p-points, p ∈ M. The following holds:

∑

p∈M

Pp,λ = q + 1, λ is fixed; (4.4)

∑

λ∈L

Lλ,p = β2,q = q2 + q + 1, p is fixed. (4.5)

Proof. Relations (4.4) and (4.5) hold as PG(3, q) is partitioned under Gq by unions of line
orbits and by orbits of points. In total, in PG(3, q), there are q + 1 points on every line
and β2,q lines through every point.

Corollary 2. The following holds:

Pp,λ =
Lλ,p ·#Mp

#Oλ

, Pp,λj
=

Lλj ,p ·#Mp

#Oλj

; (4.6)

Lλ,p =
Pp,λ ·#Oλ

#Mp

, Lλj ,p =
Pp,λj

·#Oλj

#Mp

; (4.7)

Pp∗,λ = q + 1−
∑

p∈M\{p∗}

Pp,λ, λ is fixed, p∗ ∈ M; (4.8)

Pp∗,λj
= q + 1−

∑

p∈M\{p∗}

Pp,λj
, λj is fixed, p∗ ∈ M; (4.9)

Lλ∗,p = q2 + q + 1−
∑

λ∈L\{λ∗}

Lλ,p, p is fixed, λ∗ ∈ L. (4.10)

Proof. The assertions directly follow from (4.2), (4.4), (4.5).

Remark 2. Let q ≡ 0 (mod 3). By Section 2, Γ-planes form a pencil with the A-line as
the axis. Only lines lying in a Γ-plane can intersect the axis.

By definition, an EA-line necessary intersects the A-line; therefore an EA-line always
lies in a Γ-plane and intersects all the other lines belonging to this plane including the
only tangent. Also, in [15, Tables 1, 2, Theorem 3.3(iv), Corollary 7.2] it is proved that
we have exactly one Γ-plane through every EA-line and, in every Γ-plane, there are q2−1
EA-lines such that q2 − q from them belong to the orbit OEA1 while the remaining q − 1
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ones are equally divided into the orbits OEA2 , OEA3. In total, in every Γ-plane, we have
q2 − 1 intersections of EA-lines and the A-line.

In addition, by definition, every Γ-plane contains a tangent and q UΓ-lines intersecting
the A-line in distinct points. Thus, in every Γ-plane, through a (q+1)Γ-point (i.e. a point
of the A-line) we have a unisecant, the A-line, and q − 1 EA-lines.

Remark 3. By [15, Table 1, Theorem 3.3(vi)], all q+1 planes through an imaginary chord
are 1C -planes forming a pencil. The

(
q

2

)
(q + 1)-orbit of all 1C -planes can be partitioned

into
(
q

2

)
pencils of planes having an imaginary chord as the axis. Only lines lying in a

1C -plane can intersect an IC-line. If, in average, there are Π1C ,λ 1C -planes through a
λ-line (λ 6= IC) then every λ-line intersects, in average, Π1C ,λ IC-lines and contains, in
average, Π1C ,λ IC-points. So,

PIC,λ = Π1C ,λ, λ ∈ L. (4.11)

whence, by (4.7), Theorem 1(ii)(a)(c), and [15, equation (4.9)], we have

Lλ,IC =
PIC,λ ·#Oλ

#MIC

=
Π1C ,λ ·#Oλ

#N1C

= Λλ,1C
, λ ∈ L. (4.12)

Similarly, for the j-th orbit Oλj
we have

PIC,λj
= Π1C ,λj

, Lλj ,IC = Λλj ,1C
, j = 1, . . . , LλΣ, λ ∈ L. (4.13)

The values of Π1C ,λ, Π1C ,λj
, Λλ,1C

, and Λλj ,1C
can be taken from [15, Tables 1, 2].

Theorem 8. Let q 6≡ 0 (mod 3). Let π ∈ P, p ∈ M(6=0), and {λa, λb} ⊂ L(6=0) be such

that M
(6=0)
p A = Nπ and Oλa

= Oλb
A. Then

M
(6=0)
p = NπA, Oλa

A = Oλb
. (4.14)

Proof. By definition, see [20, Sections 2.1.5, 5.3], a polarity is involutory, i.e. A2 = J,
where J is the identity. Therefore, A−1 = A.

Corollary 3. Let q 6≡ 0 (mod 3). The following holds:

M
(6=0)
j = NjA, #M

(6=0)
j = #Nj , j = 1, . . . , 5; M

(6=0)
C

= NΓA, (4.15)

M
(6=0)
T = N2C

A, M
(6=0)
3Γ

= N3C
A, M

(6=0)
1Γ

= N1C
A, M

(6=0)
0Γ

= N0C
A;

O′
iA = Oi, #O′

i = #Oi, i = 1, . . . , 6, q 6≡ 0 (mod 3); (4.16)

ORAA = ORC, OIAA = OIC, OEΓA = OUnΓ; OλA = Oλ, λ ∈ {T,UΓ,EnΓ}.

Proof. We use (2.12), Table 1, and Theorems 1(ii)(iii), 3, 8.
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5 The numbers of λ-lines through p-points and of p-

points on λ-lines, q 6≡ 0 (mod 3)

Remind that we consider q ≥ 5; also q ≡ ξ (mod 3).
Notation 3 In addition to Notations 1 and 2 we denote the following:

π(p) ∈ P the plane type such that M
(6=0)
p A = Nπ(p), p ∈ M(6=0), ξ 6= 0;

λ(λ̃) ∈ L(6=0) the line type such that O
λ(λ̃) = O

λ̃
A, λ̃ ∈ L(6=0), ξ 6= 0;

λj(λ̃j) the line type of the j-th orbit of the class O
λ(λ̃) correspon-

ding to the j-th orbit of the class O
λ̃
so that O

λj(λ̃j)
= O

λ̃j
A.

Theorem 9. Let q 6≡ 0 (mod 3). The following holds:

π(C ) = Γ, π(T) = 2C , π(3Γ) = 3C , π(1Γ) = 1C , π(0Γ) = 0C ; (5.1)

λ(RC) = RA, λ(RA) = RC, λ(T) = T, λ(IC) = IA, λ(IA) = IC,

λ(UΓ) = UΓ, λ(UnΓ) = EΓ, λ(EΓ) = UnΓ, λ(EnΓ) = EnΓ;

λj(UΓj) = UΓj, λj(UnΓj) = EΓj , λj(EΓj) = UnΓj , j = 1, 2.

Proof. The assertions directly follow from (2.12), (2.14), (4.14)–(4.16), Theorems 1(iii),
3, 8, and Corollary 3.

Theorem 10. Let q 6≡ 0 (mod 3). Let p ∈ M(6=0), λ̃ ∈ L(6=0). Then

P
(ξ)

p,λ̃
= Π

(ξ)

π(p),λ(λ̃)
, L

(ξ)

λ̃,p
= Λ

(ξ)

λ(λ̃),π(p)
; P

(ξ)

p,λ̃j

= Π
(ξ)

π(p),λj(λ̃j)
, L

(ξ)

λ̃j ,p
= Λ

(ξ)

λj(λ̃j),π(p)
.

Proof. We have M
(6=0)
p A = Nπ(p), O

λ(λ̃) = O
λ̃
A. By Theorem 8, M

(6=0)
p = Nπ(p)A,

O
λ(λ̃)A = O

λ̃
. The incidences between π(p)-planes and λ(λ̃)-lines are saved for p-points

and λ̃-lines. The same holds for orbits Oλj
.

Corollary 4. Let q 6≡ 0 (mod 3). Let p ∈ M(6=0). Let π(p) ∈ P be as in (5.1). For
ξ = 1,−1, the following holds:

P
(ξ)
p,RC = Π

(ξ)
π(p),RA, L

(ξ)
RC,p = Λ

(ξ)
RA,π(p), P

(6=0)
p,RA = Ππ(p),RC, L

(6=0)
RA,p = ΛRC,π(p);

P
(ξ)
p,IC = Π

(ξ)
π(p),IA, L

(ξ)
IC,p = Λ

(ξ)
IA,π(p), P

(6=0)
p,IA = Ππ(p),IC, L

(6=0)
IA,p = ΛIC,π(p);

P
(ξ)
p,UnΓ = Π

(ξ)
π(p),EΓ, L

(ξ)
UnΓ,p = Λ

(ξ)
EΓ,π(p), P

(6=0)
p,EΓ = Ππ(p),UnΓ, L

(6=0)
EΓ,p = ΛUnΓ,π(p);

P
(ξ)
p,λ = Π

(ξ)
π(p),λ, L

(ξ)
λ,p = Λ

(ξ)
λ,π(p), λ ∈ {T,UΓ,EnΓ}.

P
(6=0)
p,UΓj

= Ππ(p),UΓj
, L

(6=0)
UΓj ,p

= ΛUΓj ,π(p), P
(ξ)
p,UnΓj

= Π
(ξ)
π(p),EΓj

,
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L
(ξ)
UnΓj ,p

= Λ
(ξ)
EΓj ,π(p)

, P
(6=0)
p,EΓj

= Ππ(p),UnΓj
, L

(6=0)
EΓj ,p

= ΛUnΓj ,π(p), j = 1, 2.

Proof. We use Theorems 9 and 10.

Now we are able to form Tables 2 and 3 using Corollary 4, and the values of Π
(ξ)
π,λ and

Λ
(ξ)
λ,π from [15, Tables 1, 2].

6 The numbers of λ-lines through p-points and of p-

points on λ-lines, q ≡ 0 (mod 3)

In this section, we consider q ≡ 0 (mod 3). The values of #Mp, #Oλ, #Oλj
, needed

for (4.6), (4.7), are taken from (2.9)–(2.11) and Table 1. When we use (4.8)–(4.10), the
values Pp,λ, Pp,λj

, and Lλ,p, obtained above, are summed up.
Note that if some of the relations (4.1)–(4.13) are not used directly in proofs then they

can be used to check the results.

Theorem 11. For RC-lines the following holds:

P
(0)
C ,RC = 2, P

(0)
RC,RC = q − 1, L

(0)
RC,C = q, L

(0)
RC,RC = 1,

P
(0)
p,RC = L

(0)
RC,p = 0, p ∈ {(q + 1)Γ,TO, IC}.

Proof. By definition, a real chord contains exactly two C -points; the other q − 1 points
of the chord are RC-points. So, P

(0)
C ,RC = 2, P

(0)
RC,RC = q− 1. Also, by definition, there are

q RC-lines through every C -point, i.e. L
(0)
RC,C = q.

By Theorem 1(iv), two chords do not intersect each other off C ; therefore, L
(0)
RC,RC = 1,

P
(0)
p,RC = L

(0)
RC,p = 0, p ∈ {TO, IC}.

Finally, by Remark 2, only lines lying in a Γ-plane can intersect the A-line. As an RC-
line contains two C -points, it cannot lie in a Γ-plane, whence P

(0)
(q+1)Γ,RC = L

(0)
RC,(q+1)Γ

=
0.

Theorem 12. For T-lines the following holds:

P
(0)
C ,T = P

(0)
(q+1)Γ,T

= L
(0)
T,C = L

(0)
T,(q+1)Γ

= L
(0)
T,TO = 1, P

(0)
TO,T = q − 1,

P
(0)
p,T = L

(0)
T,p = 0, p ∈ {RC, IC}.

Proof. By definition, a tangent contains exactly one C -point and there is one tangent
through every C -point. Thus, P

(0)
C ,T = L

(0)
T,C = 1. Also, a tangent lies in a Γ-plane and,

hence, intersects the A-line. This implies P
(0)
(q+1)Γ,T

= 1 whence, by (4.7), L
(0)
T,(q+1)Γ

= 1.

The remaining q − 1 points of the tangent are TO-points, i.e. P
(0)
TO,T = q − 1.
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By Theorem 1(iv), two chords do not intersect each other off C ; therefore, L
(0)
T,TO = 1,

P
(0)
RC,T = P

(0)
IC,T = L

(0)
T,RC = L

(0)
T,IC = 0.

Theorem 13. For IC-lines the following holds:

P
(0)
IC,IC = q + 1, L

(0)
IC,IC = 1, P

(0)
p,IC = L

(0)
IC,p = 0, p ∈ {C , (q + 1)Γ,TO,RC}.

Proof. By definition, all points of an IC-line are IC-points; this implies P
(0)
IC,IC = q + 1,

P
(0)
p,IC = L

(0)
IC,p = 0, p ∈ {C , (q + 1)Γ,TO,RC}. By Theorem 1(iv), two IC-lines do not

intersect each other; therefore, L
(0)
IC,IC = 1.

Theorem 14. For UΓ-lines the following holds:

P
(0)
C ,UΓ = P

(0)
(q+1)Γ,UΓ = 1, L

(0)
UΓ,C = L

(0)
UΓ,(q+1)Γ

= q, P
(0)
TO,UΓ = L

(0)
UΓ,TO = 0,

L
(0)
UΓ,RC = L

(0)
UΓ,IC = 1, P

(0)
RC,UΓ = P

(0)
IC,UΓ =

1

2
(q − 1).

Proof. By definition, a UΓ-line contains exactly one C -point and there are q UΓ-lines
through every C -point, i.e. P

(0)
C ,UΓ = 1, L

(0)
UΓ,C = q. A UΓ-line lies in a Γ-plane and, hence,

intersects the A-line. This implies P
(0)
(q+1)Γ,UΓ = 1 whence, by (4.7), L

(0)
UΓ,(q+1)Γ

= q.
By definition, UΓ-lines and T-lines lie in Γ-planes. If a UΓ-line and a T-line belong

to the same Γ-plane, then their common point is a C -point. Otherwise they are skew.
So, a UΓ-line cannot intersect a T-line off C . As all TO-points are off C , we have
P
(0)
TO,UΓ = L

(0)
UΓ,TO = 0.

By [3, Table 2, Theorem 5.13(ii)], there is exactly one Γ-plane, say πP , through an
RC-point P . Let Q ∈ πP be the contact point of C and πP . By Theorem 1(iv), the
line PQ cannot be either a real chord or a tangent, hence PQ is a UΓ-line. Thus,
L
(0)
UΓ,RC = 1. Similarly, it can be shown that L

(0)
UΓ,IC = 1. Now, by (4.6), we obtain

P
(0)
RC,UΓ = P

(0)
IC,UΓ = (q − 1)/2.

Theorem 15. For the A-line the following holds:

P
(0)
(q+1)Γ,A

= q + 1, L
(0)
A,(q+1)Γ

= 1, P
(0)
p,A = L

(0)
A,p = 0, p ∈ {C ,TO,RC, IC}.

Proof. By definition, all points of the A-line are (q + 1)Γ-points and there is one A-

line through every (q + 1)Γ-point; this implies P
(0)
(q+1)Γ,A

= q + 1, L
(0)
A,(q+1)Γ

= 1, and

P
(0)
p,A = L

(0)
A,p = 0, p 6= (q + 1)Γ.

Theorem 16. The following holds:

P
(0)
C ,UnΓ = P

(0)
C ,UnΓv

= 1, L
(0)
UnΓ,C = q2 − q, L

(0)
UnΓv,C

=
1

2
(q2 − q), v = 1, 2;
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P
(0)
C ,λ = L

(0)
λ,C = 0, λ ∈ {EnΓ,EA,EAj}, j = 1, 2, 3.

Proof. By definition, a UnΓ-line contains exactly one C -point, i.e. P
(0)
C ,UnΓ =

P
(0)
C ,UnΓv

= 1, whence, by (4.7), L
(0)
UnΓ,C = q2 − q, L

(0)
UnΓv,C

= (q2 − q)/2. Also, by definition,

P
(0)
C ,λ = 0, λ ∈ {EnΓ,EA,EAj}, whence, by Corollary 1, L

(0)
λ,C = 0.

Theorem 17. A UnΓ- and an EnΓ-line cannot intersect the A-line whereas an EA-line
necessary intersects it. The following holds:

P
(0)
(q+1)Γ,λ

= L
(0)
λ,(q+1)Γ

= 0, λ ∈ {UnΓ,UnΓv,EnΓ}, v = 1, 2;

P
(0)
(q+1)Γ,λ

= 1, λ ∈ {EA,EAj}, j = 1, 2, 3;

L
(0)
EA,(q+1)Γ

= q2 − 1, L
(0)
EA1,(q+1)Γ

= q2 − q, L
(0)
EAj ,(q+1)Γ

=
1

2
(q − 1), j = 2, 3;

where P
(0)
(q+1)Γ,EA

= 1 is the exact number of (q + 1)Γ-points on an EA-line.

Proof. By definition, UnΓ- and EnΓ-lines do not lie in any Γ-plane; it implies, due to
Remark 2, P

(0)
(q+1)Γ,λ

= L
(0)
λ,(q+1)Γ

= 0, λ ∈ {UnΓ,UnΓv,EnΓ}. Also, by definition, an

EA-line necessary intersects the A-line that gives P
(0)
(q+1)Γ,λ

= 1, λ ∈ {EA,EAj}, as the

exact value. Now, by (4.7), we obtain L
(0)
EA,(q+1)Γ

and L
(0)
EAj ,(q+1)Γ

.

Theorem 18. For UnΓ-lines the following holds:

L
(0)
UnΓ,TO = L

(0)
UnΓ,IC = q, P

(0)
TO,UnΓ = 1, P

(0)
IC,UnΓ =

1

2
q,

L
(0)
UnΓ,RC = q − 2, P

(0)
RC,UnΓ =

1

2
(q − 2).

Proof. Let T be a tangent to C at a point P . Let B ∈ T be a TO-point. Let ℓ be a line
through B and one of the q points of C \ {P}. By Theorem 1(iv), ℓ can be neither a real
chord nor a tangent, hence it is a non-tangent unisecant. By [3, Table 2, Theorem 5.13(ii)],
there is exactly one Γ-plane, say πB, through the TO-point B. Obviously, T ∈ πB and P
is the contact point of C and πB. Thus, ℓ does not lie in a Γ-plane, i.e. ℓ is a UnΓ-line
and we have #C \ {P} UnΓ-lines through every TO-point. So, L

(0)
UnΓ,TO = q, whence,

by (4.6), P
(0)
TO,UnΓ = 1.

Let PQ be a real chord through C -points P and Q. Let B ∈ PQ be an RC-point.
By [3, Table 2, Theorem 5.13(ii)], there is exactly one Γ-plane, say πB, through the RC-
point B. Let R ∈ πB be the contact point of C and πB. Let ℓ be a line through P and
one of the q− 2 points of C \ {P,Q,R}. By Theorem 1(iv), ℓ can be neither a real chord
nor a tangent; also, ℓ /∈ πB. Thus, ℓ is a UnΓ-line and we have #C \ {P,Q,R} UnΓ-lines

through every RC-point. So, L
(0)
UnΓ,RC = q − 2, whence, by (4.6), P

(0)
RC,UnΓ = (q − 2)/2.
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Finally, let IC be an imaginary chord and B ∈ IC be an IC-point. By [3, Table 2],
there is exactly one Γ-plane, say πB, through B. Let R ∈ πB be the contact point of C

and πB. Similarly to above, all the q lines through B and a point of C \{R} are UnΓ-lines;

this gives L
(0)
UnΓ,IC = q, whence, by (4.6), P

(0)
IC,UnΓ = q/2.

Theorem 19. For TO-points the following holds:

P
(0)
TO,EA =

q

q + 1
, L

(0)
EA,TO = L

(0)
EA1,TO = q, L

(0)
EnΓ,TO = q2 − q,

P
(0)
TO,EA1

= P
(0)
TO,EnΓ = 1, P

(0)
TO,EAj

= L
(0)
EAj ,TO = 0, j = 2, 3.

Proof. By Remark 2, in every Γ-plane, q − 1 EA-lines intersect the only tangent at its
common point with the A-line while the remaining q2 − q ones intersect the tangent in
TO-points. Thus, in total, there are (q2 − q) · #NΓ = (q2 − q)(q + 1) TO-points on all

(q + 1)(q2 − 1) EA-lines. The average number is P
(0)
TO,EA = q/(q + 1), whence, by (4.7),

L
(0)
EA,TO = q.
An EA-line intersects exactly one tangent either in its common point with the A-line

or in a TO-point. Therefore, P
(0)
TO,EAj

∈ {0, 1}. If for j = 2, 3, we put P
(0)
TO,EAj

= 1 then,

by (4.7), we obtain L
(0)
EAj ,TO = 1/2 that is not an integer, contradiction. So, P

(0)
TO,EAj

=

L
(0)
EAj ,TO = 0, j = 2, 3, whence, by (4.3), P

(0)
TO,EA1

= 1 and, by (4.7), L
(0)
EA1,TO = q.

Finally, by (4.10), L
(0)
EnΓ,TO = q2 − q, whence, by (4.6), P

(0)
TO,EnΓ = 1.

Remark 4. By Remark 2 and Theorem 19, it can be seen that in every Γ-plane, the
q − 1 EA-lines from the orbits OEA2 and OEA3 intersect the only tangent of this plane at
its common point with the A-line (it is not a TO-point). At the same time, the q2 − q
EA-lines from the orbit OEA1 intersect the tangent in TO-points.

Theorem 20. For IC-points the following holds:

P
(0)
IC,EnΓ =

q2 − q − 1

2(q − 1)
, L

(0)
EnΓ,IC = q2 − q − 1; P

(0)
IC,EA =

q2

2(q + 1)
, L

(0)
EA,IC = q;

P
(0)
IC,EA1

=
1

2
(q − 1), L

(0)
EA1,IC

= q − 1, P
(0)
IC,EA2

= L
(0)
EA2,IC

= 0,

P
(0)
IC,EA3

= q, L
(0)
EA3,IC

= 1.

Proof. The assertions follow from Remark 3 with (4.11)–(4.13) and [15, Tables 1, 2].

Theorem 21. For RC-points the following holds:

P
(0)
RC,EnΓ =

q2 − q + 1

2(q − 1)
, L

(0)
EnΓ,RC = q2 − q + 1;
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P
(0)
RC,EA =

q2

2(q + 1)
, L

(0)
EA,RC = q; P

(0)
RC,EA1

=
1

2
(q − 1), L

(0)
EA1,RC = q − 1,

P
(0)
RC,EA2

= q, L
(0)
EA2,RC = 1, P

(0)
RC,EA3

= L
(0)
EA3,IC

= 0.

Proof. The values of P
(0)
RC,λ, P

(0)
RC,λj

are obtained by (4.8), (4.9). Then we obtain L
(0)
λ,RC,

L
(0)
λj ,RC by (4.7).

Theorem 22. For UnΓv-lines, v = 1, 2, the following holds:

P
(0)
TO,UnΓ1

= L
(0)
UnΓ1,TO = 0, P

(0)
TO,UnΓ2

= 2, L
(0)
UnΓ2,TO = q,

P
(0)
IC,UnΓ1

= L
(0)
UnΓ1,IC

=
1

2
(q + 1), P

(0)
IC,UnΓ2

= L
(0)
UnΓ2,IC

=
1

2
(q − 1),

P
(0)
RC,UnΓ1

= L
(0)
UnΓ1,RC =

1

2
(q − 1), P

(0)
RC,UnΓ2

= L
(0)
UnΓ2,RC =

1

2
(q − 3).

Proof. By Theorem 19, P
(0)
TO,EnΓ = 1 whence P

(0)
TO,UnΓ1

+ P
(0)
TO,UnΓ2

= 2, by (4.3). If for

v = 1, 2, we put P
(0)
TO,UnΓv

= 1, then, by (4.7), we obtain L
(0)
UnΓv.TO = q/2 that is not an

integer, contradiction. So, P
(0)
TO,UnΓv

∈ {0, 2}.
By [15, Table 1], through a T-line we have one Γ-plane and q 2C -planes; also, every

2C -plane contains one T-line. Therefore, through a T-line and a UnΓ-line meeting the
T-line in a TO-point we have a 2C -plane. By [15, Table 2], there are one and three 2C -
planes through a UnΓ1- and a UnΓ2-line, respectively. Therefore, a UnΓ1- and a UnΓ2-line
intersect one and three T-lines, respectively. This means that P

(0)
TO,UnΓ1

= 0, P
(0)
TO,UnΓ2

= 2,
and also every UnΓv-line intersects one T-line at a C -point. Now, by (4.7), we obtain

L
(0)
UnΓ1,TO = 0, L

(0)
UnΓ2,TO = q.

By [15, Table 2], Π1C ,UnΓ1
= ΛUnΓ1,1C

= (q + 1)/2,Π1C ,UnΓ2
= ΛUnΓ2,1C

= (q − 1)/2

whence, by (4.13), P
(0)
IC,UnΓ1

= L
(0)
UnΓ1,IC

= (q + 1)/2, P
(0)
IC,UnΓ2

= L
(0)
UnΓ2,IC

= (q − 1)/2.
Finally, RC-points lie only on RC-lines. By [15, Table 1], through an RC-line there are

two 2C -planes and q− 1 3C -planes. A UnΓ-line lying in a 2C -plane intersects the RC-line
of this plane at a C -point. A UnΓ-line lying in a 3C -plane intersects two RC-lines of this
plane at a C -point and one RC-line at an RC-point. Therefore, P

(0)
TO,UnΓv

= Π
(0)
3C ,UnΓv

.

By [15, Table 2], Π
(0)
3C ,UnΓ1

= (q − 1)/2, Π
(0)
3C ,UnΓ2

= (q − 3)/2 whence together with (4.7)
we obtain the remaining assertions.

Now we form Tables 4 and 5 using the results of this section.

7 Some general results

Theorem 23. Let p ∈ M(ξ). Let a class Oλ consist of a single orbit. Then the submatrix
IPL

p,λ of IPL is a (vr, bk) configuration of Definition 2 with v = #Mp, b = #Oλ, r = L
(ξ)
λ,p,
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k = P
(ξ)
p,λ. Also, up to rearrangement of rows and columns, the submatrices IPL

p,λ with

L
(ξ)
λ,p = 1 can be viewed as a concatenation of P

(ξ)
p,λ identity matrices of order #Oλ. The

same holds for the submatrices IPL

p,λj
.

Proof. As the class Oλ is an orbit, IPL

p,λ contains Pp,λ (resp. Lλ,p) ones in every row (resp.
column), see Lemma 1. In PG(3, q), two lines are either skew or intersect at a point.

Therefore, two points of IPL

p,λ are connected by at most one line. If L
(ξ)
λ,p = 1, IPL

p,λ contains

P
(ξ)
p,λ (resp. 1) ones in every row (resp. column).

Theorem 24. Let (λ, p) ∈ {(UΓ,C ), (UnΓ,C )} if q 6≡ 0 (mod 3), and (λ, p) ∈ {(UnΓ,C ), (EA, (q+
1)Γ)} if q ≡ 0 (mod 3). Then, independently of the number of orbits in the class Oλ, we
have exactly one p-point on every λ-line. Up to rearrangement of rows and columns, the
submatrices IPL

p,λ can be viewed as a vertical concatenation of L
(ξ)
λ,p identity matrices of

order #Mp.

Proof. By Tables 2–5, in the considered submatrices IPL

p,λ there is exactly one unit in every
row.

Theorem 25. Let q ≡ 1 (mod 3). Let V (1) = {O1 = ORC,O2 = OT,O
′
3 = OIA}. Then,

cf. Theorem 1(iv), no two lines of V (1) meet off C . Every point off C lies on exactly one
line of V (1).

Proof. The assertions follow from Table 2. Also, they can be proved using Theorem 1(ii)(iv)
with (2.10) and [26, Theorem 1].

Theorem 26. Let q ≡ 0 (mod 3). Let W(0) = {O2 = OT,O4 = OUΓ}. Let M = C ∪ A-
line be the union of the twisted cubic and the A-line. Then no two lines of W(0) meet off
M. Every point off M lies on exactly one line of W(0), cf. Theorems 1(iv) and 25.

Proof. The assertions follow from Table 4. Note also that for q ≡ 0 (mod 3), Γ-planes
form a pencil with the axis A-line and, in turn, in each plane πosc(t), q UΓ-lines and the
tangent form the pencil of lines through the point P (t).
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