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ABSTRACT. The paper gives a comprehensive study of Inertial Manifolds for
hyperbolic relaxations of an abstract semilinear parabolic equation in a Hilbert
space. A new scheme of constructing Inertial Manifolds for such type of prob-
lems is suggested and optimal spectral gap conditions which guarantee their
existence are established. Moreover, the dependence of the constructed mani-
folds on the relaxation parameter in the case of the parabolic singular limit is
also studied.
Bibliography: 38 titles.

1. Inmtroduction. There is a common belief that the dynamics generated by dis-
sipative partial differential equations (PDEs) is essentially finite-dimensional and
can be effectively described by finitely many parameters which obey the associ-
ated system of ordinary differential equations (ODEs) — the so-called Inertial Form
(IF) of the initial problem. This belief is partially justified by the theory of global
attractors which has been intensively developing during the last 40 years. Recall
that by definition a global attractor is a compact invariant set in the phase space
which attracts the images of all bounded sets as time goes to infinity. Thus, on
the one hand, the attractor (if it exists) captures all the nontrivial dynamics of the
system considered and, on the other hand, is essentially smaller than the initial
phase space (which is, say, L?(£2)). Moreover, under more or less general and nat-
ural assumptions one can prove that the global attractor has finite Hausdorff and
box-counting dimensions, see [1, 3, 25, 28, 33, 38] and references therein. Due to

2010 Mathematics Subject Classification. Primary: 35B40, 35B45.

Key words and phrases. Hyperbolic relaxation, gap property, inertial manifold.

The research of VVC was supported by the Ministry of Education and Science of the Russian
Federation (grant 14.Z50.31.0037). The work of AK and SZ was partially supported by the EPSRC
grant EP/P024920/1 and the work of SZ was partially supported by the Russian Foundation for
Basic Research (projects 17-01-00515 and 18-01-00524).

* Corresponding author: V. V. Chepyzhov.

1115


http://dx.doi.org/10.3934/dcdsb.2019009

1116 VLADIMIR V. CHEPYZHOV, ANNA KOSTIANKO AND SERGEY ZELIK

the so-called Mané projection theorem, this result allows us to build up the IF with
Hélder continuous non-linearity, see, say, [29, 36].

Note that the reduction of smooth PDEs to the ODEs where the nonlinearity is
only Holder continuous does not look entirely satisfactory (e.g., even the uniqueness
of solutions may be lost under such reduction) and despite many efforts building
up more regular IFs under more or less general assumptions remains a mystery, see
the survey [36] and references therein. However, there is an exceptional (in a sense)
case where this problem is resolved, namely, when the considered system possesses
an Inertial Manifold (IM). Roughly speaking, an IM is a C''-smooth normally hy-
perbolic finite-dimensional invariant submanifold of the phase space which contains
the global attractor. If it exists, the restriction of the initial equation to this man-
ifold gives the desired IF. Of course, the existence of such an object requires some
kind invariant cone or/and spectral gap conditions to be satisfied and this is a big
restriction, see [5, 11, 24, 22, 30, 32] and references therein. On the other hand,
the recent counterexamples show that, in the case where the IM does not exist, the
limit dynamics may remain infinite-dimensional (despite the fact that the global
attractor has the finite box-counting dimension) and even allow us to make a con-
jecture that the IM is the only natural obstruction for such dynamics to exist, see
[7, 36] for more details. This, in particular, motivates the interest to finding the
precise conditions which guarantee the existence or non-existence of IMs in various
classes of dissipative systems generated by PDEs. One of the most studied nontriv-
ial classes of such systems is given by the abstract semilinear parabolic problem,
see e.g., [12],

Ou + Au = F(u) (1)

in a Hilbert space H. Here A is a positive unbounded operator which generates an
analytic semigroup in H and the non-linearity F is globally Lipschitz as the map
from D(AP), 0 < B < 1, to H with Lipschitz constant L. Note that although the
assumption of global Lipschitz continuity of the non-linearity is usually not satisfied
for the initial system, it appears naturally after cutting off the nonlinearity outside
of the absorbing ball, so this assumption is not a big restriction. Throughout this
paper, we assume implicitly that the cut-off procedure is already done and consider
only globally Lipschitz continuous nonlinearities.

The precise condition for (1) to have an IM is well-known in the case where A is
self-adjoint and A~! is compact:

AN+1 — AN

> L, (2)
Moo X%

where {A,}52; are the eigenvalues of A enumerated in the non-decreasing order
and N is the dimension of the IM. It is also known that if (2) is violated for all N,
one can construct a smooth nonlinearity F in such way that the dynamics generated
by (1) will be infinite dimensional, see [7, 16, 17, 36]. However, the situation with
the precise conditions become much more delicate and essentially less clear if the
operator A is not selfadjoint. The most dangerous for the existence of IMs is the
appearance of Jordan cells in the spectrum of the operator A. Indeed, in the model
case where H = H x H, A is a self-adjoint positive operator in H with compact
inverse, F is globally Lipschitz continuous from H to H (i.e., 8 = 0), and

A= (é }) A, (3)
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the precise spectral gap condition for the existence of IM reads

A -
S > Vi, (4)
)‘N+1 + >\N

see [20], which coincides up to the square root in the right-hand side with the case
of B8 = 1/2 in the self-adjoint case and very far from the expected condition with
B =0:

>\N+1 — Ay > 2L. (5)
This difference causes the crucial mistake in the attempt to construct the IM for
the 2D Navier-Stokes equations using the so-called Kwak transform, see [20, 21, 34].
On the other hand, for the non-selfadjoint operator of the form

A —w
A.:(w A)A’ A>0, weR, (6)

which appears e.g., under the study of complex Ginzburg-Landau equations of the
form
Ou = (A +iw)Agu — F(u,a), u=uy + iug, (7)

the conditions for the existence of IMs remain close to the expected (5). Moreover,
the deviation from the self-adjoint case (due to the presence of w # 0) is even helpful
here. Indeed, in the case of equation (7) on 3D torus, the normally-hyperbolic IM
is constructed for the case w # 0 (see [18]) although as known for a long time (see
[31]) such an object may not exist in the case w = 0.

The main aim of the present paper is to give a comprehensive study of a different
type deviation from the self-adjoint case, namely, the case of the so-called hyperbolic
relaxation of problem (1):

£02u + Opu + Au = F(u), (8)

where € > 0 is the relaxation parameter, A is a positive self-adjoint operator in a
Hilbert space H with compact inverse with the eigenvalues {\,}52, and F': H - H
is globally Lipschitz with the Lipschitz constant L. Introducing v = O;u, one can
reduce this second order equation to the form similar to (1):

(B DO o

however, applying the general theory is far from being straightforward here, not
only since the obtained operator A = A, is not self-adjoint and even not sectorial,
but also due to the strong singularity and associated boundary layers at ¢ = 0. This
problem has been partially overcome in [26, 27], see also [4, 6], by introducing the
specially constructed equivalent norm in the energy phase space £ = D(Al/ Hx H
which allowed to construct the IM under the following assumptions:

AN41 — )\N’ R AN+1 — AN o1,
R(R-1) 4L

see [4] (see also [2, 35] for more general cases including the dependence of the
nonlinearity f on d;u or/and the strong damping term A,0:u). Unfortunately,
these conditions are clearly not optimal since they do not recover the known sharp
conditions (5) in the parabolic limit € — 0, so the dependence of the actual required
spectral gap on the parameter £ remained unclear.

In the present paper, we suggest a new approach to problems of the form (8)
which is a variation of the so-called Perron method and in a sense close to the

1
AN+1 — Ay > 4L, g > A N1 + (10)
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approach of [24] (see also [36]). Under this approach, we do not utilize the reduction
(9) to the first order equation and work directly with the trajectories of the second
order equation (8) applying the Banach contraction theorem in the weighted space
ngt(R,,H) where 8 = (N, ¢) is a properly chosen exponent. This allows us to
neglect the boundary layer effects from the one hand and from the other hand, to
develop a machinery for computing the crucial Lipschitz constants just by expanding
the solutions of the corresponding linear problem to Fourier series and using the
Fourier transform in time for finding the optimal bounds for the norms of Fourier
coeflicients, see Appendix for details. In the present paper, we demonstrate this
approach on the model example of problem (8) only although we believe that it will
be helpful for many other classes of dissipative PDEs especially containing singular
perturbations. We return to this somewhere else.

The main result of the paper is the following theorem, see also Theorems 3.1 and
3.2.

Theorem 1.1. Let A be positive self-adjoint operator with compact inverse in a
Hilbert space H with the eigenvalues {\,}32, enumerated in the non-decreasing
order and let F' : H — H be globally Lipschitz with the Lipschitz constant L.
Assume also that the numbers L, e > 0 and N € N satisfy the following conditions:

1
)\N+1 — Ay > 2L, g > 3>\N+1 + An. (11)

Then equation (8) possesses an N-dimensional IM M = M. and this manifold is
Lipschitz continuous with respect to € at € = 0.

We see that the first condition of (11) now coincides with the assumption (5) for
the limit parabolic equation and as shown in Section 4 below is optimal for € # 0
as well. Thus, the optimal spectral gap condition for the perturbed problem (8) is
surprisingly independent of £. Concerning the second condition of (11) although
it is essentially better than the analogous assumption of (10), we do not know
how optimal it is. Indeed, the natural necessary condition for the existence of
the normally-hyperbolic IM here is % > 4\, so we expect that the spectral gap
condition will be different from (5) when

1
4N < g < 3AN+1+ AN =4AN +3(>\N+1 — )\N).

In particular, it is natural to expect that the allowed Lipschitz constant L should
tend to zero as % — 4An. In order to avoid the technicalities, we did not present
the analysis of this particular case in the paper.

The paper is organized as follows. The necessary definitions and preliminary facts
are given in Section 2. The proof of the main result (Theorem 1.1) is presented in
Section 3. The concluding discussion concerning the optimality of the obtained
spectral gap conditions, further regularity and normal hyperbolicity of the IMs,
etc., is given in Section 4. In addition, the applications of the obtained results to
damped wave equations are also indicated there. Finally, all necessary estimates
related with the linear problem are collected in Appendix.

2. Preliminaries. In this section, we introduce the main concepts and prepare
some tools which will be used throughout the paper. We recall that our main
object of study is the following hyperbolic relaxation of the abstract semilinear
parabolic problem in a Hilbert space H:

edfu+ Ou+ Au= F(u), u|,_, =uo, dyul,_,=up, (12)
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where € > 0 is a small parameter, A : D(A) — H is a positive self-adjoint operator
in H with compact inverse and the nonlinearity F' : H — H is assumed to be
globally Lipschitz continuous in H:

||F(U1) — F(’LLQ)HH < L||U1 — ’U,QHH7 U, U € H, F(O) =0. (13)

Let {\,}22; be the eigenvalues of the operator A enumerated in the non-decreasing
order and let {e,, }>2 ; be the corresponding (complete orthonormal) system of eigen-
vectors. Then, due to the Parseval equality, for every u € H,

o0 oo
u= Zunen, Uy = (u,en), |ull3 = Z u?,
n=1 n=1

where (-,-) stands for the inner product in the Hilbert space H. We also denote
by H® := D(AS/2), s € R, the scale of Hilbert spaces generated by the operator A.
The norms in these spaces are given by

o oo
lullg = 3 A2, u= " wnen.
n=1 n=1

Then, obviously, H** C H*2 for s; > s (and the embedding is compact if s1 > s3)
and the operator A is an isometric isomorphism between H**2 and H*. We denote
by Py the orthoprojector to the subspace generated by the first N eigenvectors of
the operator A:

N )
Pyu = Z(u, en)en, Qnu:=(1— Py)u= Z (u, en)en.
n=1 n=N+1

Note that these operators act in all H*, s € R, and are also orthoprojectors in all
these spaces.

We use the notations &, := (u, d;u) and introduce the energy phase space &, for
problem (12) as follows: & := H' x H if e # 0 and & := H' x H~! endowed by
the following norm:

I6ullz. := ellOvullZr + 10eulf— + llullF-

It worth noting that, in the limit case ¢ = 0, we need not the initial data for d;u
for the well-posedness of problem (12), but we prefer to keep it for comparison with
the trajectories corresponding to the case € # 0 where this initial data is necessary.
Of course, the limit dynamical system which corresponds to the parabolic problem
(12) (with € = 0) is defined not on the whole space &, but only on the invariant
manifold 50 determined by

& = {(u,v) € &, v = F(u) — Au}, (14)

but we will identify & with §0 everywhere in the sequel if it does not lead to
misunderstandings. Analogously, the scale of energy phase spaces £7, s € R, is
determined by the following norm:

1€l

The next theorem gives the standard result on the global well-posedness of problem
(12).

& = el QpullFre + 10vulFroms + llull7esr-
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Theorem 2.1. Let the nonlinearity F(u) satisfy (13) and € > 0. Then, for ev-
ery & € &, there is a unique solution &, € C(Ry, &) of problem (12) satisfying
5“’t:0 = & and this solution possesses the following estimate:

t+1
a2, + / |Bvu(s) |13 ds < CeXt o2, (15)

where the constants C and K depend on L, but are uniform with respect to € — 0.
Moreover, if in addition, & € EL, then the solution &,(t) € EX for allt > 0 and

t+1
€u (112 + / 10u(s)|2: ds < CeX* g2, (16)
t

and the estimate is uniform with respect to € — 0.

Proof. We give below only the formal derivation of the stated estimates. Their
justification can be done using e.g., the Galerkin approximation method. The only
a bit delicate place is the fact that the map F' is not differentiable, so the estimates
involving time differentiation of F'(u) require some accuracy. This can be overcome
(on the level of Galerkin approximations) by approximating the Lipschitz function
by smooth ones without expanding the Lipschitz constant, e. g., using the mollifi-
cation operator. In order to avoid the technicalities, we rest these standard details
to the reader.

We start with estimate (15). Indeed, taking the scalar product of equation (12)
with dyu and using that

1E ()l = [[F(u) = FO)[m < Lf|ua,

we end up with
1d 2 2 2
5 g El0wllfy + ulF) + 19wllf; = (F(u), 0u) <
1 1
Llula|dwul i < 310l + 5L ulf (A7)

and the Gronwall inequality together with the inequality [|u[|% < A7 " |ul|?. give
2 2 tH 2 L2AT 't 2 2
el|Opu ()|l + [lw() 7 +/ 10su(s)|I7; ds < Ce™ 1 (ellugllFy + [|uollFm) - (18)
t

Thus, to complete (15), we only need to estimate the H~! norm of d;u. To this
end, we multiply equation (12) by A~'0,u and rewrite it in the form

d _ _ _
S 0ll s+ e MOl s < Ce7H(|lullf + 1F()F) < CeHlul,
where C' depends on L, but is independent of € — 0. Integrating this inequality, we
get the following boundary layer estimate

¢
ot < 10O e w0t [T o )
0
and this estimate together with (18) give the desired estimate (15).

To obtain the second estimate, we multiply equation (12) by 9;Au and get

d

1 1
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Introducing Y'(t) := Sel|,u(t)||2: + 3 fu(t)||%2 — (F(u(t)), Au(t)) and using that

1
|(F(u), Aw)| < Lijull gellulla < L*ull + Flluls,
we get
1
1 El0aull + llullfe) = L2llullf <Y () < el drullz + lullf + L2 [lullF-
This estimate, together with another obvious estimate

1
|(F' (), Aw)| < LYOwullmllull 2 < Sll0vulfy: + Cllul

allow us to transform (20) as follows

d 1
ZY @)+ S10u®7n < CY (1) + Cllu®)|F-

Integrating this inequality and using estimate (15), we arrive at
t+1
elldeu(®)I7 + llut)|7 +/ |19eu(s) |2 ds < Ce™H|€u(0)][z- (21)
t

To complete estimate (16), we only need to estimate the H-norm of d;u. This can
be done exactly as in the derivation of (15), but multiplying equation (12) by d;u
instead of A~19;u. Thus, the theorem is proved. O

The proved theorem guarantees that the solution semigroup Se(t) : & — &,
t > 0, is well defined by

Se(t)&o = &ul(t), (22)
where u(t) is a solution of (12) satisfying &, | +—o = §o- Moreover, as not difficult to
show, this semigroup is globally Lipschitz continuous on &.:

[|Se(t)é1 — Se(t)éalle. < Ce™t||é1 — &le., &1,& €&, (23)

where the constants K and C are independent of € — 0.

Remark 1. Note that the conditions imposed on the nonlinearity F(u) do not
guarantee problem (12) to be dissipative. Indeed, the choice F'(u) = Lu is allowed
and the solutions u(t) may grow exponentially as t — oo. To avoid this, the extra
dissipativity conditions should be added. Since the dissipativity is not essential for
Inertial Manifolds (only the global Lipschitz continuity is crucial for the theory),
we do not pose these conditions.

We now turn to Inertial Manifolds. We start with recalling the definition adapted
to our case.

Definition 2.2. A Lipschitz continuous submanifold M of the phase space £ with
the base Py H (for some fixed N € N) is called an Inertial Manifold for problem
(12) if

1) The manifold M is strictly invariant: S¢(t)M = M for ¢t > 0;

2) It possesses an exponential tracking (asymptotic phase) property, namely, for
any & € & there exists & € M such that

I1S(t)é0 — S:(D)éolle. < Clléolle.e™™, (24)

where the positive constants C' and 6 are independent of ;.
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We will construct the Inertial Manifold (IM) for problem (12) using the Perron
method. Namely, we will use the fact that the IM is generated by all backward in
time solutions u(t), t < 0, of problem (12) which grow not too fast as t = —oo, i.e.,
u € L2,,(R_, H) for some properly chosen § = 6(N, ), see [36] and Section 3 below
for more details. We recall here that (for any V' C R) the norm in the weighted
space L2, (V, H) is defined by

i, vy = [ )yt (25)

In order to understand how to make a choice of 8 and what initial conditions we
should impose on the backward in time solutions of (12) at ¢ = 0, we need to
investigate the linear analogue of problem (12). This is done in details in Appendix
and here we only mention the basic facts related with the structure of the spectrum
of the linear problem which corresponds to FF = 0. Indeed, using the Fourier
expansions u(t) = Y 2 | uy(t)e,, we see that the homogeneous problem (12) with
F =0 is equivalent to the following uncoupled system of ODEs

eul (t) +ul, (t) + Aun(t) =0, neN, (26)
and the general solution of this problem reads

I Ve W

Un (t) = pneuit + Qneﬂ:"ta 125 % (27)

where py,, g, € R (or p,, g, € C). It is easy to see that
wht = =Xn, p, — —00

as € — 0, so in the limit case € = 0, we just drop out the term containing g, in (27).
We also see that the eigenvalues pu;f (resp. p,,) are decreasing (resp. increasing)
in n until they remain real. Namely, this holds for all n < n.,., where n., is the
maximal natural n satisfying 1 — 4e\,, > 0. Therefore,

_ _ 1
oS S, S o Sp, S Sl
For n > n,, the eigenvalues will be complex conjugate with
1
Rept = ——.
/’Ln 28

This structure allows us to make the following observations:

1. There is no hope to construct (at least the normally hyperbolic) IM diffeo-
morphic to PyH if N > n.., so we need to pose the condition like 4eAy < 1 to
avoid this case. Actually, we will pose slightly stronger restriction that

(3)\N+1 + )\N)E <1, (28)

see the explanations below.
2. If we want to build up the IM utilizing the spectral gap between Ay and
AN+1, we need to fix the exponent 0 satisfying

—pufy <0< —Repl, .
To specify this choice, we recall that in the limit case ¢ = 0, the optimal choice of this

exponent is § = %, see [36] for the details. The most natural generalization
of this formula to the case € # 0 would be the following one:
1—+/1—2e(Ax + An11)

=0, = o - (29)
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As we will see below, this choice is indeed optimal if assumption (28) holds and gives

the sharp condition for the existence of the IM (note that the eigenvalues ,uﬁ 41 are

allowed to be complex conjugate). In the case of “the last” spectral gap where
dedy < 1, (3/\N+1 + )\N)E >1

we expect different choice of 8 to be optimal, but the investigation of this case is
out of scope of the paper.

3. Under the assumptions (28) and (29), we see that, for n > N only zero solution
of (26) belongs to L2, (R_). In contrast to this, for n < N, we have the family of
such solutions parameterized by p, € R since

ehnt e L2 (R_), efnt ¢ L%, (R_).
Thus, we have N-dimensional family of backward solutions of
€0?u+ Opu + Au =0 (30)
which belong to the space ngt (R_, H) and which are parameterized by the point
pP= (pla"' 7pN) S PNH Since
u;,(0) — py un(0) € 1+ vV1—4deh,
= pn V1—dek, 2¢/1 —4deX,

then, 1ntroducmg the linear operators Py : H — H and PN H — H via

1—4e),
P = n)en, P = U, €n )€En,
v Z N 45)\ (1, en)e N Z_: VT (Wen)e

we rewrite the initial data for problem (30) in the equivalent form

(32)

73N8tu|t:0 + PNu|t:O =p

Then, we will have one-to-one correspondence between the backward solutions of
(30) belonging to Lget(R,,H) and elements p € PyH, see Appendix for more
details. We will essentially use this observation for constructing the IM for problem

(12).

3. Imertial manifolds. In this section, we verify the existence of the Inertial Man-
ifold for the semilinear equation (12) in the energy phase space & and study the
singular limit € — 0.

We assume that F' is a globally Lipschitz map with the Lipschitz constant L, i.e.,
assumption (13) is assumed to be satisfied. The next theorem gives the sufficient
conditions for the existence of the IM for the equation (12).

Theorem 3.1. Let the function F satisfy (13). Assume also that for some e > 0
and N € N the following spectral gap conditions are satisfied:

1
AN+l — AN > 2L, 3Ani1+ Ay < - (33)
Then equation (12) possesses an N-dimensional Lipschitz IM M = M. (in the
sense of Definition 2.2) generated by all solutions of this equation which grow back-
ward in time slower than e~ (namely, v € L?,(R_,H)). Here 0 is the smallest
root of the equation
29(89 — 1)+ Any1+ Ay =0. (34)
As usual, this invariant manifold is generated by the Lipschitz injective map M :
PyH — &, and possesses the exponential tracking property E..
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Proof. We seek for the desired backward solutions of equation (12) as solutions of
problem:

£0?u + Opu + Au = F(u), 7/5N8tu(0) +Pnu(0)=pe PvH, t<0, (35)

which belong to the space H, := Liet (R_, H). Recall that the operators 731\7 and
Py are defined by (32). Our first task is to verify that this problem possesses indeed
a unique solution for any p € Py H and that this solution depends in a Lipschitz
continuous way on the parameter p. To this end, we use the Banach contraction
theorem in the space H, . Namely, according to Lemma A.8, for every p € PyH
and h € H, , problem

v + Qv + Av = h(t), t<0, Pndwl|,_,+Prv|,_, =, (36)

possesses a unique solution v € H,. We denote the solution (linear) operator for
this problem by L (i.e., v := LL(h, p), see Lemma A.8). Then, due to (105), we have

the following estimate:
2
L(h < ——||A||y- + C 37
L. Py < 5y WAl + Clpla (37)

where C' is independent of ¢ — 0. Thus, equation (35) can be rewritten as a fixed
point problem

u=L(F(u),p), p€ PnH, (38)

in the space H, . We claim that the right-hand side of (38) is a contraction on H, .
Indeed, due to (37) and (13),
L(E (ur), p) = L(F (u2), p)lly; = L(E (ur) = F(u2), 0)lly,, <
2 2L
< —||F - F Sl — - (39
< T ) = Pl < 5l —ally, (39)

and this map is a contraction due to the first assumption of (33). Thus, equation
(38) and which is the same, equation (35) are uniquely solvable for every p € Py H
and the solution map U : PyH — H, is well defined and Lipschitz continuous in
p (since L is Lipschitz and even linear in p). We are now ready to define the map
M : PyH — &, which generates the desired IM via the expression

- Q) ()
Let us verify that this map is well-defined. Indeed, since u = U(p) satisfies (35)
and the right-hand side h(t) := F(u(t)) € H, , we have
1l < Lltull, < Clla
and, due to Corollary 1, d;u € H, and
96l < Lidetly, < Cliplla (1)
Then, due to Corollary 4,
IM)es = N0} lez < € (Whllwszamy + Iplln) < Clll (42

Thus, the map M : PyH — &} C & is well-defined. Let us prove the Lipschitz
continuity. Indeed, let p1,ps € PvH and u; := U(p;), i = 1,2, be the corresponding
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backward solutions. We set p := p; — pa, @ := u; — up and h := F(u1) — F(ug).
Then, since the map U is Lipschitz in p, we have

1Bll3y; < Ll < Cllpla-
0 0

Moreover, since the function @ solves (36) (with v, p and h replaced by @, p and h
respectively), due to Corollary 1, 4 € Ceor(R_, H) and, therefore, h € L%, (R_, H).
Then, Corollary 2 gives

[M(p1) — M(p2)le. = lu(0)|le. < Cllpr — pallm, (43)

where the constant C'is independent of ¢ — 0. Thus, the well-posedness of the map
M and its Lipschitz continuity is verified. Moreover, by the construction of this
map,

PnTaM (p) + PnILLM (p) = PnU(p)|,_, + PNU(D)|,_, =p, Vp € PnH. (44)
Therefore, the left inverse to this map exists and also uniformly Lipschitz continu-
ous. By this reason, the set M := M(PyH) is a Lipschitz submanifold of &, see
also Remark 2 below. The invariance of this manifold with respect to the solution
semigroup generated by equation (12) follows from the definition of the map M.

Thus, in order to verify that M is indeed an inertial manifold and finish the
proof of the theorem, it is sufficient to verify the exponential tracking property.
Let &, € C(R4, &) be an arbitrary solution of problem (12). Following [36], we
introduce the smooth cut-off function (t) such that p(t) =0 for t < 0 and ¢(t) =1
for t > 1 and seek for the desired solution w(t) € M, t € R in the form

w(t) = p(t)ult) +v(t),
where the function v € L2, (R,H). Then, w(t) = v(t) for ¢ < 0 and the fact
that w € M will be guaranteed by the fact that v € L?,,(R_, H). On the other
hand, v(t) = w(t) — u(t) for t > 1 and the fact that v € L2, (Ry, H) together with
Corollary 2, will imply the desired exponential tracking estimate

[u(t) = w(t)lle. < Ce™. (45)

Thus, we only need to construct the function v with the above properties. Since w
is also a solution of (12), this function should satisfy the equation

£02v+0,v+Av = F(pu+v)—@F (u)—(ep” +¢ Ju—2e¢' 0pu := ®(v,u), t € R. (46)

We want to apply the Banach contraction principle to this equation. To this end,
we note that, for any v € L2, (R, H), the function ®(v,u) € L2, (R, H). Indeed,
for t <0, ®(v,u) = F(v) and

||¢’(U7U)||L§9t(m,,H) < HF(U)HLim(]R,,H) < L”UHLim(R,H)

(here we have implicitly used that F(0) = 0). On the other hand, for ¢ > 1,
®(v,u) = F(u+v) — F(u) and

||‘I’(U»U)||L§9t({t21},H) <|[[F(u+v) - F(u)HLzet({tZH,H) < L||”||L§9t(R,H)~

Finally, for 0 < ¢ < 1, using the fact that v € C(Ry, &), we see that ®(v,u) €
L?([0,1], H). This guarantees that ®(v,u) € L2, (R,H) if v € L2, (R, H). More-
over, for vy, vy € ngt (R, H), we have

|®(v1,u) — (I)(U%U)HL'?M(R,H) = [[F(pu+v1) — F(pu + UQ)”LZ%(R,H) <

Lljvy — UQ”LEM(R,H)-
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Using now Lemma A.5, we rewrite equation (46) in the equivalent form
v=L(P(v,u)), ve Lget(R H),

where the solution operator £ is defined in Lemma A.5. Then, due to estimate (80)
and the spectral gap condition (33), the function v — L(®(v,u)) is a contraction
on ngt (R, H):
[£(@ (01, u) = @(v2, )12, ,11) <
2 2L

< 1o, w) = (o2, u)l 2, m,1) <

T AN+ AN T AN+~ AN fen = U2HL39t(R’H)'

(47)
Thus, the desired v exists by Banach contraction theorem and the theorem is proved.

O

Remark 2. Note that the map Py : E- — Py H defined by ’ﬁN(u, v) = 75Nv—|—73Nu
and restricted to the subspace

H]+V = {(u,v) € PN“:Ev (U7en) ZMI(Uaen), n= 17 7N}

is one-to-one. As not difficult to see, the left inverse is given by

N
Py'pi= (p, > ko, en)en> Sy

n=1
and the operator Py := 75](,1 o 75N & — ’H]J(, is a projector. The kernel of this
projector is given by
H]T/' = {(U,’U) S PNEEa ('U,@n) = ,u,:(u,en), n= 17' o ;N} S QN((:E
and the phase space & is split into a direct sum (but not orthogonal if £ # 0):
E=HE oMty
Thus, analogously to the standard theory, the manifold M. is a graph of the Lips-
chitz function M. : ’Hﬁ — Hy given by

M. (&4 ) = QnM.(PnEy), &4 € HY,

where Qu := 1 — Py is the projector to the space H . Since all the maps Py, Qx,
Pn are smooth as € — 0, we only need to study the dependence of the map M, on
E.

The rest of this section is devoted to the dependence of the constructed IMs on
the parameter €. We are mainly interested in the parabolic singular limit € — 0.
Note that all of the estimates used in the proof of Theorem 3.1 are uniform with
respect to € — 0 and, therefore, the result on the existence of the IM holds for the
case € = 0 as well. In this case, the IM My is generated by the solutions of the
limit parabolic problem

Ou + Au = F(u), PNU’t:O =p, t<0 (48)
(since 73N — 0 and Py — Py as € — 0) belonging to the space Lget (R_, H), where

_ ANt1+ AN

0 =00 3
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The function M (p) = My(p) is then defined by the same formula (40). Obviously
in this case the dyu component of M can be determined by the w one using the
equation:

Iy Mo(p) = F(II; Mo(p)) — AIL; Mo (p). (49)

However, for comparison with the cases € > 0, we prefer to keep both components
for the limit case as well. The next theorem measures the distance between the
manifolds M, and M.

Theorem 3.2. Let the assumptions of Theorem 3.1 hold. Then, the following
estimate between the manifolds M. and Mg (which correspond to the values of the
parameter € and 0 respectively) is valid:

IM:(p) — Mo(p)lle. < Cellpll, (50)

where the constant C' is independent of € and p.

Proof. Let u. := U.(p) and ug := Up(p) be the backward solutions of problems (35)
and (48) respectively. Then, the difference . (t) := u.(t) — uo(t) solves

(51)

€0t + Oyt + At = [F(u.) — F(ug)] — €0?uo(t),
P50 (0) + PR (0) = —P50uo(0) — [Py — Pn]uo(0) := pe.

Note that the operators Py and 73N commute with the projector Py and are smooth
with respect to € — 0 (see formulas (32)). Using this fact together with (42) for
e =0, we get

1|l < Cel[PnOyuo(0)|| 1 + Cel Pvuo(0)]|a < Cellpl|a- (52)

Let us now estimate the term d92ug. First, due to estimate (41) with € = 0, we have
10 F (o)l + (o)l < Cllplla
Moreover, due to Corollary 4, we have
Owup € L% (R_, H)
and, consequently,
N0 F (uo ()l e < Le®(|0uo(t)l|rr < Clpll-
Thus, applying Corollary 4 again, we arrive at
HatQuO”Lim ®_,m) T H@QUOHL% ®_,m-1) < Clplla- (53)

Note also that the limit function ug € H, with § = 0y = (An4+1 + An)/2 and the
function wu. lives in H, with 0 = 0. # 6, satisfying (34). However, according to
(34)
- AN+1 + AN L el > AN+1 + AN
2 2
and we have the uniform (with respect to e — 0) embedding

:00

My C Hy -

Thus, estimate (53) remains valid if we replace H, by H,_ in it.
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We are now ready to finish the proof of the thoerem. Indeed, applying estimate
(105) to equation (51), we get

. 2 .
el < 5y IF () = Fuo)lly; + O0uollg; + Clpella <
N+41 = AN
2L
< ——||u -+C 54
< s el + Celoln (54)
and using the spectral gap condition (33), we arrive at

el < Cellplla, (55)
where the constant C is independent of €. Thus,
[1F(ue) = F(uo)lly; < CL|ltc|l5,- < Cellpllm

and Corollary 1 now implies the estimate for the L°°-norm of 4. which in turn
improves the previous estimate and gives that

1F(ue) — F(uo)llLos, - .m) < CLllte |, w1y < Cellplla
Finally, applying Corollary 2 to equation (51), we get
[€a. (0)|le. < Cellpllu
which gives the desired estimate (50) and finishes the proof of the theorem. O

4. Concluding remarks. In this concluding section, we discuss some applications
and generalizations of the proved results. We start with extra smoothness and
normal hyperbolicity of the constructed IMs.

4.1. Smoothness and normal hyperbolicity. Recall that we have posed only
global Lipschitz continuity assumption on the non-linearity F. Under this as-
sumption we cannot expect that the IM M, as well as the solution semigroup
Sc(t) : & — & associated with equation (12) will be more regular than Lipschitz
continuous. But if the nonlinearity F' € C'*#(H, H) for some positive 3, then as
known the semigroup S.(t) will be also C**# with respect to the initial data. We
denote its Frechet derivative at point & € & by D¢S.(t). In addition, repeating
word by word the proof given in [36], we see that the IM M. is also C'*#-smooth
if 3 = B(N,L) > 0 is small enough. The assumption F € C'*#(H, H) may be a
bit restrictive from the point of view of applications since, as known, the Nemytskii
operator u — f(u) is not Frechet differentiable as an operator from H = L?(Q) to
itself even if f € C§°(R). This problem may be overcome in a standard way by
assuming that the nonlinearity F' satisfies

1B (ur) = F (ug) = F (wr) (wr —uz) | 11 < Cllur —uz | lus —usl| 1, wr,uo € H'. (56)

As shown e.g., in [36] this assumption is sufficient to obtain the C'*#-smoothness
of the IM. On the other hand, it allows us to overcome the problems related with
the aforementioned pathological property of the Nemytskii operator.

Remark 3. Note that the C'*A-regularity of the IM is guaranteed only for small
positive 3 and even the analyticity of F' does not guarantee the existence of C?
smooth IM since the resounances may appear. Typically for the invariant manifolds,
extra regularity of the IM requires larger spectral gaps. In particular, for the limit
parabolic case € = 0, we need the spectral gap like

)\N+1 — (1 + 5))\]\7 > CL (57)
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in order to have C'*# regularity of the IM, see [15, 32] for more details. Note that
the assumption (57) is essentially stronger than (5) and is natrually satisfied only if
An grow exponentially fast as n — oo. Since in applications A is usually the elliptic
operator in a bounded domain where such growth is impossible due to the Weyl
asymptotic, one cannot expect C?-smooth IMs in applications.

To continue, we need to recall the concept of normal hyperbolicity adopted to our
case where the phase space is infinite-dimensional and the manifold is not compact,
see [10, 13, 32] for more details.

Definition 4.1. Let S.(t) € C'*A(£.,&.) and M. be an N-dimensional C'+5
submanifold of & which is inavariant with respect to the semigroup Sc(¢). Denote
by T M. the tangent bundle associated with M. and let TeM. ~ RV, € € M., be
its fibers. The manifold M. is called stable and absolutely normally hyperbolic if
there exists a vector bundle MM, with fibers Ne M. of codimension N in & such
that

1. The bundle N'M, is invariant: DS, (t)NeMe C Ng_yeMe, t > 0.

2. For every € € M., & = Te M. ® NeM,. and the projectors Pe and Q¢ to the
first and second components of the direct sum satisfy

| Pellze..e) + 1 Qellce. ey < C, (58)

where the constant C' is independent of £ € M..
3. There exist positive constants C, 6 and x < 6 such that, for every £ € M.,

{IIDgSe(t)nllss < Cem Ot nlle., 1€ NeM.,

—1,—(0—x (59)
IDeSe(t)nlle. = C~e= O Inlle,, 0 € TeM..

Remark 4. Since IMs are stable by definition, we adapt the definition of normal hy-
perbolicity to this case by excluding the unstable bundle. In the finite dimensional
case, we have the strict invariance of the stable bundle N'M, which is usually not
the case in infinite dimensions since the linearization D¢ S, (t) may be not invertible.
For instance, in the case of parabolic PDEs these operators are compact and by this
reason, not invertible. Estimate (58) actually follows from (59) in the case when
M is compact, so it is added to treat the non-comact case. Finally, absolute nor-
mal hyperbolicity means that the exponent 6 is independent of the point £ € M..
In the general definition of normal hyperbolicity this exponent may depend on the
point £ € M.. We restrict ourselves to the discussion of the absolute normal hy-
perbolicity only by two reasons. First, the IMs constructed by the Perron method
are usually absolutely normally hyperbolic (although, non-absolute normally hyper-
bolic IMs naturally arise when the alternative method based on the invariant cones
is used, e.g., for methods involving the so-called spatial averaging, see [22, 19, 36]).
Second, the absolute normal hyperbolicity can be relatively easily extended to the
non-compact case and the proper extension (suitable for IMs) of non-absolute hy-
perbolicity to the non-compact case requires the replacing of exponents in (59) by
more complicated functions, see [10].

Theorem 4.2. Let the assumptions of Theorem 3.1 hold and let in addition the
nonlinearity F satisfy (56). Then the IM M. is absolutely normally hyperbolic in
the sense of Definition /.1.

The proof of this theorem is standard and we will not repeat it here, see [32] for
more details.
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Remark 5. Recall that according to the general theory of invariant manifolds,
the IM must be normally hyperbolic in order to be robust with respect to small
perturbations, see [10, 13]. In addition, to the best of our knowledge, all known
more or less general schemes of constructing IMs automatically give the normal
hyperbolicity (although it is not difficult to construct the artificial examples of non-
normally hyperbolic IMs, see Theorem 4.4 and Remark 6 below), so exactly the
normally hyperbolic IMs are most interesting from the point of view of applications.
On the other hand, the non-existence of a normally hyperbolic IM is usually much
easier to establish than the non-existence of any IM. In particular, the normal
hyperbolicity estimates (59) is relatively easy to prove or disprove looking at the
equilibria & of the considered semigroup. Indeed, in this case S¢,(t) := D¢, S:(t) is
a linear semigroup in & and invariant subspaces Vi = T¢, M. and V_ := N, M.
are just the spectral subspaces which correspond to the parts of the spectrum of
S¢, (t) situated outside and inside the disk {|z| < e~%} respectively. Assume now
that the spectrum of the linear operator

Ly = A—F (ug)

which corrsponds to the linearization (1) near the equilibrium ug € H is discrete
and the spectral mapping theorem holds for this operator. Then enumerating its
eigenvalues {v,}22 ; in such way that their real parts are non-increasing, we see
that the N-dimensional normally hyperbolic IM (which must contain all equilibria
by the definition) exists only if

0> Revy > Revyyg. (60)

The non-existence of normally hyperbolic IMs of any finite dimension is usually
verified by considering several (say, two or four) equilibria and organizing the mul-
tiplicity of the associated eigenvalues in such way that for any N € N condition
(60) fails at least at one of these equilibria, see [31, 23] for details.

We also note that in our case of equation (9) the (weak) spectral mapping theorem
also holds. Indeed, it obviously holds for the unperturbed semigroup e~** and as
not difficult to verify, e=“ot is a compact perturbation of e, see [8]. Thus, the
aforementioned scheme is applicable in our case as well and we will use it below to
verify the sharpness of our spectral gap assumptions.

4.2. Sharpness of spectral gap conditions. In this subsection, we discuss the
sharpness of the proved spectral gap conditions. We start with the following simple
lemma.

Lemma 4.3. Let N € N be fixed. Assume also that in the case if

1

the constant L is chosen in such way that Ay+1 — Ay < 2L. Then, there ezists a
linear operator F € L(H, H) such that ||F| g,y < L and the linear equation

£0?u + Opu + Au = Fu (62)
does not possess an N -dimensional normally hyperbolic IM.

Proof. Indeed, in the case when (61) is violated, we may just take F' = 0 and
condition (60) will be automatically violated since Revy = Revyy1 = —2—15. Thus,
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we only need to consider the case where (61) is satisfied. Then, we define the
operator I’ via

AN~ AN
2

AN41 — AN

Feyn = 5

ent1, Fen,=0,n#N, N+1.

(63)
It is not difficult to see that ||F||z(m,m) = M < L and, on the other hand, at
zero equilibrium we have vy = vy41 which forbid the existence of N dimensional

normally hyperbolic IM and finishes the proof of the lemma. O

en, Feni1:=+

We are now ready to construct an equation of the form (8) which does not possess
any finite dimensional normally hyperbolic IM. To this end of course, the spectral
gap conditions should be violated for all N. Namely, let n., = n.-(¢) be the largest
n for which the inequality é < 4\, be satisfied and assume that the constant L is
such that

sup {)‘N-‘rl — >\N} < 2L. (64)

<ner

Then, the following theorem holds.

Theorem 4.4. Let the numbers L > 0 and € > 0 satisfy assumption (64) and let,
in addition, L > \1. Then, there exists a globally Lipschitz with Lipschitz constant
L and smooth nonlinearity F : H — H such that equation (8) does not possess any
finite-dimensional normally hyperbolic IM.

Proof. The proof follows the strategy described at Remark 5. We introduce two
linear operators F*,F~ € L(H,H) which have the following form in the basis

{en}%o:f

- Aok — Aog—1
Fru:=>"Ff(uen)en, Ff_ = = Fo=—F5, kEN
n=1

and

Fu:= (L—é)(mel)el—i—ZFn_(u, en)en, Fy = —M, Fop = —Fy,
n=2
where § is small enough to guarantee that L — d > A;.

Finally, we replace the diagonal elements of F.= by zeros for n > n., + 1. Then,
due to the condition (64), we conclude that |[F*||zg ) < L. We now construct
the globally Lipschitz non-linearity F' with Lipschitz constant L in such way that
it will possess two equilibria ug and u, such that the linearizations of (8) at the

equilibria u(jf give the following equations:
€020 4 Oyv + Av = F¥u. (65)

Such F' exists and even may be constructed in the diagonal form:
F(u) = fl(ul)el + Z fn(ulaun)en
n=2

with the equilibria of the form u§ = 0 and u; = Re; and R > 0 is a sufficiently big
number. Indeed, for any R > 0, we may take the function fi(uq) in the form

f1(2) := max {—)\2 ; A1

2,(L—6)(z—R) + )\1R} .
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Then, assumption L — Ay — J > 0 guarantees that f1(0) = f1(R) — AR = 0 and
condition (64) ensures us that |f](z)| < L. This function is only Lipschitz continu-
ous, but applying the standard mollification operator with symmetric convolution
kernel gives us the smooth analogue of f; satisfying the above properties. Thus,
without loss of generality, we may assume from now on that f; is smooth.

Let us construct f,(uy,u,) for n > 1. To this end, we introduce the smooth
cut-off function ¢(z) such that ¢(z) =1 for 2 < 0 and ¢(z) =0 for z > % and fix

folur,un) = (EFo(u1/R) + F; o(1 — uy/R)) arctan(u,).

Then, obviously u§ are the equilibria and the linearizations around them coincide
with (65). On the other hand, by construction

|aunfn‘ <L, |au1fn| < CR_17 f’n(ulao) =0

and, therefore, we may fix the constant R to be large enough to guarantee that
the Lipschitz constant of the map F(u) is H is less than L, see also [36] for the
analogous construction.

To conclude the proof, it only remains to note that by the construction of opera-
tors F'*, the eigenvalues I/n(u(:)t) at these equilibria enumerated in the non-increasing
order of their real parts satisfy

1. Revn(ud) = Revnii(ud), nisodd 2. Revy(ug) = Revyi1(ug), n is even.

(66)
These two conditions exclude the existence of a normally hyperbolic IM of any finite
dimension and finish the proof of the theorem. O

Remark 6. Note that in the constructed example equation (8) is actually split to
the infinite system of uncoupled ODEs

£07uy + Ogur + Auy = fi(u1), €02up + Opun + Aty = fn(ur,un), fn(ug,0) =0,

o it possesses a lot of IMs which are not normally hyperbolic, for instance, for any
N € N, N > 1 (such that Ay41 > L), the plane Py&. will be an IM. But, in a
complete agreement with the general theory, all these manifolds can be destroyed by
arbitrarily small perturbations and, by this reason, are not very interesting. Indeed,
if we slightly perturb the linear operator F' defined by (63) in the following way:

ANFL — AN
2

AN41 — AN

FeN::— B)

6N+(56N+1, Fenyi =+ 6N+1—5€N, (67)
where § > 0 is arbitrarily small, then the corresponding vy and vyy; become
complex conjugate with non-zero imaginary parts and the N-dimensional invariant
plane generated by the eigenvectors corresponding to the eigenvalues vy, , vy in
the non-perturbed case § = 0 will disappear. Obviously, we also may perturb the
operators F* introduced in the proof of Theorem 4.4 in a similar way in order
to destroy all aforementioned artificial non-normally hyperbolic IMs. Moreover,
utilizing this idea in the spirit of [7], see also [36], we may remove the normal
hyperbolicity assumption in Theorem 4.4 and construct the nonlinearities F' in
such way that equation (8) will not possess any Lipschitz and even Log-Lipschitz
inertial manifolds, see also [26] for the non-existence of Cl-smooth non-normally
hyperbolic inertial manifolds for damped wave equations.
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4.3. Applications to damped wave equations. In this concluding subsection,
we briefly discuss how to apply the obtained results to damped wave equations of
the form

£0?u + Opu — Agu = f(u) + g, u|(,m =0, >0, (68)

where € is a smooth bounded domain of R?, d = 1,2,3, A := —A, is a Laplacian
with respect to the variable z € R?, u = u(t,z) is an unknown function, g € H :=
L?(Q) are given external forces and f € C?(R) is a given non-linearity satisfying
the following dissipativity and growth restrictions:

L fluu<C, [f"(u)] < O+ [u"?), (69)

where the exponent g > 2 is arbitrary if d =1 or d =2 and ¢ < gerit = 5 if n = 3.
Damped hyperbolic equations of the form (68) are very popular model equations
in the theory of attractors (which are non-trivial and interesting from both theoretic
and applied points of view) and are intensively studied by many authors, see [1, 3, 33]
and references therein. In particular, it is well known that at least for ¢ < 3,
equation (68) is globally well-posed in the energy phase space & = H! x H =
HY(Q) x L%*(Q), generates a dissipative semigroup in it and possesses a compact
global attractor A, in £.. Moreover, this global attractor is uniformly (as e — 0)
bounded in the space £}
[Acller < C, (70)

see also [9]. The analogous result has been recently obtained for the case ¢ < geriz =
5 as well (under some extra technical assumptions on f, see [14]) based on the so-
called Strichartz estimates. It is also known that for sufficiently small € > 0 the
analogous result holds without any restriction on the exponent ¢ in the 3D case as
well, see [37].

Note that, due to the Sobolev embedding H?(Q) C C(f2), estimate (70) implies
that, for every trajectory wu(t) of equation (68) belonging to the attractor,

lu(t)lc@) < R,

where R is independent of the choice of u, ¢t and € — 0. By this reason we may
cut-off the nonlinearity f outside, of [u| > 2R by introducing the new nonlinear
function f € CZ(R) such that

fu) = f(u), if lu| <2R.

Actually doing the cut-off procedure with a bit of accuracy, we may achieve that f
will satisfy (69) with ezactly the same constants as the initial f. This in turn will
guarantee that the attractor of the modified equation

€0?u+ Opu — Agu = f(u) +g (71)

will satisfy estimate (70) with exactly the same constant as the attractor of the
initial equation. Finally, by the construction of f, this implies that the attractor
of (71) coincides with the attractor A, of the initial equation (68), so the cut-off
procedure does not affect the attractor at all. The advantage, however, is that now
f is globally bounded (as well as the functions f’ and f) and the global Lipschitz
continuity now holds, so we are able to apply the theory developed above. But, in
order to satisfy the assumption F(0) = 0, we need one more modification. Namely,
we introduce the function G = G(z) as a solution of the following elliptic boundary
value problem

—A,G=f(G)+g, G|y,=0. (72)
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It is well known that under the above assumptions the solution G of this problem
exists and belongs to the space H?(2) C C(£2) (the uniqueness is not guaranteed
and usually does not hold, but we need to fix only one of such solutions). Finally,
we introduce the new independent variable @ := u — G and write the equation (71)
in the form

et + Oy — Ayu = f(u+G) — f(G), ul,, =0. (73)

Introducing now A := —A, with Dirichlet boundary conditions and F(u) := f(u+
G) — f(G), we see that the map F' is indeed globally Lipschitz as a map from
H = L?(Q) to H with the Lipschitz constant

e !
L = max|f'(u)| < oo

and satisfies the condition F'(0) = 0. Thus, equation (73) has the form of (8) and all
of the assumptions posed on F' and A are satisfied, therefore, to verify the existence
of the IM for this problem, we only need to check the spectral gap conditions.

To conclude, we discuss the possibility to find N such that the spectral gap con-
dition Ay11—An > 2L is satisfied if the constant L is given (the second assumption
of (11) does not contain L and is always satisfied (for a given N if € > 0 is small
enough). The answer on this question strongly depends on the dimension d, so we
discuss the cases d = 1, d = 2 and d = 3 separately:

1. d = 1. In this case, due to the Weyl asymptotic, \,, ~ Cqn?, so we have
infinitely many spectral gaps of increasing size:

ANt1 = AN ~ eV AN

and, for any L, the proper spectral gap exists. Thus, in the 1D case, the IM for
problem (68) always exists at least if € > 0 is small enough.

2. d = 2. In this case, the Weyl asymptotic (A, ~ Cqn) is not strong enough
to guarantee the existence of spectral gaps of arbitrary size and their existence or
non-existence remains a mystery. On the one hand, to the best of our knowledge,
there are no examples of domains 2 without such gaps and, on the other hand, there
are no results on their existence for more or less general domains. In particular, for
the 2D square torus, the largest possible gaps are only logarithmic with respect to
)\N:

)\N+1 — >\N ~ log)\N.
Thus, for general 2D domains the validity of spectral gap conditions remains an
open problem.

3. d = 3. In this case, the Weyl asymptotic reads A, ~ Cqn?/? and there are
no reasons to expect big spectral gaps to exist unless the domain 2 is extremely
symmetric. For instance, it fails even on a 3D torus and the only example known
for us where they exist is the case where ) = S® is a 3D sphere (actually, these
gaps exist on spheres of arbitrary dimension d). Thus, our applications of the IMs
theory to damped wave equations in dimension three are mainly restricted to the
case where the underlying domain is a sphere.

Appendix. Key estimates for the linear equation. In this Appendix, we
derive the estimates for the linear hyperbolic equation in weighted spaces which are
crucial for our construction of the inertial manifold. Namely, let us consider the
following linear damped wave equation

£02u + Opu + Au = h(t), &> 0, (74)
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in a Hilbert space H. As before, A : D(A) — H is a positive selfadjoint linear
operator with compact inverse, Ay < Ay < --- < A, < --- are the eigenvalues of
A and {e, }52; be the corresponding complete orthonormal system of eigenvectors.
We also assume that the right-hand side h belongs to the weighted space

Ho := L2 (R, H) (75)
equipped by the norm
o1y, = [ o) ar (76)
As not difficult to see (see e.g., the proof below), in the non-resonant case where
(0 —1)+ A, #0, neN, (77)

equation (74) is uniquely solvable in the class u € Hy for every h € Hy, so the
solution operator £ : h — u is well-defined. Our task is to find/estimate the norm
of this operator. This is done in the following lemma.

Lemma A.5. Let h € Hy and let N € N be such that
1
AN+1 — AN >0, z >3 AN+1 + AN (78)
Let also the exponent 6 € R satisfy
29(69 — 1) + )\N+1 + Ay =0. (79)

Then, problem (74) is uniquely solvable in the space u € Hy and the solution oper-
ator L : Hg — He (Lh :=u) satisfies following estimate:
2
L < 80
2l cu 0 < 5 5 (50)

9y, we have

Proof. Changing the dependent variable v = e
£02v + (1 — 2¢0)9,v 4+ Av + 0(e6 — 1)v = h(t) := e h(t), (81)

so the problem is reduced to the analogous non-weighted estimate for the equivalent
equation (81). At the next step, we split the solution v(t) into the Fourier series

v(t) = yn(ten, h(t) = hn(t)en. (82)

Then, equation (81) reads
eyn(t) + (1 —20)y,,(t) + (An + 0(0 — 1))yn(t) = hn(t), n €N (83)
and the desired norm can be found by
€112 r0,20) = AXN Ll (22, 2208, (84)

where £,, are the solution operators for equations (83).
To compute these norms, we use the Fourier transform and the Plancherel theo-
rem. Indeed,

(1) = Ru() "hn(p), Ra(p) = =€ +i(1 = 2e0)p+ A, +6(c6 — 1) (85)
and, therefore,
1= 1

mites 1o 0] (86)

L, = R,
1Lnller2m),L2®)) rl?g]éq (1)
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Thus, we only need to prove that, under the above assumptions,

A - A
min | Ry (p)] > 28— 2N

HER - 2 (87)

for all n € N. As not difficult to compute,

IR (10))? = (—ep® + X\ +0(e0 — 1))* + p%(1 — 2¢6)? =
=2t 4 (1= 2eN, +2e0(e0 — 1)) + (N, +0(c0 — 1))2 (88)
and it remains to minimize the quadratic polynomial
Q(z) :=e22% + (1 — 2\, +260(0 — 1))z + (N, + 0(6 — 1))? (89)

on the semiaxis z > 0. There are two possibilities:
Case I. (1 — 2e)\, + 2e0(cf — 1)) > 0. Then, the minimum is achieved at z = 0
and is equal to

(90)

AN +)\N)2
5 :

Q(0) = (A + 0(c0 — 1))* = (An

2
The minimum of the function n — (\,, — M

n= N and n = N +1 and is equal to (Ax11 — Ax)?/4. Therefore, for this case the
lemma is proved.

Case II. (1 — 2e)\,, +2e0(e6 — 1)) < 0. In this case, the minimum is achieved at
the vertex of the parabola and is equal to

is achieved at two points

(1 —2eX, +2¢0(c0 — 1))* =

- <215 +20(c0 — 1)> <2>\n - 21€> - (91)

Using that 2\, + Any+1 + Ay > % in Case II, we get

2
1 1 1
I _ _ ) > (= _ _
Qmin (26 AN )\N+1> <2>\n 25) > (25 AN )\N+1> , (92)

where we have used that the first multiplier is non-negative due to assumption (78)
(here we only need that 6 is real and (78) is not used in full strength). Moreover,
due to (78),

Qmin = (/\n + 9(69 - 1))2 -

1
(2¢)?

1 AN+1+ AN
— >\ AN+L T AN
9 = NHLT 2
which gives
1
% AN — An41 2> (An41 — An)/2
and finishes the proof of the lemma. O

The next lemma gives the extra smoothing properties of the map L.

Lemma A.6. Let the assumptions of Lemma A.5 hold and h € Hy and u = Lh.
Then,

(u, 8yu) € Coor (R, E), eA™V202u € My
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and the following estimate holds:

Ol oy + Il + Tl gy
2 21192, 1|2 2
+ HatuHLim(R,H) +e71|9; uHLim(R,H*l) < CN”h”Lim(R,H)a (93)
where the constant Cy depends on N, but is independent of € — 0 and h.

Proof. Instead of estimating the solution u of (74) in weighted spaces, it is equivalent
to estimate the solution v of problem (81) in the non-weighted spaces. We also
remind that (1 —20¢) = /1 —2e(Ax + Ay+1) > 0, so multiplying equation (81) by
dwv, we get

1d

5 5 (eIl + ol + ool <
= AN+ A a ~
< |(h, 000) | + S (0, 000) | < Sl + O (BN + 10lF) - (94)

for some positive a. Integrating this estimate over time interval (—oo,t) and using
that v vanishes at —oo, we arrive at

t
el + 00 s+ [ oru(o)lf ds <

—0o0
t

t
<Cy [ IO ds+Cx [ Iu(s)lds < Culbli, 95)

—00 —o0
where we have used (80) in order to estimate v in the RHS. To estimate the L2-norm
of [[u(t)[|3,., we multiply equation (81) by v(t) to get

d 1—2e0
pn (5(1}, Ov) +

Integrating this equality over ¢ € R and using already established parts of (93)
obtained in (95), we end up with

Hﬂ%)+”ﬂﬁn=éfh1%+9U—6®WW%+(EM~@@

||U||izet (R,HY) < CHhHiiet(R,H)'

Thus, it only remains to estimate the norm of the second derivative. This follows
just by expressing the term €9?v from (81) and estimating the RHS using the already
proved estimate (95) and the lemma is proved. O

Remark 7. Arguing exactly as in the proof of Lemma A.6, we may obtain the
analogous estimate for the solutions wu(t) defined on a semiaxis R_ only if the
estimate for the Liet (R_, H)-norm of u is known. Namely, the following estimate
holds:

EHatu”?Jegt(R,,H) + ”uH%’egt(R,,Hl) + HU||%2M(R,,H1)+
2 21192, 112 2 2
+ ||atu||Lz9t(R,,H) +e7119; UHLEM(R,,H—l) < CN(”hHLiet(]R,,H) + |‘U||Li9t(R,,H))~
(97)

Crucial for us here is the fact that this estimate does not depend explicitly on the
initial data for the backward solution u at ¢t = 0.

We now consider the solutions u(t) of equation (74) defined on the negative
semiaxis ¢ < 0 only and belonging to the space ngt (R_, H). We start with the case
h=0.
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Lemma A.7. Let the above assumptions hold. Then, for any p € PvH ~ RYN | the
following problem:

edfu+ dyu+ Au=0, Pyu|,_,=p, (98)

possesses a unique solution u € Lget (R_, H) and this solution is given by the fol-
lowing expression:

N
4
u(t) = (Sp)(t) = > _ e (p, en)en, (99)
n=1
where i 1= =11

Proof. Indeed, in the Fourier basis equation (98) reads
eull (t) +ul, (t) + Anpun(t) =0, ne€N, (100)
and its general solution is given by

L —lxyT—den,

L
n(t) = puett + guent, it -

It is not difficult to see that for n > N + 1 both exponents et grow faster than
e % ast — —o0, 80 u,(t) = 0 is the unique solution of (100) satisfying the desired
property. For n < N, we have —u,, < 6 < —uft. Thus, there is a one-parameter
family of desired solutions of (100) given by (99) which is uniquely determined by
the initial condition PNu| 1o = P and the lemma is proved. O

(101)

We now reformulate the initial condition Pyu(0) = p in the form which allows
us to study the non-homogeneous equations as well. Namely, as follows from (101),
see also (31),

, — [y, Un, 1 \/1_4 n

= VI—4eX, " 2v/1 —4de\,

Thus, introducing the linear operators Py : H — H and Py H — H via (32), we
rewrite the initial data for problem (98) in the equivalent form

n(0) = pn. (102)

POl +Pul,_y =p.
We now turn to the non-homogeneous version of problem (98).

Lemma A.8. Let the above assumptions hold. Then, for every p € Py H and every
he L2, (R_,H)), problem

£0?u + Opu + Au = h(t), t <0, 7/5N8tu|t:0 + PNu|t:0 =p (103)

possesses a unique solution u € ngt (R_,H). This solution can be written in the
form

u=3S8p+ Lh, (104)

where L is defined in Lemma A.5 and h is extended by zero for positive values of t.
Moreover, the following estimate holds:
2

HUHLim(R,,H) < mHhHLigt(R,,H) +Clpl#, (105)

where the constant C' may depend on N, but is independent of h, p and €.
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Proof. Indeed, let u := Lh. Then, since h is extended by zero for ¢ > 0, this function
solves

Eafu+8tu+Au:O, t>0.

Moreover, @ € L2, (R, H) C L?,, (R4, H). The Fourier components iy, (t) have the
form (101) at least for n < N and in order to belong to the space L2,,(Ry, H), they
should satisfy p, = 0 for all n < N. Therefore, by the definition of the operators
ﬁN and Py, we have

Prn0sii(0) + Pyii(0) = 0.
Thus, the difference @ := u — 4 satisfies
€02+ i+ At = 0, Pndyii(0) + Pya(0) =p

and by Lemma A.7, & = Sp. This gives the unique solvability of problem (103) as
well as formula (104). The key estimate (105) follows now from Lemma A.5 and
the elementary fact that

||S||£(H,L§9t ®_m) < C, (106)
where the constant C' is independent of € and the lemma is proved. O
The next corollary gives the extra smoothness analogously to Lemma A.6.

Corollary 1. Let the assumptions of the previous lemma hold. Then, the solution
u satisfies

€||6tu||2059t(R,,H) + ||UH?JCM (R_,H?) + HU||2L?et(R_,H1)+
+ ||5tUH%§9t ®_,m) t 52||at2u||izet (R_,H-1) = CN(Hh”iz@t @ .m +IplF),  (107)
where the constant C depends on N, but is independent of € — 0 p and h.

Proof. Indeed, this is an immediate corollary of estimates (105) and (97). O

At the next step, we recall that the norm in our energy phase space & is given
by
I€ullZ, = elldvullzy + [10pullzr— + llullFr, &u = (u, Opw).

The corollary below gives the uniform estimate for this norm for the solutions of
(103) under the extra assumptions on the right-hand side h.

Corollary 2. Let the assumptions of Lemma A.8 hold and let, in addition, the
function h € L%, (R_,H™"). Then, the following estimate holds:

l&u®IZ. < O (1Al oy + 1M ey + 0% ), (108)
where the constant C' depends on N, but is independent of € — 0.

Proof. The desired estimate for the terms e||Oyu(t)||%; + [|u(t)||3: is obtained in
(107), so we only need to estimate the term ||d;u(t)||3_,. To this end, we multiply
equation (103) by A=19;u and get

d
8@”(%1&”%{71 + 2)|0ul|3-1 = —2(u, Opu) + 2(h, A" 0pu) <
10ullF - + 2([ullz + 1AlF-). (109)
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Integrating this inequality over [t — 1,¢], we arrive at the following boundary layer
type estimate:

-1 -1
10su()[F-1 < e e = Qult — 1)|[7-1+

t
227 [ e o) s + u(e) ) s (110)
t

-1
which finally gives us that
10cu®)][F-+ < Celloult = DIE + CUIRI L -1y + Nullioo ¢ pem)- (111)

This estimate together with (107) gives the desired control for the ||Oyu(t)||z-1 and
finishes the proof of the corollary. O

We conclude the Appendix by stating the analogous estimates for the case where
the right-hand side h is more regular in time.

Corollary 3. Let the assumptions of Lemma A.8 hold and let Oih € Lgst (R_, H).
Then the following estimate is valid for the solution u(t):

€||3t2UH%~eet ®_,m) Tt ||3tUH%eet ®_,H1) T Hatuﬂiim ®_,H1) T ||u||?:§9t(R_,H2)
2 2 2 2 3 2
llulle ,, w2y + 110; uHLim ®_m) T 110; u”Liet(R_,H*l)

< CN(HhH%)V:é'f(RﬂH) + HpH%I)v (112)
where the constant Cy depends on N, but is independent of € — 0, p and h.

Proof. Indeed, differentiating (103) in time and denoting v(t) := Oyu(t), we arrive
at the equation

€0%v + 0w + Av = 0ih, t <0, (113)
which is again of the form of (103). Moreover, due to (107), we have the control

of the expression [|v]|2, R H)" Therefore, we get all parts of estimate (112) from
Lot (B—)

estimate (97) applied to equation (113). Expressing now the term Au from equation

(103) and using the already obtained parts of (112) for estimating the term e0?u =

£0yv, we get the desired estimate for the H2-norms of v and finish the proof of the

corollary. O

The next corollary is the analogue of Corollary 2 for this more regular case. To
state it, we first recall that the second energy norm in the phase space is given by

I€ullZs = elldvulln + lullZrs + 10pull?;-

Corollary 4. Let the assumptions of Corollary 3 hold. Then, the solution u(t) of
problem (103) satisfies the following estimate:

€a(®)lIE: < Ce™ (Il 125 gy + l0l% ) (114)
€ et( ) )

where the constant C' depends on N, but is independent of € — 0. Moreover, if in
addition 9;h € L33, (R_, H™'), then the following estimate holds:

[€on @Iz, < Ce™ (hlliv;m,m 0z, ) + ||p||%) . (115)

where the constant C' depends on N, but is independent of € — 0.
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Indeed, estimate (115) follows from (108) applied to the equation (113) and (114)

is already obtained in (112).
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