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Abstract. The length function `q(r, R) is the smallest length of a q-ary linear code
with codimension (redundancy) r and covering radius R. In this work, new upper bounds
on `q(tR + 1, R) are obtained in the following forms:

(a) `q(r, R) ≤ cq(r−R)/R · R
√

ln q, R ≥ 3, r = tR + 1, t ≥ 1,

q is an arbitrary prime power, c is independent of q.

(b) `q(r, R) < 3.43Rq(r−R)/R · R
√

ln q, R ≥ 3, r = tR + 1, t ≥ 1,

q is an arbitrary prime power, q is large enough.

In the literature, for q = (q′)R with q′ a prime power, smaller upper bounds are known;
however, when q is an arbitrary prime power, the bounds of this paper are better than
the known ones.

For t = 1, we use a one-to-one correspondence between [n, n − (R + 1)]qR codes and
(R − 1)-saturating n-sets in the projective space PG(R, q). A new construction of such
saturating sets providing sets of small size is proposed. Then the [n, n− (R+1)]qR codes,
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obtained by geometrical methods, are taken as the starting ones in the lift-constructions
(so-called “qm-concatenating constructions”) for covering codes to obtain infinite families
of codes with growing codimension r = tR + 1, t ≥ 1.
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1 Introduction

Let Fq be the Galois field with q elements. Let Fn
q be the n-dimensional vector space

over Fq.Denote by [n, n−r, d]q a q-ary linear code of length n, codimension (redundancy) r,
and minimum distance d. Usually, d is omitted when not relevant. For an introduction
to coding theory, see [7, 41,50,53].

The sphere of radius R with center c in F n
q is the set {v : v ∈ F n

q , d(v, c) ≤ R} where
d(v, c) is the Hamming distance between the vectors v and c.

Definition 1.1. A linear [n, n − r, d]q code has covering radius R and is denoted as an
[n, n− r, d]qR code if any of the following equivalent properties holds:

(i) The value R is the smallest integer such that the space Fn
q is covered by the spheres

of radius R centered at the codewords.
(ii) Every vector in F r

q is equal to a linear combination of at most R columns of a
parity check matrix of the code, and R is the smallest value with this property.

The covering density µ of an [n, n − r, d]qR-code is defined as the ratio of the total
volume of all spheres of radius R centered at the codewords to the volume of the space Fn

q .
By Definition 1.1(i), we have µ ≥ 1. The covering quality of a code is better if its covering
density is smaller. For the fixed parameters q, r, R, the covering density µ of an [n, n−r]qR
code decreases with decreasing n.

The covering problem for codes is that of finding codes with small covering radius with
respect to their lengths and dimensions. Codes investigated from the point of view of the
covering problem are usually called covering codes (in contrast to error-correcting codes).
If covering radius and codimension are fixed then the covering problem for codes is that
of finding codes with small length and/or obtaining good upper bounds for the length.

Definition 1.2. The length function `q(r, R) is the smallest length of a q-ary linear code
with codimension (redundancy) r and covering radius R.

For an introduction to coverings of vector Hamming spaces over finite fields and cov-
ering codes, see [11,13,18,33], the references therein, and the online bibliography [49].

Studying covering codes is a classical combinatorial problem. Covering codes are
connected with many areas of theory and practice, for example, with decoding errors
and erasures, data compression, write-once memories, football pools, Caley graphs, and

2



Berlekamp-Gale games, see [13, Section 1.2]. Codes of covering radius 2 and codimension
3 are relevant for the degree/diameter problem in graph theory [31, 42] and defining
sets of block designs [9]. Covering codes can also be used in steganography [7, Chapter
14], [8, 29, 30], in databases [40], in constructions of identifying codes [28, 46], for solving
the so-called learning parity with noise (LPN) [34], in an analysis of blocking switches [44],
in reduced representations of logic functions [2], in the list decoding of error correcting
codes [12], in cryptography [51]. There are connections between covering codes and a
popular game puzzle, called “Hats-on-a-line” [1, 48].

Let PG(N, q) be the N -dimensional projective space over the Galois field Fq. We will
say “N -space” (or “M -subspace”) when the value of q is clear by the context.

We say that M points of PG(N, q) are in general position if they are not contained in
an (M−2)-subspace. In particular, N+1 points of PG(N, q) are in general positions if and
only if they do not belong to the same hyperplane. A point of PG(N, q) in homogeneous
coordinates can be considered as a vector of FN+1

q . In this case, points in general position
correspond to linear independent vectors.

Effective methods to obtain upper bounds on the length function `q(r, R) are connected
with saturating sets in PG(N, q).

Definition 1.3. A point set S ⊆ PG(N, q) is ρ-saturating if any of the following equivalent
properties holds:

(i) For any point A ∈ PG(N, q) there exists a value ρ ≤ ρ such that in S there are
ρ+ 1 points in general position generating a ρ-subspace of PG(N, q) in which A lies, and
ρ is the smallest value with this property.

(ii) Every point A ∈ PG(N, q) can be written as a linear combination of at most ρ+ 1
points of S, and ρ is the smallest value with this property (cf. Definition 1.1(ii)).

In the literature, saturating sets are also called “saturated sets”, “spanning sets”, and
“dense sets”.

Let sq(N, ρ) be the smallest size of a ρ-saturating set in PG(N, q).
If q-ary positions of a column of an r × n parity check matrix of an [n, n− r]qR code

are treated as homogeneous coordinates of a point in PG(r − 1, q) then this parity check
matrix defines an (R−1)-saturating set of size n in PG(r−1, q), and vice versa. So, there
is a one-to-one correspondence between [n, n− r]qR codes and (R − 1)-saturating n-sets
in PG(r − 1, q). Therefore,

`q(r, R) = sq(r − 1, R− 1). (1.1)

For an introduction to the projective geometry over finite fields and its connection
with coding theory, see [18,27,32,36–39,43,47] and the references therein. Note also that
in the papers [3–6,15–26,32,33,35,52,55], distinct aspects of covering codes and saturating
sets, including their joint investigations, are considered.
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Throughout the paper, c and ci are constants independent of q but it is possible that
c and ci are dependent on r and R.

In [5, 20], [25, Proposition 4.2.1], see also the references therein, the following lower
bound is considered:

`q(r, R) = sq(r − 1, R− 1) ≥ cq(r−R)/R, R and r fixed. (1.2)

In [17,18], see also the references therein, the bound (1.2) is given in another (asymptotic)
form.

Let t, s be integer. Let q′ be a prime power. In the literature, it is proved that in the
following cases, the bound (1.2) is achieved:

r 6= tR, q = (q′)R, [17, 18,25,26,35,42];

R = sR′, r = tR + s, q = (q′)R
′
, [17, 18];

r = tR, q is an arbitrary prime power , [16–19,22,23].

(1.3)

In the general case, for arbitrary r, R, q, in particular when r 6= tR and q is an arbitrary
prime power, the problem of achieving the bound (1.2) is open.

In the literature [3–6, 9, 20, 21, 45, 52], for R = 2 with any q and R = 3 with q upper
bounded, upper bounds of the following form are obtained:

`q(r, R) = sq(r − 1, R− 1) ≤ cq(r−R)/R · R
√

ln q,

r 6= tR, q is an arbitrary prime power,
(1.4)

see Section 2.1 for details.

Remark 1.4. In the bounds of the form (1.4), the “price” of the non-restrict structure
of q is the factor R

√
ln q.

For R ≥ 3, r 6= tR, when q is an arbitrary prime power, the standard known way to
obtain upper bounds on the length function is the so-called direct sum construction [11,13].
This construction gives, see Section 2.2,

`q(tR + 1, R) ≤ cq(r−R)/R+(R−2)/2R
√

ln q, R ≥ 3, r = tR + 1, t ≥ 1,

q is an arbitrary prime power,
(1.5)

that is worse than the bound (1.4).
In this paper, for q an arbitrary prime power, we prove the upper bound of the form

(1.4) on the length function `q(Rt + 1, R), t ≥ 1, R ≥ 3, see Section 3. In general, we
obtain the bounds (1.6) and (1.7).

`q(tR + 1, R) ≤ cq(r−R)/R · R
√

ln q, R ≥ 3, r = tR + 1, t ≥ 1,

q is an arbitrary prime power.
(1.6)
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`q(r, R) < 3.43Rq(r−R)/R · R
√

ln q, R ≥ 3, r = tR + 1, t ≥ 1,

q is an arbitrary prime power, q is large enough.
(1.7)

The bounds obtained are new and essentially better than the known ones of the form (1.5).
The main contribution in our approach is obtaining new upper bounds on

`q(R+ 1, R) by a geometric way. Then we use the lift-constructions for covering codes to
obtain the bounds on `q(tR + 1, R).

In the beginning we consider the case t = 1 in projective geometry language. We
prove the upper bound on the smallest size sq(R,R − 1) of (R − 1)-saturating sets in
PG(R, q). For it we propose Construction A, that obtains a saturating set by a step-by-
step algorithm. Then we estimate the size of the obtained n-set that corresponds to an
[n, n− (R + 1)]qR code. This gives the bounds on `q(R + 1, R).

For t ≥ 2, we use the lift-constructions for covering codes. These constructions are
variants of the so-called “qm-concatenating constructions” proposed in [15] and devel-
oped in [16–18, 23, 24], see also the references therein and [13, Section 5.4]. The qm-
concatenating constructions obtain infinite families of covering codes with growing codi-
mension using a starting code with a small one. The covering density of the codes from
the infinite familes is approximately the same as for the starting code.

We take the [n, n− (R + 1)]qR codes corresponding to the (R − 1)-saturating sets in
PG(R, q) as the starting ones for the qm-concatenating constructions and obtain infinite
families of covering codes with growing codimension r = tR + 1, t ≥ 1. These families
provide the bounds on `q(tR + 1, R).

The paper is organized as follows. In Section 2, the known upper bounds for r 6= tR
and arbitrary prime power q are given. In Section 3, the main new results are written.
Section 4 describes Construction A that obtains (R − 1)-saturating n-sets in PG(R, q)
corresponding to [n, n− (R + 1)]qR codes. Estimates of sizes of saturating sets obtained
by Construction A and the corresponding upper bounds are given in Sections 5 and 6. In
Section 7, for illustration, bounds on the length function `q(4, 3) and 2-saturating sets in
PG(3, q) are considered. In Section 8, upper bounds on the length function `q(tR+ 1, R)
are obtained for growing t ≥ 1. These bounds are provided by infinite families of covering
codes with growing codimension r = tR + 1, t ≥ 1, created by the qm-concatenating
constructions.
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2 The known upper bounds for r 6= tR and arbitrary

prime power q

2.1 Bounds for R = 2 with any q and R = 3 with q upper bounded

Let δi,j be the Kronecker delta. For R = 2, 3, r 6= tR, when q is an arbitrary prime power,
as far as it is known to the authors, the best upper bounds in the literature are as follows.

`q(r, 2) = sq(r − 1, 1) ≤ Φ(q) · q(r−2)/2 ·
√

ln q + 2bq(r−5)/2c, [4, 5, 52]

r = 2t+ 1 ≥ 3, r 6= 9, 13, t ≥ 1, t 6= 4, 6;

Φ(q) =


0.998

√
3 < 1.729 if q ≤ 160001

1.05
√

3 < 1.819 if 160001 < q ≤ 321007√
3 + ln ln q

ln q
+
√

1
3 ln2 q

+ 3√
q ln q

< 1.836 if q > 321007

;

lim
q→∞

Φ(q) =
√

3.

(2.1)

`q(r, 3) = sq(r − 1, 2) < c4 · q(r−3)/3 · 3
√

ln q + 3bq(r−7)/3c [5, 20, 21]

+ 2
⌊
q(r−10)/3

⌋
+ δr,13, r = 3t+ 1, t ≥ 1; c4 <

{
2.61 if 13 ≤ q ≤ 4373

2.65 if 4373 < q ≤ 7057
.

(2.2)

`q(r, 3) = sq(r − 1, 2) < c5 · q(r−3)/3 · 3
√

ln q + 3bq(r−8)/3c [5, 20]

+ 2
⌊
q(r−11)/3

⌋
+ δr,14, r = 3t+ 2, t ≥ 1; c5 <

{
2.785 if 11 ≤ q ≤ 401

2.884 if 401 < q ≤ 839
.

(2.3)

In (2.1), the results for r = 3 are obtained by computer search, if q ≤ 321007, and
in a theoretical way, if q > 321007. In (2.2), (2.3), the results for r = 4, 5, are obtained
by computer search. The rest of the results in (2.1)–(2.3) are obtained by applying the
lift-constructions (qm-concatenating constructions) for covering codes [13, Section 5.4],
[15–18,23,24].

2.2 Direct sum construction

The direct sum construction [11, 13, 18] forms an [n1 + n2, n1 + n2 − (r1 + r2)]qR code V
with R = R1 + R2 from two codes: an [n1, n1 − r1]qR1 code V1 and an [n2, n2 − r2]qR2

code V2.
For example, for the code V , let R = 3, r = 3t + 1. Choose r1 = 2t + 1, R1 = 2,

n1 ≈ c1q
(r1−2)/2

√
ln q = c1q

t−1
√
q ln q, see (1.4), (2.1); r2 = t, R2 = 1, n2 = (qt − 1)/(q −

1) ≈ c2q
t−1, i.e. V2 is the [ q

t−1
q−1

, q
t−1
q−1
− t]q1 Hamming code. The length n of the resulting

code V is n ≈ cqt−1
√
q ln q = cq(r−R)/R+(R−2)/2R

√
ln q.
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Similarly, one can show that (1.5) holds. For the code V , let r = tR + 1. Choose
r1 = 2t + 1, R1 = 2, n1 ≈ c1q

t−1
√
q ln q; r2 = (R − 2)t, R2 = R − 2, n2 = (R − 2)(qt −

1)/(q − 1) ≈ c2q
t−1, i.e. V2 is the sequential direct sum of R− 2 Hamming codes. Again,

the length n of V is n ≈ cqt−1
√
q ln q = cq(r−R)/R+(R−2)/2R

√
ln q.

3 The main new results

Notation 3.1. Throughout the paper, fixed R, we denote the following:

• θR,q = (qR+1 − 1)/(q − 1) is the number of points in the projective space PG(R, q).

• , is the sign “equality by definition”.

• λ > 0 is a positive constant independent of q and R, its value can be assigned
arbitrarily.

• Dmin
R is a constant independent of q and λ and dependent on R.

• Qλ,R, Cλ,R, and Dλ,R, are constants independent of q and dependent on λ and R.

• βλ,R(q), Υλ,R(q), and Ωλ,R(q) are functions of q, parameters of which are dependent
on λ and R.

•
Dmin
R ,

R

R− 1
R
√
R(R− 1) ·R!. (3.1)

•
Dλ,R , λ+

R ·R!

λR−1
. (3.2)

•
βλ,R(q) , λ− R− 1

R
√
q ln q

. (3.3)

•

Υλ,R(q) ,
λR−1

(R− 1)!
R

√
lnR−1 q

q
. (3.4)

•
Ωλ,R(q) , λ+

R ·R!

βR−1
λ,R (q)

· 2

2− 1
q
−Υλ,R(q)

. (3.5)
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•
Qλ,R , dxe, x ,

{
eR−1 if Υλ,R(eR−1) ≤ 1
y if Υλ,R(eR−1) > 1

, (3.6)

where y is a solution of the equation

Υλ,R(y) = 1 under the condition y > eR−1. (3.7)

•
Cλ,R , λ+

R ·R!

βR−1
λ,R (Qλ,R)

· 2Qλ,R

Qλ,R − 1
. (3.8)

Lemma 3.2 follows from Lemma 6.8. Theorem 3.3 summarizes the results of Sections
4–8.

Lemma 3.2. We have

Dmin
R = min

λ
Dλ,R <


1.651R if R ≥ 3
0.961R if R ≥ 7
0.498R if R ≥ 36
0.4R if R ≥ 178

. (3.9)

Theorem 3.3. Let R ≥ 3 be fixed. Let the values used here correspond to Notation 3.1.
For the length function `q(tR + 1, R) and the smallest size sq(tR,R − 1) of an (R −
1)-saturating set in the projective space PG(tR, q) we have the following upper bounds
provided by infinite families of covering codes with growing codimension r = tR + 1,
t ≥ 1:

(i) (Upper bounds by a decreasing function)

If q > Qλ,R, then Ωλ,R(q) is a decreasing function of q and Ωλ,R(q) < Cλ,R. More-
over,

`q(r, R) = sq(r − 1, R− 1) < Ωλ,R(q) · q(r−R)/R · R
√

ln q + 2Rqt−1 +Rθt−1,q

<

(
Ωλ,R(q) +R

2 + q/(q − 1)
R
√
q ln q

)
q(r−R)/R · R

√
ln q, r = tR + 1, t ≥ 1, q > Qλ,R,

(3.10)

where for t ≥ 2 the bound holds if Cλ,R
R
√
q ln q + 2R ≤ q + 1.

(ii) (Upper bounds by constants)
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Let Q0 > Qλ,R be a constant independent of q. Then Ωλ,R(Q0) is also a constant
independent of q such that Cλ,R > Ωλ,R(Q0) > Dλ,R. We have

`q(r, R) = sq(r − 1, R− 1) < cq(r−R)/R · R
√

ln q + 2Rqt−1 +Rθt−1,q

<

(
c+R

2 + q0/(q0 − 1)
R
√
q0 ln q0

)
q(r−R)/R · R

√
ln q, r = tR + 1, t ≥ 1,

c ∈ {Cλ,R, Ωλ,R(Q0)}, q0 =

{
Qλ,R if c = Cλ,R
Q0 if c = Ωλ,R(Q0)

, q > q0,

(3.11)

where for t ≥ 2 the bound holds if c R
√
q ln q + 2R ≤ q + 1.

(iii) (Asymptotic upper bounds)

Let q > Qλ,R be large enough. Then the bounds (3.12) and (3.13) hold.

`q(r, R) = sq(r − 1, R− 1) < cq(r−R)/R · R
√

ln q + 2Rqt−1 +Rθt−1,q

<

(
c+R

2 + q/(q − 1)
R
√
q ln q

)
q(r−R)/R · R

√
ln q, r = tR + 1, t ≥ 1, c ∈ {Dmin

R , Dλ,R},

(3.12)

where for t ≥ 2 the bounds hold if c R
√
q ln q + 2R ≤ q + 1.

`q(r, R) = sq(r − 1, R− 1) < 3.43Rq(r−R)/R · R
√

ln q, r = tR + 1, t ≥ 1, (3.13)

where for t ≥ 2 the bounds hold if Dmin
R

R
√
q ln q + 2R ≤ q + 1.

Note that Theorem 6.10 in Section 6 is a version of Theorem 3.3 for t = 1.
Also, for r = tR + 1 we have t− 1 = (r −R− 1)/R and q(r−R)/R = qt−1 R

√
q.

4 New Construction A of (R − 1)-saturating sets in

PG(R, q), R ≥ 3

In this section, for any q and R ≥ 3, we describe a new construction of (R− 1)-saturating
sets in PG(R, q). The points of such an n-set (in homogeneous coordinates), treated as
columns, form a parity check matrix of an [n, n − (R + 1)]qR code. In future, this code
will be used as a starting one for lift-constructions obtaining infinite families of covering
codes with growing codimension r = tR + 1, t ≥ 1, see Section 8.
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4.1 An iterative process

We say that a point P of PG(R, q) is ρ-covered by a point set K ⊂ PG(R, q) if P lies
in a ρ-subspace generated by ρ + 1 points of K in general positions where ρ ≤ ρ, see
Definition 1.3. In this case, the set K ρ-covers the point P . If ρ is clear by the context,
one can say simply “covered” and “covers” (resp. “uncovered” and “does not cover”).

Assume that in PG(R, q), an (R − 1)-saturating set is constructed in a step-by-step
iterative process adding R new points to the set in every step.

Let Au be a point of PG(R, q), u = 1, . . . , θR,q. Let L > R be an integer. Let

P0 = {A1, . . . , AL} ⊂ PG(R, q), L > R, (4.1)

be a starting L-set such that any R of its points are in general position.
In PG(R, q), an arc is a set of points no R+1 of which belong to the same hyperplane.

So, any R + 1 points of an arc are in general position. For example, a normal rational
curve is projectively equivalent to the arc {(1, t, t2, . . . , tR) : t ∈ Fq} ∪ {(0, . . . , 0, 1)}. We
can take any L points of any arc as the starting L-set.

Let w ≥ 0 be an integer. Let Kw be the current (L+wR)-set obtained after the w-th
step of the process; we put K0 = P0, see (4.1). Denote by

Pw+1 = {AL+wR+1, AL+wR+2, . . . , AL+wR+R} ⊂ PG(R, q), w ≥ 0,

an R-set of points that are added to Kw on the (w + 1)-st step to obtain Kw+1. So,

Kw = P0 ∪ P1 ∪ . . . ∪ Pw ⊂ PG(R, q), #Kw = L+ wR, w ≥ 0. (4.2)

Let Uw be the subset of PG(R, q) \ Kw consisting of the points that are not (R − 1)-
covered by Kw.

The set Pw+1 is constructed as follows.
Let Πw ⊂ PG(R, q) be a hyperplane skew to Kw. In PG(R, q), a blocking set regarding

hyperplanes contains ≥ θ1,q points [10]. Therefore the saturating set with the size proved
in this paper cannot be a blocking set. So, the needed Πw exists.

We put Pw+1 ⊂ Πw. In the first, we choose a “leading point” Aw+1 ∈ Πw and put
AL+wR+1 = Aw+1 (the choice of the leading point is considered below). Then we take
the points AL+wR+2, . . . , AL+wR+R of Πw such that all the points of Pw+1 are in general
position. Thus, Pw+1 covers all points of Πw.

The iterative process is as follows:

• We assign the starting set P0 in accordance to (4.1) and put w = 0, K0 = P0.

• In every (w + 1)-th step, we should do the following actions:

– choose the leading point Aw+1;

10



– construct the R-set Pw+1;

– form the new current set Kw+1 = Kw ∪ Pw+1;

– count (or make an estimate of) the value #Uw+1.

• The process ends when #Uw+1 ≤ R. Finally, in the last (w+ 1)-step, we add to Kw
at most R uncovered points to obtain an (R− 1)-saturating set.

4.2 The choice of the leading point

Let ∆w+1(Pw+1) be the number of new covered points in Uw after adding Pw+1 to Kw;

∆w+1(Pw+1) = #Uw −#Uw+1. (4.3)

We denote δw+1(Aw+1) the number of new covered points in Uw \ Πw after adding the
leading point Aw+1 = AL+wR+1 to Kw. We have

∆w+1(Pw+1) ≥ δw+1(Aw+1) + #(Uw ∩ Πw) ≥ δw+1(Aw+1), (4.4)

where the first sign “≥” is associated with the fact that the inclusion of the points
AL+wR+2, . . . , AL+wR+R can add new covered points outside Πw.

Let Sw be the sum of the number of new covered points in Uw \ Πw over all points P
of Πw, i.e.

Sw =
∑
P∈Πw

δw+1(P ). (4.5)

The average value δaver
w+1 of δw+1(P ) over all points of Πw is

δaver
w+1 =

∑
P∈Πw

δw+1(P )

#Πw

=
Sw

θR−1,q

. (4.6)

Obviously, there exists a point Aw+1 ∈ Πw such that

δw+1(Aw+1) ≥ δaver
w+1. (4.7)

The point Aw+1 ∈ Πw providing (4.7) should be chosen as the leading one.

4.3 Estimates of the average number δaverw+1 of new covered points

To make the estimates, we introduce and consider a number of subspaces.
We denote by dim(H) the dimension of a subspace H.
We fix a point B ∈ Uw \ Πw. So, B /∈ Πw.

11



We consider
(

L
R−1

)
distinct (R − 1)-subsets consisting of distinct points of

K0 = P0. We denote such a subset by Dj with

Dj ⊂ K0, #Dj = R− 1, j = 1, . . . ,

(
L

R− 1

)
, Du 6= Dv if u 6= v.

By the assumptions, all the points of Dj are in general position. Also, all the points of
the R-set Dj ∪ {B} are in general position, otherwise B would be covered by K0. Thus,

the points of Dj ∪ {B} uniquely define a hyperplane, say Σ
(R−1)
j,B , such that

Σ
(R−1)
j,B = 〈Dj ∪ {B}〉 ⊂ PG(R, q), dim(Σ

(R−1)
j,B ) = R− 1, #Σ

(R−1)
j,B = θR−1,q.

We have Σ
(R−1)
j,B 6= Πw, as B /∈ Πw. Thus, Σ

(R−1)
j,B and Πw intersect. The intersection is

an (R− 2)-subspace, say Γ
(R−2)
j,B , such that

Γ
(R−2)
j,B = Σ

(R−1)
j,B ∩ Πw, dim(Γ

(R−2)
j,B ) = R− 2, #Γ

(R−2)
j,B = θR−2,q.

Let V(R−2)
j be the (R− 2)-subspace generated by the points of Dj, i.e.

V(R−2)
j = 〈Dj〉 ⊂ Σ

(R−1)
j,B , dim(V(R−2)

j ) = R− 2, #V(R−2)
j = θR−2,q.

As the (R− 2)-subspaces V(R−2)
j and Γ

(R−2)
j,B lie in the same hyperplane Σ

(R−1)
j,B , they meet

in some (R− 3)-subspace, say T (R−3)
j,B , such that

T (R−3)
j,B = V(R−2)

j ∩ Γ
(R−2)
j,B , dim(T (R−3)

j,B ) = R− 3, T (R−3)
j,B = θR−3,q.

The points of T (R−3)
j,B are not in general position with the points of Dj. We denote

Γ̂
(R−2)
j,B = Γ

(R−2)
j,B \ T (R−3)

j,B . (4.8)

Every point of Γ̂
(R−2)
j,B is in general position with the points of Dj; also,

#Γ̂
(R−2)
j,B = θR−2,q − θR−3,q = qR−2.

By the construction, the qR−2-set Γ̂
(R−2)
j,B is the affine point set of the (R − 2)-subspace

Γ
(R−2)
j,B .

Thus, the hyperplane Σ
(R−1)
j,B = 〈Dj ∪ {B}〉 is generated qR−2 times when we add in

sequence all the points of Πw to Kw for the calculation of Sw, see (4.5).
The same holds for all

(
L

R−1

)
sets Dj. Moreover, consider the sets Du and Dv with

u 6= v. We have Du 6= Dv. The points of Du ∪ {B} (resp. Dv ∪ {B}) define a hyperplane

12



Σ
(R−1)
u,B (resp. Σ

(R−1)
v,B ). No points of Dv \ (Du ∩ Dv) lie in Σ

(R−1)
u,B , otherwise B would

be (R − 1)-covered by K0. So, the hyperplanes Σ
(R−1)
u,B and Σ

(R−1)
v,B are distinct. If the

corresponding (R− 2)-subspaces Γ
(R−2)
u,B = Σ

(R−1)
u,B ∩Πw and Γ

(R−2)
v,B = Σ

(R−1)
v,B ∩Πw coincide

with each other then Σ
(R−1)
u,B and Σ

(R−1)
v,B have no common points outside Πw, contradiction

as B /∈ Πw. Thus, Γ
(R−2)
u,B 6= Γ

(R−2)
v,B .

So, we have proved that in Πw we have
(

L
R−1

)
distinct (R − 2)-subspaces Γ

(R−2)
j,B in

every of which the qR−2-set Γ̂
(R−2)
j,B of affine points gives rise to hyperplanes containing B.

Thus, for the calculation of Sw, the point B will be counted #Ĝw,B times where

Ĝw,B =

( L
R−1)⋃
j=1

Γ̂
(R−2)
j,B .

The same holds for all points of Uw \ Πw. Therefore,

Sw =
∑
P∈Πw

δw+1(P ) ≥
∑

B∈Uw\Πw

#Ĝw,B (4.9)

where the sign “≥” is needed as, for w ≥ 1, there are (R−1)-sets, say D̃j, j > 1, consisting

of points in general position, with D̃j ⊂ Kw and D̃j 6⊂ K0. For example, every set Pw,

w ≥ 1, contains R sets D̃j. Such sets together with uncovered points of Uw \Πw generate

hyperplanes (similar to Σ
(R−1)
j,B ) increasing Sw.

By (4.6), (4.9), for the average value δaver
w+1 of δw+1(P ) we have

δaver
w+1 =

∑
P∈Πw

δw+1(P )

θR−1,q

≥

∑
B∈Uw\Πw

#Ĝw,B

θR−1,q

. (4.10)

The values of #Ĝw,B can be distinct for distinct points B. Also, in principle, #Ĝw,B

can depend on w. We denote

#Ĝmin = min
B∈UW \Πw,W=1,...,w

#ĜW,B. (4.11)

Below, in Lemma 4.1, for the estimates of #Ĝmin, we use only the set K0 = P0. Therefore,
really, our estimates of #Ĝmin do not depend on w. By (4.10), (4.11),

δaver
w+1 ≥

#Ĝmin ·#Uw \ Πw

θR−1,q

. (4.12)
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Lemma 4.1. Let
(

L
R−1

)
− 1 ≤ q. The following holds:

#Ĝmin ≥ qR−3

(
L

R− 1

)(
q +

1

2
− 1

2

(
L

R− 1

))
. (4.13)

Proof. For some n, we consider n of the qR−2-sets Γ̂
(R−2)
j,B of (4.8). All the sets are distinct;

in fact, if Γ̂
(R−2)
u,B = Γ̂

(R−2)
v,B , u 6= v, then Γ̂

(R−2)
u,B ⊂ Γ

(R−2)
u,B ∩ Γ

(R−2)
v,B that implies qR−2 =

#Γ̂
(R−2)
u,B < #(Γ

(R−2)
u,B ∩ Γ

(R−2)
v,B ) = θR−3,q, contradiction.

As Γ̂
(R−2)
u,B and Γ̂

(R−2)
v,B are the affine point sets of the distinct (R− 2)-spaces, they have

at most qR−3 points in common, i.e. #(Γ̂
(R−2)
u,B ∩ Γ̂

(R−2)
v,B ) ≤ qR−3.

Assume that #(Γ̂
(R−2)
u,B ∩ Γ̂

(R−2)
v,B ) = qR−3, for all pairs (u, v), and that, in every set

Γ̂
(R−2)
j,B , all the intersection points are distinct; it is the worst case for #Ĝw,B.

In every set Γ̂
(R−2)
j,B , the number of the affine point sets intersecting it is n− 1 and the

number of the intersection points is (n− 1)qR−3. As qR−2− (n− 1)qR−3 must be ≥ 0, the
considered case is possible if n− 1 ≤ q.

In all n sets Γ̂
(R−2)
j,B , the total number of the intersection points is n(n− 1)qR−3. The

total number #Ĝ(n) of distinct points in the union Ĝ(n) =
⋃n
j=1 Γ̂

(R−2)
j,B is #Ĝ(n) =

nqR−2 − 1
2
n(n − 1)qR−3 where qR−2 = #Γ̂

(R−2)
j,B and we need the factor 1

2
in order to

calculate the meeting points exactly one time.
Finally, we put n =

(
L

R−1

)
.

Remark 4.2. The condition
(

L
R−1

)
−1 ≤ q is used below and gives rise that our estimates

work for q > Qλ,R, see (3.6) and Theorems 3.3 and 6.10. In principle, we could slightly
change the proof of Lemma 4.1 and put either n =

(
L

R−1

)
if
(

L
R−1

)
− 1 ≤ q or n = q + 1 if(

L
R−1

)
− 1 > q. This gives the estimate

#Ĝmin ≥

{
qR−3

(
L

R−1

) (
q + 1

2
− 1

2

(
L

R−1

))
if
(

L
R−1

)
− 1 ≤ q

1
2
(qR−1 + qR−2) if

(
L

R−1

)
− 1 > q

. (4.14)

On the base of (4.14), upper bounds for q < Qλ,R could be obtained. We do not it for
the sake of simplicity. We hope investigate the case q < Qλ,R in future works.
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5 Estimates of sizes of the saturating sets obtained

by Construction A

Lemma 5.1. For the number #Uw+1 of uncovered points after the (w + 1)-st step of the
iterative process, we have

#Uw+1 ≤ qR

(
1− #Ĝmin

θR−1,q

)w+1

. (5.1)

Proof. By (4.3), (4.4), (4.7), (4.10), (4.12), we have

∆w+1(Pw+1) = #Uw −#Uw+1 = #Uw \ Πw + #(Uw ∩ Πw)−#Uw+1

≥ #Ĝmin ·#Uw \ Πw

θR−1,q

+ #(Uw ∩ Πw),

where #Ĝmin ·#Uw \ Πw is the lower bound of
∑

B∈Uw\Πw #Ĝw,B, see (4.10). Therefore,

(#Ĝmin ·#Uw \Πw)/θR−1,q is the lower bound of the number of the new covered points in

Uw \Πw. It follows that #Ĝmin/θR−1,q ≤ 1, as the new covered points in the set Uw \Πw

are a subset of it that implies (#Ĝmin · #Uw \ Πw)/θR−1,q ≤ #Uw \ Πw. The summand
#(Uw ∩ Πw) takes into account that Pw+1 covers all points of Πw, see Subsection 4.1.

As #Ĝmin/θR−1,q ≤ 1 and #Uw = #Uw \ Πw + #(Uw ∩ Πw), we obtain

∆w+1(Pw+1) ≥ #Ĝmin ·#Uw

θR−1,q

;

#Uw+1 ≤ #Uw −
#Ĝmin ·#Uw

θR−1,q

= #Uw

(
1− #Ĝmin

θR−1,q

)
. (5.2)

As any R points of K0 are in general position, we have

#U0 ≤ θR,q − θR−1,q = qR.

Starting from #U0 and iteratively applying (5.2), we obtain the assertion.

By Notation 3.1, λ is a positive constant that does not depend on q. Let

L =
⌊
λ R
√
q ln q

⌋
(5.3)

that implies
λ R
√
q ln q − 1 < L ≤ λ R

√
q ln q. (5.4)
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From (3.3) and (5.4) we have

L−R + 1 ≤ βλ,R(q) R
√
q ln q < L−R + 2. (5.5)

We denote

Φ∗λ,R(q) =
2q

2q − 1−
(

L
R−1

) . (5.6)

Lemma 5.2. Let
(

L
R−1

)
− 1 ≤ q. The following holds:(
1− #Ĝmin

θR−1,q

)w+1

< exp

(
−

(w + 1)
(

L
R−1

)
qΦ∗λ,R(q)

)
. (5.7)

Proof. By the inequality 1− x ≤ exp(−x) and by (4.13), if
(

L
R−1

)
− 1 ≤ q we have(

1− #Ĝmin

θR−1,q

)w+1

< exp

(
−(w + 1) ·#Ĝmin

θR−1,q

)

< exp

(
−(w + 1)qR−3

(
L

R− 1

)(
q +

1

2
− 1

2

(
L

R− 1

))
q − 1

qR − 1

)
< exp

(
−(w + 1)qR−3

(
L

R− 1

)(
2q + 1−

(
L

R− 1

))
q − 1

2qR

)
< exp

(
−(w + 1)

(
L

R− 1

)(
2q2 − q − q

(
L

R− 1

)
+

(
L

R− 1

)
− 1

)
1

2q3

)
< exp

(
−(w + 1)

(
L

R− 1

)(
2q2 − q − q

(
L

R− 1

))
1

2q3

)
where the last transformation uses that, by (4.1), L > R and

(
L

R−1

)
− 1 > 0. Therefore,

removing
(

L
R−1

)
− 1 we obtain the inequality “< exp (− . . .)”.

Proposition 5.3. Let
(

L
R−1

)
− 1 ≤ q. Then the value

w ≥ R!

βR−1
λ,R (q)

Φ∗λ,R(q) R
√
q ln q − 1. (5.8)

satisfies the inequality #Uw+1 ≤ R.

Proof. By (5.1), (5.7), to prove #Uw+1 ≤ R it is sufficient to find w such that

exp

(
−

(w + 1)
(

L
R−1

)
qΦ∗λ,R(q)

)
≤ R

qR
.
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Using (5.5), we obtain

exp

(
−

(w + 1)
(

L
R−1

)
qΦ∗λ,R(q)

)
< exp

(
−(w + 1)(L−R + 2)R−1

(R− 1)! · qΦ∗λ,R(q)

)

< exp

(
−

(w + 1)
(
βλ,R(q) R

√
q ln q

)R−1

(R− 1)! · qΦ∗λ,R(q)

)
≤ R

qR
.

Taking the logarithm of both the parts of the last inequality, we have

(w + 1)
(
βλ,R(q) R

√
q ln q

)R−1

(R− 1)! · qΦ∗λ,R(q)
≥ R ln q − lnR;

w ≥ (R ln q − lnR)
(R− 1)! · qΦ∗λ,R(q)(
βλ,R(q) R

√
q ln q

)R−1
− 1.

If a ≥ R ln q then a ≥ R ln q − lnR. Therefore we may use the inequality

w ≥ R ln q
(R− 1)! · qΦ∗λ,R(q)(
βλ,R(q) R

√
q ln q

)R−1
− 1

which slightly worsens our estimates but simplifies the transformations. Finally,

w ≥
R! · Φ∗λ,R(q)q ln q

βR−1
λ,R (q) R

√
qR−1 lnR−1 q

− 1 =
R!

βR−1
λ,R (q)

Φ∗λ,R(q) R
√
q ln q − 1.

We denote, see (3.5) and (5.6),

Ω∗λ,R(q) = λ+
R ·R!

βR−1
λ,R (q)

Φ∗λ,R(q). (5.9)

Theorem 5.4. In PG(R, q), for the size sAR−1,q of the (R− 1)-saturating set obtained by
Construction A and for the smallest size sq(R,R − 1) of an (R − 1)-saturating set the
following upper bound holds:

sq(R,R− 1) ≤ sAR−1,q < Ω∗λ,R(q) R
√
q ln q + 2R if

(
L

R− 1

)
− 1 ≤ q. (5.10)

Proof. By (4.2), (5.3), (5.4), and Proposition 5.3 with (5.8), Construction A obtains an
(R− 1)-saturating set of size

L+ (w + 1)R +R = L+

(⌈
R!

βR−1
λ,R (q)

Φ∗λ,R(q) R
√
q ln q

⌉)
R +R

≤ λ R
√
q ln q +

(
R!

βR−1
λ,R (q)

Φ∗λ,R(q) R
√
q ln q + 1

)
R +R.

Now the assertion follows due to (5.9).
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6 Upper bounds on the length function `q(R + 1, R),

R ≥ 3

By (3.4), (5.3), (5.4), we have(
L

R− 1

)
<

LR−1

(R− 1)!
≤ λR−1

(R− 1)!
R

√
qR−1 lnR−1 q = qΥλ,R(q). (6.1)

Lemma 6.1. The condition
(

L
R−1

)
− 1 ≤ q holds if

Υλ,R(q) ≤ 1. (6.2)

Proof. By (6.1), we have
(

L
R−1

)
−1 ≤ q if Υλ,R(q) ≤ (q+1)/q. For simplicity of presentation

we consider Υλ,R(q) ≤ 1.

Lemma 6.2. Let λ and R be fixed. Let q > eR−1. Then Υλ,R(q) is a decreasing function
of q.

Proof. The derivative (
lnR−1 q

q

)′
=

(R− 1) lnR−2 q − lnR−1 q

q2

is negative when ln q > R− 1.

Corollary 6.3. We have
Qλ,R > eR−1. (6.3)

Proof. The assertion follows from (3.6), (3.7), and Lemma 6.2.

Remark 6.4. Note that (3.7) is equivalent to the equation

lnR−1 y = y

(
(R− 1)!

λR−1

)R
under the condition y > eR−1.

This equation is connected with Lambert W function, see e.g. [14].

The following two lemmas are obvious.

Lemma 6.5. Let λ and R be fixed. Then

lim
q→∞

Υλ,R(q) = 0. (6.4)
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Lemma 6.6. Let λ and R be fixed. Then βλ,R(q) of (3.3) is an increasing function of q
and

lim
q→∞

βλ,R(q) = λ. (6.5)

We introduce a function Φλ,R(q) of q, cf. (5.6), (6.1), and (3.5),

Φλ,R(q) =
2

2− 1
q
− λR−1

(R−1)!
R

√
lnR−1 q

q

=
2

2− 1
q
−Υλ,R(q)

. (6.6)

Lemma 6.7. Let the values used here be as in Notation 3.1 and in (6.6). The following
holds.

(i) Let λ, R be fixed. Let q > eR−1. Then Φλ,R(q) and Ωλ,R(q) are decreasing functions
of q.

(ii) Let λ, R be fixed. Let q > eR−1. Then Φ∗λ,R(q) and Ω∗λ,R(q) are upper bounded by
decreasing functions of q such that

Φ∗λ,R(q) < Φλ,R(q); (6.7)

Ω∗λ,R(q) < Ωλ,R(q). (6.8)

(iii) If q > Qλ,R then

Φλ,R(q)∗ < Φλ,R(q) < Φλ,R(Qλ,R) ≤ 2Qλ,R

Qλ,R − 1
; (6.9)

βλ,R(q) > βλ,R(Qλ,R) = λ− R− 1
R
√
Qλ,R lnQλ,R

; (6.10)

Ωλ,R(q) < Cλ,R. (6.11)

(iv) Let λ, R be fixed. Then

lim
q→∞

Ωλ,R(q) = λ+
R ·R!

λR−1
= Dλ,R. (6.12)

Proof. (i) We consider Φλ,R(q). By Lemma 6.2, if q > eR−1 then Υλ,R(q) is a decreasing
function of q. It implies that the function 2/(2− 1

q
−Υλ,R(q)) is decreasing also.

Now we consider Ωλ,R(q) = λ + R·R!

βR−1
λ,R (q)

Φλ,R(q), see (3.5), (6.6). The assertion on

Ωλ,R(q) follows from Lemma 6.6 and the first part of this case (i).
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(ii) The assertion (6.7) follows from (5.6), (6.1), and (6.6).

For (6.8) we use (3.3), (3.5), (5.9), and (6.7).

(iii) If q > Qλ,R then q > eR−1, see Corollary 6.3, and Φλ,R(q) is a decreasing function,
see the case (i). This implies Φλ,R(q) < Φλ,R(Qλ,R). Then we use (6.7). Moreover,
by (6.6), (3.6), and Lemma 6.2, we have

Φλ,R(Qλ,R) =
2

2− 1
Qλ,R
−Υλ,R(Qλ,R)

<
2

1− 1
Qλ,R

=
2Qλ,R

Qλ,R − 1
.

By Lemma 6.6, βλ,R(q) is an increasing function of q that implies (6.10).

By Corollary 6.3 and the case (i) of this lemma, Ωλ,R(q) is a decreasing function, if
q > Qλ,R, and we have Ωλ,R(q) < Ωλ,R(Qλ,R). Then we use (3.8), (6.9) and obtain
(6.11).

(iv) We use (3.2), (3.5), (6.4), and (6.5).

We denote
λmin , R

√
R(R− 1) ·R!. (6.13)

Lemma 6.8. Let R ≥ 3 be fixed.

(i) The minimum value Dmin
R of Dλ,R regarding λ is as follows:

Dmin
R , min

λ
Dλ,R = Dλmin,R =

R

R− 1
R
√
R(R− 1) ·R!. (6.14)

(ii) 1
R
Dmin
R is a decreasing function of R.

(iii) The relation (3.9) holds.

(iv) Let λ = λmin and Dλ,R = Dmin
R . Then the size of the starting set of (5.3) is L > R

if q satisfies any of the following lower bounds:

q ln q >
RR

R! ·R(R− 1)
; q >

RR

R!
. (6.15)

Proof. (i) We have D′λ,R = 1− λ−R(R− 1)R ·R! where D′λ,R is the derivative of Dλ,R as

a function of λ. From D′λ,R = 0 follows λ = R
√
R(R− 1) ·R! = λmin. It corresponds

to the minimal Dλ,R as the derivative is an increasing function of λ. We substitute
λmin to (3.2) that gives the last equality of (6.14).
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(ii) We haveDmin
R /R = R

√
R2 · (R− 1)!/(R− 1)R−1. The derivative (R2/R)′ = 2R2/R−2(1−

lnR) < 0 as R ≥ 3; so,
R
√
R2 is a decreasing function of R. Also, (R−1)!/(R−1)R−1

is a decreasing function of R if R ≥ 2.

(iii) For R = 3, 7, 36, 178, we directly calculate Dmin
R by (3.1). Then we use the case (ii)

of this lemma. See also Table 1 below for the illustration.

(iv) The assertion follows from (5.3) and (6.13).

Remark 6.9. It can be shown that

lim
R→∞

Dmin
R

R
=

1

e
≈ 0, 3679.

So, the relation (3.9) is convenient for estimates of the new asymptotic bounds.

Now we can prove Theorem 6.10 that is a version of Theorem 3.3 for t = 1.

Theorem 6.10. Let R ≥ 3 be fixed. Let the values used here correspond to Notation 3.1.
For the length function `q(R + 1, R) and the smallest size sq(R,R − 1) of an (R − 1)-
saturating set in the projective space PG(R, q) the following upper bounds hold:

(i) (Upper bound by a decreasing function)

If q > Qλ,R, then Ωλ,R(q) is a decreasing function of q and Ωλ,R(q) < Cλ,R. More-
over,

`q(R + 1, R) = sq(R,R− 1) < Ωλ,R(q) R
√
q ln q + 2R, q > Qλ,R. (6.16)

(ii) (Upper bounds by constants)

Let Q0 > Qλ,R be a constant independent of q. Then Ωλ,R(Q0) is also a constant
independent of q such that Cλ,R > Ωλ,R(Q0) > Dλ,R. We have

`q(R + 1, R) = sq(R,R− 1) < c R
√
q ln q + 2R <

(
c+

2R
R
√
q0 ln q0

)
R
√
q ln q,

c ∈ {Cλ,R, Ωλ,R(Q0)}, q0 =

{
Qλ,R if c = Cλ,R
Q0 if c = Ωλ,R(Q0)

, q > q0.

(6.17)

(iii) (Asymptotic upper bounds)

Let q > Qλ,R be large enough. Then the bounds (6.18) and (6.19) hold.

`q(R + 1, R) = sq(R,R− 1) < c R
√
q ln q + 2R, c ∈ {Dmin

R , Dλ,R}. (6.18)

`q(R + 1, R) = sq(R,R− 1) < 1.651R R
√
q ln q + 2R. (6.19)
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Proof. (i) We use Lemma 6.7(i) and (5.10), (6.8).

(ii) The assertion follows from (3.4), (3.5), (5.10), (6.8), (6.11), and Lemma 6.7(i),(iv)
which simplifies proving Ωλ,R(Q0) > Dλ,R.

(iii) We use the case (i) of this theorem and Lemmas 6.7(iv) and 6.8.

We call the value Cλ,R + 2R
R
√
Qλ,R lnQλ,R

the basic constant for t = 1, see (6.17).

Example 6.11. In Table 1, examples of values connected with upper bounds of Theorem
6.10 and Theorem 3.3 for t = 1 are given. For every R, the last value of λ is λmin, see
(6.13) and Lemma 6.8; it gives rise to min

λ
Dλ,R = Dmin

R . In the table, the values of R,

Qλ,R, and λ, apart from λmin, are exact. The rest of them are approximate.

Table 1: Examples of values connected with upper bounds of Theorem 6.10 and Theorem
3.3 for t = 1; Q0 ∈ {5 · 104, 15 · 104}, E = eR−1

R λ Υλ,R(E) Qλ,R Cλ,R Ωλ,R(Q0) Ωλ,R(Q0) Dλ,R

E Q0 = Q0 =
5 · 104 15 · 104

3 2.35 2.25 1007 9.50 6.43 6.17 5.61
7.39 3 3.67 7186 7.14 5.90 5.60 5

λmin = 4.44 14974 6.69 5.93 5.58 4.953 = Dmin
R

3.302 = 1.651R
4 2.2 1.91 6826 25.9 18.49 16.42 11.22

20.1 2.5 2.80 61724 16.5 14.30 8.64
λmin = 12.55 118409572 6.89 5.493 = Dmin

R

4.120 = 1.373R
5 2.3 1.59 21242 84.3 68.53 55.4 23.74

54.6 2.5 2.22 283935 45.1 17.86
λmin = 28.72 5.929 = Dmin

R

4.743 = 1.186R
6 2.5 1.35 37774 337 304.6 217.7 46.73

148 λmin = 56.67 6.333 = Dmin
R

5.277 = 1.056R
7 2.95 1.80 9125037 265 56.48

403 λmin = 100.5 6.726 = Dmin
R

5.765 = 0.961R
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7 Bounds on the length function `q(4, 3) and 2-saturating

sets in PG(3, q)

For illustration, we compare the bounds obtained by computer search with the theoretical
bounds of Theorems 6.10 and 3.3 for R = 3, t = 1.

Complete arcs in PG(3, q) are 2-saturating sets. In [6,20,21,23], see also the references
therein, small complete arcs in PG(3, q) for the region 13 ≤ q ≤ 7057 are obtained by
computer search using the so-called “algorithms with the fixed order of points (FOP)”
and “randomized greedy algorithms”. These algorithms are described in detail in [6, 20].

In this paper, we continue the computer search and obtain new small complete arcs
in the region 7057 < q ≤ 7577.

We denote by t(3, q) the size of the smallest known complete arc in PG(3, q). The arcs
obtained in [6, 20, 21, 23] and in this paper (one arc of [54] is used also) give the value of
t(3, q) providing the following theorem, cf. (2.2).

Theorem 7.1. In the projective space PG(3, q), for the size t(3, q) of the smallest known
complete arc and the smallest size sq(3, 2) of a 2-saturating set the following upper bound
holds:

sq(3, 2) ≤ t(3, q) ≤ c4
3
√
q ln q, c4 =

{
2.61 if 13 ≤ q ≤ 4373

2.65 if 4373 < q ≤ 7577
. (7.1)

In Figure 1, the sizes t(3, q) of the smallest known [6, 20, 21, 23, 54] complete arcs
in PG(3, q) divided by 3

√
q ln q are shown by the bottom curve. The upper bounds of

Theorem 6.10 and Theorem 3.3 for R = 3, t = 1 (also divided by 3
√
q ln q) are given by

the top curve; the value λ = 3 is used, see Table 1.
In Figure 1, we see that the computer bounds are better than the theoretical ones,

but the order of the value of the bounds is the same.

8 Upper bounds on the length function `q(tR + 1, R)

Proposition 8.1 is a variant of the lift-constructions (qm-concatenating constructions) for
covering codes [15–18,23,24], [13, Section 5.4].

Proposition 8.1. [16, Section 3], [18, Section 2, Construction QM1] Let an [n0, n0 −
r0]qR code with n0 ≤ q + 1 exist. Then there is an infinite family of [n, n − r]qR codes
with parameters

n = n0q
m +Rθm,q, r = r0 +Rm, m ≥ 1.

Proof. In terms of [18], for its Construction QM1, we take `0 = 0 and use the trivial
(R, `0)-partition with p0 = n0. Such a case is always possible.
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Figure 1: The sizes t(3, q) of the smallest known complete arcs in PG(3, q) (bottom curve)
vs upper bounds of Theorem 6.10 and Theorem 3.3 (top curve) for R = 3, t = 1; the sizes
and bounds are divided by 3

√
q ln q; λ = 3
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Theorem 8.2. Let R ≥ 3 be fixed. Let q > q0 where q0 is a certain constant. Let f(q)
be a decreasing function of q. Let cj be constants independent of q such that c1

R
√
q ln q +

c2 ≤ q + 1 and f(q0) R
√
q ln q + c2 ≤ q + 1. Let an [n0, n0 − (R + 1)]qR code exist with

n0 = ϕ R
√
q ln q + c2 where ϕ ∈ {c1, f(q)}. Then there is an infinite family of [n, n− r]qR

codes with growing codimension r = tR + 1, t ≥ 2, and the following parameters:

n = ϕq(r−R)/R · R
√

ln q + c2q
t−1 +Rθt−1,q

<

(
ϕ+

c2 +Rq/(q − 1)
R
√
q ln q

)
q(r−R)/R · R

√
ln q

<

(
ϕ+

c2 +Rq0/(q0 − 1)
R
√
q0 ln q0

)
q(r−R)/R · R

√
ln q,

r = tR + 1, t ≥ 2, q > q0, R ≥ 3.

(8.1)

Proof. Using Proposition 8.1 with r0 = R + 1, we obtain

n = (ϕ R
√
q ln q + c2)qm +Rθm,q = qm R

√
q ln q

(
ϕ+

c2 +R
∑m

j=0 q
−j

R
√
q ln q

)

= qt−1 R
√
q ln q

(
ϕ+

c2 +R
∑t−1

j=0 q
−j

R
√
q ln q

)
< qt−1 R

√
q ln q

(
ϕ+

c2 +R q
q−1

R
√
q ln q

)
where for the last inequality we use the sum of a geometric progression. Note that
r = tR + 1 = R + 1 +mR, hence m = t− 1 = (r − R − 1)/R. Finally, it is obvious that
(c2 +Rq/(q − 1))/ R

√
q ln q is a decreasing function of q.

Now we are able to prove Theorem 3.3.

Proof of Theorem 3.3. For t = 1, Theorem 3.3 is equivalent to Theorem 6.10.
Let us consider the cases t ≥ 2. We apply (8.1) with q0 = Qλ,R.

(i) We use Theorem 6.10(i) and relation (8.1) of Theorem 8.2 taking ϕ = f(q) = Ωλ,R(q),
c2 = 2R. Also, for q > Qλ,R, we have Ωλ,R(q) < Cλ,R, see Lemma 6.7(iii) with
(6.11).

(ii) The assertion follows from Theorem 6.10(i)(ii) and relation (8.1) with ϕ = c1 ∈
{Cλ,R, Ωλ,R(Q0)}, c2 = 2R.

(iii) We use Theorem 6.10(iii) and relation (8.1) with ϕ = c1 ∈ {Dmin
R , Dλ,R}, c2 = 2R.

This gives (3.12).

In the last inequality of (3.12), we put c = Dmin
R and consider Dmin

R /R + ψ(q, R)
where ψ(q, R) = (2+q/(q−1))/ R

√
q ln q. Obviously, ψ(q, R) is a decreasing function

of q.
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We check by computer that Dmin
R /R + ψ(q, R) < 3.35 if R < 178 and q ≥ 41.

It can be shown that for a fixed q, we have limR→∞ ψ(q, R) = 2 + q/(q − 1) that
gives rise to ψ(q, R) < 2 + q/(q − 1) as ψ(q, R) is an increasing function of R. So,
for any R ≥ 3, we have ψ(q, R) < 3.03 if q ≥ 41. Now we take into account that
Dmin
R < 0.4R if R ≥ 178, see (3.9). As a result, Dmin

R /R + ψ(q, R) < 3.43.
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[9] E. Boros, T. Szőnyi and K. Tichler, On defining sets for projective planes, Discrete
Math., 303 (2005), 17-31. https : //doi.org/10.1016/j.disc.2004.12.015

[10] R. C. Bose, R. C. Burton, A characterization of flat spaces in a finite geometry and
the uniqueness of the Hamming and McDonald codes, J. Comb. Theory, 1 (1966),
96–104. https : //doi.org/10.1016/S0021− 9800(66)80007− 8

[11] R. A. Brualdi, S. Litsyn and V. Pless, Covering radius, in Handbook of Coding Theory
(eds. V. S. Pless and W. C. Huffman), vol. 1, Elsevier, Amsterdam (1998), 755–826.

[12] H. Chen, List-decodable codes and covering codes, preprint, arXiv:2109.02818 [cs.IT]
(2021) https : //arxiv.org/abs/2109.02818

[13] G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, Covering Codes, North-Holland
Math. Library, 54, Elsevier, Amsterdam, The Netherlands, 1997.

[14] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, On the
Lambert W function (PostScript), Adv. Computat. Math., 5 (1996), 329–359. https :
//doi.org/10.1007/BF02124750

[15] A. A. Davydov, Construction of linear covering codes, Probl. In-
form. Transmiss., 26 (1990), 317–331. Available from: http :
//iitp.ru/upload/publications/6833/ConstrCoverCodes.pdf.

[16] A. A. Davydov, Constructions and families of covering codes and saturated sets of
points in projective geometry, IEEE Trans. Inform. Theory, 41 (1995), 2071–2080.
https : //doi.org/10.1109/18.476339

[17] A. A. Davydov, M. Giulietti, S. Marcugini and F. Pambianco, Linear covering codes
over nonbinary finite fields, in Proc. XI Int. workshop on algebraic and combintorial
coding theory, ACCT2008, Pamporovo, Bulgaria, June 2008, 70–75. Available from:
http : //www.moi.math.bas.bg/acct2008/b12.pdf.

27

https://arxiv.org/abs/1712.07078
https://doi.org/10.1007/978-3-540-69019-1_1
https://doi.org/10.1016/j.disc.2004.12.015
https://doi.org/10.1016/S0021-9800(66)80007-8
https://arxiv.org/abs/2109.02818
https://doi.org/10.1007/BF02124750
https://doi.org/10.1007/BF02124750
http://iitp.ru/upload/publications/6833/ConstrCoverCodes.pdf
http://iitp.ru/upload/publications/6833/ConstrCoverCodes.pdf
https://doi.org/10.1109/18.476339
http://www.moi.math.bas.bg/acct2008/b12.pdf


[18] A. A. Davydov, M. Giulietti, S. Marcugini and F. Pambianco, Linear nonbinary
covering codes and saturating sets in projective spaces, Adv. Math. Commun., 5
(2011), 119–147. https : //doi.org/10.3934/amc.2011.5.119

[19] A. A. Davydov, S. Marcugini and F. Pambianco, New covering codes of radius R,
codimension tR and tR + R

2
, and saturating sets in projective spaces, Des. Codes

Cryptogr. 87 (2019) 2771–2792. https : //doi.org/10.1007/s10623− 019− 00649− 2

[20] A. A. Davydov, S. Marcugini and F. Pambianco, New bounds for linear
codes of covering radius 3 and 2-saturating sets in projective spaces, in Proc.
2019 XVI Int. Symp. Problems Redundancy Inform. Control Systems (REDUN-
DANCY), Moscow, Russia, Oct. 2019, IEEE Xplore, (2020) 47–52. https :
//doi.org/10.1109/REDUNDANCY48165.2019.9003348

[21] A. A. Davydov, S. Marcugini and F. Pambianco, Bounds for complete arcs in
PG(3, q) and covering codes of radius 3, codimension 4, under a certain probabilis-
tic onjecture, in Computational Science and Its Applications – ICCSA 2020, Lec-
ture Notes in Computer Science, Springer, Cham, 12249 (2020), 107-122. https :
//doi.org/10.1007/978− 3− 030− 58799− 4 8

[22] A. A. Davydov and P. R. J. Österg̊ard, On saturating sets in small
projective geometries, European J. Combin., 21 (2000), 563–570. https :
//doi.org/10.1006/eujc.1999.0373
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“Babeş –Bolyai”, Mathematica, LIV(3) (2009), 77–84. Available from: http :
//www.cs.ubbcluj.ro/˜studia−m/2009− 3/kiss.pdf.

[43] A. Klein and L. Storme, Applications of finite geometry in coding theory and
cryptography, in Security, Coding Theory and Related Combinatorics, NATO Sci-
ence for Peace and Security, Ser. - D: Information and Communication Secu-
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